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ABSTRACT

The advent of next-generation sequencing (NGS) technology has shown unprecedented 

promise for accurately identifying and quantifying genomic variants for living organisms. 

For species whose genome sequences are unknown, the first step of RNA sequencing data 

analysis is to assemble all short reads. The de Bruijn graph-based algorithms, such as 

Oases, are usually used for short reads assembly to resolve the issue of computational 

complexity. However, de Bruijn graph-based assemblers normally generate high error rates 

when assembling RNA-Seq data. We have developed a novel assembly algorithm that can 

be used jointly with any other assembly methods for RNA-Seq short reads. The proposed 

method, clustering-based assembly (CBA), aims not only to maintain computational and 

memory efficiency but also improve the assembly accuracy in our simulation study. We 

tested CBA using ERCC RNA-Seq data, simulated data from Chromosome 22, and real 

human RNA-Seq data. The results showed that our algorithm was more accurate in 

comparison with other de novo methods in terms of short reads mapping rate, recover rate, 

and contigs mapping rate.
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CHAPTER I – INTRODUCTION

1.1 Introduction

A major challenge in the new era of genomics research is to develop efficient 

bioinformatics tools to cope with rapidly growing biological data. In bioinformatics, DNA 

sequence assembly refers to aligning and merging fragments of shorter DNA sequences to 

reconstruct the original sequence. This is necessary, as DNA sequencing technology cannot 

read whole genomes at one time but instead reads small pieces of between 20 and 1,000 

bases, depending on the technology used. Sequence assembly of next-generation 

sequencing data is such a computational intensive step that sometimes requires months of 

computation time using a mid-size server computer. 

In this thesis, we present the development of a new assembly method called 

Clustering Based Assembly (CBA). This program is different from conventional assembly 

programs in that it clusters the short reads first based on genomic positions. It divides input 

fragments (short reads) into pieces of the same length; we call those “k length pieces” or 

“k-mer.” The program then uses a hash table to indicate all k-mers. CBA clusters short 

reads to many groups using this hash table. All short reads in the same group will share a 

number of k-mers with each other. Finally, the program uses the current prominent 

assembly method to align the short reads to the original sequence for each group. We tested 
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CBA and other assembly methods with real data and simulation data. CBA improves 

computational efficiency and assembly accuracy for both.

1.2 Background

1.2.1 DNA Sequencing

In general, DNA sequencing is used for determining the order of the nucleotide 

bases—adenine (A), guanine (G), cytosine (C), and thymine (T)—in a molecule of DNA. 

DNA sequencing is one of the most important techniques for molecular biological studies. 

DNA sequencing technique has been evolving rapidly, providing a powerful approach to 

understanding the structures of DNA and RNA and their associated biological functions 

(Turnpenny & Ellard, 2007). 

Sequencing technologies have been significantly improved since the first genome was 

read in 1996. These technologies remain at the core of genomics and have many practical 

applications. Sequencing technologies are used to determine the genome sequence of a new 

species or of an individual within a population. A critical stage in de novo genome 

sequencing is the assembly of shotgun sequences, where DNA fragments are randomly 

extracted and sequenced. 

Recently, the rapid and inexpensive next-generation sequencing NGS methods offer 

high-throughput gene expression profiling. Today, it is possible to sequence a human’s 

genome in around eight days for approximately $10,500 (2014 NGS Field Guide – Table 2 – 

Run time, reads, yields, and costs, 2014) (Shendure & Ji, 2008) (Wu, Zhu, Fu, Niu, & Li, 

2011) (“2014 NGS Field Guide, Table 2,” 2014; Sehndure & Ji, 2008; Wu, Zhu, Fu, Niu, & 

Li, 2011).
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1.2.2 Next-Generation Sequencing

Next-generation sequencing (NGS) is a new method for DNA sequencing. This 

technology improves the DNA sequencing process and makes it run faster. The technology 

uses shotgun sequencing with cyclic-array methods, linking a common adaptor to DNA 

fragmentation. NGS conducts massive parallel sequencing using an array that includes 

millions of spatially immobilized PCR colonies. Each colony consists of many copies of a 

single shotgun library fragment. All array features run in parallel. Finally, the shotgun 

algorithm uses imaging-based detection and assembles similar fragments; all features run in 

parallel. Repeating those steps, NGS will build up a contiguous sequencing read for each 

colony (Costa, Angelini, Feis, & Ciccodicola, 2010; Hoppman-Chaney et al., 2010; Shendure 

& Ji, 2008) (Shendure & Ji, 2008). In other words, DNA fragmentation is first combined with 

an adaptor as an array, and then the array transfers those data to colonies and, finally, NGS 

uses an imaging-based method to assemble those colonies into groups. NGS allows for 

simultaneously sequencing thousands to billions of sequencing reactions in parallel (Costa et 

al., 2010, p. X).(Costa, Angelini, Feis, & Ciccodicola, 2010) Because NGS can parallel run 

arrays and imaging steps, NGS is both fast and cheap. 

NGS has been widely used in whole-genome de novo sequencing, ChIP sequencing, 

RNA-Seq, and so on. Whole-genome sequencing identifies the complete DNA sequence of an 

organism’s genome (Roach et al., 2010).(Roach, et al., 2010) ChIP sequencing is a method 

used to analyze the relationship or interaction between DNA and protein (Park, 2009). 

RNA-Seq refers to using NGS to study the transcriptome at the nucleotide level (Faghihi & 

Wahlestedt, 2009; Marguerat & Bähler, 2010; Zhong Wang, 2009). (Faghihi & Wahlestedt, 
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2009)

1.2.3 RNA-Seq and Application

In multicellular organisms, almost all cells include the same genes. However, not 

every gene can express itself in every cell. To find out when and where genes are turned on or 

off in various types of cells, we will study the transcriptome. By comparing the 

transcriptomes of different type of cells, we will deeply understand the constitution of the cell 

and know which gene may respond to a disease in the cell. A transcriptome represents that 

small percentage of the genetic code that can be transcribed into RNA molecules. Because 

each gene may produce more than one variant of mRNA, a transcriptome may be very 

complex (Adams, 2008; Ozsolak & Milos, 2011; Sadava, Hillis, Heller, & Berenbaum, 

2012)(Sadava, Hillis, Heller, & Berenbaum, 2012)(Ozsolak & Milos, 2011) (Adams, 2008). 

For our program, we are using RNA-Seq. As we previously showed, RNA-Seq is a 

sequencing technology to study the transcriptome at the nucleotide level. It is used to 

discover the gene expression level. By mapping the RNA-Seq reads onto the exons1 of the 

known genome, we will find out the total number of mapped reads. In doing so, we can get 

the gene expression level, which is represented as Fragments per Kilobase of transcript per 

Million mapped reads (FPKM) (Manteniotis S, 2013; Wang, Gerstein, & Snyder, 2009). 

(Wang, Gerstein, & Snyder, 2009) (Manteniotis S, 2013)

                                                             
1
 The corresponding sequence in RNA transcripts. 
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1.3 Thesis Organization

The rest of this thesis is organized as follows: 

• Chapter II – Assembly. This chapter describes different assembly methods and 

points out the disadvantages of de Bruijn algorithm. At the end of the chapter, we show our 

motivation and the basic idea behind the Clustering Based Assembly (CBA) method. 

• Chapter III – Method. This chapter describes how we developed the CBA 

methods and tools, including the data structure, algorithm, and memory control. 

• Chapter IV – Results. In this chapter, we use ERCC real data, Chromosome 22 

real data, and Chromosome 22 simulation data to test different assembly methods. This 

chapter also discusses CBA results and compares them with other methods. 

• Chapter V – Discussion. This chapter evaluates the CBA method and discusses 

the advantages and disadvantages of CBA assembly methods. Finally, the chapter lists 

possible future work. 

• Conclusion. This chapter is a summary statement. It states CBA’s good 

performance in terms of accuracy and speed. This chapter further explains why CBA would 

be useful in real RNA-Seq application.
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CHAPTER II – ASSEMBLY

2.1 Assembly Methods

There are two common approaches for DNA assembly: reference-based assembly and 

de novo assembly. Reference-based assembly is also known as the “genome-guide assembly” 

method. This method first aligns short reads to the reference genome and then assembles 

overlapped alignments into transcripts. The de novo assembly method does not rely on the 

reference genome; it is used to reconstruct the nucleotide sequence. When the reference 

genome exists, researchers normally use the reference-based assembly method. In the 

reference-based assembly process, the transcriptome is analyzed by mapping on the reference 

genome. In the absence of a reference genome, the de novo assembly will be considered. De 

novo transcriptome assembly is the method of creating a transcriptome without the aid of a 

reference genome.

2.2 De Novo Assembly Algorithms

The de novo assembly method has two different algorithms: overlap graph-based 

assembly and de Bruijn graph-based assembly. The major difference between the two 

algorithms is how they construct the topology. The overlap graph-based assembly 

algorithm uses short reads to build the topology, but the de Bruijn graph-based assembly 

algorithm instead uses k-mers.

  



2.2.1 Overlap 

The overlap graph-based 

This algorithm has three phases: overlap, layout

process that finds the overlaps between reads. Th

relationships between the fragment reads

those overlaps. Finally, the consensus phase align

graph-based algorithm compare

another short read’s head, the program will align them together. 

Figure 1. Example of overlap graph method. 

In Figure 1, the strings 

into the string “ATCCCGAATGCAAACGTT

“CTGTGATTACAT” will be thought

7 

2.2.1 Overlap Graph-Based Assembly Algorithm

based assembly algorithm is the traditional assembly

three phases: overlap, layout, and consensus. The overlap phase

overlaps between reads. Those overlaps capture all possible 

relationships between the fragment reads. The layout phase then orders fragment reads by 

Finally, the consensus phase aligns fragment reads to contigs. 

compares each pair of short reads. If one short read’s

program will align them together.  

 

xample of overlap graph method.  

 “ATCCCGAATGCA” and “AATGCAAACGTT

ATCCCGAATGCAAACGTT.” The strings “ACCTGATTAGCC

will be thought as coming from different genes because they share the 

assembly approach. 

verlap phase is the 

capture all possible 

orders fragment reads by 

reads to contigs. Overlap 

’s tail matches 

AATGCAAACGTT” will align 

ACCTGATTAGCC” and 

because they share the 
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substring “TGATTA” which is neither the head of one string nor the tail of the other string. 

Mira is the type of software that uses overlap graph-based algorithm (Chevreux B, 2004). The 

major disadvantage of overlap graph-based algorithm is its slow computational speed.

2.2.2 de Bruijn Graph-Based Algorithm

The first idea for the de Bruijn graph-based algorithm came from Nicolas Govert de 

Bruijn (1946).(de Bruijn, 1946) He designed his signature de Bruijn sequences. In 2001, 

Pevzner, Tang, and Waterman developed the de Bruijn graph-based algorithm (Pevzner, Tang, 

& Waterman, 2001). The de Bruijn graph-based method compares each k-mer2 instead of 

short reads. If two k-mers overlap, k-1 length nucleotides then align the k-mers. For example, 

k-mers “ATGGTC” and “TGGTCT” can be aligned to “ATGGTCT,” but k-mers “ATGGTC” 

and “GGTCAA” will not be aligned because they share only k-2 length nucleotides. 

The de Bruijn graph is defined as: 

Set V = All length-k subfragments (k-mer) 

E = Directed edges between consecutive subfragments  

Dk = de Bruijn graph, nodes overlap by k-1 words 

Then exist 

Dk = (V,E)  

                                                             
2
 A nucleotide sequence whose length is k. 



The de Bruijn graph-based

Figure 2). 

Figure 2. Diagram of using de Bruijn graph for DNA sequence alignment.

Figure 2 presents a simple 

have four nucleotides. K = 3 means all subfragments have three nucleotides. 

there are one loop and two tips. 

(a) red -> green -> purple, (b) red 

purple (loop), and (d) red -> green 

graph exists as a loop, the length of two loop

deficiency of de Bruijn graph when dealing with repetitive sequences

graph-based algorithms should have
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based algorithm can be used to assemble RNA sequences

Diagram of using de Bruijn graph for DNA sequence alignment. 

a simple de Bruijn graph for RNA-Seq assembly. All short reads 

3 means all subfragments have three nucleotides. In the figure, 

there are one loop and two tips. The program will generate four kinds of different contigs

red -> green -> pink, (c) red -> green -> blue -

> green -> blue -> green -> pink (loop). Because this

loop, the length of two looped contigs can be unlimited. This represents a 

deficiency of de Bruijn graph when dealing with repetitive sequences; all de Bruijn 

should have a loop detection process to avoid logical error

sequences (see 

 

All short reads 

In the figure, 

of different contigs: 

-> green -> 

this de Bruijn 

This represents a 

ll de Bruijn 

to avoid logical errors.
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2.2.3 Comparing de Bruijn Graph with Overlap Graph

The overlap graph uses short read-to-short read comparison. The algorithm must 

compare short reads one by one, and also it needs to delete the short reads that overlap to 

the aligned contigs. Therefore, the overlap graph-based method is time consuming. The 

de Bruijn graph-based algorithm uses k-mer to k-mer comparison. It does not need to 

consider the overlap issue (as does the overlap-graph based method) but instead 

generates a large topology. Therefore, the de Bruijn graph-based algorithm is faster than 

the overlap graph-based algorithm. However, the de Bruijn graph-based algorithm is not 

an accurate assembly method; we will discuss this in a future section.

2.3 Different Methods Based on de Bruijn Graph-Based Algorithm

The common assemblers based on the de Bruijn graph include Assembly by Short 

Sequences (ABySS), Velvet, Oases, and Trinity. ABySS is a parallelized sequence or 

short reads assembler. It has two steps to assembly short reads: First, it splits all short 

reads into k-mers. Second, it uses a de Bruijn graph to align k-mers and generate contigs 

(Birol et al., 2009; Simpson et al., 2009).(Birol, et al., 2009) (Simpson, Kim, Jackman, 

Schein, Jones, & Birol, 2009) Trinity was developed in 2010 by Grabherr and colleagues, 

and it has three steps: The first they call “Inchworm” because it splits short reads to 

k-mers and aligns k-mers to contigs. The second, called “Chrysalis,” clusters contigs to 

pools when they share at least one (k-1)-mers. The third, “Butterfly,” splices pools and 

generates transcripts (Grabherr MG, 2011). Another assembler is Velvet, which runs in 

two steps: Velveth and Velvetg. Velveth helps construct the dataset for Velvetg. It takes in 

a number of sequence files and produces a hash table, and then it outputs two files into an 



output directory. The two output 

Velvetg is the core of the Velvet

processed (Zerbino & Birney, 2008)

Velvet (Schulz, Zerbino, Vingron, & Birney, 2012)

The Chimeric Edge is the major problem in 

The de Bruijn graph algorithm will n

Figure 3. Example of Chimeric Edge

Figure 3 shows two short reads

They share k-mer “TGATTA,” also called 

de Bruijn graph algorithm, erroneous merge of reads will happen. Short reads are aligned 

as “ACCTGATTACAT.”  
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output files, Sequences and Roadmaps, are necessary to Velvetg. 

Velvet software, where the de Bruijn graph is built 

(Zerbino & Birney, 2008). The last assembler, Oases, is an updated version of 

(Schulz, Zerbino, Vingron, & Birney, 2012).

2.4 Motivation

is the major problem in the de Bruijn graph-based algorithm. 

will not detect those Chimeric Edges. 

xample of Chimeric Edge in a de Bruijn graph.  

shows two short reads, “ACCTGATTAGCC” and “CTGTGATTACAT

also called the Chimeric Edge. When the program runs

graph algorithm, erroneous merge of reads will happen. Short reads are aligned 

Sequences and Roadmaps, are necessary to Velvetg. 

graph is built and 

version of 

algorithm. 

 

CTGTGATTACAT.” 

program runs a 

graph algorithm, erroneous merge of reads will happen. Short reads are aligned 
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Figure 4. Comparison of Chimeric Edges with different k-mer size.  

In Figure 4, we randomly collect 10,000 short reads from human genomes, which 

have 23 pairs of chromosomes. Since Oases uses 31 as the k-mer size, we also use 31 as 

the k-mer size to test. The result shows there exists 38 pairs of short reads from different 

chromosomes that share the same k-mers. That shows the de Bruijn graph-based 

algorithm has a high error rate. 

Since de Bruijn based assemblers, such as ABySS and Velvet, usually have high 

error rates, we proposed optimizing the sequence assembly to make the assembly more 

accurate than in the de Bruijn graph-based algorithm. 

2.5 Objective

This research presents a method to improve the current de novo assembly method 

for RNA-Seq. The method of improving the assembly result is by providing a “clustering 

method” before the sequence assembly.  
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The Clustering Based Assembly

of two short reads, and it also counts 

reads. If two short reads share more than 20 k

same gene. 

If one group has five or more short reads shar

group’s short reads, the clustering process will merge the two 

Figure 5. Cluster-based algorithm can be used 

The clustering algorithm

the de Bruijn graph aligns two short reads 

Figure 6. The de Bruijn algorithm Chimeric Edge

The clustering process gives a more accurate

problem, and it will divide different non

is why the clustering process reduces error 
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Based Assembly method also uses k-mer to judge the relationship 

counts the number of k-mers overlapped between two short 

more than 20 k-mers, it means they may come from

or more short reads sharing 14 to 20 k-mers with another 

s short reads, the clustering process will merge the two groups together (Figure 5)

 

based algorithm can be used to avoid Chimeric Edge. 

algorithm is different from the de Bruijn graph algorithm

two short reads when they share only one k-mer (Figure 6)

 

The de Bruijn algorithm Chimeric Edge.  

process gives a more accurate solution for the Chimeric Edge 

problem, and it will divide different non-relationship genomes into different groups. That 

process reduces error rate of contigs mapping. 

relationship 

een two short 

come from the 

mers with another 

(Figure 5). 

graph algorithm in that 

(Figure 6). 

solution for the Chimeric Edge 

to different groups. That 
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This research was completed by implementing the following three major steps: 

1. The program designed a hash table for the grouping method. 

2. The program clustered short reads into groups. 

3. The program ran Oases parallel for each group and then merged all Oases’ 

results into the final result. 

The clustering algorithm plus the sequence assembly method provides a more 

accurate assembly result when compared to directly using the sequence assembly 

methods. This model can be collated with all current de novo assembly methods.
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CHAPTER III – METHODS

In this chapter, we present the basic ideas of the clustering-based assembly (CBA) 

method. The program was implemented in the C++ language. CBA has two major steps: 

clustering and alignment. In this thesis, we focus on how to cluster short reads. We use the 

current prominent software Oases to align each clustering.

3.1 Method Overview

The CBA algorithm first splits short reads to k-mers and then uses a MurmurHash 

function (Appleby, 2011) to transfer k-mer into hash value. The program creates a hash 

table, which size is 2^32 to store k-mer’s hash values. The program creates a hash map, 

which is mapped to the hash table and stores short reads’ index that share the same k-mer. 

Secondly, based on the hash table and hash map, CBA clusters all short reads into 

different groups. Then CBA runs Oases in parallel for each group. Finally, CBA uses a 

single thread to merge all result files generated by Oases into a new contigs file. The 

CBA process is shown on the right side of Figure 7. 
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Figure 7. CBA process and Oases process.  

 

3.2 Clustering

Clustering is the core of our program. The idea of clustering is simple: It 

merges overlapped short reads in one group. However, there are many steps to get to 

the finished clustering process. The major steps include: hash table, hash map, 

clustering, and merging groups. The hash table is an array. It stores the indexes of the 

hash map into cells. Those cells’ indexes represent the k-mers’ hash value, and the 

k-mers’ hash value are calculated by hash function. The hash map is also an array, with 

each cell storing short reads that map to a specific k-mer. Because the hash table is a 

discrete structure, it may have many empty cells. If we directly store all short reads 
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information in the hash table, those empty cells may cost our system too much memory. 

That is why the hash map is needed: The hash map is a continuous structure; all data 

will be stored one by one with no skipping. The clustering process clusters short reads 

into groups. Finally, the clustering process will merge together unstable groups that 

have weak linkages.

3.2.1 Hash Table and Hash Map

The hash map stores the information of the short reads that share a specific k-mer. 

Whenever the program finds a new k-mer, the hash map will assign a new cell for storing 

all short reads mapping to this k-mer. The hash table stores only integer numbers, which 

represent the hash map’s index. The hash table is used to located different k-mers. In other 

words, when the program finds a new k-mer, that k-mer will be transferred into a hash 

value by the hash function, and the hash map will also create a new cell for the new k-mer. 

The index of the new cell in the hash map will be stored in a cell of the hash table; that 

location or index is the hash value. We explain the relationship of the hash table and hash 

map in Figure 8. 



Figure 8. Relationship between the hash table and the hash map.

In Figure 8, we show how

beginning, both the hash table and hash map are empty. 

values of hash table to −1 and initial

variable “counter” to 0. In Step 

Based on this value, we can loca

of “counter” into hash table cell 

adding the k-mer into hash map cell, and the cell’s index is 

the program makes the “counter”

table cell “2” has a value “0,” and 

Step B. After the program runs S

“5,” the hash map inserts a new structure to cell 

For memory saving, we transfer a,t,g,c to 00,11,10,01 binary 
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Relationship between the hash table and the hash map. 

, we show how the hash table links to the hash map. In Step 

hash table and hash map are empty. The program initialize

initializes all cell values of hash map to NULL, set

tep B, the program transfers a k-mer to hash value as 

ased on this value, we can locate the hash table cell position, and we then inser

into hash table cell “2,” which is “0.” The program also inserts a structure 

mer into hash map cell, and the cell’s index is the value of “counter

”  increase by 1. Right now, “counter” is 1. Finally, 

and the hash map cell “0” stores a structure. Step C repeat

Step C, the hash table owns two values in cell “

a new structure to cell “1,” and the variable “counter” 

e transfer a,t,g,c to 00,11,10,01 binary numbers, than transfer binary 

 

tep A, at the 

izes all cell 

of hash map to NULL, setting the 

mer to hash value as “2.” 

then insert the value 

inserts a structure 

counter.” Finally 

Finally, our hash 

stores a structure. Step C repeats 

“2” and cell 

 becomes 2. 

, than transfer binary 



numbers to strings (8 binary becomes

the hash map. For example, short read 

then the binary bits are converted

is stored as character “=” into the 

“zipping string.”  

We have two structures for 

Figure 9. Structure smodel. 

Figure 10. Structure mg. 

Whenever a new short read

For each k-mer, the program first check

We can have three situations: 

In the first case, as Figure 

program will create a new cell in 

smodel,” and the program puts the short reads index in the srs variable

the program will store the new cell’s index to 

19 

comes 1 byte 1 character). The program stores the string

. For example, short read “ATTC” will transfer to binary bits “00111101

converted to the character “=.” Finally, the short read string 

the hash map, saving 75% of memory. We call this process 

We have two structures for the hash map: smodel and mg: 

 

short read comes in, the program will split it into many k

program first checks whether the k-mer already exists in the 

Figure 8 shows, if the k-mer is not stored in the hash 

program will create a new cell in the hash map. The new cell is initialed as “

and the program puts the short reads index in the srs variable. As the same time, 

program will store the new cell’s index to the hash table. 

the string in 

00111101,” and 

short read string “ATTC” 

this process a 

 

to many k-mers. 

the hash table. 

hash map, the 

“s structure 

As the same time, 



Figure 11. Construction of the hash map: no collision

The second case is shown

map. The program will find the index of 

directly goes to the cell of the hash map th

structure. The program creates a new mg structure

Finally, the program links the new mg structure to the srs
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Construction of the hash map: no collision. 

n in Figure 11, when the k-mer is already stored

rogram will find the index of the hash map by searching the hash table

hash map through the index. The cell already has

program creates a new mg structure for storing the new short read

the new mg structure to the srs variable in the cell. 

 

is already stored in the hash 

hash table, and 

has an smodel 

for storing the new short read’s index. 



Figure 12. Construction of the hash map: collision.

The third case is shown in 

the k-mer’s hash value collides with other k

hash map as we did in the second case, and then we create a new smodel structure to store 

the new k-mer and short reads that 

the cell in the hash map.

The hash table is 2^32 “long long int

up a lot of memory because the map stores the smodel structures, and the smodel structure 

is a two-dimension link list. “Long long int

bytes. For one smodel structure, 

have 4^45 different k-mers. At most
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Construction of the hash map: collision. 

in Figure 12, if the k-mer is not stored in the hash 

s with other k-mer’s hash value. We first find the cell in

second case, and then we create a new smodel structure to store 

that belong to the k-mer. Finally, we link the new smodel to 

3.2.1.1 Memory Usage

long long int” array, it will take 32GB. The hash 

lot of memory because the map stores the smodel structures, and the smodel structure 

Long long int” style costs 8 bytes, and all pointers

 we need at least 24 bytes. If the k-mer size is 45, we may 

mers. At most, we may need 4^45*24 bytes space. That 

 

hash map but 

We first find the cell in the 

second case, and then we create a new smodel structure to store 

the new smodel to 

ash map takes 

lot of memory because the map stores the smodel structures, and the smodel structure 

pointers cost 4 

mer size is 45, we may 

we may need 4^45*24 bytes space. That amount of 



space is impossible to be held by any machine. 

approximate 14,000,000 k-mers, and

The hash table, whose size is 2^32

Figure 13. MurmurHash function. 

Because one k-mer has two directions, we choose the higher hash value as the 

k-mer’s hash value.  

                                                             
3
 10,000,000 short reads data. 
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ld by any machine. In actuality, in typical data size

mers, and a hash map takes only 200GB. 

3.2.2.2 Time Efficiency 

size is 2^32, is generated by the MurmurHash function

 

 

mer has two directions, we choose the higher hash value as the 

in typical data size,3 we have 

function. 

 

mer has two directions, we choose the higher hash value as the 



Figure 14. The way to choose a k-mer’s hash value. 

Figure 14 shows how to choose 

double-stranded helices, when DNA is transcribed into RNA, the RNA may hav

directions. As Figure 14 shows, string

same k-mer from different directions. Because the two strings indicate the same k

only need one hash value for that

we may get two hash values. In this case

and the string “CTGGCAAT” transfer

the k-mer’s hash value. That means we will 

Normally, the search time complexity 
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mer’s hash value.  

shows how to choose a k-mer’s value. Because most DNA molecules are 

, when DNA is transcribed into RNA, the RNA may hav

shows, strings “ATTGCCAG” and “CTGGCAAT” represent 

mer from different directions. Because the two strings indicate the same k

at k-mer. We run both strings through the hash function, and 

. In this case, the string “ATTGCCAG” transfers into 

transfers into value 850. We will choose the greater one as 

That means we will calculate hash values twice for each k

search time complexity of the hash table is close to O(1)

 

Because most DNA molecules are 

, when DNA is transcribed into RNA, the RNA may have two 

represent the 

mer from different directions. Because the two strings indicate the same k-mer, we 

rough the hash function, and 

to value 764, 

to value 850. We will choose the greater one as 

each k-mer. 

is close to O(1), but it is 



really based on how many different input string

hash value. If two k-mers’ hash value 

the two different k-mers. When the

the hash table, it will go to the cell of hash map. Then the program find

the link list. It has to compare the 

by one, to find the k-mer’s position

complexity would be greater than O(1).

The clustering process is

“k-mer->short reads” is a link list array and

k-mer. The index of the array represent k

“glink.” The glink has two variables

the k-mer, the other pointer variabl

short reads’ indexes that map to the 

list array and stores all k-mers’ indexes

represents k-mers’ indexes, and each cell has a

variables: The k-mer variable stores 

other pointer variable points to the n

indexes in the same short read. 
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really based on how many different input strings via hash function transfer into

’ hash value have a collision, we have to make a link list to store 

. When the program searches a k-mer with a collision hash value in 

cell of hash map. Then the program finds the cell 

the current k-mer with the stored k-mers in the link list

s position. In this case, our hash table and hash map’s time 

than O(1).

3.3 Clustering Process

is based on the hash map. We have two tables: The table of 

is a link list array and stores all short reads’ indexes mapping to each

The index of the array represent k-mer’s index, and each cell has a structure called 

two variables: Variable “seq” stores a short read’s index 

mer, the other pointer variable points to the next glink structure, which stores other 

map to the same k-mer. The “short read->k-mers” is also a link

indexes mapped to each short read. The index of the array 

s’ indexes, and each cell has a structure called “klink.” There are two 

stores the k-mer’s index that exists in the short read, 

to the next “klink” structure, which stores other 

to the same 

collision, we have to make a link list to store 

collision hash value in 

the cell that stores 

the link list, one 

. In this case, our hash table and hash map’s time 

The table of 

mapping to each 

structure called 

 mapping to 

, which stores other 

is also a linked 

. The index of the array 

here are two 

short read, and the 

stores other k-mers’ 
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Figure 15. Structure glink and klink. 

Based on “short read ->k-mers” array, the program can find all k-mers from a short 

read. For each k-mer, the program checks the “k-mer->short reads” array to find all other 

short reads sharing the same k-mer with the current short read. We use three cut-off values 

to control how the short reads are grouped. The first value is called “ori-cut,” which is the 

number of k-mers shared between two short reads. If two short reads share a number of 

k-mers less than the ori-cut value, the two short reads will not be thought to have any 

relationship by the program. The second value is called “max-cut,” which means if two 

short reads share a number of k-mers that is over the max-cut value, then the program will 

put the two short reads in one group. The last value is called “ave-cut”; it is used for 

merging small groups. If two groups share a number of weak linkage short reads pairs,4 

and this number is greater than ave-cut, then the program will merge the two small groups 

together. 

                                                             
4
 Paired short reads in different groups that share the number of k-mers less than max-cut and greater than 

ori-cut. 



 

Figure 16. Statistic result of number

We decide the ori-cut valu

how many k-mers short reads are 

share the same number of k-mers

magic number because the number

quickly. We can use 14 as a cut-

14 k-mers. That also decreases the number 

In the grouping process, the

length of the array is the number 

If the short read that share

those short reads Strong Linked (SL)
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number of sequences based on different cut-off values.  

cut value based on statistic results. In Figure 16, x-

are shared, and y-axis means the number of short reads

mers, and k-mer length is 31. This graph shows that 

number of short reads sharing from 12 and 14 k-

-off number and discard short reads that shared 

the number of short reads. 

process, the program creates a pointer array, called “sr_array

number of short reads, and each cell represents a short read.

shares a number of k-mers is over the max-cut val

Strong Linked (SL) short reads with each other. 

 

-axis means 

of short reads that 

that 14 is a 

-mers drops 

shared fewer than 

sr_array.” The 

short read. 

cut value, we call 



We have two situations in the grouping process:

Figure 17. The method to cluster SL short reads. 

If the program finds some SL short reads

links them together to a new node 

SL short reads linked with each other

all red cells to the node. In this case
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in the grouping process: 

to cluster SL short reads.  

some SL short reads linked with each other, then t

them together to a new node and generates a small tree. In Figure 17, all red cells

with each other, and then the program will create a new node and link

all red cells to the node. In this case, the program considers them one group. 

  

he program 

, all red cells are 

program will create a new node and link 



Figure 18. The method to link two groups together.

If there exists different groups, 

from the yellow group is a SL 

from the yellow group is a SL short read

program will merge the three groups

The program goes through the

the grouping process, all short reads are grouped. Some groups are really 

5 short reads. We will regard those small groups 
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The method to link two groups together. 

different groups, the program will check these groups. One short read 

 short read linked with the red group. Another short read 

from the yellow group is a SL short read linked with the blue group. In this case, 

groups together (Figure 18). 

ough the whole sr_array and runs the two cases above.

all short reads are grouped. Some groups are really small

those small groups as useless and discard them.

3.4 Group Merging

 

ne short read 

nother short read 

In this case, the 

above. After 

small—only 1 to 



We called paired short reads in different groups 

than max-cut and greater than ori

pair must differ from other WL

structure array. We create the structure called 

variables store the WL pair: 

Figure 19. Structure halfc. 

After the grouping process, we have a structure called 

between short reads and groups: 

Figure 20. Structure gp_rcd. 

Considering some transcripts

reads in this transcript may align 

“ave-cut,” which represents how ma

number of WL pairs in two groups 
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We called paired short reads in different groups that share a number of 

cut and greater than ori-cut as Weak Linkage (WL) pair. The short reads in a 

WL pairs’ short reads. The program stores WL

structure called “halfc” that includes two variables;

 

grouping process, we have a structure called “gp_rcd.” It offers a mapping 

 

 

transcripts have a low number of short reads, this means 

reads in this transcript may align to many groups with a weak connection. We set a 

how many WL pairs are shared between two groups.

pairs in two groups are greater than ave-cut, we will merge the two 

of k-mers less 

he short reads in a WL 

WL pair in a 

variables; the two 

It offers a mapping 

means short 

e set a value, 

shared between two groups. When the 

we will merge the two groups.  



Figure 21. Example of merging two groups. 

In Figure 21, all WL pairs

number for every short reads in 

WL pairs between the two groups

two group or will keep both groups

After we get every group, we use OpenMP 

in parallel. In Figure 22, for each thread

group each time and stores the Oases assembly method

folder. When the results are ready

final contigs file (contigs.fa). 
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merging two groups.  

pairs are stored in structure halfc. The gp_rcd gives

number for every short reads in WL pairs. Then the program will calculate the 

two groups. If the value is greater than ave-cut, we will merge the 

groups.

3.5 Alignment

t every group, we use OpenMP to run the Oases method for each group

or each thread, we create a buffer folder. Each thread handle

Oases assembly method result file (transcript.fa) in

ready, we use a single thread to merge all results files in

 

rcd gives a group 

the number of 

we will merge the 

Oases method for each group 

we create a buffer folder. Each thread handles one 

in its buffer 

to merge all results files into the 



Figure 22. Alignment process.  

 

Figure 23. OpenMP barrier.
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CHAPTER IV – RESULTS

This chapter presents the results of testing our program using various types of data 

and then compares them with other assembly algorithms. In the results, the most important 

comparisons are short reads mapping rate, contigs mapping rate, and recovery rate. The 

short reads mapping rate shows how many short reads are used for assembly. Contigs 

mapping rate shows how many contigs are valid, which can be mapped to the template. 

Recovery rate shows how many nucleotides in the templates are covered by contigs. Those 

three statistics indicate how well the assembly methods work.

4.1 Testing Data

We use ERCC-BGI data, human Chromosome 22 real data, and human 

Chromosome 22 simulation data to test the CBA-based-on-Oases program. We compared 

the CBA-based-on-Oases program with Oases, Trinity, ABySS, and Mira. All experiments 

were run with Velvet version 1.2.03, Oases 1.2.03, ABySS 1.3.3, Mira 3.0.4.1, and Trinity 

2012-10-05.

4.1.1 ERCC Data

To control the quality of RNA quantification, a common set of external RNA 

controls was developed by the External RNA Controls Consortium (ERCC), an ad-hoc 

group of academic, private, and public organizations hosted by the National Institute of 

Standards and Technology (NIST). Approximately 90 companies, universities, and federal 

laboratories in the ERCC are developing materials and tools that can be used to benchmark 
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(Baum, 2006). Therefore, ERCC data can be used to calibrate bioinformatics methods in 

analyses of RNA-Seq data. 

Our ERCC data come from Beijing Genomics Institute (BGI). We used ERCC data 

to test CBA and other assembly methods. Our ERCC data has 92 transcripts. We got 

220,000 short reads with 50 bp in length from BGI (Introduction to BGI-Hong Kong, 2013). 

Not all 92 transcripts contained mapped short reads. To reduce noise and variability, we 

removed all transcripts with fewer than 1k short reads mapped and also removed their 

corresponding short reads from the raw data. Finally, we had 216k short reads and 16 

transcripts. 

We use Bowtie 2 (Ben Langmead, 2011) to calculate mapping rates: short reads 

map to contigs, and recovery rate: nucleotides cover to transcripts. We use ABySS-fac 

(Simpson et al., 2009) (Simpson, Kim, Jackman, Schein, Jones, & Birol, 2009) to calculate 

N: how many contigs, and N50: average length of contigs. We randomly collected short 

reads from raw data for each number 3 times and tested them. 
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Figure 24. ERCC-BGI data test results. 
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In Figure 24, the x-axis indicates the number of short reads collected from the 

ERCC-BGI short reads file. The y-axis shows our statistical measures. 

Figure 24A shows N value, which indicates the number of contigs for each 

assembly method. We expect N will be closer to the number of transcripts, which is 16. 

Mira has highest value at 70 contigs, when the number of short reads was low. As the short 

reads number increased, Mira and CBA’s N values dropped to about 25—but still higher 

than other de Bruijn graph-based programs. The N values of Oases, ABySS, and Trinity 

were very close to the expected value.  

Figure 24B shows the short reads mapping rate, which indicates how many short 

reads are overlapped to contigs. ABySS mapped only 83% short reads to contigs at the 

beginning. As short reads numbers increased, ABySS’s mapping rate was increasing but 

was still lower than the other methods. Mira and Trinity were stable and almost mapped all 

short reads to contigs. CBA and Oases were also doing a good job here, with a 98% 

mapping rate.  

Figure 24C shows the recovery rate, which indicates how many nucleotides in the 

template are covered by contigs. When the number of short reads was low, all methods had 

recovery rates lower than 60% except Mira, which was 80%. But as short reads numbers 

increased, all method recovery rates were higher than 80%—especially Mira, Trinity, Oases 

and CBA, with recovery rates higher than 90%, a very high value.  

CBA did not outperform other assembly methods for the ERCC tests because the 

ERCC templates have few overlapped nucleotides, and de Bruijn graph-based assembly 

methods would not have many Chimeric Edges. Therefore, CBA showed little difference 



36 

against other assembly methods in short reads mapping rate, contigs mapping rate, and 

recovery rate.

4.1.2 Human Chromosome 22 Simulation Data

Simulated data is generated from a genomic region in human chromosome 22 that 

has 5,000,000 nucleotides and 337 transcripts. The simulation program randomly generates 

100 to 1,000 short reads for each transcript, and short reads randomly generate a 0.2% error 

rate. We also randomly generated short reads from transcripts for each number 3 times and 

tested them. 
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Figure 25. Human chromosome 22 simulation data test results.  

In Figure 25, the x-axis indicates the number of short reads generated from human 

chromosome 22 transcripts file. The y-axis shows our statistical measures. 

Figure 25A shows the number of contigs. Real_N is our expected value, which 

equals 337. Oases showed a very good and stable curve, close to value 337. CBA and 

ABySS had very high values at the beginning. The CBA curve was dropping to 500 and the 

ABySS curve increased to over 1,000 when the number of short reads in each transcript 
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began increasing. Trinity and Mira both had an N value of 500 when the short reads 

number was low. Th Trinity curve increased to 700 and Mira kept stable at 500, when the 

short reads number was increasing. 

Figure 25B shows N50, which means the average length of contigs. This is a very 

clear graphic. Trinity and Oases had a higher N50 value, both generating longer contigs, 

with an average length of 3400 bp. CBA and Mira generated medium-length contigs, 

average length of 2400 bp. ABySS generated very short contigs, average length only 100 

bp. 

Figure 25C shows the short reads mapping rate. CBA had the worst short reads 

mapping rate, 83% when the short reads number was low. As short reads numbers 

increased, CBA had the best short reads mapping rate, 99%. Trinity and Oases’ short reads 

mapping rate were close to 95%. ABySS’s short reads mapping rate was lower than 90%. 

Figure 25D shows the contigs mapping rate. Mira and ABySS’s contigs mapping 

rates were stable and close to 100%. Next highest was CBA, which had about 95% contigs 

mapping rate. Oases and Trinity had a little bit lower contigs mapping rate, about 80%. 

Figure 25E shows the recovery rate. When short reads numbers were low, all 

methods’ recovery rates were lower than 50%. As short reads numbers increased, Trinity’s 

recovery rate increased fast, finally at 72%. Oases’ and CBA’s recovery rate increased to 

65%. Mira’s and ABySS’s recovery rate stayed lower than 50%. 

Results show CBA had the best short reads mapping rate, better contigs mapping 

rate, and better recovery rate. Oases had better N and N50 value. Trinity had the best 

recovery rate but had the worst contigs mapping rate. ABySS and Mira were not doing a 
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good job in this test. Even Trinity had a higher recovery rate, but its contigs mapping rate 

was too low. In Figure 25A and B, we can see that Trinity generated more contigs than 

others except for ABySS, and its contigs average length was high, even higher than 

template average length. That indicated lots of contigs Trinity generated but cannot map to 

the template, but it still had some long contigs mapped to the template, which is why 

Trinity had a high recovery rate but low contigs mapping rate. ABySS had the highest 

contigs mapping rate, but its short reads mapping rate and recovery rate were both low. In 

summary, CBA had the best result in Chromosome 22 simulation test.

4.1.3 Human Chromosome 22 Real Data

Chromosome 22 was the first human chromosome to be fully sequenced, 

representing between 1.5–2% of the total DNA in cells. We randomly collect 200k to 2m 

short reads from original chromosome 22 file, which has 24,388,258 short reads. We used 

those short reads to test CBA, Oases, Mira, and Trinity. The results showed N, N50, short 

reads mapping rate, contigs mapping rate, and recovery rate. We randomly collected short 

reads from raw data for each number 3 times and tested them. 
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Figure 26. Human chromosome 22 real data test results.  
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In Figure 26, the x-axis indicates the number of short reads, collected from human 

chromosome 22 real short reads file. The y-axis shows our statistical measures. 

Figure 26A shows the number of contigs. Real_N shows transcripts number, which 

is our expected value. When the short reads number increased to 5,000,000 per transcript, 

Mira had 30,000 contigs, higher than the expected value 6 times. This value was not 

acceptable. The next highest N value was CBA, which was 3 times higher than the 

expected value. 

Figure 26B shows N50. Oases has the highest value, which means Oases generated 

the longest contigs, average length was 1200 bp. CBA and Trinity also generated long 

contigs when the short reads number was increasing. Mira had stable low N50 value, 

contigs, and an average length was 420 bp. This value was not acceptable. 

Figure 26C shows a short reads mapping rate. At the beginning, Mira and Trinity 

had the highest short reads mapping rate. The graphs show their short reads mapping rate at 

greater than 70%. As the short reads numbers increased, Mira’s short reads mapping rate 

was going down, but Trinity’s short reads mapping rate was going up. Finally, Trinity had 

the highest short reads mapping rate, 90%. Mira and other methods only had 70–75% short 

reads mapping rate. 

Figure 26D shows the contigs mapping rate. When the short reads number was low, 

Trinity and CBA had 83% contigs mapping rate, and Mira’s and Oases’ contigs mapping 

rate were lower than 75%. As the short reads numbers increased, Trinity’s contigs mapping 

rate was going down, and CBA’s and Oases’ contigs mapping rate were going up. CBA and 

Oases had 85% contigs mapping rates when the short reads number was 5,000,000. Mira 
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kept a low contigs mapping rate, lower than 70%, the worst one. 

Results show that CBA had the best contigs mapping rate. Oases had better N and 

N50 value, which means Oases generated longer contigs. Trinity had the best short reads 

mapping rate. Mira showed the worst results in this test. Trinity had the best short reads 

mapping rate, but its contigs mapping rate was low. That shows a classic de Bruijn graph 

algorithm error. High short reads mapping rate indicate de Bruijn graph assembles short 

reads when they share one k-mer, so almost all short reads can map to contigs. But some of 

those contigs may generate by Chimeric Edges, which cannot map to the template. That is 

why Trinity had a low contigs mapping rate. CBA had the second-highest short reads 

mapping rate and kept the highest contigs mapping rate. In conclusion, CBA was the best 

algorithm in the Chromosome 22 real test. 

Mira is the only one that uses the overlap graph-based algorithm. In the ERCC test, 

Mira did a good job when compared with other de Bruijn graph-based algorithms. But in 

the human Chromosome 22 test, Mira did not have good results, which means Mira cannot 

solve complex gene structures. Further, the overlap graph-based algorithm usually runs 

slowly. Table 1 shows the time cost for each assembly method when the short reads number 

was 5,000,000 in the human Chromosome 22 real test. Mira’s running time was twice that 

of CBA’s and 10 times longer than other de Bruijn graph-based assembly method. 
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Table 1 

Running Time Comparison of All Assembly Methods 

Short Reads Number /Time 
Consume (Minutes) 

CBA Oases Trinity ABySS Mira 

5,000,000 615 40 150 15 1203 
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CHAPTER V – DISCUSSION

We have developed the Clustering Based Assembly (CBA) method, a novel 

approach that uses clustering and de Bruijn graph-based algorithm (Oases) for de novo 

assembly of non-model species, such as plants, yeasts, and animals such as the snapping 

turtle. 

The ori-cut value, max-cut value, and ave-cut value are used in the program to 

control how to create groups. For example, in the human chromosome 22 real test, based 

on Figure 16, the x-axis means how many k-mers short reads are shared, and the y-axis 

means the number of short reads that share the same number of k-mers. We tested 

chromosome 22 real data for different k-mer size. There is a big gap in the frequencies of 

short reads between 12 and 14 (changing more than 2 times), implying most of the 

k-mer–sharing k-mers below 14 are random noise. We used 25 as the max-cut value 

because it gave the lowest error rate after testing 20 to 30 in all ERCC and human 

chromosome studies. Finally, we set ave-cut value as a control value for merging groups. 

We tested number 2 and number 5 as ave-cut values in all ERCC and human chromosome 

study, and the simulation study shows number 2 gave the highest mapping rate. If two or 

more WL pairs connect two groups, we will then consider whether the two groups should 

be merged. We require each group to contain 5 or more short reads. 

CBA is an accurate assemble algorithm, but grouping is time consuming. Using 

openMP can make the programs run in parallel, which saves running time. Another way to 



save time is using a hash table as the searching method. As we show

table’s time complexity is close to O(1)

function. We choose MurmurHash function in our program. Murmur

of hash function used by Google

MurmurHash has a faster computing speed and lower collision hash value. 

Table 2  

Comparison of MurmurHash Function with Others

In Table 2 (Sina, 2012),

accepted hash functions. Speed 

10,000 times with 1,000,000 different

values hash functions generated.

items. As we know, a hash table is memory consuming, 

hash table to a hash map to save memory. 

structure that means memory will not 

solution to create a big block memory pool use
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hash table as the searching method. As we showed in chapter 3, hash 

table’s time complexity is close to O(1). It is still important to choose the right

ash function in our program. MurmurHash function is a kind 

of hash function used by Google’s search engine. Compared with other hash fu

faster computing speed and lower collision hash value.  

Comparison of MurmurHash Function with Others in Speed and Collision Field 

 

(Sina, 2012), the author compared MurmurHash function with other 

Speed analysis indicates how much time is used when run

different words. Collided item indicates how many collision 

hash functions generated. MurmurHash has the highest speed and zero

hash table is memory consuming, so our program maps 

save memory. Further, CBA uses a discrete memory store 

memory will not be easy to release. A Boost pool algorithm give

solution to create a big block memory pool used for assigning single discrete memory 

in chapter 3, hash 

important to choose the right hash 

function is a kind 

with other hash functions, 

 

ash function with other 

when running 

how many collision 

zero collided 

our program maps a discrete 

discrete memory store 

Boost pool algorithm gives a 

single discrete memory 
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block. When we need to release memory, we remove only the memory pool, which helps 

save time and memory. Even with all the optimizations shown, CBA still used more than 

200GB in memory. It cannot be used in a personal computer. 

CBA cannot work for two transcripts that overlap a long fragment of nucleotides. If 

the length of the overlapped fragment is longer than the length of the short read, it means 

short reads from the two transcripts share almost all k-mers in the critical area. The cluster 

process of CBA will think all short reads from the two transcripts have strong links. Finally, 

CBA will cluster them into one group. To our knowledge, no algorithm can split those 

transcripts that share long fragment nucleotides. But CBA is better than any other program 

in the condition of overlapping transcripts. 

CBA has another limitation: Since CBA is memory constrained; it cannot run on a 

personal computer. We used 40 threads parallel run CBA, so CBA would run better in 

multiple core servers. 

Currently, we use Oases as the CBA alignment method because Oases performs 

well overall by adapting to varying conditions and is superior overall compared to other 

alignment methods (Schulz et al., 2012). (Schulz, Zerbino, Vingron, & Birney, 2012) 

In the future, we will develop a new alignment algorithm to work with the grouping 

algorithms. We will try to discover a way to assemble short reads more accurately 

compared to the de Bruijn graph-based algorithm.
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CHAPTER VI – CONCLUSIONS

The fast development of next-generation sequencing presents a major challenge to 

bioinformatics analysis. One of the underdeveloped areas in bioinformatics is de novo 

assembly of RNA-Seq data. Although many assemblers have been developed for 

next-generation sequencing data, few can provide desired accuracy as well as maintain 

satisfactory computing speed. We set out to develop a novel assembler, taking two steps to 

assemble RNA-Seq short reads: clustering and alignment. By combining a clustering step 

with de Bruijn graph-based algorithm, we targeted minimizing the error rate of sequence 

alignments. 

Our results show that CBA is the best assembler in overall performance when 

comparing with other de Bruijn graph and overlap graph-based algorithms in various types 

of data. For ERCC data, all assemblers gave acceptable performance. This is because 

ERCC templates have few overlapped nucleotides, and even de Bruijn graph-based 

assembly methods would not generate many incorrect contigs. The human genome, 

however, has long transcripts, and there exists many overlapped fields between each 

transcript. As the results for human chromosome 22 simulated and real data illustrate, the 

de Bruijn graph-based assembly methods had high error rates, as shown by the low short 

reads mapping rates, contig mapping rates, and recovery rates. For the human data, CBA 

consistently had high short reads mapping rates, contig mapping rates, and recovery rates. 

It was expected that an overlap graph-based assembler, such as Mira, would have a high 
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accuracy rate for human data. However, our tests failed to show that. Actually, Mira 

performed rather poorly on human data. Furthermore, when comparing the computational 

time for all these methods, Mira took at least twice the running time than did other methods. 

Therefore, an overlap graph-based algorithm is not suitable for assembling NGS sequences. 

Based on the test results, we proved our CBA method is valuable in RNA-Seq 

applications. CBA not only provides a high accuracy when assembling RNA-Seq data but 

also gives acceptable computational speed. We expect the CBA method will be widely used 

for RNA-Seq studies. We look forward to developing upgraded versions of CBA by 

optimizing the alignment step. 
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