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ABSTRACT 
 

In present era, cellular communication plays a vital role for communicating over long 

distance. The number of mobile subscribers is increasing tremendously day by day. 3GPP LTE is 

the evolution of the UMTS in response to ever-increasing demands for high quality multimedia 

services according to users’ expectations. The average data consumption exceeds hundreds of 

Megabytes per subscriber per month. To introduce, summarize and get acquainted with this new 

technology LTE is one of the main objectives of my thesis.  

The Downlink is always considered an important factor in terms of coverage and capacity 

aspects in between Downlink and Uplink factors for cellular communication. Orthogonal 

Frequency Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO) are 

the new technologies which enhance the performance of the traditional wireless communication 

experience for downlink. In this thesis, we considered the downlink system for channel 

estimation by using different algorithms and interpolation methods.  

Channel Estimation algorithms such as Least Squares Estimation (LSE) and Minimum 

Mean Square Error (MMSE) have been evaluated for different channel models. The interpolation 

method used in algorithms is Linear, Piecewise constant, Averaged and Pilot averaged. I 

measured the performance of these algorithms in terms of Bit Error Rate (BER) and Symbol 

Error Rate (SER). The results are presented to illustrate the salient concept of the LTE 

communication system. 
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          CHAPTER 1 

INTRODUCTION 

The support for voice and data services has developed enormously in recent years and the 

demands for higher data rates along with high quality wireless communications has also 

increased. Limitations in bandwidth resources and immense increase in the number of users 

become an unavoidable issue to be solved. So, there is a need to improve wireless 

communications by adopting advanced technologies to use the available spectrum in an efficient 

way. Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output 

(MIMO) systems are examples of technologies which can enhance the performance of the 

wireless communications systems. These systems can bring the advantages of using high data 

rates and high quality voice simultaneously. On the other hand, cheaper installation and 

maintenance cost along with superior performance would be highly desirable. Therefore, Long 

Term Evolution (LTE) of the Evolved Packet System (EPS) becomes a revolutionary move in 

the field of mobile communications which can fulfill the demand for high speed connections on 

networks, low latency and delay and high peak data rates. LTE leverages on a number of 

technologies namely Multi Input Multiple Output (MIMO) antennas, Orthogonal Frequency 

Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiplexing Access 

(OFDMA) at the downlink, Single Carrier Frequency Division Multiple Access (SCFDMA) at 

the uplink, support for Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude 

Modulation (16QAM), and 64QAM [1]. 
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1.1 Thesis Outline 

Chapter 2 starts with a brief description of evolutions of wireless technology along with 

the modulation techniques, multiple access schemes and propagation & fading of the 

communication channel.  After that it also describes the motivation of the thesis and 

contributions accordingly.  

 

Chapter 3 contains an introduction to LTE physical layer for both downlink and uplink 

transmission. It also describes the modulation techniques, synchronization, frequency allocation 

and channel structure for downlink and uplink transmission.  

 

Chapter 4 contains a brief overview of available channel estimation methods and related 

results as literature review.  

 

Chapter 5 represents the simulation and results of the available channel estimation 

methods for OFDMA based downlink systems. The analysis mainly based on MATLAB 

simulation (LTE PHY Lab) [2]. 

 

Chapter 6 presents the conclusions and outlooks future work of the thesis work based on 

simulations and experimental result analysis.    

 

 

 

 

 
 

 

 

 



 

3 

 

 

 

CHAPTER 2 

BACKGROUND 
 

The concept of wireless communications is considered one of the greatest achievements 

of all time. It was first introduced by Guglielmo Marconi in 1897. It is widely used in 

broadcasting of television, radio, satellite transmission and cellular networks in today’s world. In 

between them, cellular communications has experienced significant development within the last 

two decades.  

Table 1 shows the evolution of wireless technology briefly elaborated from 2G to 4G according 

to the corresponding multiple access techniques, frequency bands and throughputs.  

 

Table 1: Wireless Technology Evolution [3] 
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2.1 Communication Model 

In general, there are three main parts of a communication model. (Figure 1) 

1) Transmitter: It transmits the information or data from the source to the channel.   

2) Channel: It is a medium where transmitter can transmit the signal to the receiver. The quality 

of the signal is greatly depends on the channel strength and distance.  

3) Receiver: It receives the signal from the channel and recovers the information signal from 

transmission loss due to attenuation and interference.  

 

Figure 1: Basic Communication Model 

The modulator and demodulator play a vital role in communication systems. At the 

transmitter side, the information signal is modulated by carrier frequency. After getting the 

carrier frequency added information from channel, it is removed from the information signal at 

the receiver side to retrieve the original signal [4]. 
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2.2 Multiple Access Schemes 

Multiple Accesses allow users to share the same channel on the basis of frequency, time, space 

and code [5]. The well known multiple access schemes include: 

 

1) Time Division Multiple Access (TDMA) 

2) Code Division Multiple Access (CDMA) 

3) Frequency Division Multiple Access (FDMA) 

4) Space Division Multiple Access (SDMA) 

5) Orthogonal Frequency Division Multiple Access (OFDMA) 

6) Single Carrier Frequency Division Multiple Access (SC-FDMA) 

2.2.1 Time Division Multiple Access (TDMA) 

TDMA is mainly based on time-division multiplexing (TDM) scheme, which provides 

different time-slots to different data –streams in a cyclically repetitive frame structure. Several 

users access the same frequency channel for different time slots and each user is assigned a 

separate time slot for a specific period that transmits signal in rapid succession. It is used in 

GSM, IS-136, PDC and iDEN. 

 2.2.2 Frequency Division Multiple Access (FDMA) 

FDMA is based on frequency-division multiplexing (FDM) scheme, which provides 

different frequency bands to different data streams. One channel is assigned to one user for entire 

call duration which is not an efficient scheme. FDMA is used in 1G (AMPS). 
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 2.2.3 Code Division Multiple Access (CDMA) 

In this system, the data is transmitted over the entire frequency range available. CDMA is 

a form of multiplexing system. It allows a number of signals to occupy a signle transmission 

channel which optimize the available bandwidth. It is used by 2G and 3G wireless 

communications and typically operates in the frequency range of 800 MHz to 1.9 MHz. With the 

combination with spread spectrum technology, CDMA employs analog-to-digital conversion 

(ADC).  

Figure 2 shows a basic frequency vs time diagram of FDMA, TDMA and CDMA. 

 

Figure 2: Comparison between FDMA, TDMA & CDMA [6] 

 2.2.4 Orthogonal Frequency Division Multiplexing Access (OFDMA) 

In OFDM systems, the available bandwidth is broken into many narrower subcarriers [7]. 

The data is divided into parallel streams, one for each subcarrier each of is then modulated using 

varying levels of QAM modulation e.g. QPSK, 16QAM, 64QAM or higher orders as required by 

the desired signal quality.  

Figure 2 shows a basic block diagram of OFDMA transmitter and receiver. In the 

transmitter end, bits are modulated in the modulator and then become serial to parallel. Each of 
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the OFDM symbol is preceded by a cyclic prefix (CP) which is effectively used to eliminate 

Intersymbol Interference (ISI). The subcarriers are also very tightly spaced for efficient 

utilization of the available bandwidth. 

 

 

Figure 3: OFDMA transmitter and receiver [8] 

 2.2.5 Single Carrier – Frequency Division Multiple Access (SC-FDMA)  

A SC-FDMA signal can be generated by using the discrete fourier transform (DFT) - 

spread OFDM digital signal processing. The data symbols are spread over all the subcarriers 

carrying information and produce a virtual single-carrier structure [9].  

Figure 4 shows a comparison between a frequency domain SC-FDMA and OFDMA. SC-

FDMA has lower PAPR compare to OFDM. In SC-FDMA, the bandwidth is divided into 
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multiple parallel subcarriers with cyclic prefix in the time domain in order to stay orthogonal to 

each other and eliminate ISI.  

 

 

Figure 4: SC-FDMA in frequency domain [10] 

2.3 Propagation and Fading 

In communication, the quality of the received signal greatly depends on the 

propagation and fading during transmission. Here we can see some common types of fading and 

impairments of transmission channel.   
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2.3.1 Fading 

RF signals propagate from antenna to different places through atmosphere. In 

atmosphere, signals can be affected by reflection, diffraction, scattering and absorption. At the 

receiver side, the signal arrives through several multipath and random fluctuations. These 

distortions in signal called fading which plays a vital role in communications. It can cause poor 

performance in a communication system which result in a loss of signal power without reducing 

the power of noise. There are different kind of fading models available for the distrivution of the 

attenuation. Here we can see major two models of fading [11]:  

• Rician Fading: The Rician fading occurs when there is a LOS (line of sight) path 

available along with the number of indirect multipath signals. 

• Rayleigh Fading: If there is no LOS path between transmitter and receiver and the 

transmission takes place only by multipath propagation; this type of fading called 

Rayleigh Fading. In this case, the received signal at the receiver is the sum of all the 

reflected and scattered waves. 

2.3.2 Noise 

Generally unwanted energy from different sources other than the transmitter is called Noise. 

Below are the some basic types of noise: 

• Thermal Noise: Thermal noise is an excitation of the charge carriers inside the electric 

conductor and generated without applying any voltage source [12]. We can see it 

mathematically as: 

N = KTW 
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Where, 

T = Temperature in Kelvin 

K = The Boltzmann Constant (K = 1.3806 x 10-23 Joules per Kelvin (J · K-1)) 

W = Bandwidth in Hz 

N = Noise Power in Watts 

• AWGN Noise: The AWGN (Additive white Gaussian noise) is a noise with continuous 

and uniform frequency spectrum over specified frequency band. It is often used as a 

channel model in which the only impairment to communicate is a linear addition of 

wideband or white noise with a constant spectral density and a Gaussian distribution of 

amplitude. The name denotes specific characteristics [13]:  

1. Additive: it is added to any noise that might be intrinsic to the information system. 

2. White: AWGN has uniform power across the frequency band for the information 

system similar to white color which has the uniform emissions at all frequencies.  

3. Gaussian: It consists of a normal distribution in the time domain with an average time 

domain value of zero.  

• Cross talk: Cross talk appears due to inductive coupling between two closed wires or two 

adjacent subcarriers (inter-carrier interference). It is a very common scenario in telephone 

network where user experiences another user’s voice in between the voice conversation.      

• Intermodulation: When two different frequency signals are transmitted through a 

medium, then intermodulation occurs due to the nonlinear characteristic of the medium. It 

can come from co-channel interference, atmospheric conditions as well as man-made 

noise generated by medical, welding and heating equipment. 
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2.4 Attenuation 

Attenuation is a general term that refers to any reduction in the strength of a signal over 

distances. A signal must be strong enough so that the receiver can detect and interpret the signal. 

If attenuation is too high then the receiver might not be able to identify the signal at all. [14] 

Attenuation is usually expressed in dB. 

If Ps is the signal power at the transmitting end (source) of a communications circuit and Pd is the 

signal power at the receiving end (destination), then Ps > Pd. The power attenuation Ap in 

decibels is given by the formula: 

Ap = 10 log10(Ps/Pd)               (i)                                    

2.5 Thesis Motivation 

The Channel estimation is an imperative task to ensure efficient communication for 3GPP 

LTE network. It is essential before the demodulation of OFDM signals since the channel suffers 

from frequency selective fading and time varying factors for a particular communication system 

[9]. It is inevitable to evaluate the performance and stability of different kinds of channel 

estimation methods before activating at the practical field in order to promote a cost-efficient and 

smooth introduction and deployment. 

The purpose of the thesis work is to evaluate the performance of LTE Downlink systems 

for various channel estimation algorithms under different channel conditions.  
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CHAPTER 3 

OVERVIEW OF LTE PHYSICAL LAYER 

LTE Physical layer translates data into reliable signal for transmission over a radio 

interface between eNobeB and the user equipment. It includes basic modulation, protection 

against transmission errors, multiplexing schemes as well as the antenna technology that are 

utilized. The antenna technology uses different configurations, schemes and techniques that can 

be incorporated into multiple antenna systems. 

The LTE air interface consists of protocol layers where one of them is physical layer. 

Physical channels carry data from higher layers including control, scheduling and user payload 

(data) while the physical signals are used for system cell identification, radio channel estimation 

and system synchronization. The LTE air interface is designed for deployment in paired (FDD 

Mode) and unpaired (TDD mode) spectrum bands [15]. This thesis work is targeted or primarily 

based on LTE downlink transmission; therefore the bulk of the work is on the physical layer with 

focus on OFDMA and MIMO.  

3.1  LTE Frame Structure 

The LTE frame structure is comprised of two types, 

• Type-1 LTE Frequency Division Duplex (FDD) mode systems 

• Type-2 LTE Time Division Duplex (TDD) mode systems 
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Type-1 frame structure works on both half duplex and full duplex FDD modes. This type of 

radio frame has duration of 10ms and consists of 20 slots, each slot has equal duration of 0.5ms. 

Figure 5 shows a sub-frame consists of two slots, therefore one radio frame has 10 sub-frames. In 

FDD mode, downlink and uplink transmission is divided in frequency domain, such that half of 

the total sub-frames are used for downlink and half for uplink, in each radio frame interval of 

10ms [16]. 

 

Figure 5: LTE Frame Length [8] 

Type-2 frame structure is composed of two identical half frames of 5ms duration each. 

Both half frames have further 5 sub-frames of 1ms duration as illustrated in below figure 6: 

 

Figure 6: Type 2 Frame Structure [8] 
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One sub-frame consists of two slots and each slot has duration of 0.5ms. There are some 

special sub-frames which consist of three fields; Guard Period (GP), Downlink Pilot Timeslot 

(DwPTS) and Uplink Pilot Timeslot (UpPTS). In terms of length these three fields are 

configurable individually, but each sub-frames must have total length of 1ms [17]. 

Figure 7 shows the frequency representation of the LTE signal for OFDMA and SC-FDMA: 

 

Figure 7: Frequency representation of OFDMA and SC-FDMA [18] 

LTE Resource Block Architecture: The building block of LTE is a physical resource block 

(PRB) and all of the allocation of LTE physical resource blocks (PRBs) is handled by a 

scheduling function at the 3GPP base station (eNodeB). [19] 

Figure 8 shows the below infirmatuion: 

• 1 frame = 10 ms which consistes of 10 sub-frames 

• 1 LTE subframe = 1 ms, which contains 2 slots 

• 1 resource block = 0.5 ms which contains 12 subcarriers for each OFDM symbol in 

frequency domain 

• 7 sysmbols (normal cyclic prefix) per time slot in the time domain or 6 sysm,bols in locg 

cyclic prefix  
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Figure 8: LTE resource block architecture [19] 

3.2  Modulation Techniques 

The modulation mapping methods available (for user data) are Quadrature Phase Shift 

Keying (QPSK), 16QAM and 64QAM. The use of QPSK modulation allows good transmitter 

power efficiency when operating at full transmission power. The devices will use lower 

maximum transmitter power when operating with 16QAM or 64QAM modulation. Figure 7 

shows the number of bits/symbol for 3 different kinds of modulation mapping methods. For 

QPSK (Quadrature Phase Shift Keying) the bits/symbol is 2. Accordingly, the number of 

bits/symbol for 16 QAM (Quadrature Amplitude Modulation) and 64 QAM are 4 and 6. 

 

Figure 9: LTE Modulation Constellations [20]  



 

16 

 

3.3  Synchronization 

A UE wishing to access an LTE cell must first undertake a cell search procedure. This 

consists of a series of synchronization stages by which the UE determines time and frequency 

parameters that are necessary to demodulate the downlink and to transmit uplink signals with the 

correct timing and the UE also acquires some critical system parameters. The synchronization 

signal is defined as the downlink physical signal which corresponds to a set of resource elements 

used by the physical layer but does not carry information originating from higher layers. The 

synchronization procedure makes use of two specially designed physical signals which are 

broadcast in each cell: the Primary Synchronization Signal (PSS) and the Secondary 

Synchronization Signal (SSS).The SSS carries the physical layer cell identity group and the PSS 

carries the physical layer identity. The detection of these two signals not only enables time and 

frequency synchronization, but also provides the UE with the physical layer identity of the cell 

and the cyclic prefix length, and informs the UE whether the cell uses Frequency Division 

Duplex (FDD) or Time Division Duplex (TDD) [21]. 

3.4  Frequency Allocations in LTE 

There are different LTE band allocations for TDD and FDD. FDD requires pair bands 

and TDD requires a single band. Sometimes, these bands may overlap with each other. However, 

it is unlikely that both TDD and FDD transmissions could be present on a particular LTE 

frequency band [22]. 

Table 2 provides the chart of FDD frequency bands allocations along with the LTE band 

numbers and gaps. Accordingly, Table 3 provides the chart of TDD frequency bands allocations 

along with the LTE band numbers and width of bands. 
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Table 2: FDD LTE frequency band allocations [20] 

 

Table 3: TDD LTE frequency band allocations [7] 
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3.5  Downlink Parameters 

As LTE has scalable bandwidth, the number of sub-carriers also changes while keeping 

sub-carriers spacing up to 15 khz. Additionally, there are two Cyclic Prefix are allowed (short 

and extended) [21] . Table 4 illustrates the LTE downlink parameters along with the transmission 

bandwidths, number of occupied sub-carriers and CP lengths. 

 

Table 4: LTE Downlink parameters [18] 

3.6 Multiple Antenna Techniques 

MIMO antenna technology is one of the key technologies leveraged on by LTE. It is a 

technology in which multiple antennas are used at both the transmitter and at the receiver for 

enhanced communication: The use of additional antenna elements at either the base station 

(eNodeB) or User Equipment side (on the uplink and/or downlink) opens an extra spatial 

dimension to signal precoding and detection [22]. Depending on the availability of these 

antennas at the transmitter and/or receiver, the following classifications exist: 
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• Single-Input Multiple-Output (SIMO): A simple scenario of this is an uplink transmission 

whereby a multi-antenna base station (eNodeB) communicates with a single antenna User 

Equipment (UE). 

• Multiple-Input Single-Output (MISO): A downlink transmission whereby a multi-antenna 

base station communicates with a single antenna User Equipment (UE) is a scenario. 

• Single-User MIMO (SU-MIMO): This is a point-to-point multiple antenna link between a 

base station and one UE. 

• Multi-User MIMO (MU-MIMO): This features several UE�s communicating 

simultaneously with a common base station using the same frequency- and time-domain 

resources. 

As a result of the requirements on coverage, capacity and data rates, integration of MIMO as 

part of the LTE physical layer is highly imperative since it necessitates the incorporation of 

transmission schemes like transmit diversity, spatial multiplexing and beam forming.  
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CHAPTER 4 

          LITERATURE REVIEW 

4.1 Introduction to Channel Estimation in OFDMA 

In this chapter, different kinds of channel estimation techniques are described for LTE 

downlink systems. The effect of the channel on the transmitted information must be estimated in 

order to recover the transmitted information signal correctly. There are various kinds of radio 

propagation channel which are mainly effective for different channel estimation algorithms [4]. 

If the receiver can keep the track of the varying radio propagation channels, it can efficiently 

recover the transmitted information.   

4.2 OFDM Signal Model 

We consider an OFDM symbol to perform channel estimation in LTE downlink system. 

Below is the equation of our signal model, where we consider a diagonal matrix containing the 

transmitted frequency domain samples and the channel frequency response vector [23]: 

Y= XH + µ     (ii) 

X � CN
IFFT 

X N
IFFT  is a diagonal matrix 

H � CN
IFFT  contains unknown channel frequency response coefficients 

µ � CN
IFFT  is the noise vector. 

We can write the channel frequency response (CFR) in terms of channel impulse response (CIR) 

as, 
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H = Fh       (iii) 

So we will get then: 

Y = XFh +  µ       (iv) 

Where, 

Y = Channel Impulse Response 

F � CNIFFT x NIFFT is DFT matrix 

4.3 Pilot-assisted Channel estimation 

There are different kinds of pilot-assisted channel estimation schemes that can be deployed for 

the estimation of the channel effects on the transmitted signal. Interpolation methods determine 

the response of the channel at the data subcarriers. We used several interpolation methods to get 

the simulation results for channel estimations such as: Linear, Piecewise constant, Averaged and 

Pilot averaged [24].  

4.3.1 Least Square Estimation (LSE) 

In this channel estimation technique, the channel impulse response is determined from the known 

transmitted reference symbols  according to the following equations [25]:  

GLS = ����������� ,
���	�
���	� ,

���
�
���
� ,

�����
�����…

���
�
���
��      (v) 

Here, 

GLS � CNr is the estimated channel frequency response on the subcarriers. 

Xr and Yr are the corresponding number of the received signal. 

In order to obtain the channel frequency response for the subcarriers carrying data symbols, this 
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response can be interpolated over full frequency range whether it could be in time domain or 

frequency domain.  

The time domain signal can be expressed as: 

Yr = FHArFLh + µ       (vi) 

Where, 

h is the L x 1 vector corresponding to the FIR representation of the channel in the time domain. 

FL is the N x L Fourier matrix that gives the frequency domain representation over N sub-carriers 

of the channel of length. 

A is the N x N diagonal matrix containing, in the positions corresoponding to the modulated sub-

carriers (Nm over N), the transmitted symbols (comprising both data and pilot) in the frequency 

domain, assumed to be transmitted with the same energy. 

FH is the N x N inverse Fourier matrix giving the time domain representation of the received 

signal. 

µ is the N x 1 vector corresponding to the complex circular additive white Gaussian noise.  

So, the channel estimation using Least Squares in time domain can be expressed in the following 

way: 

ĥ = (SHS)-1SHYr                (vii) 

Where,  

The matrix S is an approximation where the pilot symbols are taken into account 

Finally, we can get the expression for LS estimate by solving above equations: 

ĥ = (F��  A��  Ar FL )
-1 F��A

�
�  FHYr              (viii)  

Where,  
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(F��  A��  Ar FL )
-1 F��  is constant and we can solve it regardless of the time varying nature of the 

channel. 

4.3.2 Minimum Mean Square Estimation (MMSE) 

The Least Square estimation technique is computationally simple but the performance is not that 

efficient. The Channel Impulse Response for Minimum Mean Square Estimator (MMSE) has 

better performance even though it is computationally complex. Here is the equation for CIR of 

Linear Minimum Mean Square Estimator [25]: 

ĥ = RhYr RYrYr
-1 Yr                       (ix) 

Where, 

ĥ channel is considered as a deterministic parameter 

RYrYr is the auto covariance of vector Yr. 

RhYr is the cross covariance of vectors h and Yr.  

The values for RhYr and RYrYr are given below:  

RYrYr = XrTrRhhXr
HTr

H + σµ
2 INr                        (x) 

RhYr = Xr
HTr

H                         (xi) 

So, finally we got the equation:   

Ĥ = Xr
HTr

H  (XrTrRhhXr
HTr

H + σµ
2 INr)

-1 Yr                           (xii) 

Where,  

RYrYr is the auto covariance of vector Yr 

RhYr is the cross covariance of vectors h and Yr 

σµ is the constant parameter  

Tr
H is the channel co-factor 
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CHAPTER 5 

 SIMULATIONS AND RESULTS 

5.1 Software Overview - LTE PHY Lab 

I have used the LTE PHY LAB Software for our simulation and experimental results [2]. It has a 

form of MATLAB toolbox which is very user friendly and convenient for modeling and 

simulating the communication systems. I used the version 1.2 for my simulation, which is a 

comprehensive implementation of the 3GPP Release 8 E-UTRA physical layer [26].  

5.1.1 LTE PHY LAB v.1.2 Features 

These are the main features for using the software [27, 28]: 

• Downlink and uplink (including RACH) support 

• FDD support (TDD available on request) 

• Normal and Extended CP 

• Support for MIMO (SM (SU-MIMO), TX diversity), 

• OFDMA and SC-FDMA 

• MIB generation and decoding 

• DCI generation and blind decoding 

• Feedback generation and decoding (CQI, PMI, RI estimation) 

• Flexible control of all the necessary parameters, e.g.: 
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o Resource allocation (number and placement of resource blocks) 

o Input bits for data and control channels 

o MIMO configuration (number of antennas and mode of operation) 

o MCS (modulation, transport block size, redundancy version) 

o System parameters (UE and Cell IDs, system BW, control area size, UL channels' 

configuration) 

• Support for all the LTE bandwidths: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz 

• Channel models included (AWGN, SUI, E-UTRA 3GPP TS 36.101) 

• Test files included (see user guide for example usages) 

• Use case scenarios (e.g. UL feedback generation, system sync procedure) 

• Possibility to combine with other MATLAB functions and Toolboxes (e.g. Signal 

Processing Toolbox and Communications Toolbox) 

• Implemented supporting transmitter algorithms 

o PAPR Reduction for downlink and uplink 

• Implemented supporting receiver algorithms 

o Channel estimation and correction for downlink and uplink 

o Time and frequency synchronization for downlink and uplink 

 5.1.2 LTE PHY LAB v.1.2 Downlink Channels and Signals 

In table 5, we can see the information of the transport and physical channels for downlink. 
Accordingly, in figure 10, the transport and PHY channel baseband processing within eNB 
transmitter. 
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Table 5:  Downlink Channels and Signals [2] 

 

Figure 10: Transport and PHY channel baseband processing within eNB transmitter [2] 

5.2 Simulation Results and Analysis 

The Figure 11 shows the subfunctions of downlink processing chain including the supporting 

algorithms in PHY layer [2]. When the transport channels are processed through the MAC layer, 

it starts the baseband processing with PHY layer and generates PHY channels and input output 

signals. Afterwards, in the part of resource mapping, the subframes are generated to modulate in 

the OFDMA modulator. PAPR reduction would be processed before the OFDMA modulator 

process the data. Channel estimation has been done at the UE PHY receiver side. 



 

 

Figure 11: LTE PHY Lab Downlink processing Chain

 The Software LTE PHY LAB f

The relation between implementation of the LTE PHU LAB and the 3GPP specifications is 

shown in figure 12. Each function of this software implements the 3GPP LTE specifications. 

user can build its own system based on that functions. Additionally there are functions (called 

gathering functions) building up the whole processing chains of transmitters and receivers.

Figure 12: Relation between 3GPP specification and LTE PHY LAB implementation

 In the table 6 below, we can see a flow diagram of parameters I have used for simulation 

part  at transmitter side. 
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Figure 11: LTE PHY Lab Downlink processing Chain Flow Chart 

The Software LTE PHY LAB followed the standard of 3GPP specifications standard. 

The relation between implementation of the LTE PHU LAB and the 3GPP specifications is 

Each function of this software implements the 3GPP LTE specifications. 

n system based on that functions. Additionally there are functions (called 

gathering functions) building up the whole processing chains of transmitters and receivers.

Figure 12: Relation between 3GPP specification and LTE PHY LAB implementation

below, we can see a flow diagram of parameters I have used for simulation 

   

 [2] 

ollowed the standard of 3GPP specifications standard. 

The relation between implementation of the LTE PHU LAB and the 3GPP specifications is 

Each function of this software implements the 3GPP LTE specifications. The 

n system based on that functions. Additionally there are functions (called 

gathering functions) building up the whole processing chains of transmitters and receivers. [2] 

 

Figure 12: Relation between 3GPP specification and LTE PHY LAB implementation [2] 

below, we can see a flow diagram of parameters I have used for simulation 
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Table 6: Simulation flow diagram for Transmitter  [2] 

In table 7, we can see a flow diagram of parameters I have used for simulation part  at receiver 

side. 

           

Table 7: Simulation flow diagram for Receiver [2] 

LTE Link Level Simulate DL 
- Simulates 1 DL radio 

frame (Transmission over 
multipath channel)

LTE DL Phy Transmitter -
Performs processing and 

transmission of one 
subframe

OFDM Modulation -
Generates one OFDM 

symbol

DL Resource Mapping -
Maps all physical channels 

on the TF grid for one 
subframe

MIMO Precoding -
Performs precoding for all 

multiantenna schemes

Layer Mapping - Performs 
layer mapping for all 

schemes (SISO, Tx 
Diversity, SM)

LTE DL Phy Receiver -
Performs processing and 

reception of one DL subframe

OFDM DeModulation -
Demodulates one OFDM 

symbol

DL Resource DeMapping -
Demaps all physical channels 

from the TF grid for one 
subframe – as a generates 
vector of samples for each 

physical channel

MIMO DePrecoding -
Performs decoding for 

multiantenna schemes (SISO, 
Tx/Rx Diversity, SM)

Layer DeMapping - Performs 
layer demapping for 

multiantenna schemes (SISO, 
Tx Diversity, SM)

DL Noise Estimation -
Performs noise estimation in 

downlink

DL Resource DeMapping 
Select - Performs selected 

resource demapping for the 
downlink subframe.
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 In table 8, we can see a flow diagram of parameters I have used for simulation part  at 

channel estimation. 

                       

Table 8: Simulation flow diagram for Channel Estimation [2] 

5.2.1 Frame level simulation of Downlink and Uplink 

After generating PHY layer samples of the 3GPP E-UTRA Rel 8 downlink radio frame 

type 1, normal and extended CP, we have simulated downlink transmission and reception of a 

LTE FDD system under various parameters. Here is the value of the parameters we set for initial 

simulation in LTE PHY LAB:  

Input matrix of the HI (of size (number of subframes) X (number of HIs)), txHI = randint(10, 8, 

2) 

For FFTsizes: 128 – 512 : 8 HIs 

1024, 1536 : 16 HIs 

And 2048 : 24 HIs 

sizeFFT = number corresponding to the fft size (related to the system BW), (values: 128, 256, 

512, 1024, 1536, 2048), sizeFFT = 128 

PAPR Reduction - Performs PAPR 
reduction with the use of Clipping and 

filtering method for OFDMA and 
SCFDMA symbols

DL Channe lEstimation - Performs 
channel estimation for control and data 

channels with the use of RS LS 
calculation and linear or piecewise 

constant interpolation in the frequency 
domain; linear interpolation in the time 

domain

DL Channel Correction - Performs 
channel correction on data REs

DL MIMO ChannelEstimation - Performs 
channel estimation using 

DLChannelEstimation for each Tx/Rx 
antenna
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SNR = randint(1,10,10)*10 + 30 

Physical cell ID (0 - 503), N_cell_ID = 13 

radio frame number, nF = 0 

CPtype = 1 

In figure 13, we can see the simulated result for the above parameters. The horizontal axis refers 

to the times for 10 sub frames and the vertical axis refers to the magnitude.  This reference signal 

is being transmitted at every subframe and it spans all across the operating bandwidth. In this 

case, we have set the parameter of FFT is 128. 

 

 

Figure 13: Time domain signal magnitude of a LTE DL radio frame 

5.2.2 Generating AWGN noisy output channel 

In this case, we transmit the input samples over the AWGN channel and generated the 

noisy output samples. We set the below parameters in LTE PHY LAB: 

SNR = signal to noise ratio given in dB = 30  
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We set two random variables first to get AWGN noisy samples: (Table 9) 

 

Table 9: Two Random Variables  

And here are the Rx output samples: 

According to the Rx data what we got from the simulation, we can see that for SNR 30, 
the time domain OFDM symbols become noisy as yellow marked data in the matrix output. 
(Table 10) 

 

Table 10: Time Domain OFDM matrix symbol with AWGN noise 

5.2.3 Error Vector Magnitude (EVM) Calculation 

EVM measurement requires apriori knowledge of transmitted symbol, or must assume 

that closest constellation point is transmitted symbol.  EVM is normalized to average power. 

EVM may be easily computed from a modulated signal because: 

• SNRs are extremely high so that the measured EVM represents transmitter 

constellation distortion, and not noise-induced signal distortion. 

• High SNRs for measurement means that nearest constellation point is always the 

transmitted constellation point, I.e BER = 0 for transmitter testing purposes [29] 

These are parameters we set sample values for transmitter and receiver symbols to get the 

simulated results of EVM. 
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txSymbols = matrix of samples of the transmitted subframes = complex(randint(14,128,2), 

randint(14,128,2)) 

rxSymbols = matrix of samples of the receive subframes = complex(randint(14,128,2), 

randint(14,128,2)) 

We got the below EVM simulated result for below parameters (Only column 1 through 26 of 128 

have been shown here). In this case, we can see that the simulated matrix data of EVM has been 

distorted which represent the transmitter constellation distortion. A single point is ideal, but in 

practice there will be a cluster of actual points around the ideal point. The more widespread the 

points, the poorer the EVM. (Table 11) 

 

 

Table 11: EVM Matrix Data 
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5.2.4 Sub frame Synchronization 

In LTE, there are two downlink synchronization signals which are used by the UE to 

obtain the cell identity and frame timing [30]. 

• Primary synchronization signal (PSS) 

• Secondary synchronization signal (SSS) 

In this case, we performed subframe synchronization algorithm. It determines the time offset for 

whole subframe, correlating the received subframe with locally generated PSS signals (three 

types), SSS signal and determine N_cell_ID. 

 Here are the values of the parameters we set for sub frame synchronization of downlink: 

  txHI = randint(1,16,2) 

  modOrder = 64 

  numSubframe = 0 

  sizeFFT = 1024 

  numPDCCH = 3 

  numsPRB = [2 3 4 5] 

  N_cell_ID = 124 

  PHICHtype = 0 

  CPtype = 0 

 

5.2.5 Downlink frequency synchronization 

According to [30], for frequency synchronization for OFDMA system is required coarse 

and fine frequency synchronization. Coarse frequency synchronization estimates integer 

frequency offset and fine frequency synchronization estimates fraction frequency offset. In 

general, PSS correlation based estimation method and CP correlation based tracking loop are 

applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA system, 
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respectively [31]. However, the conventional coarse frequency synchronization method has 

performance degradation caused by fading channel and SNR loss. Also, the conventional fine 

frequency synchronization method cannot guarantee stable operation in TDD mode because 

there is no signal in uplink subframe. 

In this case, we set the below values for desired parameters in LTE PHY LAB: 

FFTsize = FFT size used in transmitter: 128 (default), 256, 512, 1024, 1536 or 2048 
=128; 

  numOFDMSym = 14 

  TimeOffsetFractional = 0 

  numSubframe = subframe number (0 - 9) = 0 

  numAntennas = [1 1] 

  idxAntenna = number of mapping antena (with PSS signal) = 1 

  CPtype =  measured CP type (0 - normal, 1 extended) = 0 

  N_ID_2 =  index of received PSS signal 0, 1 or 2 for each type =1 

After the simulation done, I got the below results for receiver resource grid (Only 

columns 1 through 44 of 128 has been shown here). As I used the coarse frequency 

synchronization for the simulation, it estimates integer frequency offset. However, the red 

indicated matrix data signifies the performance degradation caused by fading channel and SNR 

loss. (Table 12) 
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Table 12: Receiver resource grid in matrix form 

5.2.6 Downlink Noise Estimation 

To measure the noise estimation in downlink, we performed several algorithm steps, which are 

[32]: 

• Averaging pilots 

• Channel estimation 

• Noise estimation 

We set some sample values for specific parameters in LTE PHY LAB to get the noise estimation 

in downlink. 

FFTsize = size of the FFT used in OFDMA modulation = 128; 

numOFDMSym = 14; 

CPtype = measured CP type = 0; 

N_cell_ID =  Physical layer cell ID (0 - 503) = 2; 
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numSubframe = subframe number (0 - 9) = 0; 

numAntennas = number of antennas used for transmission [Tx, Rx]  = [1 1]; 

nF = radio frame number = 0; 

After simulation done, we got the below results: 

Average Noise Power = 0.40 

Average Noise SNIR = 0.76 

5.2.7 Peak to Average Power Ratio (PAPR) Reduction 

Peak to Average Power Ratio (PAPR) reduces the efficiency of the transmit high power 

amplifier. Due to the large number of sub-carriers in typical OFDM systems, the amplitude of the 

transmitted signal has a large dynamic range, leading to in-band distortion and out-of-band 

radiation when the signal is passed through the nonlinear region of power amplifier [33, 34]. 

Although the above-mentioned problem can be avoided by operating the amplifier in its linear 

region, this inevitably results in reduced power efficiency.  

 We performed Peak to Average Power Ratio reduction in the following steps: 

  - CP removing 

  - Truncation threshold calculation for specified clipping factor 

  - Oversampling (not implemented yet) 

  - OFDMA/SCFDMA symbols truncation using threshold determined in previous step 

  - Filtering (to remove DC and OOB distortions) 

  - Down sampling  

  - CP adding 
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We set the below parameters some sample values in LTE PHY LAB: 

inputSymbols = input complex NxM matrix of OFDMA/SCFDMA symbols (time domain). Each 

must be in separate row of input matrix. N = 1,2,.. MAX = complex(a,b) 

FFTsize = size of the FFT block: 128, 256, 512, 1024, 1536, 2048 = 128 

CPver = cyclic prefix version: 0 (first symbol in slot), 1 (second symbol in slot). It must have the 

same number of rows as inputSymbols = 1 

CPtype = 0 

After setting the above parameters, we got the below results (table 13) for PAPR reduction in 

matrix form. According to the simulated result, the PAPR reduction samples are denoted by 

yellow marks. High PAPR in the matrix data is observed due to large dynamic range of its 

symbol waveforms. As we know that this high PAPR forces the High Power Amplifier (HPA) to 

have a large back-off in order to ensure linear amplification of the signal, which significantly 

reduces the efficiency of the amplifier. 
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Table 13: PAPR reduction in matrix form 

5.2.8 Processing and reception of one DL sub frame – Transmitter Side  

In this part, I generate PHY layer samples of the 3GPP E-UTRA Rel 8 downlink sub frame, 

normal CP or extended CP. A LTE sub frame time domain signal for our simulation (Figure 12). 

In figure 14, we can see that the LTE sub frame has random values in time domain. The Y-axis 

denotes the amplitude of the signal. Now, figure 12 shows the resources per OFDM symbol and 

the corresponding time domain OFDM symbol. 
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Figure 14: A LTE sub frame time domain signal 

In figure 15, the first part shows the resource elements of the signal before the OFDM 

modulation. The second and third part show the signal in time and frequency domain. The figure 

illustrates the concept of an OFDM signal and the inter-relationship between the frequency and 

time domains. In the frequency domain, multiple adjacent tones or subcarriers are each 

independently modulated with complex data. Then in the time domain, guard intervals are 

inserted between each of the symbols to prevent inter-symbol interference at the receiver caused 

by multi-path delay spread in the radio channel.  



 

40 

 

 

Figure 15: Resources per OFDM symbol (Time domain) – Transmitter Side 

5.2.9 Processing and reception of one DL sub frame – Receiver Side 

Here, we simulate the received PHY layer bit streams of the 3GPP E-UTRA Rel 8 downlink sub 

frame, normal CP or extended CP and performed OFDMA demodulation to get bit stream of 

each transmitted information. 

Here are the sample parameters we set in the LTE PHY LAB: 

numSubframe = 1 

FFTsize = 128 

numsPRB = [1 2] 

N_cell_ID = Physical layer cell ID (0 – 503) = 0 

PHICHtype  =  normal - 0 (one symbol mapping) or extended - 1 (3 symbols mapping) = 0 

CPtype = 0 
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nF = Radio frame number = 0 

Ng = detemine number of PHICH groups {1/6,1/2,1,2} = 1/6 

modOrder = modulation order =  4 

SNR = signal to noise ratio = 30 

txSCHsize = transmitted SCH size = 10 

Figure 16 represents the resources per OFDM symbol and the corresponding time domain 

OFDM symbol after simulation. 

In figure 16, we can see that at the receiver, an FFT is performed on the OFDM symbols to 

recover the original data bits in time domain. As the figure illustrates, the frequency domain 

OFDM symbol has very low amplitude and same as for the transmitter resource elements.  

 

Figure 16: Resources per OFDM symbol (Time domain) – Receiver Side 
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The scatter plot of every received OFDM symbol can be shown in figure 17. 

 

Figure 17: OFDM symbol constellation  

In the figure 17, we can see that the input bits are grouped and mapped to source data symbols 

that are a complex number representing the modulation constellation point. For example, the 

BPSK or QAM symbols that would be present in a single subcarrier system. These complex 

source symbols are treated by the transmitter as though they are in the frequency-domain and are 

the inputs to an IFFT block that transforms the data into the time-domain. 

5.2.10  Channel estimation for control and data channels 

For performs channel estimation in downlink, we followed these algorithm steps [35,36]: 

- Estimate channel only for pilot signals arranged in a number of OFDMA symbols 
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- Estimate channel in frequency domain for the remaining sub-carriers for OFDMA 

symbols previously taken. The linear interpolation is used 

- Estimate channel in time domain for all OFDMA symbols in resource grid. The linear 

(default), piecewise constant interpolation method could be used. 

We got the below result for our channel estimation simulation part (Only column 1 to 14 
of 512 has been shown here): 

 

Table 14: Simulated matrix data after Channel Estimation 

According to the simulated result, the estimated channel only for pilot signals arranged in 

a number of OFDMA symbols (red square). This estimates channel in frequency domain for the 

remaining sub-carriers for OFDMA symbols previously taken and in time domain for all 

OFDMA symbols in resource grid.  

These are values we set for the parameters in LTE PHY LAB to see the simulated results 

for channel estimation: 

   FFTsize = size of the FFT used in OFDMA modulation = 128 



 

44 

 

   numOFDMSym = 14 

   CPtype = measured CP type = 0 

   N_cell_ID = Physical layer cell ID (0 - 503) = 2 

   numPort = number of antenna port (0-3) = 0 

   numSubframe = subframe number (0 - 9) = 0 

   numAntennas = number of antennas used for transmission [Tx, Rx] = [1 1] 

   idxAntenna =  number of mapping antenna = 1 

   nF = radio frame number (0 - ...) = 0 

   METHOD = interpolation method used in algorithms:  

- 'linear' 

- 'piecewise constant' 

- 'averaged' 

- 'pilot_averaged' 

if METHOD is [] than default interpolation method will be used. It works only for MISO, 
the numAntennas(2): Rx is ignored =  [] 

5.2.11  Simulation results of LSE and performances comparison with MMSE 
 

To simulate the LSE algorithm, we set some values for the desired parameters: 

N = Total number of sub channels = 256 

P  = Total number of Pilots  = 256/8  

S  = Total number of data sub channels  = N-P        

GI = Guard interval length  = N/4  

M  = Modulation  = 2 

pilotInterval = pilot position interval = 8  

L  = Channel length  = 16 
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nIteration = Number of iteration in each evaluation = 500 

SNR_V = signal to noise ratio vector in dB = [0:3:27] 

After setting the above parameters in MATLAB, we got simulated results in figure 18. 

 

Figure 18: Performance of LSE algorithm in OFDM Channel Estimation 

The figure 18 provides the BER vs SNR graph for LSE channel estimation algorithm. In 

this simulation, I used 2x2 MIMO-OFDM system and pilots are inserted among data for initial 

LS extimation. The channel between transmitter and receiver is according to multipath Rayleigh 

fading channel. Here, I used channel bandwidth 3.0 MHz. According to the graph, we can 

understand that the SNR increased in a greater extent with simulatenous decrease in bit error 

rate.  

As LSE is comparatively simple algorithm, we investigate the performance of MMSE 

here. Below is the comparison of the performances of the LS and the MMSE channel estimators 

for a 64 sub carrier OFDM system based on the parameter of Symbol Error Rate. 
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According to the figure 19, the Least Square Error (LSE) and Minimum Mean Square 

Error (MMSE)  alogirithms are used to time varying analysis of channel estimation methods in 

OFDM. We can see that the MMSE looks worse than LSE in this graph. The bit error rate is 

affected by the signal to noise ratio (SNR) value. As the SNR value increases the bit error rate 

decreases but data rate increases.  

  

Figure 19: SNR Vs. SER for an OFDM symbol with MMSE/LS estimator based receivers 

 Now, from the simulated result, we can understand that larger the SNR value higher 

accuracy of estimation will be achieved. So, the relation between SNR and BER for both LSE 

and MMSE channel estimation is inversely proportional. However, the performance of LSE 

looks better than MMSE.  
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CHAPTER 6 

 CONCLUSIONS AND FUTURE WORK 

The main purpose of this thesis work is to evaluate different channel estimation methods 

for LTE downlink systems under various channel conditions. We have presented the 

experimental results by means of simulations. LS estimator is computationally simple and 

efficient for high SNR values. For higher constellation mapping at high mobile speeds, its 

performance would be degraded. MMSE estimator could be a better solution for higher 

modulation schemes and large delay spreads even though it is computationally complex. The 

thesis work findings can be summarized in the following steps: 

• Basic understanding of LTE and its physical layers. Special emphasis on LTE downlink 

frame structure and in time domain and frequency domain, reference symbols structure 

and multiple antenna techniques for LTE. 

• Link and frame level simulation has been done for MIMO-OFDM system.  

• Different kinds of fading channel considered for channel estimation. 

• Performance comparison has been done for LSE and MMSE algorithm. 

• Detailed channel estimation simulation done in terms of matrix data in LTE PHY LAB. 

 

The future work could be described as below: 

• Channel estimation for Uplink could be investigated for different channel conditions 

• There are some other complex channel estimation algorithm are available now which are 

still need to be simulated and implemented. 
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• Performance analysis of different uplink and downlink channel estimation algorithms for 

MU-MIMO (2X2, 4X4) 

• Error performance as a function Rayleigh Fading
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Please contact IS-Wireless Inc. for codes and materials. Here is the contact info: 

IS-Wireless Inc. 

Pulawska Plaza 

Ul. Pulawska  45b 

05-500 Piaseczno/near Warsaw, Poland 

Email: info@is-wireless.com 

Tel: +48 22 213 8297 

Fax: +48 22 213 8298 
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