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ABSTRACT 

With the increase of portable devices utilization and ever-growing demand for 

greater data rates in wireless transmission, an increasing demand for spectrum channels 

was observed since last decade. Conventionally, licensed spectrum channels are assigned 

for comparatively long time spans to the license holders who may not over time 

continuously use these channels, which creates an under-utilized spectrum. The inefficient 

utilization of inadequate wireless spectrum resources has motivated researchers to look for 

advanced and innovative technologies that enable an efficient use of the spectrum resources 

in a smart and efficient manner.  

The notion of Cognitive Radio technology was proposed to address the problem of 

spectrum inefficiency by using underutilized frequency bands in an opportunistic method. 

A cognitive radio system (CRS) is aware of its operational and geographical surroundings 

and is capable of dynamically and independently adjust its functioning. Thus, CRS 

functionality has to be addressed with smart sensing and intelligent decision making 

techniques. Therefore, spectrum sensing is one of the most essential CRS components. The 

few sensing techniques that have been proposed are complicated and come with the price 

of false detection under heavy noise and jamming scenarios. Other techniques that ensure 

better detection performance are very sophisticated and costly in terms of both processing 

and hardware.  

The objective of the thesis is to study and understand the three of the most basic 

spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched 



xii 

 

filter sensing. Simulation platforms were developed for each of the three methods using 

GNU radio and python interpreted language. The simulated performances of the three 

methods have been analyzed through several test matrices and also were compared to 

observe and understand the corresponding strengths and weaknesses. These simulation 

results provide the understanding and base for the hardware implementation of spectrum 

sensing techniques and work towards a combined sensing approach with improved sensing 

performance with less complexity.  
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CHAPTER I 

INTRODUCTION 

1.1   Background and motivation 

Wireless communications and the utilization of the radio frequency spectrum have 

witnessed a tremendous boom over the past decade. The multitude of different wireless 

devices and technologies, the dramatic increases in the number of wireless subscribers, the 

advent of new applications, and the continuing demand for higher data rates are all reasons 

for the radio frequency spectrum becoming more and more crowded. The technical 

innovations in wireless radio communications have made significant improvement over 

spectral efficiency and capacity. However, increase in the spectrum requirement is 

outpacing these advances and there is always extra spectrum required by the users. 

Research executed by many administrations such as the Federal Communications 

Commission (FCC) suggests that the assumption of spectrum sufficiency is far from being 

the truth; there are unfilled spectrum bands as most of the allocated spectrum remains 

underutilized as shown in Figure 1. Several studies in various regions of the planet have 

sustained the fact that spectrum access is static which leads to some percentages of the 

spectrum to be overloaded and some other parts to be not used properly [1]. A research 

group at Kansas University discovered that in New York City the average U.S. spectrum 
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utilization is 5.2% while the maximum occupancy is 13.2% [2]. Hence, it can be said that 

the static spectrum access is not an effective way to manage the spectrum.  

 

Figure 1. Spectrum utilization [3] 

This development of the scarcity in radio spectrum calls for the systems and devices 

that are aware of their surrounding radio environment, hence, facilitating flexible, efficient, 

and reliable operation and utilization of the available spectral resources. Wireless 

communication systems must collect information about the radio spectrum in order to adapt 

their operation and behavior to provide a better match for the prevailing conditions. Thus, 

spectrum sensing is becoming increasingly important to modern and future wireless 

communication and radar systems for identifying underutilized spectrum and 

characterizing interference, and consequently, achieving reliable and efficient operation. 

Cognitive radio (CR) is one of the technologies that has been proposed to address 

the spectrum scarcity problem. It allows the users to access the temporally unoccupied 

spectrum. Therefore, it is aware of its frequency environment by sensing the atmosphere 

and provides service to the secondary or unlicensed users by utilizing the discovered holes 
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of vacant licensed spectrum channels. The opportunistic spectrum access is used every time 

the Primary or licensed Users (PU) are not operating in their frequency bands. Precise  

spectrum  awareness  is  the  core  concern  for  the  cognitive  radio  system which is used 

by the secondary  user (SU).  To achieve that, the communications of licensed operators 

i.e. PUs have to  be  sensed  without any failure  and  the  core  focus  for  adaptive  

communication in an opportunistic manner is  the sensing of vacant frequency bands i.e. 

spectrum sensing. Hence, spectrum sensing is an important part of cognitive radio systems 

and efficient spectrum utilization.  

1.2   Cognitive radio architecture 

As defined by the FCC [4]: “Cognitive Radio is a radio that can change its 

transmitter parameters based on interaction with the environment in which it operates”. 

The final objective of a CR is to utilize the un-used spectrum. In essence, this means that 

CR introduces intelligence to conventional radio such that it searches for a hole in the 

spectrum that is defined as “a licensed frequency band not being used by an incumbent at 

that time within a selected area”. As most of the channels are already assigned to PUs with 

legacy rights, the key objective is to share the licensed spectrum bands without producing 

harmful interference to PUs. Hence one of the main functions of a CR is to track the 

spectrum channels that are not used by the PUs [5]. Spectrum usage opportunity is then 

exploited by CR as long as no spectrum activity is detected. If this band is re-acquired by 

the PU, the secondary user must vacate the band and adjust its transmission parameters to 

shift to another unoccupied spectrum channel. A graphic illustration of opportunistic 

spectrum deployment approach is presented in Figure 2. 
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Figure 2. Illustration of spectrum holes and the concept of dynamic spectrum access [5] 

From the definition, the two main characteristics of cognitive radio can be 

summarized as cognitive capability and re-configurability [3]. The first one enables the 

cognitive radio to interact with its environment in a real-time manner, and intelligently 

determine appropriate communication parameters based on quality of service (QoS) 

requirements. The CR system performs a set of processes, called a cognitive cycle shown 

in Figure 3. These processes are spectrum sensing, spectrum analysis, spectrum reasoning, 

and spectrum adaptation, which are described below:  

 Spectrum Sensing: Either by cooperating or not, the cognitive radio nodes regularly 

monitor the RF environment. To improve the spectral usage efficiency, cognitive radio 

nodes should not only find spectrum holes by sensing some particular spectrum, but 

also monitor the whole spectral band. 
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Figure 3. Cognitive Cycle [3] 

 Spectrum Analysis: The characteristics of the spectral bands that are sensed through 

spectrum sensing are estimated. The estimation results, e.g., capacity, and reliability 

will be delivered to the spectrum decision process. 

 Spectrum Reasoning: Based on the spectral analysis, CR takes decisions about what to 

do next according to the rules already set by design. The response strategy varies 

depending on the situation and the pool of resources available at that specific cognitive 

cycle. 

 Spectrum Adaptation: According to the spectrum characteristics analysis and reasoning 

done above, an appropriate spectral band will be chosen for a particular cognitive radio 

node. Next the cognitive radio regulates new configuration parameters, e.g., data rate, 

transmission mode, and bandwidth of the transmission. 
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1.3   Spectrum sensing 

One of the most important concepts in CR is the provision of opportunistic and 

dynamic spectrum access of the licensed frequency bands by the unlicensed secondary 

users. Hence, the main functionality of CR lies in efficient spectrum sensing so that 

whenever an opportunity of unused spectrum band is identified, CR may make use of it. 

Since cognitive radios are considered lower priority or Secondary Users (SU) of spectrum 

allocated to a primary user, an important condition is to avoid interference to potential PUs 

in their area. On the other hand, it is not required by the PU networks to change their 

structure for spectrum sharing with cognitive networks. Therefore, cognitive radios should 

be able to independently detect PU presence through spectrum sensing schemes.  

Although spectrum sensing is traditionally considered as measuring the spectral 

occupancy by the primary user, in a more general term, it involves obtaining the spectrum 

usage characteristics across multiple dimensions such as time, space, frequency, and code 

[6]. The concepts and state-of-the-art in spectrum sensing will be discussed in chapter-II 

in detail.  

1.4   Thesis organization 

The objective of the thesis is to study and understand the three of the most basic 

spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched 

filter sensing. Simulation platforms were developed for each of the three methods using 

GNU radio and Python interpreted language. The simulated performances of the three 

methods have been analyzed through several test matrices and also were compared to 

observe and understand the corresponding strengths and weaknesses. These simulation 

results provide the understanding and base for the hardware implementation of spectrum 
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sensing techniques and work towards a combined sensing approach with improved sensing 

performance with less complexity.  

This thesis follows the following organization. Chapter-II presents the state-of-the-

art in spectrum sensing for cognitive radio to understand the strengths and weaknesses of 

the available sensing techniques. Chapter-III explains the proposed simulation designs and 

methodologies of the intended spectrum sensing implementations. Chapter-IV describes 

the testing of the designs proposed in Chapter-III and discusses the results. Finally, in 

chapter-V a conclusion is drawn on the findings of the simulations and the future works 

are discussed. 
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CHAPTER II 

STATE-OF-THE-ART IN SPECTRUM SENSING 

Spectrum sensing is a technique used to characterize the occupancy state of the 

spectrum. It usually scans frequency bands in some predetermined order testing for 

occupancy [7]. It is used to recognize opportunistic spectrum by knowing which part of the 

spectrum is unoccupied and access that hole in the spectrum while avoiding interference 

with the primary users. Although, in one of the latest rulings, the FCC has eliminated the 

obligatory sensing necessity for unlicensed TV whitespaces but spectrum sensing is still 

mentioned as an important factor in allowing efficient secondary user access and would be 

considered for future unlicensed spectrum regulations [8]. The IEEE is also developing a 

standard, known as IEEE 802.22, for wireless regional area networks operating in unused 

television channels. Spectrum sensing is one of the cognitive features of this standard, 

which is used to identify vacant television channels. [9]. 

The fundamental goal of spectrum sensing is to decide between two hypotheses, 

y[n]= w[n]      H0(white space)  

y[n]= h × s[n] + w[n]    H1(occupied)  (Equation 2.1) 

 

Where, y[n] is the received signal by the cognitive radio, s[n] is the primary user 

transmission, w[n] is the noise of the Additive White Gaussian Noise (AWGN) channel, 

and h is the primary user’s transmitter to the secondary user’s receiver channel gain. 𝐻0 is 
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a null hypothesis, meaning there is no primary user present in the band, while 𝐻1 means 

the primary user’s presence.  

There can be two types of errors during spectrum sensing. One of these errors 

occurs when 𝐻1 is detected by the system while 𝐻0 is true. This phenomenon is known as 

a false alarm and in spectrum sensing the probability of false alarm of a detector is an 

important design parameter.  False alarm leads to overlooking spectral opportunities and 

hinders the efficient operation of cognitive radio. The second error is made when 𝐻0 is 

detected by the system while 𝐻1 is true. This error is a result of a missed detection and 

hence makes the secondary user, interfere the primary transmissions and thus reducing the 

data rates for both the primary and the secondary system. 

Generally, spectrum sensing in a cognitive radio system has to fulfil the constraints 

on both probability of false alarm and probability of missed detection. Since both 

probability of false alarm and probability of missed detection decreases as the number of 

samples increases, both constraints may be satisfied by selecting the number of samples to 

be a large number. For practical systems, working with a large number of samples is not 

always feasible because of the computational and hardware expense. For spectrum sensing 

algorithms, both threshold selection and performance analysis are preferred to be done 

analytically. However, in practice these are determined experimentally due to the large 

number of variables associated, such as the fading channel, synchronization errors, noise 

power uncertainty, etc. 

Based on the literature spectrum sensing is divided into two types: cooperative 

sensing and non-cooperative sensing. The non-cooperative sensing is sub-divided into 

energy, feature, and matched filter based sensing. The cooperative sensing is sub-divided 
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into soft and hard combining. These sensing techniques and the sub-divisions will be 

discussed in the upcoming sections. This classification is shown in Figure 4:   

 

Figure 4.  Classification of Spectrum Sensing Based on the approaches 

 

2.1 Non-cooperative Sensing 

In non-cooperative or standalone sensing, the data collection, signal processing and 

decision making is done locally in individual units. The ability of this technique to sense 

the spectrum and make decisions in standalone units has some inherent advantages. Non-

cooperative sensing is often very simple and time efficient to implement. This sensing 

approach demands a smaller amount of computation thus the hardware implementation is 

less expensive. Moreover, the sensing time can be significantly smaller in this case because 

the sensing decision is made by the unit itself. Additionally, this method does not need any 

additional communication network between the nodes which would necessitate extra 
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wireless spectrum that would also require extra maintenance and cost. Non-cooperative 

sensing techniques are mainly divided into three categories: energy detection, feature 

detection, and matched filter sensing. Characteristics of these methods and their respective 

sub-categories have been discussed in the following categories. 

2.1.1 Energy based sensing  

2.1.1.1 Energy detection 

Energy detection is the simplest of the methods in spectrum sensing since prior 

information about the signal and complex calculations are not required for detection. It 

computes the energy of the incoming signal for detection and thus does not depend on the 

modulation scheme of the primary user’s signal. From the hypothesis in Equation 2.1, the 

detection statistics of the energy detector can be defined as the average (or total) energy of 

N observed samples: 

𝑇𝐸𝐷 =
1

𝑁
∑ |𝑦[𝑛]|2

𝑁

𝑛=1

 (Equation 2.2) 

Where, TED is the decision statistic, y[n] is the sampled received signal, N is the 

total number of samples in a detection cycle. The assessment on whether the spectrum is 

being used by the primary user is drawn by comparing the detection statistic, TED with a 

pre-programmed threshold λED. Although prior information about the received signal is 

not required, prior knowledge of noise power or a reliable estimate of it is necessary to 

obtain reliable performance [10]. The problem with fixed or static threshold is that it is 
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very prone to noise uncertainty. Sensing performance of the energy detection with static 

threshold degrades significantly if there is noise uncertainty present.   

Consequently, if the signal power is below a certain level, the energy detector 

cannot distinguish the signal from a slightly larger noise power regardless of the detection 

time. This threshold is called the SNR wall [11]. For example, a real-valued signal of 1 dB 

noise uncertainty renders robust detection below SNR of -3.3 dB impossible [11]. The 

impact of the SNR wall phenomenon for energy detection is illustrated in Figure 5 [12]. 

The number of samples needed to meet the requirements for a 0.05 probability of false 

alarm and a 0.9 probability of detection for different levels of the noise uncertainty has 

been shown in the figure. Energy detection is also not efficient in discriminating between 

the secondary users, which are sharing the same channel as the primary user [13].  

 

Figure 5.  Number of samples essential to meet probability of false alarm of 0.05 and 

probability of detection of 0.9 using energy detection under noise uncertainty ρ [12]. 
 

Hence, to improve the efficiency of the energy detection technique, an improved 

version of energy detection method is proposed in [14]. This technique addresses the 

misdetection of primary transmission due to sudden drop in primary transmission power 
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by additionally keeping an updated list of latest sensing events. Sensing decision in every 

cycle is derived from an average decision statistic that calculated from that event list. This 

introduces a delay in showing actual detection during the transition time from H1 to H0 and 

vice versa.  

The concept of double-threshold approach is suggested in [15] with the intention of 

finding and localizing narrowband signals. The utilization of double thresholds is capable 

of providing signal localization and separation. In low-SNR conditions, multiple antennas 

can be deployed for energy based spectrum detection to improve the detection performance 

[16]. Although the received signal gain is significant due to multiple antenna diversity in 

this approach, the antenna correlation degrades the detection performance. In [17], a 

technique is presented based on energy detection with wideband spectrum sensing. It 

mutually senses the signal strength levels within several frequency ranges. The aim is to 

improve the opportunistic throughput of the cognitive radios and decrease the interference 

to the primary users. 

As the sensing performance is highly affected by the estimation error of noise 

power [18], a dynamic estimation style of noise power is suggested in [19]. In this method 

several signal classification algorithms are utilized for decoupling the signal and noise 

subspaces for noise floor estimation. Probability of false alarm Pfa can be defined as [20], 

𝑃𝑓𝑎 = 𝑄(
𝜆𝐸𝐷 − 𝑁𝜎𝑤

2

√2𝑁𝜎𝑤
4

) (Equation 2.3) 

Where, Q ( ) is gaussian Q-function, 𝜆𝐸𝐷 is the threshold, N is the sample number 

of samples and 𝜎𝑤
2  is signal variance. The sensing threshold is adjusted in each iteration to 

achieve the constraints on probability of false alarm [21]. For threshold optimization, an 
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optimum and the adaptive threshold value is calculated in each cycle by employing the 

spectrum detection error function in [22]. Adaptive threshold control is also implemented 

in [23] with linear adoption on the energy threshold based on Signal to Interference plus 

Noise Ratio (SINR). The proposed system has been shown to attain a significant higher SU 

throughput than that with a fixed threshold approach while maintaining a decent constancy 

in false alarm and missed detection chances.  

However, in a real world scenario, the system parameters that are assumed to be 

constant may vary over time which can induce deviation in the expected system output. 

This deviation can be reduced with adaptive threshold for energy detection in the presence 

of white Gaussian noise. The adaptive threshold is calculated with the noise power 

estimation for keeping the false alarm rate at a preferred point under different noise power 

levels [24]. Nevertheless, in this technique the concept of a dedicated noise estimation 

channel is introduced in which there will be no primary transmission present. This extra 

noise channel requirement might not be attainable given the fact that cognitive radios are 

deployed in the areas where spectrum is already scarce. 

2.1.1.2 Wavelet sensing  

This method works by a wavelet transformation of the power spectral density (PSD) 

of the received signal y[n]. The unused frequency bands can be discovered by finding the 

singularities of the PSD after the wavelet transformation. This method proposes benefits in 

terms of both application cost and flexible sensing for wideband channels [25]. Further 

development in the wavelet approach has been proposed in [26]. The PSD is first estimated 

for a wide bandwidth using compressive sampling and then the wavelet approach is applied 
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for edge detection to locate the different spectrum areas (black, gray, white spaces) in the 

estimated PSD. 

Another wavelet approach for the wide-band spectrum estimation and spectrum 

hole detection has been proposed [27]. The idea in the proposed scheme is to directly 

sample the signal at the information rate of the signal. Conceptually this can be viewed as 

an analog-to-digital converter (ADC) operating at the Nyquist rate. After the PSD is 

reconstructed using a wavelet edge detector as shown in [26], the spectrum holes are 

detected using an energy detector in the frequency domain. A decision metric (DM) based 

approach has been proposed in [28] that is promised to substantially improve the sensing 

performance in terms of complexity and reliability, particularly at low SNR regions. A 

scheme for wideband spectrum sensing based on the analysis of singularities from their 

wavelet transform (WT) of multi scale information is also found in [29] that shows 

improvement over the current wavelet techniques at medium-to-low SNR regions. 

2.1.2 Feature based sensing 

Signals used in practical communication systems always contain some distinctive 

features such as transmit symbol rate, modulation, pulse shaping, etc. The specific features 

or properties that are inherent in modern modulation and coding techniques have aided in 

the design of efficient spectrum sensing algorithms. These features can be exploited for 

sensing and that enable us to achieve a detection performance that substantially surpasses 

the energy detector. Perhaps even more importantly, known signal features can be 

exploited to estimate unknown parameters such as the noise power. Therefore, making use 
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of known signal features effectively can bypass the problem of SNR walls discussed in the 

previous section.  

Feature based detection refers to extracting features from the received signal and 

performing the detection based on the extracted features. For example, a typical feature 

used for detection is correlation based features. Additionally, cyclostationary-based 

detection has also received considerable attention. The advantage of the feature based 

detection over energy detection is that it typically shows the distinction between different 

signals or waveforms and is less susceptible to noise uncertainty. In the following sections, 

we give a short description of the different feature detection methods. 

2.1.2.1 Cyclostationary based sensing 

Cyclostationary feature sensing was first presented by [30]. In the majority of 

communication systems, the signals to be transmitted are modulated and combined with 

sine wave carriers, cyclic prefixes, hopping sequences, and pulse trains. But the additive 

noise is commonly wide-sense stationary (WSS) without any correlation. The periodicity 

of the majority signal transmission can be utilized to sense a random signal that retains a 

specific modulation category in the presence of noise. Such detection is called 

cyclostationary detection.  

Unlike the energy detector that utilizes time-domain energy of the signal for test 

statistics T, the cyclostationary detection works by performing time-domain transformation 

to the frequency domain and then performing the hypothetical test. Cyclic Autocorrelation 

Function (CAF) is defined as, 
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𝑅𝑦
𝛼(𝜏) = 𝐸[ 𝑦(𝑡 + 𝜏)𝑦∗(𝑡 − 𝜏)𝑒𝑗2𝜋𝛼𝑡 ]  (Equation 2.4) 

Where, y(t) is the received signal, E[.] is the statistical expectation, α is the cyclic 

frequency and * denotes the complex conjugate. The spectral correlation function (SCF) is 

acquired by calculating the discrete Fourier transform of the cyclic auto-correlation 

function (CAF). Detection is then concluded by looking for the unique cyclic frequency by 

matching the peak in the SCF plane. Cyclostationary detection can be potentially employed 

to distinguish noise from the primary user’s signal [31] and separates between different 

kinds of communications and primary systems [32].  

Under noise uncertainty the energy detection is susceptible to large false alarm rates 

and is also unable to detect low power signals. In contrast, the cyclostationary sensing can 

distinguish noise from the primary user’s transmission with superior sensing robustness in 

low SNR and noise uncertainty. An example of this type of technique is maximum cyclic 

autocorrelation selection based detection [33]. In this method the cyclic autocorrelation 

function is calculated for peak and non-peak values and then is compared in order to 

conclude if the primary user is present or not. This technique has the advantage of not 

requiring noise variance estimation and is robust in case of interference and noise 

uncertainty. An effective and dependable approach is proposed by merging signal 

classification with neural network and cyclic spectral analysis in [34]. One of the key 

attributes in this approach is to keep the computational requirement low. It is done by 

processing a large portion of the calculations offline using neural networks and thus the 

online calculation for signal detection is significantly reduced.  

A promising sensing technique for multi-antenna cognitive radio that uses an 

adaptive cyclostationary beam forming is presented in [35]. The complexity level of the 
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resulting process is much smaller than that of the conventional cyclostationary detectors, 

but is higher than that of the energy detection. With all the advantages, the requirement for 

a multiple antenna system in this approach requires extra cost in terms of hardware. A non-

parametric quickest detection scheme is suggested for sensing  that utilizes energy 

detection in cooperation with cyclostationary features in [36]. Compared to traditional 

energy detection, this scheme reduces detection delays and thus achieves a greater 

percentage of channel usage. Although showing promising results, this detection scheme 

lacks the simplicity that is offered by some of the other combined sensing methods. For 

cyclostationary sensing a sub-optimal method is introduced in [37]. This method uses a lag 

set selection for the 2nd-order statistical testing that avoids the need for 4th-order cyclic 

cumulants which is hard to obtain. According to the authors, this technique offers superior 

detection performance in the low SNR region and the system is less complex than 

conventional cyclostationary sensing methods.  

Cyclostationary detection is a commonly used feature detection technique. General 

feature detection also relates to other techniques that involve other features in the 

modulated primary transmission besides cyclostationarity. Such type of detection can 

utilize the different types of extracted features such as the level of strength of the primary 

transmission and its distribution over different frequency channels [38], [39], shape and 

bandwidth of a frequency channel [40], [41], power spectral density [42], center 

transmission frequency of the primary user [40], etc. A decent detection technique can also 

be achieved by fitting the features extracted at the receiving end with a priori data of 

primary transmission. 
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2.1.2.2 Covariance based sensing 

Some of the features of a signal are also inherently present in the covariance matrix 

of the received transmission. Some transmitted signals demonstrate specific known 

features or structures to the covariance matrix. Covariance-based sensing utilizes these 

features to detect primary users. Since the statistical covariance matrices of the received 

signal and noise are generally not the same, the difference is utilized to distinguish the 

preferred signal element from background noise in [43] and [44]. For primary user 

detection, the eigenvalues found in the covariance matrix of the received signal can also be 

utilized [45]. According to random matrix theory, the ratio of the maximum to the 

minimum eigenvalue remains quantized and the sensing threshold can be extracted from 

those ratios [46].  

Performance comparison between analytical results and simulations demonstrate 

the strength of Covariance Based Detection (CBD) [47]. As a modified version of the CBD, 

the Standard Condition Number (SCN) of the noise covariance matrix can also be utilized 

to evaluate the effect of noise correlation on eigenvalue-based sensing techniques [48]. 

Although these CBD techniques do not require a priori information of the primary signal 

or estimation of the noise power, they are presented to be stronger towards noise 

uncertainty. 

2.1.2.3 Coherent sensing 

Coherent sensing (also known as waveform-based sensing) can be utilized to make 

a decision about the presence of  primary user transmission, if a particular feature can be 
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extracted from the received transmission [49]. In the procedure of coherent detection using 

a pilot pattern the decision statistic is expressed as follows [49]: 

𝑇 =
1

𝑁
∑ 𝑦[𝑛]�̂�𝑝[𝑛]

𝑁

𝑛=1

 (Equation 2.5) 

Where, 𝑥𝑝[𝑛] is the known pilot-tone and �̂�𝑝[𝑛] is the normalized unit vector in the 

direction of the pilot-tone. Coherent sensing has the potential of being performed in the 

frequency domain also [42]. This sensing technique has been presented to show robustness 

in case of noise uncertainty and not restricted by the SNR wall effect as N is sufficiently 

large [49]. Furthermore, it outperforms energy detection in terms of sensing time [50], [51], 

as the required time of energy detection with a reliable result grows in a quadratic manner 

with the reduction in SNR, whereas that of coherent detection simply rises linearly [51]. 

On the other hand, particular information on the primary transmission waveform stands as 

a prerequisite for employing coherent sensing. A hybrid coherent/energy detection system 

for spectrum sensing using low–complexity and locally optimal decision metric has been 

proposed in [52]. The technique is a linear mixture of coherent and energy detection that 

merges the benefits of the individual metrics as it exploits both the pilot and the data 

symbols transmitted by the primary user.  

2.1.3 Matched filter sensing 

If secondary users possess certain information about the primary user’s 

transmission, then the ideal detection method is matched filter detection [53]. A matched 

filter can compare the previously known features of a primary transmission with the 
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received signal to sense the existence of the primary user. Decision statistic, TMF of 

matched filtering is given as [54]: 

𝑇𝑀𝐹 =
1

𝑁
∑ 𝑦[𝑛] ∗  𝑥𝑝[𝑛]

𝑁

𝑛=1

 
>

<
  𝜆𝑀𝐹 (Equation 2.6) 

Where, y[n] is the received signal stream, xp[n] is the  primary signal’s known pilot 

signal, 𝜆𝑀𝐹  is the matched filter threshold and N is the number of samples taken for 

calculation in a sensing cycle. The steps in a typical matched filter sensing cycle are 

illustrated in the block diagram shown in Figure 6. Since the matched filter requires a fewer 

number of received samples it has the advantage of a small sensing time and can 

demonstrate a definite sensing performance, such as a low chance of false alarm and missed 

detection [55]. However, the required number of signal samples also increases with the 

decrease in received signal SNR. The application of Automatic Modulation Classification 

(AMC) algorithm is introduced in [56]. This method improves the performance of sensing 

under low SNR situations. It works in three complex stages of feature key extraction, 

network training, and performance evaluation of the signal sensing.  

 

Figure 6.  Matched filter sensing steps. 

Performance degradation of energy detection due to noise uncertainty and the SNR-

Wall effect can be overcome by the statistical matched filtering method [57]. It is derived 

from the matched filter output by a ratio of maximum-to-mean absolute value. One more 

weakness of the energy detector is that it cannot distinguish the target signal from the 
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interfering signals, and due to that secondary users must be silenced in order to perform a 

successful sensing. Due to imperfect coordination during silent periods another secondary 

user may transmit and cause false alarms for the energy detector. If a matched filter is 

already present in a secondary user node, then matched filter assisted energy detection can 

significantly leverage the detection performance with less false alarm [58]. But this method 

only works if the node already has an unused matched filter, which is less likely to happen.  

Although the matched filter is better than energy detection, its performance can 

significantly degrade in the presence of carrier frequency offset and phase noise. A trio of 

modified matched filter sensing methods termed as Block-Coherent Detector (BLCD), 

Second-Order Matched Filter-I (SOMF-I), and Second Order Matched Filter-II (SOMF-II) 

have been proposed as solutions to the problem [54]. However, from simulation data 

SOMF-II has been shown to be more robust between the three methods. This method is 

more complex and computationally expensive and appropriate if only carrier frequency 

offset, and phase noise are present.       

A prerequisite for the matched filter sensing is precise information about the 

primary user’s transmission, such as the working frequency, modulation scheme, 

bandwidth, etc. If incorrect data are provided for matched filtering, the sensing 

performance can show a significant amount of degradation [50], [59]. Furthermore, 

because it needs knowledge on all types of receiver signals and matching algorithms for 

wide-band spectrum sensing, it suffers from implementation complexity and high power 

consumption [60]. 
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2.2 Cooperative sensing 

In cooperative sensing the measurements of multiple sensing nodes are gathered in 

one master or central node and combine their measurements based on different approaches 

into one common decision. The concept of cooperative sensing is introduced as a solution 

to address the problems associated with the standalone or non-cooperative sensing like 

fading, shadowing, and noise uncertainty [61]. The block diagram in Figure 7 shows the 

typical steps involved in cooperative sensing. The primary user signal is received by the 

sensor nodes and their local decisions are then sent to the central node.  Decision fusion is 

done in the central node and a central sensing decision is derived for efficient spectrum 

use. This method has been shown to increase the reliability of sensing, improve the 

detection likelihood, and decrease the false alarm rate to well defend a primary user.  

 

Figure 7.  The cooperative spectrum sensing scheme. 

A central controller, which is a secondary base-station, in a centralized cooperative 

spectrum sensing, assembles local sensing results from several secondary users. It makes 

a combined decision about the unfilled spectrum holes by means of some decision fusion 

instructions, and then notifies the secondary users which channels are right for entry. For 

distributed cooperative systems, secondary users interchange their local sensing outcomes 
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between themselves without needing to have a backbone infrastructure which decreases 

the expense.  

Cooperative approach can be implemented based on any of the non-cooperative 

techniques that have been stated so far with the addition of central data analysis and 

decision making. Cooperative sensing utilizing energy detection [62], [63], wavelet 

sensing [64], cyclostationarity [65], [66], matched-filter [67] and covariance [68] has been 

suggested to address the problem of non-cooperative sensing of the corresponding types. 

The requirement for additional communication links between the central and the terminal 

nodes, structural complexity, delays in data analysis and decision making are some of the 

prominent challenges of cooperative sensing. A lot of research effort is concentrated in the 

field of cooperative sensing to address these issues. The notion of cooperative sensing is 

based on the fusion or combining of the sensing data or decisions of the sensors. Depending 

on the combining approaches, the cooperative sensing can be classified as soft combining 

and hard combining, which are discussed in the upcoming sections.  

2.2.1 Soft combining 

 In this approach of cooperative sensing, all the user nodes transfer their individual 

soft decisions to a central fusion node that combines the soft values to one collective 

decision. This is comparable to the instance in which received data from all the individual 

nodes are available to the fusion center for access, and optimal sensing is performed based 

on all the data available. The energy detection has been used in [69] for the optimal 

cooperative sensing scheme to get data from the individual sensor nodes and combine the 

soft decisions by the weighted sum. However, if there exists a correlation between the 
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sensor nodes, the cooperation gain decreases severely and in case of one out of M no. of 

sensor nodes being untrustworthy, the sensitivity of every single sensor needs to be as good 

as that attained with M trusted user nodes [70]. 

2.2.2 Hard combining 

In the soft combining approach, all the soft decisions by the standalone nodes are 

transmitted to the fusion center continually. However, in that method a large amount of 

data is required to be repeatedly transmitted to the fusion center, which is not always 

feasible. As a solution to this situation each of the sensor nodes makes its own sensing 

decision and transmits only the binary value or the hard decision to the central fusion node. 

In this kind of approach the central node combines the hard decisions from all the sensor 

nodes into a common decision by a voting rule [71]. Binary Phase Shift Keying (BPSK) 

signaling of the hard decisions to the fusion center has also been considered for some 

approaches. The corresponding optimal fusion rule is derived depending on the knowledge 

of the reporting channel SNRs and the local probability of the false alarm and detection 

[72].  

2.3 Summary 

In this chapter, we have described some of the state-of-the-art spectrum sensing 

methods and recent advances in cognitive radio. While doing so, we inevitably had to make 

choices and go through only some of the selected but popular parts of the current works on 

spectrum sensing. There are a few other matters that are worthy of mentioning which also 

have been attracting research interest recently. For example, working with the sensing 

methods that address more dynamic situations in terms of spectrum activity. For more 
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dynamic situations, the sensing time has to be really small even under very low SNR 

situations. Adaptive sensing and learning is also important while working with the dynamic 

spectrum environment. These challenges can be addressed with more research work on 

joint spectrum sensing and efficient resource utilization in cooperative sensing 

architecture.  

 



27 

 

 

CHAPTER III 

SPECTRUM SENSING TECHNIQUES METHODOLOGIES 

In spectrum sensing, the received signal y[n] is modeled as the sum of the 

transmitted PU signal s[n] multiplied by the channel gain h and the Additive White 

Gaussian Noise (AWGN) w(n). The received sampled signal can be represented as: 

𝑦[𝑛] = ℎ 𝑥 𝑠[𝑛] + 𝑤[𝑛] (Equation 3.1) 

Where, y[n] is the received signal by the cognitive radio, s[n] is the primary user 

transmission, w[n] is the noise of the Additive White Gaussian Noise (AWGN) channel, 

and h is the primary user’s transmitter to the secondary user’s receiver channel gain. These 

expressions are in terms of sample number n for digital domain calculation and N is the 

number of complex samples collected at the receiver for each sensing cycle. This model is 

illustrated in the Figure 8 below: 

 

Figure 8. Signal Model Representation 
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From the above system model, spectrum sensing can be represented as the 

following binary hypothesis:  

H0:  y[n] = w[n] PU Signal absent    

 H1:  y[n] = h × s[n] + w[n] PU Signal present  (Equation 3.2) 

Where, 𝐻0 is a null hypothesis, which means there is no primary user present in the 

band, while 𝐻1 means the primary user’s presence. The simulation methodologies for 

energy detection, correlation based sensing, and matched filter sensing have been 

developed according to this model. An important aspect of developing the simulation setup 

is to choose the optimal tools and platform that have the strong base for research work and 

flexibility for future provision of hardware implementation.  

3.1 Tools and platform of choice  

In wireless radio communications research, a lot of components are implemented 

with hardware after the successful simulation of the projects. One of the important aspects 

of this thesis work is to keep the provision of hardware implementation in the future. 

Software Defined Radio (SDR), as a hardware platform, enables fast development of new 

wireless radio techniques, allowing the associated software to handle several protocols and 

frequencies, and executing real-time adaptive algorithms. 

GNU Radio is a LINUX based open source project intended to ease the 

development of wireless radio communications projects with SDR. Due to its open source 

license, developers are able to share their processing cores, design custom modules and 

offer those for GNU Radio installation. Taking advantage of this feature, various signal 
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processing modules have been developed and tested already which enables complex 

waveforms to be created very fast. This allows easy reconfiguration of the application and 

tuning during real-time execution. 

GNU Radio is designed based on the ‘Python’ language. It is easy and quick to 

learn and thus making it simple to construct connections between the signal processing 

modules. By linking processing modules with each other, a ‘flow graph’ can be created 

which enables the design of complex waveforms.  

 

Figure 9.  Simple AM transmitter with GNU Radio Companion (GRC). 

GNU radio has an easy to use GUI interface known as GNU Radio Companion 

(GRC) which can be used to create very simple to complex signal flow graphs. In Figure 

9, a simple AM transmitter that was created with few modules in the GNU radio 

environment which interfaces with an SDR box to transmit real AM signals. But if further 

modification is needed to perform a task that cannot be achieved by using the built in GRC 

blocks, custom blocks can be created that are written in python language and can later be 
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integrated in the GNU radio platform to be used as other built in blocks. This feature of 

GNU radio is very flexible and makes it an attractive choice for research projects.      

Furthermore, GNU Radio environment has been designed to do real-time signal 

processing. Processing blocks have been written in C++, a compiled language, to achieve 

high signal throughput and performance needed for SDR applications. GNU Radio is also 

suitable for development of stable simulation projects. For all the simulation 

methodologies, first a standard flow graph was created in GRC and then that flow graph 

was further modified with python to achieve the required functions for the respective 

methods.  

 

Figure 10.  QPSK signal generation for simulation 

Figure 10 shows the flow graph for QPSK signal generation using the standard 

design blocks present in GRC. It was created with the intention to be used in the simulations 

of the three sensing techniques. Figure 11 shows the constellation plot of the generated 

QPSK signal, s[n] from the GRC flow graph. There is no standard block available in GRC 

that contains the feature of spectrum sensing using one of the three techniques under 
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consideration. For that reason, a custom block named “sample” was created. It was 

prepared using the “out-of-the-tree” block creation cheat sheet from GNU radio.  

 

Figure 11.  Constellation plot of the QPSK signal s[n] 

The function of the custom block is to take the N number of QPSK modulated 

samples from previous block in the flow and that N number of QPSK modulated signal is 

considered as the PU signal s[n]. The value of the N which is also known as the sensing 

cycle length is user selectable before the execution of particular simulation. 

From the flow graph shown in Figure 10 a script file was generated. Gaussian noise 

was simulated by editing that script file with the help of “NUMPY” and “SCIPY” modules 

available in python library. This noise emulates the channel noise associated with a 

Gaussian system which is considered as w[n]. The strength of the generated noise is user 

selectable to have the flexibility of achieving various SNR levels. By adding the noise, 

w[n] to the QPSK signal, s[n] the received signal, y[n] is generated and the sensing 

techniques can be applied to the received signal, y[n]. Before running this process the 

samples of  length N in each cycle, the target SNR value and the total number of simulation 
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loop has to be provided or set by the user. The method of generating a QPSK signal, s[n], 

noise w[n] and received signal, y[n] are shown in the flowchart in Figure 12.           

The values of total number of sensing cycle or loop number, sample numbers in a 

sensing cycle N, and the value of SNR are specified at the beginning of the process. In the 

next step, a variable count initialized to ‘0’ is used to count the loop number that is going 

to be executed. A decision is made in the following steps to check if the value of count is 

less than the value of loop or not. If count < loop is false which means all the sensing cycles 

have finished generating the received signal, y[n] then the process stops, but if it is true 

then the process goes to the next step. In the next two steps the QPSK signal, s[n] is 

generated and its power is adjusted according to the SNR value. After that, two more 

similar steps are completed to generate a noise signal, w[n] and adjust its power level to 

match the SNR value. Then the adjusted QPSK signal s[n] and noise signal w[n] are added 

to get the received signal y[n] in the next step. After that the value of count is incremented 

by one indicating that one cycle of the received signal, y[n] generation has been completed.     
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Figure 12.  Flowchart of received signal y[n] generation 
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3.2 Energy detection 

In its simplest form, the energy detection computes the energy of the received signal 

y[n] as a decision statistic 𝑇𝐸𝐷 and then compares 𝑇𝐸𝐷 with a predetermined fixed 

threshold 𝜆𝐸𝐷.  The decision statistic can be expressed as:  

𝑇𝐸𝐷 =
1

𝑁
∑ | 𝑦[𝑛] |2

𝑁

𝑛=1

 (Equation 3.3) 

Where, TED is the decision statistic, y[n] is the sampled received signal, N is the 

total number of samples in a detection cycle. Decision statistic, 𝑇𝐸𝐷 can be calculated from 

the squared magnitude of the FFT averaged over N samples which is illustrated below in 

Figure 13.  

 

     

Figure 13. Block diagram for Decision Statistic 𝑇𝐸𝐷 calculation  

 

Decision statistic, 𝑇𝐸𝐷 is computed in each sensing cycle of N samples and is 

compared to the threshold  𝜆𝐸𝐷 to get the sensing result shown in equation 3.4:  

𝑇𝐸𝐷 <   𝜆𝐸𝐷                       PU signal absent    

𝑇𝐸𝐷 >  𝜆𝐸𝐷                       PU signal present  (Equation 3.4) 

For the calculation of the threshold  𝜆𝐸𝐷 ‘quite time approach’ is often utilized. This 

refers to the time period when it is known that the primary user is not transmitting that is 

y[n] A/D FFT ||^2
Average 
over N 

samples

Test 
Stat. T
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only noise is present in the received signal y[n]. So on the approach, the decision statistic 

calculated for quiet time is set as the threshold 𝜆𝐸𝐷.   

But if N is large (N>250) central limit theorem can be used to approximate the test 

statistic as Gaussian from which it can be derived as follows:  

    𝑇~ Normal (N𝜎𝑤
2  , 2N𝜎𝑤

4 )                               Under H0  

𝑇~ Normal (N (𝜎𝑤
2 + 𝜎𝑥

2) , 2N(𝜎𝑤
2  + 𝜎𝑥

2)
2
)  Under H1  (Equation 3.5) 

Where, σw and σs is the standard deviation of noise and PU signal respectively.  The 

probability of detection Pd and false alarm Pfa can be evaluated as:  

𝑃𝑑 = 𝑄 (
𝜆 − 𝑁 ( 𝜎𝑤

2 + 𝜎𝑠
2)

√2 𝑁 ( 𝜎𝑤
2 + 𝜎𝑠

2)2
) (Equation 3.6) 

𝑃𝑓𝑎 = 𝑄 (
 𝜆𝐸𝐷 − 𝑁 𝜎𝑤

2

√2 𝑁 𝜎𝑤
4

) (Equation 3.7) 

Where Q ( ) stands for the Gaussian Q-Function. An energy detector can meet any 

desired Pd and Pfa simultaneously if the number of samples used in sensing is not limited. 

The minimum number of samples required is a function of the signal to noise ratio (SNR) 

and can be expressed as:  

𝑁 = 2 [(𝑄−1(𝑃𝑓𝑎) − 𝑄−1(𝑃𝑑)) 𝑆𝑁𝑅−1 − 𝑄−1(𝑃𝑑)]2 (Equation 3.8) 
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So, for SNR << 1 regime a large number of samples are required to meet certain 

values of Pd and Pfa that corresponds to a reliable detection performance. Equation 3.7 can 

be further simplified as: 

 𝜆𝐸𝐷 = 𝜎𝑤
2  (𝑄−1(𝑃𝑓𝑎)√2𝑁 + 𝑁) (Equation 3.9) 

Thus for a Gaussian system, the threshold can be calculated from eq. 3.9 which 

requires that the values of noise standard deviation, σw and probability of false alarm, Pfa 

to be known. Probability of false alarm, Pfa is set as the target Pfa of the system while 

designing energy detector. The steps of the whole process are illustrated in the block 

diagram shown in Figure 14: 

 

Figure 14.  Block diagram of energy detection process  

In the simulation, the noise is generated in the Python code which makes it possible 

to calculate the value of σw. For the purpose of performance evaluation, we can utilize the 

value of σw calculated from the generated noise to get threshold 𝜆𝐸𝐷. The detailed steps of 

simulating energy detection are shown in the flowchart in Figure 15. The output of the 

received signal generation block described in Figure 12 flowchart is further processed for 

energy detection steps. K-point FFT is done on the received signal, y[n] where K is user 



37 

 

selectable and has to be a number that can be expressed as 2n. In the next step, FFT samples 

are squared and then averages over N samples to get the decision statistic, TED. The noise 

variance σw
2 is calculated from the noise stream w[n] which is used to further compute 

threshold, λED, from equation 3.9 in the next step. The decision statistic, TED, is compared 

with a threshold, λED, to get the sensing decision. For TED ≥ λED the output is H1 (PU signal 

present) and for TED < λED the output is H0 (PU signal absent). After getting the sensing 

decision the count value, a variable used for counting the total loop numbers, is 

incremented by one. The whole process is repeated until the total number of sensing cycles 

is completed. 
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Figure 15.  Flowchart of Energy Detection 
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3.3 Correlation based sensing 

    For the purpose of spectrum sensing, we can also exploit any features that exist 

in the deterministic transmitted signal that are not present in the noise. One such feature is 

the autocorrelation of the signal samples. In signal processing, given a signal s(t), the 

continuous autocorrelation Rf (τ) at lag(τ) is defined as: 

𝑅𝑓(𝜏) = ∫ 𝑠(𝑡) 𝑠∗(𝑡 − 𝜏)𝑑𝑡
∞

−∞

 (Equation 3.10) 

Where s* represents the complex conjugate of s and τ is the time lag. An 

‘Autocorrelation Function’ is one which is obtained by plotting the autocorrelation values 

for various time lags.  If two successive values of an autocorrelation function of a signal 

are close to each other, then that means the signal is more correlated and if the values are 

significantly differ from each other then it is said that the signal is least correlated or 

uncorrelated.  

In spectrum sensing, noise is a factor which greatly affects the quality of sensing. 

Signals affected by white Gaussian noise are, in general, difficult to interpret. By definition, 

Gaussian noise is uncorrelated and the autocorrelation function of a Gaussian noise stream 

results in a sharp spike at zero lag while the values of the rest of lags are close to zero as 

shown in Figure 16 (a). However, for a deterministic signal the autocorrelation function 

can present high values that depend on the transmit symbol rate, modulation, and pulse 

shaping. Due to the inherent nature of the signal, correlation is present in this transmitted 

signal and thus the values of zero lag and first lag of the autocorrelation function is very 
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close as shown in Figure 16 (b). This contrast in behavior of the noise and signal in the 

autocorrelation domain can be utilized for the purpose of spectrum sensing.  

 

Figure 16.  (a) Autocorrelation of noise.  (b) Autocorrelation of Sine wave. 

Figure 17 shows the main steps involved in the spectrum sensing based 

autocorrelation.  

  

Figure 17.  Correlation based Sensing Steps  

In the first step, the autocorrelation is performed on the received signal y[n]; lag 

zero and lag one are compared and the sensing decision is made using the following 

hypothesis:   

𝐿𝑎𝑔 𝑧𝑒𝑟𝑜 ≫ 𝑙𝑎𝑔 𝑜𝑛𝑒   PU Signal absent    

𝐿𝑎𝑔 𝑧𝑒𝑟𝑜 ≈ 𝑙𝑎𝑔 𝑜𝑛𝑒    PU Signal present (Equation 3.11) 
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If the value of ‘lag one’ is much smaller than the value of ‘lag zero’, then the 

primary user transmission is absent; however, if the ‘lag zero’ and ‘lag one’ values are 

close, the primary user transmission is considered to be present. Figure 18 shows the 

flowchart of the autocorrelation based sensing technique.  
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Figure 18.  Flowchart of correlation based sensing  
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The output of the received signal generation block, described in Figure 12 

flowchart, is also used for the autocorrelation based sensing. Autocorrelation is performed 

on the received signal, y[n] and then the lag(0) and lag(1) values of the autocorrelation 

output are set as AC0 and AC1, respectively. If AC0 >> AC1 is ‘true’ then the output is H0 

(PU signal absent) and when AC0 >> AC1 is ‘false’ then the output is H1 (PU signal 

present). After getting the sensing decision the count value, a variable used for counting 

the total number loops, is incremented by one. The whole process is repeated until the total 

number of sensing cycles is completed. 

3.4 Matched filter sensing 

Matched filter is considered as one of the optimum techniques for spectrum sensing 

if the knowledge of the primary user waveform is available. In this technique, filtering is 

done by matching the received signal with some pre-collected and saved pilot of the same 

PU signal stream. The main steps of this technique are shown in Figure 19: 

 

Figure 19.  Matched filter sensing steps. 

The matched filter block in Figure 19 is further expanded in Figure 20 in which the 

received signal y[n] is convolved with pre-collected pilot xp[n] and then averaged over N 

samples to get the matched filter decision statistic, TMF, which is later compared to the 

matched filter threshold,  𝜆𝑀𝐹, to get the sensing decision. TMF is given by 
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𝑇𝑀𝐹 =
1

𝑁
∑(𝑦[𝑛] ∗  𝑥𝑝[𝑛])

𝑁

𝑛=1

 (Equation 3.12) 

Where, y[n] is the received signal stream, xp[n] is the primary signal’s known pilot 

signal, and N is the number of samples taken for calculation in a sensing cycle. When the 

spectrum condition is in H0, the decision statistic, TMF, results from the convolution 

between Gaussian noise and the pre-collected pilot signal averaged over N samples. In H1 

situation, TMF results from the convolution of PU signal mixed with the Gaussian noise and 

the pre-collected pilot signal averaged over N samples.  

 

Figure 20.  Matched filter sensing algorithm. 

Matched filter threshold, 𝜆𝑀𝐹, is derived from the ‘quiet time approach’ which 

refers to the time period. This time period is the time when the primary user is not 

transmitting. Therefore, only the noise is present in the received signal y[n]. Thus for the 

quiet time period, the matched filter threshold, 𝜆𝑀𝐹, is equal to the matched filter decision 

statistic, TMF. The block diagram of matched filter sensing is illustrated in Figure 20. If 

 𝜆𝑀𝐹 is determined, the binary hypothesis is given as:  

𝑇𝑀𝐹 <   𝜆𝑀𝐹  Primary User absent    
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𝑇𝑀𝐹 >   𝜆𝑀𝐹  Primary User present (Equation 3.13) 

The detailed steps for matched filter sensing is illustrated in the flowchart shown in 

Figure 21. As for the other methods, the output of the received signal generation block, 

previously described in Figure 12, is also used for matched filter based sensing. After 

generating the received signal, y[n], the pilot signal, xp[n], is read from database. Then, the 

convolution is done between y[n] and xp[n]. In the next step, the averaged sum of the 

convolution samples is calculated. To get the sensing decision, TMF and λMF are compared. 

For TMF ≥ λMF the output is H1 (PU signal present) and for TMF < λMF the output is H0 (PU 

signal absent). As for the previous techniques, after getting the sensing decision the count 

value, a variable used for counting the total number loops, is incremented by one. The 

whole process is also repeated until the total number of sensing cycles is completed.   
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Figure 21.  Flowchart of the matched filter sensing technique
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Simulation parameters 

In this work, the primary user signal is generated using the GRC flow graph shown 

in Figure 10 given in chapter III. The primary signal considered is a QPSK modulated 

signal and its power is set at -70 dBm. The AWGN noise is simulated as Gaussian noise 

and is generated with python code according to the target value of SNR. The SNR values 

range from -20 dB to +20 dB. Spectrum sensing is carried out by taking N samples of the 

primary signal as the received signal and then performing one of the three sensing 

techniques under investigation. The signal generation and main sensing steps are shown in 

the block diagram of Figure 22 below. 

 

Figure 22. Main steps of the spectrum sensing techniques. 

Two important parameters for evaluating the performance of spectrum sensing 

techniques are used: the probability of detection, PD, and the probability of false alarm, 

PFA. PD and PFA are calculated using the following equations:    
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𝑃𝐷 =
𝑁𝐷

𝑁𝑇
 (Equation 4.1) 

𝑃𝐹𝐴 =
𝑁𝐹𝐴

𝑁𝑇
 (Equation 4.2) 

Where, ND is the number of total detections, NFA, is the number of total detections, 

and NT is the number of total experiments. To assess the performance of the sensing 

methods under investigation, we the evaluation parameters PD, PFA, λ, N, and SNR. Table 

1 lists the evaluation parameters for each method under investigation. The threshold for 

energy detection, λED, can be calculated from Equation 3.9 mentioned in chapter III. Thus, 

the energy detection technique has two more evaluations parameters compared to the two 

other methods.  

Energy  

Detection 

Correlation  

Sensing 

Matched Filter  

Sensing 

Comparison of 

the 3 Methods 

PD vs SNR  

(Variable λED) 
PD  vs SNR 

PD vs SNR  

(Variable λMF) 
PD vs SNR  

PD vs N  

(variable SNR) 

PD  vs N  

(Variable SNR) 

PD vs N  

(variable SNR) 

PD vs  N  

(Variable SNR) 

PFA vs SNR  

(Variable λED) 
PFA vs SNR 

PFA vs SNR  

(Variable λMF) 
PFA vs SNR 

PFA vs λED  

(Variable SNR) 
   

PD vs PFA  

(Variable SNR) 
   

 

Table 1. Performance evaluation matrices for the 3 methods 

4.2 Energy detection 

As discussed in chapter III, the expressions of PD and PFA for energy detection are 

given by: 
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𝑃𝐷 = 𝑄 (
 𝜆𝐸𝐷 − 𝑁 ( 𝜎𝑤

2 + 𝜎𝑠
2)

√2 𝑁 ( 𝜎𝑤
2 + 𝜎𝑠

2)2
) (Equation 4.3) 

𝑃𝐹𝐴 = 𝑄 (
 𝜆𝐸𝐷 − 𝑁 𝜎𝑤

2

√2 𝑁 𝜎𝑤
4

) (Equation 4.4) 

 Where, σw and σs are the standard deviations of noise and PU signal respectively, 

N is the number of samples, λED is the threshold, and Q ( ) stands for the Gaussian Q-

Function. By changing the values of these variables we can test the performance of energy 

detection in terms of PD and PFA. For the performance evaluation of energy detection, the 

following metrics have been considered in the simulations:  

1) Probability of Detection, PD, vs SNR (Variable Threshold) 

2) Probability of Detection, PD, vs Sample Number, N (Variable SNR)  

3) Probability of False Alarm, PFA, vs SNR (Variable Threshold)  

4) Probability of False Alarm, PFA, vs Threshold (Variable SNR) 

5) Probability of Detection, PD, vs Probability of False Alarm, PFA (Variable SNR) 

The probability of detection, PD, has been simulated by varying the SNR for 

different levels of threshold, λED. The expression for λED is given as: 

 𝜆𝐸𝐷 = 𝜎𝑤
2  (𝑄−1(𝑃𝐹𝐴)√2𝑁 + 𝑁) (Equation 4.5) 

In this equation, σw and N are known. The PU signal strength is set at -70 dBm. The 

SNR range is varied from -20 dB to +20 dB by varying the noise power. PFA is set to be 
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0.2 to get the value of λED using equation 4.5. After determining the value of λED the 

threshold was varied by multiplying factors to observe the effect of threshold variation on 

PD. For example, if the value of λED, for PFA = 0.2 and N = 1000, is 142, then for a threshold 

factor 1.3, the final threshold will be 142*1.3 = 426. The size FFT for determining the 

decision statistic, TED, was set at 128. For each set of parameters the simulation is run for 

1000 cycles to get an average result of PD. The values of the parameters for this simulation 

are shown in Table 1.    

 

Table 2. Values of simulation parameters for PD vs SNR (Variable λED). 

The simulation results are shown in Figure 23. From these results we can see that 

PD for energy detection increases with the increase in SNR. It also shows the effect of 

threshold on PD which decreases with the increase of the threshold. This figure also shows 

that the method achieves a detection probability of 100% for SNR values of -10 dB for the 

threshold 1, +2 dB for the threshold 2, 5 dB for the threshold 2, 7 dB for the threshold 4. 

This means that to achieve a detection probability of 100%, the threshold has to be under 

1 and the SNR higher than -10 dB.   
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Figure 23. Energy detection simulation results for PD vs SNR (Variable λED). 

We also investigated the impact of the number of samples on the probability of 

detection.  This investigation was performed by varying the number of samples, N, for 

different levels of SNR. N is varied from 100 to 1000 in steps of 100. The PU signal strength 

is set at -70 dBm. The SNR values range from -20 dB to -4 dB by varying the noise power. 

PFA is set at 0.2 to get the value of λED using equation 4.5. The size FFT for determining 

the decision statistic is set at 128. For each set of parameters the simulation is run for 1000 

cycles to get an average result of for PD. The values of the parameters for this simulation 

are shown in the Table 3.    

 

Table 3. Values of simulation parameters for PD vs N (variable SNR). 
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The results of this investigation are shown in Figure 24. As expected, PD for the 

energy detection method increases with the increase of the number of samples N. This 

figure also shows that PD increases with the increase of SNR. Therefore, to achieve a high 

probability of detection at a specific SNR the number of samples has to be more than 800.   

 

Figure 24. Energy detection simulation results for PD vs N (Variable SNR). 

 

 

The results of Figures 23 and 24 show very high detection probability at very low 

SNR values. However, at low SNR the noise is dominant. Because the energy detection 

based sensing measures the energy of the incoming signal mixed with the noise, it is likely 

that the probability of detection does not reflect the presence of the signal. To investigate 

this matter, we analyzed the probability of false alarm, PFA. For this later probability we 

used the same simulation parameters as for the probability of detection. These parameters 
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are given on page 50. The values of the parameters for this simulation are shown in the 

following Table 4.    

 

Table 4. Values of simulation parameters for PFA vs SNR (Variable λED). 

The simulation results of PFA vs SNR for different threshold levels are shown in 

Figure 25. As expected, PFA corresponding to energy detection decreases when SNR 

increases. It also shows the effect of the threshold on PFA. The probability of false alarm 

decreases with the increase of the threshold λED. To achieve a PFA of approximately 0%, 

the threshold should be at least equal to 4 for SNR values higher than -5dB.  

 

Figure 25. Energy detection simulation results for PFA vs SNR (Variable λED). 
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Figure 26 shows the results of PFA vs λED for different SNR values. As can be seen 

in this figure the probability of false alarm decreases with the increase in the threshold, λED. 

One can also see the effect of SNR on PFA; the number of false alarms decrease with the 

increase in the SNR value. Increasing the value of SNR shows to be also affecting the 

switching threshold point at which the PFA curve starts to fall from 100% to 0%. For a 

higher value of threshold, the SNR value has to be high to achieve a low level of false 

detections. 

 

Figure 26. Energy detection simulation results for PFA vs λED (Variable SNR). 

In summary, the results of the probability of detection and those of the probability 

of false alarm corresponding to the energy detection cannot be analyzed separately. 

Knowing the relationship between the two probabilities gives one a better understanding 

of the method’s performance. We have investigated this relationship using the parameters 

given in Table 5.    
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Table 5. Values of simulation parameters for PD vs PFA (Variable SNR). 

The results are shown in Figure 27. This figure shows that PD for energy detection 

increases with the increase of the probability of false alarm, PFA. It also shows how the 

SNR impacts on PD. In other words, this method is only effective if the signal is stronger 

than the noise (high value of SNR). For a given situation where the SNR is around -15dB, 

the two probabilities are almost equal. However, more the SNR value increases and more 

PD increases while PF decreases. 

 

Figure 27. Energy detection simulation results for PD vs PFA (Variable SNR). 
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4.3 Correlation based sensing 

The correlation based sensing method has been described on page 39 of chapter III. 

First, the autocorrelation is done on the received signal y[n] and then the lag zero and lag 

one of the autocorrelation function are compared to get the sensing decision. Since there is 

no threshold calculation involved in this technique, the performance evaluation has been 

carried out based on the following parameters:   

1) Probability of Detection, PD vs SNR (Variable Threshold) 

2) Probability of Detection, PD vs Sample Number, N (Variable SNR)  

3) Probability of False Alarm, PFA vs SNR (Variable Threshold) 

 

The probability of detection, PD, is calculated for different values of SNR. The 

number of samples, N, is set at 1000. The PU signal strength is set at -70 dBm. The SNR 

ranges from -20 dB to +20 dB by varying the noise power. Received signal is generated by 

adding PU signal and noise signal. Autocorrelation is performed on the received signal, 

y[n], to get the autocorrelation function. From the autocorrelation function, the values of 

lag zero (AC0) and lag one (AC1) are compared. If AC1 ≤ (2% of AC0) then PU signal is not 

present and vice versa. Here, the correlation sensing threshold, λCS is 1% of AC0. The 

threshold factors are selected as 1, 2, 3, and 4 which represents 2%, 4%, 6%, and 8% of 

AC0. For each set of parameters the simulation is run for 1000 cycles to get an average 

result of PD. The values of the parameters for this simulation are shown in Table 6 below.    
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Table 6. Values of simulation parameters for PD vs SNR. 

The simulation results are shown in Figure 28. From these results we can see that 

PD for the autocorrelation base sensing technique increases in the increase of SNR. For a 

threshold factor 4, the transition of PD from a low level to a high level happens between 

the SNR range of -7 dB and -4 dB. PD reaches 100% at approximately -4 dB and stays at 

that level for higher SNR values. These results obtained from the correlation method is 

within the acceptable range of spectrum sensing found in the literature [14, 28, 48].  

 

 

 

Figure 28. Correlation sensing simulation results for PD vs SNR (Variable Threshold).  
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As for the correlation based sensing method, we also investigated the impact of the 

number of samples on the probability of detection, PD, when using the autocorrelation 

function.  In this simulation, the value of N varies from 100 to 1000. The PU signal strength 

is set at -70 dBm. The SNR levels have been set at -20 dB, -16 dB, -12 dB, -8 dB, and -4 

dB by varying the noise power. Received signal is generated by adding PU signal and noise 

signal. Autocorrelation is performed on the received signal to the autocorrelation function. 

From the autocorrelation function, the values of lag zero (AC0) and lag one (AC1) are 

compared. For a threshold factor 4, if AC1 ≤ (8% of AC0) then PU signal is not present and 

vice versa. For each set of parameters the simulation was for 1000 cycles to get an average 

result of PD. The values of the parameters for this simulation are shown in Table 7.    

 

Table 7. Values of simulation parameters for PD vs N (Variable SNR). 

The results of this simulation are shown in Figure 29. Unlike for the energy 

detection method, N has almost no effect on PD when using the correlation based sensing 

method. Thus, it can be concluded that the performance of the correlation based sensing 

does not improve with the increase of the number of samples, N. Thus, using a small 

number of sample can decrease the processing time. This result of PD independent of N, 

however, contradicts the results obtained by other researchers in the same laboratory.    
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Figure 29. Correlation based sensing simulation results for PD vs N (Variable SNR). 

 

 

The probability of false alarm, PFA has been simulated by varying the SNR. In this 

simulation, the value of N is also set at 1000. The PU signal strength is set at -70 dBm. The 

SNR range was varied from -20 dB to +20 dB by varying the noise power. The received 

signal, y[n] is generated by adding PU signal and noise signal. Autocorrelation is 

performed on the received signal to the autocorrelation function. From the autocorrelation 

function, the values of lag zero (AC0) and lag one (AC1) are compared. . If AC1 ≤ (4% of 

AC0) then PU signal is not present and vice versa. Here, the correlation sensing threshold, 

λCS is 4% of AC0. The threshold factors are selected as 1, 2, 3, and 4 which represents 4%, 

5%, 6%, and 7% of AC0. For each set of parameters the simulation has been run for 1000 

cycles to get an average result of PD. The values of the parameters for this simulation are 

shown in the following Table 8.    
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Table 8. Values of simulation parameters for PFA vs SNR. 

The simulation results of the probability of false alarm versus SNR are shown in 

Figure 30. From the results we can see that PFA is very small for the entire SNR range for 

threshold factor 1 and gets to better levels for threshold factor 2, 3, and 4. This means that 

correlation based sensing method is very effective in distinguishing between the noise and 

signals. As was explained in Figure 16, page 40, the Gaussian noise does not have any 

correlation with itself. Thus, if there is no primary transmission present in the received 

signal, the output of the autocorrelation function will be uncorrelated and vice versa. This 

characteristic of the correlation sensing is the cause behind the results found in Figure 30.  

 

Figure 30. Correlation sensing simulation results for PFA vs SNR (Variable Threshold). 
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4.4 Matched filter sensing 

In this technique, filtering is done by matching the received signal with some pre-

collected and saved pilot of the same PU signal stream. The received signal is convolved 

with pre-collected pilot and then averaged over N samples to get the decision statistic, TMF, 

which is later compared to 𝜆𝑀𝐹 for getting the sensing decision. To evaluate the 

performance of matched filter, we used the following metrics: 

1) Probability of Detection, PD vs SNR (Variable Threshold) 

2) Probability of Detection, PD vs Sample Number, N (Variable SNR) 

3) Probability of False Alarm, PFA vs SNR (Variable Threshold) 

The probability of detection, PD, for matched filter sensing has been simulated by 

varying the SNR for different levels of threshold, λMF. In this simulation, the values of σw 

and N are known. The PU signal strength is set at -70 dBm. The SNR ranges from -20 dB 

to +20 dB by varying the noise power. Matched filter threshold, 𝜆𝑀𝐹, is collected from the 

‘quite time approach’ as described in chapter III. After determining the value of λMF, the 

threshold is calculated by multiplying factors to observe the effect of threshold variation 

on PD. The received signal and the pre-saved pilot signal are convolved and the convolution 

result is averaged over N samples to get matched filter decision statistic, TMF. For each set 

of parameters the simulation is run for 1000 cycles to get an average result of PD. The 

values of the parameters for this simulation are shown in the following Table 9.    
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Table 9. Values of simulation parameters for PD vs SNR (Variable λMF). 

The results are shown in Figure 31. These results show that PD for matched filter 

sensing increases with the increase in SNR. The figure also shows the PD for different levels 

of threshold values.  The transition from 0% to 100% of PD happens at lower SNR range 

for matched filter sensing than for the other 2 methods.  

 

 

Figure 31. Matched filter sensing simulation results for PD vs SNR (Variable 𝜆𝑀𝐹). 

The effect of increasing the number of samples, N, on PD for matched filter sensing 

has also been investigated in this simulation. PD is evaluated by varying the number of 

samples, N for different levels of SNR. The value of N varies from 100 to 1000 in steps of 
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100. The PU signal strength is set at -70 dBm. The SNR values are selected are -20 dB to 

-4 dB by varying the noise power. Matched filter threshold, 𝜆𝑀𝐹, and decision statistic, TMF, 

are calculated using the steps described in the previous section. For each set of parameters 

the simulation has been run for 1000 cycles to get an average result of PD. The values of 

the parameters for this simulation are shown in Table 10.    

 

Table 10. Values of simulation parameters for PD vs N (variable SNR). 

Figure 32 illustrates the matched filter sensing results for PD vs N (variable SNR). 

As expected, PD increases with the increase in N and for a high level of SNR, the detection 

also improves. Furthermore, in cases of higher levels of SNR, smaller numbers of samples 

are required to achieve 100% of PD. The results also show an important fact about matched 

filter sensing. It reaches 100% detection rate faster than the other two methods discussed 

previously.    
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Figure 32. Matched filter sensing simulation results for PD vs N (Variable SNR). 

Figure 32 shows that a high level of PD can be achieved even for a very low SNR 

value. However, there can be still a high level of without the presence of the primary 

transmission in the received signal. This phenomenon is known as a false alarm and the 

way to investigate this is the probability of false alarm, PFA. In this section, the performance 

of PFA has been simulated by varying the SNR for different levels of threshold, λMF. The 

performance evaluation of PFA is done by varying SNR and the threshold, λMF. The sample 

number, N is set to be 1000 and the PU signal strength is set at -70 dBm. The SNR range 

was varied from -20 dB to +20 dB by varying the noise power. TED and λMF are calculated 

as previously described and λMF was varied by multiplying factors to observe the effect of 

threshold variation on PD. For each set of parameters the simulation has been run for 1000 

cycles to get an average result of PFA. The values of the parameters for this simulation are 

shown in the following Table 11.    
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Table 11. Values of simulation parameters for PFA vs SNR (Variable λMF). 

The simulation results for PFA vs SNR for different threshold values are shown in 

Figure 33. As expected, PFA for the matched filter sensing decreases with the increase in 

SNR, but the rate of decrease is smaller than the rates corresponding to energy detection 

(Figure 26). Increasing the value of λMF shows to be affecting the switching point in terms 

of SNR at which the PFA curve starts to fall from 100% value to 0%.  

 

Figure 33. Matched filter sensing simulation results for PFA vs SNR (Variable 𝜆𝑀𝐹). 
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4.5 Comparison of the three methods 

In this section the performance of energy detection, correlation based sensing, and 

matched filter sensing have been compared to understand the strengths and weaknesses of 

the three methods. For this comparison, the following metrics are used: 

1) Probability of Detection, PD vs SNR  

2) Probability of Detection, PD vs Sample Number, N (Variable SNR)  

3) Probability of False Alarm, PFA vs SNR 

First, we simulated the probability of detection, PD, for all the three methods by 

varying the SNR and the threshold. The sample number, N, is set at 1000 for all the methods 

and the PU signal strength is set at -70 dBm. The SNR is varied in the range of -20 dB to 

+20 dB by varying the noise power. For each set of parameters the simulation was run 1000 

cycles to get an average result of PD. The values of the parameters for this simulation are 

shown in Table 12.    

 

Table 12. Values of simulation parameters for PD vs SNR. 

The comparison results are shown in Figure 34. This figure shows that PD increases 

with the increase in SNR for all the 3 methods. PD of energy detection and the one of the 

matched filter sensing are very close which suggest that they have almost the same 
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performance. However, the correlation based method shows to require higher SNR to be 

performing at 100% level of PD.  

 

Figure 34. Comparative simulation results for PD vs SNR. 

Figure 35 shows the results of PD vs number of samples. As can be seen PD for 

energy detection and matched filter increases with the increase in N. PD of the matched 

filter, however, reaches 100% detection rate faster than the one of energy detection. On the 

other hand, for correlation based sensing technique, PD does not seem to change with the 

increase in N.    
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Figure 35. Comparative simulation results for PD vs N 

The probability of false alarm, PFA has been simulated by varying the SNR for all 

three methods. In this test matrix three sensing methods are compared with the performance 

of PFA is evaluated by varying SNR. The sample number, N is set to be 1000 and the PU 

signal strength is set at -70 dBm. The SNR range was varied from -20 dB to +20 dB by 

varying the noise power. For each set of parameters the simulation has been run for 1000 

cycles to get an average result of PFA. The values of the parameters for this simulation are 

shown in the following Table 13.    

 

Table 13. Values of simulation parameters for PFA vs SNR. 
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As discussed previously, PD does not always give the actual sensing performance.  

That happens because in cases of very low SNR, the noise power is very high and the 

cognitive radio might detect a primary user even there is none present. This is known as a 

false alarm and to evaluate this, simulation for the probability of false alarm, PFA is done. 

Figure 36 illustrates the results of PFA vs SNR for 3 methods under investigation. From 

these results we can see that PFA for the matched filter sensing decreases with the increase 

in SNR except for correlation based sensing. It also shows the effect of threshold increment 

on PFA. With correlation method, for very low level of SNR, PFA remains zero or very close 

to zero as shown in the figure. It is due to the fact that correlation based sensing method is 

very good at separating noise from PU signal at all SNR levels. However, energy detection 

and matched filter sensing are on par with each other in terms of performance. 

 

 

Figure 36. Comparative simulation results for PFA vs SNR. 
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4.6 Discussion 

In this chapter, three basic spectrum sensing methods for identifying underutilized 

radio spectrum have been simulated and their corresponding results have been discussed. 

Between the three methods tested, energy detection is the simplest one. However, results 

show that the probability of false alarm of this method is high in situations with low SNR. 

To get better detection performance with energy detection, the number of samples, N, as 

well as the threshold value has to be high which work only for high power signals; thus 

this technique is suitable for simple, fast, and less costly spectrum sensing with some 

compromise in performance.   

Although matched filter sensing has shown a similar probability of false alarm as 

the energy detection technique, matched filter method achieves a higher level of detection 

for lower number of samples, N compared to energy detection. In fact, matched filter 

method reaches close to 100% probability of detection at lower SNR such as -5 dB shown 

in Figure 34 compared to the other two methods discussed previously. On the other hand, 

autocorrelation based sensing shows a similar level of detection performance to the energy 

detection, but offers a very low probability of false alarm compared to the other two 

methods tested. Thus, both correlation based sensing and matched filter sensing techniques 

have their respective advantages over energy detection.        

Energy detection does not require any assumptions on the primary signal. 

Unfortunately, this also means that energy detection cannot distinguish between signals 

and interference. Moreover, energy detection is more susceptible to noise uncertainty that 

renders detection below certain SNR values, regardless of the number of samples (i.e., the 
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SNR wall behavior). Hence, energy detection requires an accurate noise level estimate, 

which is not feasible. The benefit of energy detection is that it is computationally very 

inexpensive. On the other hand, correlation based sensing has the advantage of having a 

very low probability of false alarm compared to energy detection and matched filter 

methods. Finally, matched filter sensing has the benefit of having the fastest detection in 

terms of number of samples, N, but suffers from high probability of false alarm. 

Furthermore, prior knowledge of the primary transmission is a prerequisite for matched 

filter method which might not be available to the cognitive radio system. Thus, selecting 

one of these three sensing techniques will depend on the operating SNR range, noise 

uncertainty of the transmission channel, processing power on the sensing unit, and 

available information about the primary user’s transmission. Table 14 lists some of the 

advantages and disadvantages of the three sensing methods.         

Sensing Type Advantages Disadvantages 

Energy 

Detection 

> Easy to implement 

> Prior knowledge of primary     

    signal not required 

> High false alarm rate 

> Unreliable in low SNR values 

Correlation 

Based Sensing 

> Robust against noise  

    uncertainty 

> Can distinguish between  

    primary signal and noise 

> Higher data processing 

Matched Filter  

Sensing 

> Better detection at low SNR  

    region 

> Needs less signal samples for  

    good sensing performance 

> Prior knowledge of primary  

    signal is required 

> One sensing system works for 

only one type of primary user  

 

Table 14. Advantages and disadvantages of the three sensing methods 



72 

 

 

 

CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

The use of radio frequencies has increased dramatically during the past few 

decades. As a result, the radio frequency spectrum is becoming more and more scarce. 

Efficient and reliable operation in this scares environment calls for flexible and intelligent 

automatic systems capable of adapting to the existing radio environment. In order to 

facilitate learning and adaptation, these systems must observe the radio environment and 

sense the spectrum and become aware its state. Cognitive radios are future of 

communication devices that are capable of learning from the environment. Accurate and 

efficient spectrum sensing operations are the tasks that the future communication systems 

will need to accomplish for optimum performance. 

In this thesis, a comparative study of the three basic spectrum sensing methods i.e. 

energy detection, correlation base sensing, and matched filter sensing have been presented. 

This study includes methodologies and simulation results of the three techniques of sensing 

developed on the GNU Radio platform. Results show that each of the sensing methods has 

strengths and weaknesses. The energy detection method, for example, has the advantage 

of being very simple to implement. However, the detection performance of energy 

detection degrades significantly when the SNR is very low. On the other hand, 

autocorrelation based sensing shows very low probability of false alarm even under very 
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low SNR. Nonetheless, it requires a larger number of samples for getting a good detection 

performance compared to the other two methods of sensing. The matched filter method 

required the least number of samples to achieve 100% detection rate among the three 

sensing techniques, but shows high probability of false alarm comparable to the one of 

energy detection. Thus, the results obtained from the simulations provide a decent 

understanding of the three basic sensing methods under investigation.     

In the future, the main challenge will be the hardware implement of theses sensing 

techniques using the GNU radio platform. GNU radio is an open source platform and 

supports seamless compatibility with software defined radio (SDR) hardware. All the 

python codes and custom GNU radio blocks that have been developed for the simulations 

in this thesis are ready for SDR interfacing and will provide a strong base for hardware 

implementation. The effect of carrier to noise interference ratio (CINR) is an important 

parameter which also have to be considered for hardware implementation. Another future 

prospect of this work is to combine these three simple sensing techniques in a way so that 

the weaknesses can be rectified while keeping the combine sensing method less complex.
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APPENDIX 

PYTHON CODE FOR SPECTRUM SENSING BLOCK 

#!/usr/bin/env python 
################################################## 
# Gnuradio Python Flow Graph 
# Title: Tx Rx Sim V1 
# Generated: Thu Jan 23 16:49:56 2014 
################################################## 
 
from gnuradio import blocks 
from gnuradio import digital 
from gnuradio import eng_notation 
from gnuradio import gr 
from gnuradio.eng_option import eng_option 
from gnuradio.gr import firdes 
from optparse import OptionParser 
import howto 
import numpy 
from scipy.fftpack import dct 
from statsmodels.robust.scale import mad 
import random 
import numpy as np 
import time 
import sys 
from numpy import linalg as ln 
import math 
 
class TX_RX_SIM_v1(gr.top_block): 
 
 def __init__(self): 
  gr.top_block.__init__(self, "Tx Rx Sim V1") 
 
  ################################################## 
  # Variables 
  ################################################## 
  self.samp_rate = samp_rate = 20000 
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  ################################################## 
  # Blocks 
  ################################################## 
  self.random_source_x_0 = gr.vector_source_b(map(int, 
numpy.random.randint(0, 8, 1000000)), True) 
  self.howto_sample_0 = howto.sample() 
  self.digital_psk_mod_0 = digital.psk.psk_mod( 
    constellation_points=4, 
    mod_code="gray", 
    differential=True, 
    samples_per_symbol=4, 
    excess_bw=0.35, 
    verbose=False, 
    log=False, 
    ) 
  self.blocks_multiply_const_vxx_0 = 
blocks.multiply_const_vcc((1+1j, )) 
 
  ################################################## 
  # Connections 
  ################################################## 
  self.connect((self.random_source_x_0, 0), 
(self.digital_psk_mod_0, 0)) 
  self.connect((self.digital_psk_mod_0, 0), 
(self.blocks_multiply_const_vxx_0, 0)) 
  self.connect((self.blocks_multiply_const_vxx_0, 0), 
(self.howto_sample_0, 0)) 
 
 
 def get_samp_rate(self): 
  return self.samp_rate 
 
 def set_samp_rate(self, samp_rate): 
  self.samp_rate = samp_rate 
   
 def get_spectrum(self): 
  return self.howto_sample_0.get_spectrum() 
   
 
if __name__ == '__main__': 
 parser = OptionParser(option_class=eng_option, usage="%prog: 
[options]") 
 (options, args) = parser.parse_args() 
 tb = TX_RX_SIM_v1() 
 tb.start() 
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############ Variables Declaration ###############   
  
 # Number of samples taken for each sensing cycle 
 length = 1000 
  
 # Total number of sensing cycles  
 loop   = 1000  
  
 # SNR range for the simulation 
 snrlist = [-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-9,-
8,-7,-6,-5,-4,-3,-2,-
1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 
 
 # Threshold factor 
 thlist = [1, 2, 3, 4]  
 
 # Target Probability of False alarm for Energy detection 
 fa = 0.8416 # Pfa = 0.2 
  
 # mean and standard deviation for Gaussian noise  
 mu, sigma = 0, 1e-3    
  
  
############ Variables Declaration ###############    
  
 # For loop for varying threshold  
 for th in thlist: 
   
  # For loop for varying SNR  
  for aa in snrlist: 
   snr = float(aa) 
   count = 0 
   sumFT = 0.0 
   sumDT = 0.0 
   sumAC = 0.0 
   sumMF = 0.0 
   suma  = 0.0 
   sumvar= 0.0 
   thfa  = th 
   FT    = 0.0 
   MFT   = 0.0  
   std_n = 0.0 
   std_s = 0.0 
    
   while count < loop: 
    # Noise generation  
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    noise_1       = np.random.normal(mu, sigma, 
length)    #Simulated Noise 
    noise_2       = np.random.normal(mu, sigma, 
length)    #Simulated Noise 
     
    noise_re        = 
np.array(noise_1,dtype=complex) 
    noise_im        = 
np.array(noise_2,dtype=complex) 
    J    = complex(0,1) 
    noise_im        = noise_im * pow(J,5) 
     
    noise_array  = noise_re + noise_im  
    noise_array1 = (1 / 
np.sqrt(np.cov(noise_array)) ) * noise_array 
     
    # QPSK Signal from USRP-Signal Generator 
block 
    signal       = tb.get_spectrum()   
   
    signal_array = np.array(signal) 
    signal_array1 = (1 / 
np.sqrt(np.cov(signal_array)) ) * signal_array 
 
    # Reading Pilot signal for Matched Filter 
Sensing     
    read_data = np.loadtxt('pilot.txt') 
     
     
    # Set Signal and Noise Power at -70 dBm 
     
    dbm = -70.0 
     
    signal_array1 = np.sqrt(10**((dbm/10)-3)) * 
signal_array1;     
    noise_array1  = np.sqrt(10**((dbm/10)-3)) * 
noise_array1; 
     
    # SNR adjustment for Signal and Noise  
   
    noise_array = 
np.sqrt(np.cov(signal_array1)*10**-
(snr/10))*(1/np.sqrt(np.cov(noise_array1))) * noise_array1;  
   #### noise adjustment 
    signal_array= signal_array1;   
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    # Noise variance for threshold calculation 
    noisez_var = np.cov(noise_array) 
     
     
    # For Probability of Detection 
    spectrum_on = noise_array + signal_array 
     
    # For Probability of False alarm 
    spectrum_off = noise_array  
     
    spectrum = spectrum_on 
    
   
 ################################################ 
 # -------- Energy Detection -------------------- 
 ################################################ 
     
    # Decision Statistic T calculation  
    float_samples = abs(spectrum )   
  
    sample_fft=np.fft.fft(float_samples, 
n=length) 
     
    des_stat = (np.sum( ( 
np.square(abs(sample_fft)) ) ))/length 
    des_stat_FT = des_stat/2 
         
    # Threshold Calculation 
    threshold =  ( fa * np.sqrt(2 * length) + 
length ) * noisez_var 
     
    # Sensing Decision 
    if des_stat_FT <= threshold: 
     op = 0 
    else: 
     op = 1 
 
             
    if op == 1: 
     string_op = 'H1' 
    else: 
     string_op = 'H0'    
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 ################################################ 
 # ------------- Correlation  Sensing ----------- 
 ################################################ 
         
    spectrum_abs = abs(spectrum) 
    # Autocorrelation calculation 
    ac = np.correlate(spectrum, spectrum, 
"full") 
    lag0 = abs(ac[length-1]) 
    lag1 = abs(ac[length]) 
 
    # Sensing Decision 
    if lag1 <= lag0 * 0.05 * thfa: 
     ac_i = 0 
    else: 
     ac_i = 1 
      
    if ac_i == 1: 
     string_op = 'H1' 
    else: 
     string_op = 'H0'     
  
   
   
 ################################################ 
 # ------------- Matched Filter ----------------- 
 ################################################ 
         
    # Decision Statistic T calculation 
    spectrum_abs = abs(spectrum) 
    ac = np.convolve(read_data, spectrum, 
"full")     
    T_MF = np.mean(abs(ac)) 
     
    # Matched Filter Threshold from " Quiet 
Time Approach"  
    MF_TH = 0.000181802375265*thfa  # N = 
1000 
     
     
    # Sensing Decision 
    if T_MF <= MF_TH: 
     mf_i = 0 
    else: 
     mf_i = 1 
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    if mf_i == 1: 
     string_op = 'H1' 
    else: 
     string_op = 'H0'  
     
 
    string_snr = "%g" % snr 
     
    count = count+1 
    # Snapshots loop ends here 
    
   # Converting data types for writing on txt file 
   d_rate = 100*sumFT/(loop) 
   string_d_rate = "%g" % int(d_rate)    
    
   d_rate_AC = 100*sumAC/(loop) 
   string_d_rate_AC = "%g" % int(d_rate_AC) 
    
   d_rate_MF = 100*sumMF/(loop) 
   string_d_rate_MF = "%g" % int(d_rate_MF)  
  
    
   FT = FT/loop 
   string_FT = "%g" % int(FT)    
    
   std_n = std_n/loop 
   string_std_n = "%.8f" % (std_n) 
    
   std_s = std_s/loop 
   string_std_s = "%.8f" % (std_s) 
    
      
   # Write on txt file 
   text_file = open("write_rx.txt","a")      
     
   text_file.write("\n" + "SNR: " + string_snr + " 
dB" +"\t\t DRate: " + string_d_rate+"\t\t DRate_AC: " + 
string_d_rate_AC + "\t\tDRate_MF: " + string_d_rate_MF )     
     
   text_file.close() 
   
   
  text_file = open("write_rx.txt","a")      
     
  text_file.write("\n\n\n" )     
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  text_file.close() 
   
 
# raw_input('Press Enter to quit: ') 
 tb.stop() 
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