
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2014

A Novel Assembly Algorithm That Optimizes For RNA-Seq Data A Novel Assembly Algorithm That Optimizes For RNA-Seq Data

Yi Yang

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation Recommended Citation
Yang, Yi, "A Novel Assembly Algorithm That Optimizes For RNA-Seq Data" (2014). Theses and
Dissertations. 1610.
https://commons.und.edu/theses/1610

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/1610
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1610?utm_source=commons.und.edu%2Ftheses%2F1610&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

A NOVEL ASSEMBLY ALGORITHM THAT OPTIMIZES FOR RNA-SEQ DATA

by

Yi Yang

Bachelor of Computer Science, Emporia State University, 2009

A Thesis

Submitted to Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for degree of

Master of Science

Grand Forks, North Dakota

May 2014

 iii

PERMISSION

Title A NOVEL ASSEMBLY ALGORITHM THAT OPTIMIZES FOR
 RNA-SEQ DATA

Department Computer Science
Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate
degree from the University of North Dakota, I agree that the library of this University shall
make it freely available for inspection. I further agree that permission for extensive copying
for scholarly purposes may be granted by the professor who supervised my thesis work or, in
his absence, by the Chairperson of the department or the dean of the Graduate School. It is
understood that any copying or publication or other use of this thesis or part thereof for
financial gain shall not be allowed without my written permission. It is also understood that
due recognition shall be given to me and to the University of North Dakota in any scholarly
use that may be made of any material in my thesis.

Yi Yang

April 22, 2014

 iv

Table of Contents

LIST OF FIGURES... vii

LIST OF TABLES ... ix

ACKNOWLEDGEMENTS .. x

ABSTRACT ... xii

CHAPTER

I. INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Background ... 2

1.2.1 DNA Sequencing ... 2

1.2.2 Next-Generation Sequencing ... 3

1.2.3 RNA-Seq and Application ... 4

1.3 Thesis Organization ... 5

II. ASSEMBLY .. 6

2.1 Assembly Methods .. 6

2.2 De Novo Assembly Algorithms ... 6

 v

2.2.1 Overlap Graph-Based Assembly Algorithm.. 7

2.2.2 de Bruijn Graph-Based Algorithm .. 8

2.2.3 Comparing de Bruijn Graph with Overlap Graph ... 10

2.3 Different Methods Based on de Bruijn Graph-Based Algorithm 10

2.4 Motivation ... 11

2.5 Objective ... 12

III. METHODS .. 15

3.1 Method Overview .. 15

3.2 Clustering .. 16

3.2.1 Hash Table and Hash Map .. 17

3.3 Clustering Process ... 24

3.4 Group Merging .. 28

3.5 Alignment .. 30

IV. RESULTS ... 32

4.1 Testing Data .. 32

4.1.1 ERCC Data .. 32

4.1.2 Human Chromosome 22 Simulation Data .. 36

4.1.3 Human Chromosome 22 Real Data .. 39

V. DISCUSSION .. 44

 vi

VI. CONCLUSIONS .. 47

REFERENCES ... 49

 vii

LIST OF FIGURES

Figure Page

1. Example of overlap graph method. .. 7

2. Diagram of using de Bruijn graph for DNA sequence alignment. 9

3. Example of Chimeric Edge in a de Bruijn graph. ... 11

4. Comparison of Chimeric Edges with different k-mer size. ... 12

5. Cluster-based algorithm can be used to avoid Chimeric Edge. ... 13

6. The de Bruijn algorithm Chimeric Edge. ... 13

7. CBA process and Oases process. ... 16

8. Relationship between the hash table and the hash map... 18

9. Structure smodel. .. 19

10. Structure mg. ... 19

11. Construction of the hash map: no collision. ... 20

12. Construction of the hash map: collision. .. 21

13. MurmurHash function. .. 22

14. The way to choose a k-mer’s hash value. ... 23

15. Structure glink and klink. .. 25

16. Statistic result of number of sequences based on different cut-off values. 26

17. The method to cluster SL short reads. .. 27

18. The method to link two groups together. .. 28

 viii

19. Structure halfc. .. 29

20. Structure gp_rcd. ... 29

21. Example of merging two groups. ... 30

22. Alignment process. .. 31

23. OpenMP barrier. .. 31

24. ERCC-BGI data test results. .. 34

25. Human chromosome 22 simulation data test results. .. 37

26. Human chromosome 22 real data test results. .. 40

 ix

LIST OF TABLES

Table Page

1. Running Time Comparison of all Assembly Methods .. 43

2. Comparison of MurmurHash Function with Others in Speed and Collision Field 45

 x

ACKNOWLEDGEMENTS

A major research project is never the work of anyone alone. The knowledge and

effort of different people have made it possible. I would like to thank all those who worked

with me on my research.

I would like to thank God for favoring me with the wisdom and courage during this

research and, indeed, throughout my life: “I can do everything through Him who gives me

strength” (Philippians 4:13, New International Version).

I would especially like to thank Dr. Ke Zhang, my supervisor and advisor, for his

help in bioinformatics’ training and economic support throughout my graduate program.

Over the past four years, I have learned many abilities from him, including research skills,

writing skills, and presentation skills. He always encouraged me to finish the research even

when I felt desperation. He also cares about my life since I am alone in the United States.

I would also like to thank all the members in the Department of Computer Science

for teaching me technology and giving me the opportunity to improve my programming

skills. I want to thank Dr. Emanuel Grant for taking care of my life. Every time when I talk

with him about my troubles, he is like my father and helps me with his best advice. I want

to thank our department chairman, Dr. Ronald Marsh—also the chair of my graduate

committee—for his encouragement, insightful comments, and hard questions. I thank

Nancy Rice, secretary of our department, for helping a great deal with my paperwork.

 xi

I thank the members working with me in Dr. Ke Zhang’s lab: Kaitlin Clarke and

Brent Weichel. We work together and help each other. Also, we are good friends outside of

the lab.

Last but not least, I would like to thank my family: my parents, Yu-an Yang and

Hui-fen Shen, for giving me life and supporting me spiritually in my life. I thank my

girlfriend, Yi Liu, for her love.

 xii

ABSTRACT

The advent of next-generation sequencing (NGS) technology has shown unprecedented

promise for accurately identifying and quantifying genomic variants for living organisms.

For species whose genome sequences are unknown, the first step of RNA sequencing data

analysis is to assemble all short reads. The de Bruijn graph-based algorithms, such as

Oases, are usually used for short reads assembly to resolve the issue of computational

complexity. However, de Bruijn graph-based assemblers normally generate high error rates

when assembling RNA-Seq data. We have developed a novel assembly algorithm that can

be used jointly with any other assembly methods for RNA-Seq short reads. The proposed

method, clustering-based assembly (CBA), aims not only to maintain computational and

memory efficiency but also improve the assembly accuracy in our simulation study. We

tested CBA using ERCC RNA-Seq data, simulated data from Chromosome 22, and real

human RNA-Seq data. The results showed that our algorithm was more accurate in

comparison with other de novo methods in terms of short reads mapping rate, recover rate,

and contigs mapping rate.

1

CHAPTER I – INTRODUCTION

1.1 Introduction

A major challenge in the new era of genomics research is to develop efficient

bioinformatics tools to cope with rapidly growing biological data. In bioinformatics, DNA

sequence assembly refers to aligning and merging fragments of shorter DNA sequences to

reconstruct the original sequence. This is necessary, as DNA sequencing technology cannot

read whole genomes at one time but instead reads small pieces of between 20 and 1,000

bases, depending on the technology used. Sequence assembly of next-generation

sequencing data is such a computational intensive step that sometimes requires months of

computation time using a mid-size server computer.

In this thesis, we present the development of a new assembly method called

Clustering Based Assembly (CBA). This program is different from conventional assembly

programs in that it clusters the short reads first based on genomic positions. It divides input

fragments (short reads) into pieces of the same length; we call those “k length pieces” or

“k-mer.” The program then uses a hash table to indicate all k-mers. CBA clusters short

reads to many groups using this hash table. All short reads in the same group will share a

number of k-mers with each other. Finally, the program uses the current prominent

assembly method to align the short reads to the original sequence for each group. We tested

2

CBA and other assembly methods with real data and simulation data. CBA improves

computational efficiency and assembly accuracy for both.

1.2 Background

1.2.1 DNA Sequencing

In general, DNA sequencing is used for determining the order of the nucleotide

bases—adenine (A), guanine (G), cytosine (C), and thymine (T)—in a molecule of DNA.

DNA sequencing is one of the most important techniques for molecular biological studies.

DNA sequencing technique has been evolving rapidly, providing a powerful approach to

understanding the structures of DNA and RNA and their associated biological functions

(Turnpenny & Ellard, 2007).

Sequencing technologies have been significantly improved since the first genome was

read in 1996. These technologies remain at the core of genomics and have many practical

applications. Sequencing technologies are used to determine the genome sequence of a new

species or of an individual within a population. A critical stage in de novo genome

sequencing is the assembly of shotgun sequences, where DNA fragments are randomly

extracted and sequenced.

Recently, the rapid and inexpensive next-generation sequencing NGS methods offer

high-throughput gene expression profiling. Today, it is possible to sequence a human’s

genome in around eight days for approximately $10,500 (2014 NGS Field Guide – Table 2 –

Run time, reads, yields, and costs, 2014) (Shendure & Ji, 2008) (Wu, Zhu, Fu, Niu, & Li,

2011) (“2014 NGS Field Guide, Table 2,” 2014; Sehndure & Ji, 2008; Wu, Zhu, Fu, Niu, &

Li, 2011).

3

1.2.2 Next-Generation Sequencing

Next-generation sequencing (NGS) is a new method for DNA sequencing. This

technology improves the DNA sequencing process and makes it run faster. The technology

uses shotgun sequencing with cyclic-array methods, linking a common adaptor to DNA

fragmentation. NGS conducts massive parallel sequencing using an array that includes

millions of spatially immobilized PCR colonies. Each colony consists of many copies of a

single shotgun library fragment. All array features run in parallel. Finally, the shotgun

algorithm uses imaging-based detection and assembles similar fragments; all features run in

parallel. Repeating those steps, NGS will build up a contiguous sequencing read for each

colony (Costa, Angelini, Feis, & Ciccodicola, 2010; Hoppman-Chaney et al., 2010; Shendure

& Ji, 2008) (Shendure & Ji, 2008). In other words, DNA fragmentation is first combined with

an adaptor as an array, and then the array transfers those data to colonies and, finally, NGS

uses an imaging-based method to assemble those colonies into groups. NGS allows for

simultaneously sequencing thousands to billions of sequencing reactions in parallel (Costa et

al., 2010, p. X).(Costa, Angelini, Feis, & Ciccodicola, 2010) Because NGS can parallel run

arrays and imaging steps, NGS is both fast and cheap.

NGS has been widely used in whole-genome de novo sequencing, ChIP sequencing,

RNA-Seq, and so on. Whole-genome sequencing identifies the complete DNA sequence of an

organism’s genome (Roach et al., 2010).(Roach, et al., 2010) ChIP sequencing is a method

used to analyze the relationship or interaction between DNA and protein (Park, 2009).

RNA-Seq refers to using NGS to study the transcriptome at the nucleotide level (Faghihi &

Wahlestedt, 2009; Marguerat & Bähler, 2010; Zhong Wang, 2009). (Faghihi & Wahlestedt,

4

2009)

1.2.3 RNA-Seq and Application

In multicellular organisms, almost all cells include the same genes. However, not

every gene can express itself in every cell. To find out when and where genes are turned on or

off in various types of cells, we will study the transcriptome. By comparing the

transcriptomes of different type of cells, we will deeply understand the constitution of the cell

and know which gene may respond to a disease in the cell. A transcriptome represents that

small percentage of the genetic code that can be transcribed into RNA molecules. Because

each gene may produce more than one variant of mRNA, a transcriptome may be very

complex (Adams, 2008; Ozsolak & Milos, 2011; Sadava, Hillis, Heller, & Berenbaum,

2012)(Sadava, Hillis, Heller, & Berenbaum, 2012)(Ozsolak & Milos, 2011) (Adams, 2008).

For our program, we are using RNA-Seq. As we previously showed, RNA-Seq is a

sequencing technology to study the transcriptome at the nucleotide level. It is used to

discover the gene expression level. By mapping the RNA-Seq reads onto the exons1 of the

known genome, we will find out the total number of mapped reads. In doing so, we can get

the gene expression level, which is represented as Fragments per Kilobase of transcript per

Million mapped reads (FPKM) (Manteniotis S, 2013; Wang, Gerstein, & Snyder, 2009).

(Wang, Gerstein, & Snyder, 2009) (Manteniotis S, 2013)

1
 The corresponding sequence in RNA transcripts.

5

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter II – Assembly. This chapter describes different assembly methods and

points out the disadvantages of de Bruijn algorithm. At the end of the chapter, we show our

motivation and the basic idea behind the Clustering Based Assembly (CBA) method.

• Chapter III – Method. This chapter describes how we developed the CBA

methods and tools, including the data structure, algorithm, and memory control.

• Chapter IV – Results. In this chapter, we use ERCC real data, Chromosome 22

real data, and Chromosome 22 simulation data to test different assembly methods. This

chapter also discusses CBA results and compares them with other methods.

• Chapter V – Discussion. This chapter evaluates the CBA method and discusses

the advantages and disadvantages of CBA assembly methods. Finally, the chapter lists

possible future work.

• Conclusion. This chapter is a summary statement. It states CBA’s good

performance in terms of accuracy and speed. This chapter further explains why CBA would

be useful in real RNA-Seq application.

6

CHAPTER II – ASSEMBLY

2.1 Assembly Methods

There are two common approaches for DNA assembly: reference-based assembly and

de novo assembly. Reference-based assembly is also known as the “genome-guide assembly”

method. This method first aligns short reads to the reference genome and then assembles

overlapped alignments into transcripts. The de novo assembly method does not rely on the

reference genome; it is used to reconstruct the nucleotide sequence. When the reference

genome exists, researchers normally use the reference-based assembly method. In the

reference-based assembly process, the transcriptome is analyzed by mapping on the reference

genome. In the absence of a reference genome, the de novo assembly will be considered. De

novo transcriptome assembly is the method of creating a transcriptome without the aid of a

reference genome.

2.2 De Novo Assembly Algorithms

The de novo assembly method has two different algorithms: overlap graph-based

assembly and de Bruijn graph-based assembly. The major difference between the two

algorithms is how they construct the topology. The overlap graph-based assembly

algorithm uses short reads to build the topology, but the de Bruijn graph-based assembly

algorithm instead uses k-mers.

2.2.1 Overlap

The overlap graph-based

This algorithm has three phases: overlap, layout

process that finds the overlaps between reads. Th

relationships between the fragment reads

those overlaps. Finally, the consensus phase align

graph-based algorithm compare

another short read’s head, the program will align them together.

Figure 1. Example of overlap graph method.

In Figure 1, the strings

into the string “ATCCCGAATGCAAACGTT

“CTGTGATTACAT” will be thought

7

2.2.1 Overlap Graph-Based Assembly Algorithm

based assembly algorithm is the traditional assembly

three phases: overlap, layout, and consensus. The overlap phase

overlaps between reads. Those overlaps capture all possible

relationships between the fragment reads. The layout phase then orders fragment reads by

Finally, the consensus phase aligns fragment reads to contigs.

compares each pair of short reads. If one short read’s

program will align them together.

xample of overlap graph method.

 “ATCCCGAATGCA” and “AATGCAAACGTT

ATCCCGAATGCAAACGTT.” The strings “ACCTGATTAGCC

will be thought as coming from different genes because they share the

assembly approach.

verlap phase is the

capture all possible

orders fragment reads by

reads to contigs. Overlap

’s tail matches

AATGCAAACGTT” will align

ACCTGATTAGCC” and

because they share the

8

substring “TGATTA” which is neither the head of one string nor the tail of the other string.

Mira is the type of software that uses overlap graph-based algorithm (Chevreux B, 2004). The

major disadvantage of overlap graph-based algorithm is its slow computational speed.

2.2.2 de Bruijn Graph-Based Algorithm

The first idea for the de Bruijn graph-based algorithm came from Nicolas Govert de

Bruijn (1946).(de Bruijn, 1946) He designed his signature de Bruijn sequences. In 2001,

Pevzner, Tang, and Waterman developed the de Bruijn graph-based algorithm (Pevzner, Tang,

& Waterman, 2001). The de Bruijn graph-based method compares each k-mer2 instead of

short reads. If two k-mers overlap, k-1 length nucleotides then align the k-mers. For example,

k-mers “ATGGTC” and “TGGTCT” can be aligned to “ATGGTCT,” but k-mers “ATGGTC”

and “GGTCAA” will not be aligned because they share only k-2 length nucleotides.

The de Bruijn graph is defined as:

Set V = All length-k subfragments (k-mer)

E = Directed edges between consecutive subfragments

Dk = de Bruijn graph, nodes overlap by k-1 words

Then exist

Dk = (V,E)

2
 A nucleotide sequence whose length is k.

The de Bruijn graph-based

Figure 2).

Figure 2. Diagram of using de Bruijn graph for DNA sequence alignment.

Figure 2 presents a simple

have four nucleotides. K = 3 means all subfragments have three nucleotides.

there are one loop and two tips.

(a) red -> green -> purple, (b) red

purple (loop), and (d) red -> green

graph exists as a loop, the length of two loop

deficiency of de Bruijn graph when dealing with repetitive sequences

graph-based algorithms should have

9

based algorithm can be used to assemble RNA sequences

Diagram of using de Bruijn graph for DNA sequence alignment.

a simple de Bruijn graph for RNA-Seq assembly. All short reads

3 means all subfragments have three nucleotides. In the figure,

there are one loop and two tips. The program will generate four kinds of different contigs

red -> green -> pink, (c) red -> green -> blue -

> green -> blue -> green -> pink (loop). Because this

loop, the length of two looped contigs can be unlimited. This represents a

deficiency of de Bruijn graph when dealing with repetitive sequences; all de Bruijn

should have a loop detection process to avoid logical error

sequences (see

All short reads

In the figure,

of different contigs:

-> green ->

this de Bruijn

This represents a

ll de Bruijn

to avoid logical errors.

10

2.2.3 Comparing de Bruijn Graph with Overlap Graph

The overlap graph uses short read-to-short read comparison. The algorithm must

compare short reads one by one, and also it needs to delete the short reads that overlap to

the aligned contigs. Therefore, the overlap graph-based method is time consuming. The

de Bruijn graph-based algorithm uses k-mer to k-mer comparison. It does not need to

consider the overlap issue (as does the overlap-graph based method) but instead

generates a large topology. Therefore, the de Bruijn graph-based algorithm is faster than

the overlap graph-based algorithm. However, the de Bruijn graph-based algorithm is not

an accurate assembly method; we will discuss this in a future section.

2.3 Different Methods Based on de Bruijn Graph-Based Algorithm

The common assemblers based on the de Bruijn graph include Assembly by Short

Sequences (ABySS), Velvet, Oases, and Trinity. ABySS is a parallelized sequence or

short reads assembler. It has two steps to assembly short reads: First, it splits all short

reads into k-mers. Second, it uses a de Bruijn graph to align k-mers and generate contigs

(Birol et al., 2009; Simpson et al., 2009).(Birol, et al., 2009) (Simpson, Kim, Jackman,

Schein, Jones, & Birol, 2009) Trinity was developed in 2010 by Grabherr and colleagues,

and it has three steps: The first they call “Inchworm” because it splits short reads to

k-mers and aligns k-mers to contigs. The second, called “Chrysalis,” clusters contigs to

pools when they share at least one (k-1)-mers. The third, “Butterfly,” splices pools and

generates transcripts (Grabherr MG, 2011). Another assembler is Velvet, which runs in

two steps: Velveth and Velvetg. Velveth helps construct the dataset for Velvetg. It takes in

a number of sequence files and produces a hash table, and then it outputs two files into an

output directory. The two output

Velvetg is the core of the Velvet

processed (Zerbino & Birney, 2008)

Velvet (Schulz, Zerbino, Vingron, & Birney, 2012)

The Chimeric Edge is the major problem in

The de Bruijn graph algorithm will n

Figure 3. Example of Chimeric Edge

Figure 3 shows two short reads

They share k-mer “TGATTA,” also called

de Bruijn graph algorithm, erroneous merge of reads will happen. Short reads are aligned

as “ACCTGATTACAT.”

11

output files, Sequences and Roadmaps, are necessary to Velvetg.

Velvet software, where the de Bruijn graph is built

(Zerbino & Birney, 2008). The last assembler, Oases, is an updated version of

(Schulz, Zerbino, Vingron, & Birney, 2012).

2.4 Motivation

is the major problem in the de Bruijn graph-based algorithm.

will not detect those Chimeric Edges.

xample of Chimeric Edge in a de Bruijn graph.

shows two short reads, “ACCTGATTAGCC” and “CTGTGATTACAT

also called the Chimeric Edge. When the program runs

graph algorithm, erroneous merge of reads will happen. Short reads are aligned

Sequences and Roadmaps, are necessary to Velvetg.

graph is built and

version of

algorithm.

CTGTGATTACAT.”

program runs a

graph algorithm, erroneous merge of reads will happen. Short reads are aligned

12

Figure 4. Comparison of Chimeric Edges with different k-mer size.

In Figure 4, we randomly collect 10,000 short reads from human genomes, which

have 23 pairs of chromosomes. Since Oases uses 31 as the k-mer size, we also use 31 as

the k-mer size to test. The result shows there exists 38 pairs of short reads from different

chromosomes that share the same k-mers. That shows the de Bruijn graph-based

algorithm has a high error rate.

Since de Bruijn based assemblers, such as ABySS and Velvet, usually have high

error rates, we proposed optimizing the sequence assembly to make the assembly more

accurate than in the de Bruijn graph-based algorithm.

2.5 Objective

This research presents a method to improve the current de novo assembly method

for RNA-Seq. The method of improving the assembly result is by providing a “clustering

method” before the sequence assembly.

0

5

10

15

20

25

30

35

40

45

50

25 35 45 55 65

sh
a

re
d

 p
a

ir
s

p
e

r
1

0
0

0
0

 p
a

ir
s

kmer size

shared pairs

shared pairs

The Clustering Based Assembly

of two short reads, and it also counts

reads. If two short reads share more than 20 k

same gene.

If one group has five or more short reads shar

group’s short reads, the clustering process will merge the two

Figure 5. Cluster-based algorithm can be used

The clustering algorithm

the de Bruijn graph aligns two short reads

Figure 6. The de Bruijn algorithm Chimeric Edge

The clustering process gives a more accurate

problem, and it will divide different non

is why the clustering process reduces error

13

Based Assembly method also uses k-mer to judge the relationship

counts the number of k-mers overlapped between two short

more than 20 k-mers, it means they may come from

or more short reads sharing 14 to 20 k-mers with another

s short reads, the clustering process will merge the two groups together (Figure 5)

based algorithm can be used to avoid Chimeric Edge.

algorithm is different from the de Bruijn graph algorithm

two short reads when they share only one k-mer (Figure 6)

The de Bruijn algorithm Chimeric Edge.

process gives a more accurate solution for the Chimeric Edge

problem, and it will divide different non-relationship genomes into different groups. That

process reduces error rate of contigs mapping.

relationship

een two short

come from the

mers with another

(Figure 5).

graph algorithm in that

(Figure 6).

solution for the Chimeric Edge

to different groups. That

14

This research was completed by implementing the following three major steps:

1. The program designed a hash table for the grouping method.

2. The program clustered short reads into groups.

3. The program ran Oases parallel for each group and then merged all Oases’

results into the final result.

The clustering algorithm plus the sequence assembly method provides a more

accurate assembly result when compared to directly using the sequence assembly

methods. This model can be collated with all current de novo assembly methods.

15

CHAPTER III – METHODS

In this chapter, we present the basic ideas of the clustering-based assembly (CBA)

method. The program was implemented in the C++ language. CBA has two major steps:

clustering and alignment. In this thesis, we focus on how to cluster short reads. We use the

current prominent software Oases to align each clustering.

3.1 Method Overview

The CBA algorithm first splits short reads to k-mers and then uses a MurmurHash

function (Appleby, 2011) to transfer k-mer into hash value. The program creates a hash

table, which size is 2^32 to store k-mer’s hash values. The program creates a hash map,

which is mapped to the hash table and stores short reads’ index that share the same k-mer.

Secondly, based on the hash table and hash map, CBA clusters all short reads into

different groups. Then CBA runs Oases in parallel for each group. Finally, CBA uses a

single thread to merge all result files generated by Oases into a new contigs file. The

CBA process is shown on the right side of Figure 7.

16

Figure 7. CBA process and Oases process.

3.2 Clustering

Clustering is the core of our program. The idea of clustering is simple: It

merges overlapped short reads in one group. However, there are many steps to get to

the finished clustering process. The major steps include: hash table, hash map,

clustering, and merging groups. The hash table is an array. It stores the indexes of the

hash map into cells. Those cells’ indexes represent the k-mers’ hash value, and the

k-mers’ hash value are calculated by hash function. The hash map is also an array, with

each cell storing short reads that map to a specific k-mer. Because the hash table is a

discrete structure, it may have many empty cells. If we directly store all short reads

17

information in the hash table, those empty cells may cost our system too much memory.

That is why the hash map is needed: The hash map is a continuous structure; all data

will be stored one by one with no skipping. The clustering process clusters short reads

into groups. Finally, the clustering process will merge together unstable groups that

have weak linkages.

3.2.1 Hash Table and Hash Map

The hash map stores the information of the short reads that share a specific k-mer.

Whenever the program finds a new k-mer, the hash map will assign a new cell for storing

all short reads mapping to this k-mer. The hash table stores only integer numbers, which

represent the hash map’s index. The hash table is used to located different k-mers. In other

words, when the program finds a new k-mer, that k-mer will be transferred into a hash

value by the hash function, and the hash map will also create a new cell for the new k-mer.

The index of the new cell in the hash map will be stored in a cell of the hash table; that

location or index is the hash value. We explain the relationship of the hash table and hash

map in Figure 8.

Figure 8. Relationship between the hash table and the hash map.

In Figure 8, we show how

beginning, both the hash table and hash map are empty.

values of hash table to −1 and initial

variable “counter” to 0. In Step

Based on this value, we can loca

of “counter” into hash table cell

adding the k-mer into hash map cell, and the cell’s index is

the program makes the “counter”

table cell “2” has a value “0,” and

Step B. After the program runs S

“5,” the hash map inserts a new structure to cell

For memory saving, we transfer a,t,g,c to 00,11,10,01 binary

18

Relationship between the hash table and the hash map.

, we show how the hash table links to the hash map. In Step

hash table and hash map are empty. The program initialize

initializes all cell values of hash map to NULL, set

tep B, the program transfers a k-mer to hash value as

ased on this value, we can locate the hash table cell position, and we then inser

into hash table cell “2,” which is “0.” The program also inserts a structure

mer into hash map cell, and the cell’s index is the value of “counter

” increase by 1. Right now, “counter” is 1. Finally,

and the hash map cell “0” stores a structure. Step C repeat

Step C, the hash table owns two values in cell “

a new structure to cell “1,” and the variable “counter”

e transfer a,t,g,c to 00,11,10,01 binary numbers, than transfer binary

tep A, at the

izes all cell

of hash map to NULL, setting the

mer to hash value as “2.”

then insert the value

inserts a structure

counter.” Finally

Finally, our hash

stores a structure. Step C repeats

“2” and cell

 becomes 2.

, than transfer binary

numbers to strings (8 binary becomes

the hash map. For example, short read

then the binary bits are converted

is stored as character “=” into the

“zipping string.”

We have two structures for

Figure 9. Structure smodel.

Figure 10. Structure mg.

Whenever a new short read

For each k-mer, the program first check

We can have three situations:

In the first case, as Figure

program will create a new cell in

smodel,” and the program puts the short reads index in the srs variable

the program will store the new cell’s index to

19

comes 1 byte 1 character). The program stores the string

. For example, short read “ATTC” will transfer to binary bits “00111101

converted to the character “=.” Finally, the short read string

the hash map, saving 75% of memory. We call this process

We have two structures for the hash map: smodel and mg:

short read comes in, the program will split it into many k

program first checks whether the k-mer already exists in the

Figure 8 shows, if the k-mer is not stored in the hash

program will create a new cell in the hash map. The new cell is initialed as “

and the program puts the short reads index in the srs variable. As the same time,

program will store the new cell’s index to the hash table.

the string in

00111101,” and

short read string “ATTC”

this process a

to many k-mers.

the hash table.

hash map, the

“s structure

As the same time,

Figure 11. Construction of the hash map: no collision

The second case is shown

map. The program will find the index of

directly goes to the cell of the hash map th

structure. The program creates a new mg structure

Finally, the program links the new mg structure to the srs

20

Construction of the hash map: no collision.

n in Figure 11, when the k-mer is already stored

rogram will find the index of the hash map by searching the hash table

hash map through the index. The cell already has

program creates a new mg structure for storing the new short read

the new mg structure to the srs variable in the cell.

is already stored in the hash

hash table, and

has an smodel

for storing the new short read’s index.

Figure 12. Construction of the hash map: collision.

The third case is shown in

the k-mer’s hash value collides with other k

hash map as we did in the second case, and then we create a new smodel structure to store

the new k-mer and short reads that

the cell in the hash map.

The hash table is 2^32 “long long int

up a lot of memory because the map stores the smodel structures, and the smodel structure

is a two-dimension link list. “Long long int

bytes. For one smodel structure,

have 4^45 different k-mers. At most

21

Construction of the hash map: collision.

in Figure 12, if the k-mer is not stored in the hash

s with other k-mer’s hash value. We first find the cell in

second case, and then we create a new smodel structure to store

that belong to the k-mer. Finally, we link the new smodel to

3.2.1.1 Memory Usage

long long int” array, it will take 32GB. The hash

lot of memory because the map stores the smodel structures, and the smodel structure

Long long int” style costs 8 bytes, and all pointers

 we need at least 24 bytes. If the k-mer size is 45, we may

mers. At most, we may need 4^45*24 bytes space. That

hash map but

We first find the cell in the

second case, and then we create a new smodel structure to store

the new smodel to

ash map takes

lot of memory because the map stores the smodel structures, and the smodel structure

pointers cost 4

mer size is 45, we may

we may need 4^45*24 bytes space. That amount of

space is impossible to be held by any machine.

approximate 14,000,000 k-mers, and

The hash table, whose size is 2^32

Figure 13. MurmurHash function.

Because one k-mer has two directions, we choose the higher hash value as the

k-mer’s hash value.

3
 10,000,000 short reads data.

22

ld by any machine. In actuality, in typical data size

mers, and a hash map takes only 200GB.

3.2.2.2 Time Efficiency

size is 2^32, is generated by the MurmurHash function

mer has two directions, we choose the higher hash value as the

in typical data size,3 we have

function.

mer has two directions, we choose the higher hash value as the

Figure 14. The way to choose a k-mer’s hash value.

Figure 14 shows how to choose

double-stranded helices, when DNA is transcribed into RNA, the RNA may hav

directions. As Figure 14 shows, string

same k-mer from different directions. Because the two strings indicate the same k

only need one hash value for that

we may get two hash values. In this case

and the string “CTGGCAAT” transfer

the k-mer’s hash value. That means we will

Normally, the search time complexity

23

mer’s hash value.

shows how to choose a k-mer’s value. Because most DNA molecules are

, when DNA is transcribed into RNA, the RNA may hav

shows, strings “ATTGCCAG” and “CTGGCAAT” represent

mer from different directions. Because the two strings indicate the same k

at k-mer. We run both strings through the hash function, and

. In this case, the string “ATTGCCAG” transfers into

transfers into value 850. We will choose the greater one as

That means we will calculate hash values twice for each k

search time complexity of the hash table is close to O(1)

Because most DNA molecules are

, when DNA is transcribed into RNA, the RNA may have two

represent the

mer from different directions. Because the two strings indicate the same k-mer, we

rough the hash function, and

to value 764,

to value 850. We will choose the greater one as

each k-mer.

is close to O(1), but it is

really based on how many different input string

hash value. If two k-mers’ hash value

the two different k-mers. When the

the hash table, it will go to the cell of hash map. Then the program find

the link list. It has to compare the

by one, to find the k-mer’s position

complexity would be greater than O(1).

The clustering process is

“k-mer->short reads” is a link list array and

k-mer. The index of the array represent k

“glink.” The glink has two variables

the k-mer, the other pointer variabl

short reads’ indexes that map to the

list array and stores all k-mers’ indexes

represents k-mers’ indexes, and each cell has a

variables: The k-mer variable stores

other pointer variable points to the n

indexes in the same short read.

24

really based on how many different input strings via hash function transfer into

’ hash value have a collision, we have to make a link list to store

. When the program searches a k-mer with a collision hash value in

cell of hash map. Then the program finds the cell

the current k-mer with the stored k-mers in the link list

s position. In this case, our hash table and hash map’s time

than O(1).

3.3 Clustering Process

is based on the hash map. We have two tables: The table of

is a link list array and stores all short reads’ indexes mapping to each

The index of the array represent k-mer’s index, and each cell has a structure called

two variables: Variable “seq” stores a short read’s index

mer, the other pointer variable points to the next glink structure, which stores other

map to the same k-mer. The “short read->k-mers” is also a link

indexes mapped to each short read. The index of the array

s’ indexes, and each cell has a structure called “klink.” There are two

stores the k-mer’s index that exists in the short read,

to the next “klink” structure, which stores other

to the same

collision, we have to make a link list to store

collision hash value in

the cell that stores

the link list, one

. In this case, our hash table and hash map’s time

The table of

mapping to each

structure called

 mapping to

, which stores other

is also a linked

. The index of the array

here are two

short read, and the

stores other k-mers’

25

Figure 15. Structure glink and klink.

Based on “short read ->k-mers” array, the program can find all k-mers from a short

read. For each k-mer, the program checks the “k-mer->short reads” array to find all other

short reads sharing the same k-mer with the current short read. We use three cut-off values

to control how the short reads are grouped. The first value is called “ori-cut,” which is the

number of k-mers shared between two short reads. If two short reads share a number of

k-mers less than the ori-cut value, the two short reads will not be thought to have any

relationship by the program. The second value is called “max-cut,” which means if two

short reads share a number of k-mers that is over the max-cut value, then the program will

put the two short reads in one group. The last value is called “ave-cut”; it is used for

merging small groups. If two groups share a number of weak linkage short reads pairs,4

and this number is greater than ave-cut, then the program will merge the two small groups

together.

4
 Paired short reads in different groups that share the number of k-mers less than max-cut and greater than

ori-cut.

Figure 16. Statistic result of number

We decide the ori-cut valu

how many k-mers short reads are

share the same number of k-mers

magic number because the number

quickly. We can use 14 as a cut-

14 k-mers. That also decreases the number

In the grouping process, the

length of the array is the number

If the short read that share

those short reads Strong Linked (SL)

26

number of sequences based on different cut-off values.

cut value based on statistic results. In Figure 16, x-

are shared, and y-axis means the number of short reads

mers, and k-mer length is 31. This graph shows that

number of short reads sharing from 12 and 14 k-

-off number and discard short reads that shared

the number of short reads.

process, the program creates a pointer array, called “sr_array

number of short reads, and each cell represents a short read.

shares a number of k-mers is over the max-cut val

Strong Linked (SL) short reads with each other.

-axis means

of short reads that

that 14 is a

-mers drops

shared fewer than

sr_array.” The

short read.

cut value, we call

We have two situations in the grouping process:

Figure 17. The method to cluster SL short reads.

If the program finds some SL short reads

links them together to a new node

SL short reads linked with each other

all red cells to the node. In this case

27

in the grouping process:

to cluster SL short reads.

some SL short reads linked with each other, then t

them together to a new node and generates a small tree. In Figure 17, all red cells

with each other, and then the program will create a new node and link

all red cells to the node. In this case, the program considers them one group.

he program

, all red cells are

program will create a new node and link

Figure 18. The method to link two groups together.

If there exists different groups,

from the yellow group is a SL

from the yellow group is a SL short read

program will merge the three groups

The program goes through the

the grouping process, all short reads are grouped. Some groups are really

5 short reads. We will regard those small groups

28

The method to link two groups together.

different groups, the program will check these groups. One short read

 short read linked with the red group. Another short read

from the yellow group is a SL short read linked with the blue group. In this case,

groups together (Figure 18).

ough the whole sr_array and runs the two cases above.

all short reads are grouped. Some groups are really small

those small groups as useless and discard them.

3.4 Group Merging

ne short read

nother short read

In this case, the

above. After

small—only 1 to

We called paired short reads in different groups

than max-cut and greater than ori

pair must differ from other WL

structure array. We create the structure called

variables store the WL pair:

Figure 19. Structure halfc.

After the grouping process, we have a structure called

between short reads and groups:

Figure 20. Structure gp_rcd.

Considering some transcripts

reads in this transcript may align

“ave-cut,” which represents how ma

number of WL pairs in two groups

29

We called paired short reads in different groups that share a number of

cut and greater than ori-cut as Weak Linkage (WL) pair. The short reads in a

WL pairs’ short reads. The program stores WL

structure called “halfc” that includes two variables;

grouping process, we have a structure called “gp_rcd.” It offers a mapping

transcripts have a low number of short reads, this means

reads in this transcript may align to many groups with a weak connection. We set a

how many WL pairs are shared between two groups.

pairs in two groups are greater than ave-cut, we will merge the two

of k-mers less

he short reads in a WL

WL pair in a

variables; the two

It offers a mapping

means short

e set a value,

shared between two groups. When the

we will merge the two groups.

Figure 21. Example of merging two groups.

In Figure 21, all WL pairs

number for every short reads in

WL pairs between the two groups

two group or will keep both groups

After we get every group, we use OpenMP

in parallel. In Figure 22, for each thread

group each time and stores the Oases assembly method

folder. When the results are ready

final contigs file (contigs.fa).

30

merging two groups.

pairs are stored in structure halfc. The gp_rcd gives

number for every short reads in WL pairs. Then the program will calculate the

two groups. If the value is greater than ave-cut, we will merge the

groups.

3.5 Alignment

t every group, we use OpenMP to run the Oases method for each group

or each thread, we create a buffer folder. Each thread handle

Oases assembly method result file (transcript.fa) in

ready, we use a single thread to merge all results files in

rcd gives a group

the number of

we will merge the

Oases method for each group

we create a buffer folder. Each thread handles one

in its buffer

to merge all results files into the

Figure 22. Alignment process.

Figure 23. OpenMP barrier.

31

32

CHAPTER IV – RESULTS

This chapter presents the results of testing our program using various types of data

and then compares them with other assembly algorithms. In the results, the most important

comparisons are short reads mapping rate, contigs mapping rate, and recovery rate. The

short reads mapping rate shows how many short reads are used for assembly. Contigs

mapping rate shows how many contigs are valid, which can be mapped to the template.

Recovery rate shows how many nucleotides in the templates are covered by contigs. Those

three statistics indicate how well the assembly methods work.

4.1 Testing Data

We use ERCC-BGI data, human Chromosome 22 real data, and human

Chromosome 22 simulation data to test the CBA-based-on-Oases program. We compared

the CBA-based-on-Oases program with Oases, Trinity, ABySS, and Mira. All experiments

were run with Velvet version 1.2.03, Oases 1.2.03, ABySS 1.3.3, Mira 3.0.4.1, and Trinity

2012-10-05.

4.1.1 ERCC Data

To control the quality of RNA quantification, a common set of external RNA

controls was developed by the External RNA Controls Consortium (ERCC), an ad-hoc

group of academic, private, and public organizations hosted by the National Institute of

Standards and Technology (NIST). Approximately 90 companies, universities, and federal

laboratories in the ERCC are developing materials and tools that can be used to benchmark

33

(Baum, 2006). Therefore, ERCC data can be used to calibrate bioinformatics methods in

analyses of RNA-Seq data.

Our ERCC data come from Beijing Genomics Institute (BGI). We used ERCC data

to test CBA and other assembly methods. Our ERCC data has 92 transcripts. We got

220,000 short reads with 50 bp in length from BGI (Introduction to BGI-Hong Kong, 2013).

Not all 92 transcripts contained mapped short reads. To reduce noise and variability, we

removed all transcripts with fewer than 1k short reads mapped and also removed their

corresponding short reads from the raw data. Finally, we had 216k short reads and 16

transcripts.

We use Bowtie 2 (Ben Langmead, 2011) to calculate mapping rates: short reads

map to contigs, and recovery rate: nucleotides cover to transcripts. We use ABySS-fac

(Simpson et al., 2009) (Simpson, Kim, Jackman, Schein, Jones, & Birol, 2009) to calculate

N: how many contigs, and N50: average length of contigs. We randomly collected short

reads from raw data for each number 3 times and tested them.

34

Figure 24. ERCC-BGI data test results.

35

In Figure 24, the x-axis indicates the number of short reads collected from the

ERCC-BGI short reads file. The y-axis shows our statistical measures.

Figure 24A shows N value, which indicates the number of contigs for each

assembly method. We expect N will be closer to the number of transcripts, which is 16.

Mira has highest value at 70 contigs, when the number of short reads was low. As the short

reads number increased, Mira and CBA’s N values dropped to about 25—but still higher

than other de Bruijn graph-based programs. The N values of Oases, ABySS, and Trinity

were very close to the expected value.

Figure 24B shows the short reads mapping rate, which indicates how many short

reads are overlapped to contigs. ABySS mapped only 83% short reads to contigs at the

beginning. As short reads numbers increased, ABySS’s mapping rate was increasing but

was still lower than the other methods. Mira and Trinity were stable and almost mapped all

short reads to contigs. CBA and Oases were also doing a good job here, with a 98%

mapping rate.

Figure 24C shows the recovery rate, which indicates how many nucleotides in the

template are covered by contigs. When the number of short reads was low, all methods had

recovery rates lower than 60% except Mira, which was 80%. But as short reads numbers

increased, all method recovery rates were higher than 80%—especially Mira, Trinity, Oases

and CBA, with recovery rates higher than 90%, a very high value.

CBA did not outperform other assembly methods for the ERCC tests because the

ERCC templates have few overlapped nucleotides, and de Bruijn graph-based assembly

methods would not have many Chimeric Edges. Therefore, CBA showed little difference

36

against other assembly methods in short reads mapping rate, contigs mapping rate, and

recovery rate.

4.1.2 Human Chromosome 22 Simulation Data

Simulated data is generated from a genomic region in human chromosome 22 that

has 5,000,000 nucleotides and 337 transcripts. The simulation program randomly generates

100 to 1,000 short reads for each transcript, and short reads randomly generate a 0.2% error

rate. We also randomly generated short reads from transcripts for each number 3 times and

tested them.

37

Figure 25. Human chromosome 22 simulation data test results.

In Figure 25, the x-axis indicates the number of short reads generated from human

chromosome 22 transcripts file. The y-axis shows our statistical measures.

Figure 25A shows the number of contigs. Real_N is our expected value, which

equals 337. Oases showed a very good and stable curve, close to value 337. CBA and

ABySS had very high values at the beginning. The CBA curve was dropping to 500 and the

ABySS curve increased to over 1,000 when the number of short reads in each transcript

38

began increasing. Trinity and Mira both had an N value of 500 when the short reads

number was low. Th Trinity curve increased to 700 and Mira kept stable at 500, when the

short reads number was increasing.

Figure 25B shows N50, which means the average length of contigs. This is a very

clear graphic. Trinity and Oases had a higher N50 value, both generating longer contigs,

with an average length of 3400 bp. CBA and Mira generated medium-length contigs,

average length of 2400 bp. ABySS generated very short contigs, average length only 100

bp.

Figure 25C shows the short reads mapping rate. CBA had the worst short reads

mapping rate, 83% when the short reads number was low. As short reads numbers

increased, CBA had the best short reads mapping rate, 99%. Trinity and Oases’ short reads

mapping rate were close to 95%. ABySS’s short reads mapping rate was lower than 90%.

Figure 25D shows the contigs mapping rate. Mira and ABySS’s contigs mapping

rates were stable and close to 100%. Next highest was CBA, which had about 95% contigs

mapping rate. Oases and Trinity had a little bit lower contigs mapping rate, about 80%.

Figure 25E shows the recovery rate. When short reads numbers were low, all

methods’ recovery rates were lower than 50%. As short reads numbers increased, Trinity’s

recovery rate increased fast, finally at 72%. Oases’ and CBA’s recovery rate increased to

65%. Mira’s and ABySS’s recovery rate stayed lower than 50%.

Results show CBA had the best short reads mapping rate, better contigs mapping

rate, and better recovery rate. Oases had better N and N50 value. Trinity had the best

recovery rate but had the worst contigs mapping rate. ABySS and Mira were not doing a

39

good job in this test. Even Trinity had a higher recovery rate, but its contigs mapping rate

was too low. In Figure 25A and B, we can see that Trinity generated more contigs than

others except for ABySS, and its contigs average length was high, even higher than

template average length. That indicated lots of contigs Trinity generated but cannot map to

the template, but it still had some long contigs mapped to the template, which is why

Trinity had a high recovery rate but low contigs mapping rate. ABySS had the highest

contigs mapping rate, but its short reads mapping rate and recovery rate were both low. In

summary, CBA had the best result in Chromosome 22 simulation test.

4.1.3 Human Chromosome 22 Real Data

Chromosome 22 was the first human chromosome to be fully sequenced,

representing between 1.5–2% of the total DNA in cells. We randomly collect 200k to 2m

short reads from original chromosome 22 file, which has 24,388,258 short reads. We used

those short reads to test CBA, Oases, Mira, and Trinity. The results showed N, N50, short

reads mapping rate, contigs mapping rate, and recovery rate. We randomly collected short

reads from raw data for each number 3 times and tested them.

40

Figure 26. Human chromosome 22 real data test results.

41

In Figure 26, the x-axis indicates the number of short reads, collected from human

chromosome 22 real short reads file. The y-axis shows our statistical measures.

Figure 26A shows the number of contigs. Real_N shows transcripts number, which

is our expected value. When the short reads number increased to 5,000,000 per transcript,

Mira had 30,000 contigs, higher than the expected value 6 times. This value was not

acceptable. The next highest N value was CBA, which was 3 times higher than the

expected value.

Figure 26B shows N50. Oases has the highest value, which means Oases generated

the longest contigs, average length was 1200 bp. CBA and Trinity also generated long

contigs when the short reads number was increasing. Mira had stable low N50 value,

contigs, and an average length was 420 bp. This value was not acceptable.

Figure 26C shows a short reads mapping rate. At the beginning, Mira and Trinity

had the highest short reads mapping rate. The graphs show their short reads mapping rate at

greater than 70%. As the short reads numbers increased, Mira’s short reads mapping rate

was going down, but Trinity’s short reads mapping rate was going up. Finally, Trinity had

the highest short reads mapping rate, 90%. Mira and other methods only had 70–75% short

reads mapping rate.

Figure 26D shows the contigs mapping rate. When the short reads number was low,

Trinity and CBA had 83% contigs mapping rate, and Mira’s and Oases’ contigs mapping

rate were lower than 75%. As the short reads numbers increased, Trinity’s contigs mapping

rate was going down, and CBA’s and Oases’ contigs mapping rate were going up. CBA and

Oases had 85% contigs mapping rates when the short reads number was 5,000,000. Mira

42

kept a low contigs mapping rate, lower than 70%, the worst one.

Results show that CBA had the best contigs mapping rate. Oases had better N and

N50 value, which means Oases generated longer contigs. Trinity had the best short reads

mapping rate. Mira showed the worst results in this test. Trinity had the best short reads

mapping rate, but its contigs mapping rate was low. That shows a classic de Bruijn graph

algorithm error. High short reads mapping rate indicate de Bruijn graph assembles short

reads when they share one k-mer, so almost all short reads can map to contigs. But some of

those contigs may generate by Chimeric Edges, which cannot map to the template. That is

why Trinity had a low contigs mapping rate. CBA had the second-highest short reads

mapping rate and kept the highest contigs mapping rate. In conclusion, CBA was the best

algorithm in the Chromosome 22 real test.

Mira is the only one that uses the overlap graph-based algorithm. In the ERCC test,

Mira did a good job when compared with other de Bruijn graph-based algorithms. But in

the human Chromosome 22 test, Mira did not have good results, which means Mira cannot

solve complex gene structures. Further, the overlap graph-based algorithm usually runs

slowly. Table 1 shows the time cost for each assembly method when the short reads number

was 5,000,000 in the human Chromosome 22 real test. Mira’s running time was twice that

of CBA’s and 10 times longer than other de Bruijn graph-based assembly method.

43

Table 1

Running Time Comparison of All Assembly Methods

Short Reads Number /Time
Consume (Minutes)

CBA Oases Trinity ABySS Mira

5,000,000 615 40 150 15 1203

44

CHAPTER V – DISCUSSION

We have developed the Clustering Based Assembly (CBA) method, a novel

approach that uses clustering and de Bruijn graph-based algorithm (Oases) for de novo

assembly of non-model species, such as plants, yeasts, and animals such as the snapping

turtle.

The ori-cut value, max-cut value, and ave-cut value are used in the program to

control how to create groups. For example, in the human chromosome 22 real test, based

on Figure 16, the x-axis means how many k-mers short reads are shared, and the y-axis

means the number of short reads that share the same number of k-mers. We tested

chromosome 22 real data for different k-mer size. There is a big gap in the frequencies of

short reads between 12 and 14 (changing more than 2 times), implying most of the

k-mer–sharing k-mers below 14 are random noise. We used 25 as the max-cut value

because it gave the lowest error rate after testing 20 to 30 in all ERCC and human

chromosome studies. Finally, we set ave-cut value as a control value for merging groups.

We tested number 2 and number 5 as ave-cut values in all ERCC and human chromosome

study, and the simulation study shows number 2 gave the highest mapping rate. If two or

more WL pairs connect two groups, we will then consider whether the two groups should

be merged. We require each group to contain 5 or more short reads.

CBA is an accurate assemble algorithm, but grouping is time consuming. Using

openMP can make the programs run in parallel, which saves running time. Another way to

save time is using a hash table as the searching method. As we show

table’s time complexity is close to O(1)

function. We choose MurmurHash function in our program. Murmur

of hash function used by Google

MurmurHash has a faster computing speed and lower collision hash value.

Table 2

Comparison of MurmurHash Function with Others

In Table 2 (Sina, 2012),

accepted hash functions. Speed

10,000 times with 1,000,000 different

values hash functions generated.

items. As we know, a hash table is memory consuming,

hash table to a hash map to save memory.

structure that means memory will not

solution to create a big block memory pool use

45

hash table as the searching method. As we showed in chapter 3, hash

table’s time complexity is close to O(1). It is still important to choose the right

ash function in our program. MurmurHash function is a kind

of hash function used by Google’s search engine. Compared with other hash fu

faster computing speed and lower collision hash value.

Comparison of MurmurHash Function with Others in Speed and Collision Field

(Sina, 2012), the author compared MurmurHash function with other

Speed analysis indicates how much time is used when run

different words. Collided item indicates how many collision

hash functions generated. MurmurHash has the highest speed and zero

hash table is memory consuming, so our program maps

save memory. Further, CBA uses a discrete memory store

memory will not be easy to release. A Boost pool algorithm give

solution to create a big block memory pool used for assigning single discrete memory

in chapter 3, hash

important to choose the right hash

function is a kind

with other hash functions,

ash function with other

when running

how many collision

zero collided

our program maps a discrete

discrete memory store

Boost pool algorithm gives a

single discrete memory

46

block. When we need to release memory, we remove only the memory pool, which helps

save time and memory. Even with all the optimizations shown, CBA still used more than

200GB in memory. It cannot be used in a personal computer.

CBA cannot work for two transcripts that overlap a long fragment of nucleotides. If

the length of the overlapped fragment is longer than the length of the short read, it means

short reads from the two transcripts share almost all k-mers in the critical area. The cluster

process of CBA will think all short reads from the two transcripts have strong links. Finally,

CBA will cluster them into one group. To our knowledge, no algorithm can split those

transcripts that share long fragment nucleotides. But CBA is better than any other program

in the condition of overlapping transcripts.

CBA has another limitation: Since CBA is memory constrained; it cannot run on a

personal computer. We used 40 threads parallel run CBA, so CBA would run better in

multiple core servers.

Currently, we use Oases as the CBA alignment method because Oases performs

well overall by adapting to varying conditions and is superior overall compared to other

alignment methods (Schulz et al., 2012). (Schulz, Zerbino, Vingron, & Birney, 2012)

In the future, we will develop a new alignment algorithm to work with the grouping

algorithms. We will try to discover a way to assemble short reads more accurately

compared to the de Bruijn graph-based algorithm.

47

CHAPTER VI – CONCLUSIONS

The fast development of next-generation sequencing presents a major challenge to

bioinformatics analysis. One of the underdeveloped areas in bioinformatics is de novo

assembly of RNA-Seq data. Although many assemblers have been developed for

next-generation sequencing data, few can provide desired accuracy as well as maintain

satisfactory computing speed. We set out to develop a novel assembler, taking two steps to

assemble RNA-Seq short reads: clustering and alignment. By combining a clustering step

with de Bruijn graph-based algorithm, we targeted minimizing the error rate of sequence

alignments.

Our results show that CBA is the best assembler in overall performance when

comparing with other de Bruijn graph and overlap graph-based algorithms in various types

of data. For ERCC data, all assemblers gave acceptable performance. This is because

ERCC templates have few overlapped nucleotides, and even de Bruijn graph-based

assembly methods would not generate many incorrect contigs. The human genome,

however, has long transcripts, and there exists many overlapped fields between each

transcript. As the results for human chromosome 22 simulated and real data illustrate, the

de Bruijn graph-based assembly methods had high error rates, as shown by the low short

reads mapping rates, contig mapping rates, and recovery rates. For the human data, CBA

consistently had high short reads mapping rates, contig mapping rates, and recovery rates.

It was expected that an overlap graph-based assembler, such as Mira, would have a high

48

accuracy rate for human data. However, our tests failed to show that. Actually, Mira

performed rather poorly on human data. Furthermore, when comparing the computational

time for all these methods, Mira took at least twice the running time than did other methods.

Therefore, an overlap graph-based algorithm is not suitable for assembling NGS sequences.

Based on the test results, we proved our CBA method is valuable in RNA-Seq

applications. CBA not only provides a high accuracy when assembling RNA-Seq data but

also gives acceptable computational speed. We expect the CBA method will be widely used

for RNA-Seq studies. We look forward to developing upgraded versions of CBA by

optimizing the alignment step.

49

REFERENCES

2014 NGS field guide – Table 2 – Run time, reads, yields, and costs. (2014). Retrieved April

30, 2014, from http://www.molecularecologist.com/next-gen-table-2-2014/

Adams, J. U. (2008). Transcriptome: Connecting the genome to gene function. Nature

Education, 1(1), 195.

Appleby, A. (2011). MurmurHash. Retrieved October 3, 2013, from

https://sites.google.com/site/murmurhash/

Baum, M. (2006). ERCC to begin test rounds for final RNA reference set. NIST. National

Institute of Standards and Technology. Retrieved October 22, 2013, from

http://www.nist.gov/mml/bbd/cell_systems/ercc_091406.cfm

Ben Langmead, S. L. (2011). Fast gapped-read alignment with Bowtie 2. Nature Methods,

1: 357–359.

Birol, L., Jackman, S. D., Nielsen, C. B., Qian, J. Q., Varhol, R., Stazyk, G., et al. (2009).

De novo transcriptome assembly with ABySS. Bioinformatics, 5(21): 2872–2877.

Chevreux B, P. T. (2004). Using the miraEST assembler for reliable and automated mRNA

transcript assembly and SNP detection in sequenced ESTs. Genome Research, 14(6),

1147–1159.

Costa, V., Angelini, C., Feis, I., & Ciccodicola, A. (2010). Uncovering the complexity of

transcriptomes with RNA-Seq. Journal of Biomedical Biotechnology. doi:

10.1155/2010/853916

50

de Bruijn, N. G. (1946). A combinatorial problem. Koninklijke Nederlandse Akademie v.

Wetenschappen , 758–764.

Faghihi, M. A., & Wahlestedt, C. (2009). Regulatory roles of natural antisense transcripts.

Nature Reviews: Molecular Cell Biology, 10(9), 637–643.

Grabherr MG, H. B.-T. (2011). Full-length transcriptome assembly from RNA-Seq data

without a reference genome. Natural Biotechnology, 29, 644–652.

Hoppman-Chaney, N., Peterson, L. M., Klee, E. W., Middha, S., Courteau, L. K., & Ferber,

M. J. (2010). Evaluation of oligonucleotide sequence capture arrays and comparison

of next-generation sequencing platforms for use in molecular diagnostics. Clinical

Chemistry, 56(8), 1297–1306.

Introduction to BGI-Hong Kong. (2013). Retrieved April 30, 2014, from

http://www.genomics.cn/en/navigation/show_navigation?nid=4179

Manteniotis S, L. R. (2013). Comprehensive RNA-Seq expression analysis of sensory

ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One,

8(11), e79523.

Marguerat, S., & Bähler, J. (2010). RNA-Seq: From technology to biology. Cellular and

Molecular Life Sciences, 67(4), 569–579.

Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: Advances, challenges and

opportunities. Natural Reviews. Genetic, 12(2), 87–98.

Park, P. J. (2009). ChIP-Seq: Advantages and challenges of a maturing technology. Natural

Reviews. Genetics, 10(10), 669–680.

51

Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences U S A, 98(17),

9748–9753.

Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al. (2010).

Analysis of genetic inheritance in a family quartet by whole genome sequencing.

Science, 328(5978), 636–639.

Sadava, D., Hillis, D. M., Heller, C. H., & Berenbaum, M. (2012). Life: The science of

biology. New York: W. H. Freeman.

Schulz, M. H., Zerbino, D. R., Vingron, M., & Birney, E. (2012). Oases: Robust de novo

RNA-Seq assembly across the dynamic range of expression levels. Bioinformatics,

28(8), 1086–1092.

Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26,

1135–1145.

Simpson, J. T., Kim, W., Jackman, S. D., Schein, J. E., Jones, S. J., & Birol, I. (2009).

ABySS: A parallel assembler for short read sequence data. Genome Research, 19(6),

1117–1123.

Sina. (2012, December 17). MurmerHash [Web log comment]. Retrieved October 3, 2013,

from http://blog.sina.com.cn/s/blog_ab30208a010154ec.html

Turnpenny, P. D., & Ellard, S. (2007). Emery’s Elements of medical genetics. Cambridge,

UK: Cambridge University Press.

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for

transcriptomics. Natural Reviews. Genetics, 10(1), 57–63.

52

Wu, S., Zhu, Z., Fu, L., Niu, B., & Li, W. (2011). WebMGA: A customizable web server for

fast metagenomic sequence analysis. BMC Genomics, 12:444.

Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome Research, 18(5), 821–829.

Zhong Wang, M. G. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Natural

Reviews. Genetics, 10(1), 57–63.

	A Novel Assembly Algorithm That Optimizes For RNA-Seq Data
	Recommended Citation

	Microsoft Word - supp_F19A7180-D6E3-11E3-BE44-5158EF8616FA.docx

