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ABSTRACT

The advent of next-generation sequencing (NGS)n@olgy has shown unprecedented
promise for accurately identifying and quantifyiggnomic variants for living organisms.
For species whose genome sequences are unknowfirstretep of RNA sequencing data
analysis is to assemble all short reads. The dérBgmaph-based algorithms, such as
Oases, are usually used for short reads assemhigstive the issue of computational
complexity. However, de Bruijn graph-based assersbiermally generate high error rates
when assembling RNA-Seq data. We have developa/el assembly algorithm that can
be used jointly with any other assembly methodsRIA-Seq short reads. The proposed
method, clustering-based assembly (CBA), aims mb¢ tb maintain computational and
memory efficiency but also improve the assemblyueacy in our simulation study. We
tested CBA using ERCC RNA-Seq data, simulated @fat@m Chromosome 22, and real
human RNA-Seq data. The results showed that ourritign was more accurate in
comparison with other de novo methods in termshoftsreads mapping rate, recover rate,

and contigs mapping rate.
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CHAPTER | — INTRODUCTION

1.1 Introduction

A major challenge in the new era of genomics redeas to develop efficient
bioinformatics tools to cope with rapidly growinglogical data. In bioinformatics, DNA
sequence assembly refers to aligning and mergagnfents of shorter DNA sequences to
reconstruct the original sequence. This is necgsaarDNA sequencing technology cannot
read whole genomes at one time but instead readB praces of between 20 and 1,000
bases, depending on the technology used. Sequessembly of next-generation
sequencing data is such a computational intensee that sometimes requires months of
computation time using a mid-size server computer.

In this thesis, we present the development of a assembly method called
Clustering Based Assembly (CBA). This program fedént from conventional assembly
programs in that it clusters the short reads liested on genomic positions. It divides input
fragments (short reads) into pieces of the samgthenve call those “k length pieces” or
“k-mer.” The program then uses a hash table tocatdi all k-mers. CBA clusters short
reads to many groups using this hash table. Alitsteads in the same group will share a
number of k-mers with each other. Finally, the papg uses the current prominent

assembly method to align the short reads to tlggnadi sequence for each group. We tested



CBA and other assembly methods with real data amdilation data. CBA improves
computational efficiency and assembly accuracyofih.

1.2 Background

1.2.1 DNA Sequencing

In general, DNA sequencing is used for determining order of the nucleotide
bases—adenine (A), guanine (G), cytosine (C), d&ydhine (T)—in a molecule of DNA.
DNA sequencing is one of the most important techesgfor molecular biological studies.
DNA sequencing technique has been evolving rapigitgyviding a powerful approach to
understanding the structures of DNA and RNA andrthsesociated biological functions
(Turnpenny & Ellard, 2007).

Sequencing technologies have been significantlyawgd since the first genome was
read in 1996. These technologies remain at the abgenomics and have many practical
applications. Sequencing technologies are usectErmine the genome sequence of a new
species or of an individual within a population. chitical stage in de novo genome
sequencing is the assembly of shotgun sequencesiewWBNA fragments are randomly
extracted and sequenced.

Recently, the rapid and inexpensive next-generaenuencing NGS methods offer
high-throughput gene expression profiling. Todayjsi possible to sequence a human’s
genome in around eight days for approximately $10,2014 NGS Field Guide — Table 2 —
Run time, reads, yields, and costs, 2014) (Shen&ude 2008) (Wu, Zhu, Fu, Niu, & Li,
2011) (*2014 NGS Field Guide, Table 2,” 2014; Saimed& Ji, 2008; Wu, Zhu, Fu, Niu, &

Li, 2011).



1.2.2 Next-Generation Sequencing

Next-generation sequencing (NGBE) a new method for DNA sequencing. This
technology improves the DNA sequencing processmakles it run fastefhe technology
uses shotgun sequencing with cyclic-array methéidking a common adaptor to DNA
fragmentation. NGS conducts massive parallel semngnusing an array that includes
millions of spatially immobilized PCR colonies. Eacolony consists of many copies of a
single shotgun library fragment. All array features) in parallel. Finally, the shotgun
algorithm uses imaging-based detection and assershbitglar fragments; all features run in
parallel. Repeating those steps, NGS will buildaupontiguous sequencing read for each
colony (Costa, Angelini, Feis, & Ciccodicola, 20Hpppman-Chaney et al., 2010; Shendure
& Ji, 2008) (Shendure & Ji, 2008). In other wor@8|A fragmentation is first combined with
an adaptor as an array, and then the array trangfese data to colonies and, finally, NGS
uses an imaging-based method to assemble thosaienlmto groups. NGS allows for
simultaneously sequencing thousands to billionsegfuencing reactions in parallel (Costa et
al., 2010, p. X).(Costa, Angelini, Feis, & Ciccodliz, 2010) Because NGS can parallel run
arrays and imaging steps, NGS is both fast andochea

NGS has been widely used in whole-genome de nogoeseing, ChIP sequencing,
RNA-Seq, and so on. Whole-genome sequencing identiie complete DNA sequence of an
organism’s genome (Roach et al., 2010).(Roach|.e2@10) ChIP sequencing is a method
used to analyze the relationship or interactiorwbeh DNA and protein (Park, 2009).
RNA-Seq refers to using NGS to study the transon@ at the nucleotide level (Faghihi &

Wabhlestedt, 2009; Marguerat & Béahler, 2010; Zhongn@/ 2009). (Faghihi & Wahlestedt,



2009)

1.2.3 RNA-Seq and Application

In multicellular organisms, almost all cells inctudhe same genes. However, not
every gene can express itself in every cell. Td 6int when and where genes are turned on or
off in various types of cells, we will study theamscriptome. By comparing the
transcriptomes of different type of cells, we wddeply understand the constitution of the cell
and know which gene may respond to a disease icdheA transcriptome represents that
small percentage of the genetic code that candmesdribed into RNA molecules. Because
each gene may produce more than one variant of mRN#&anscriptome may be very
complex (Adams, 2008; Ozsolak & Milos, 2011; SadaMdlis, Heller, & Berenbaum,
2012)(Sadava, Hillis, Heller, & Berenbaum, 2012)¢6lak & Milos, 2011) (Adams, 2008).
For our program, we are using RNA-Seq. As we prestip showed, RNA-Seq is a
sequencing technology to study the transcriptomehat nucleotide level. It is used to
discover the gene expression level. By mappingRNA-Seq reads onto the exdnsf the
known genome, we will find out the total numbemeépped reads. In doing so, we can get
the gene expression level, which is representefragments per Kilobase of transcript per
Million mapped reads (FPKM) (Manteniotis S, 2013aMy, Gerstein, & Snyder, 2009).

(Wang, Gerstein, & Snyder, 2009) (Manteniotis SL20

! The corresponding sequence in RNA transcripts.
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1.3 Thesis Organization

The rest of this thesis is organized as follows:

e Chapter Il — Assembly. This chapter describes wifie assembly methods and
points out the disadvantages of de Bruijn algoritinthe end of the chapter, we show our
motivation and the basic idea behind the Clusteiaged Assembly (CBA) method.

e Chapter Ill — Method. This chapter describes how developed the CBA
methods and tools, including the data structuggréghm, and memory control.

e Chapter IV — Results. In this chapter, we use ER€E4l data, Chromosome 22
real data, and Chromosome 22 simulation data tb diéferent assembly methods. This
chapter also discusses CBA results and compares\ilith other methods.

e Chapter V — Discussion. This chapter evaluateBA method and discusses
the advantages and disadvantages of CBA assemlihpdse Finally, the chapter lists
possible future work.

e Conclusion. This chapter is a summary statementates CBA’s good
performance in terms of accuracy and speed. Thapteh further explains why CBA would

be useful in real RNA-Seq application.



CHAPTER Il - ASSEMBLY

2.1 Assembly Methods

There are two common approaches for DNA assemélgrence-based assembly and
de novo assembly. Reference-based assembly igradsen as the “genome-guide assembly”
method. This method first aligns short reads to réference genome and then assembles
overlapped alignments into transcripts. The de nasmembly method does not rely on the
reference genome; it is used to reconstruct thdentide sequence. When the reference
genome exists, researchers normally use the refedesmsed assembly method. In the
reference-based assembly process, the transcripsoamalyzed by mapping on the reference
genome. In the absence of a reference genomegthewd assembly will be considered. De
novo transcriptome assembly is the method of argadi transcriptome without the aid of a

reference genome.

2.2 De Novo Assembly Algorithms
The de novo assembly method has two different ghgos: overlap graph-based
assembly and de Bruijn graph-based assembly. THer rddference between the two
algorithms is how they construct the topology. Tbeerlap graph-based assembly
algorithm uses short reads to build the topology,the de Bruijn graph-based assembly

algorithm instead uses k-mers.



2.2.1 OverlajGraph-Based Assembly Algorithm
The overlap grapbasedassembly algorithm is the traditionatsembl approach.
This algorithm haghree phases: overlap, lay, and consensus. Thereslap phas is the
process that finds theverlaps between reads. ose overlapscapture all possibl
relationships between the fragment re. The layout phase thesrders fragment reads |
those overlapsFinally, the consensus phase as fragmentreads to contigsOverlap
graph-based algorithrnompars each pair of short reads. If one short eaail matches

another short read’s head, fhr@gram will align them togethe

ATCCCGAATGCA

AATGCAAACGTT

ATCCCGAATGCAAACGTT

ACCTGATTAGCC

Js

CTGTGATTACAT

Figure 1.Example of overlap graph metho

In Figure 1, the stringsATCCCGAATGCA” and “AATGCAAACGTT” will align
into the string ATCCCGAATGCAAACGTT.” The strings ACCTGATTAGCC’ and

“CTGTGATTACAT” will be though as coming from different genégcause they share t



substring “TGATTA” which is neither the head of osiing nor the tail of the other string.
Mira is the type of software that uses overlap brapsed algorithm (Chevreux B, 2004). The

major disadvantage of overlap graph-based algonsghits slow computational speed.

2.2.2 de Bruijn Graph-Based Algorithm
The first idea for the de Bruijn graph-based aliponi came from Nicolas Govert de
Bruijn (1946).(de Bruijn, 1946) He designed hisnsitire de Bruijn sequences. In 2001,
Pevzner, Tang, and Waterman developed the de Bytajph-based algorithm (Pevzner, Tang,
& Waterman, 2001). The de Bruijn graph-based metbompares each k-nfeinstead of
short reads. If two k-mers overlap, k-1 length rotides then align the k-mers. For example,
k-mers “ATGGTC” and “TGGTCT” can be aligned to “ATBI CT,” but k-mers “ATGGTC”

and “GGTCAA” will not be aligned because they shamnéy k-2 length nucleotides.

The de Bruijn graph is defined as:
Set V = All length-k subfragments (k-mer)

E = Directed edges between consecutive subfragments
Dk = de Bruijn graph, nodes overlap by k-1 words
Then exist

Dk = (V, E)

> Anucleotide sequence whose length is k.



The de Bruijn graplbase: algorithm can be used to assemble Ri¥¢&fuence (see

Figure 2).
De Bruiin Graph (k=3) contigs
L€ SRR Lraph (X=3; coniigs
[ Shortreads |
S— AAGACTTT
HHU"J‘ A A ~
AA GG
AMCAC
[T pa— pa— AA T TT {lann)
‘cce o Teo [ A AU ]
CACT -—— -—— AA T —
LR s - AA \ AUy | uQa
-~ ~ N
ACTT ‘raA N {ioop)
- = 4
CT7T ~a &~
a— PN e —_ a— PN
P AW -~ @BAEs - 7 GGAC SACT —* aEme —
ACTG — — —_ L~ —
a
rTeo AR
AR RN | -ﬁ
A
ACLIL T
e
CicC

Figure 2.Diagram of using de Bruijn graph for DNA sequenkgranent

Figure 2 presenta simplede Bruijn graph for RNA-Seq assembhl short reads
have four nucleotides. K 3 means all subfragments have three nucleotin the figure,
there are one loop and two tifThe program will generate four kind$ different contig:
(a) red -> green -> purple, (lb@¢d -> green -> pink, (c) red -> green -> blte green ->
purple (loop), and (d) red>-green-> blue -> green -> pink (loop). Becauseés de Bruijn
graph exists as laop, the length of two loced contigs can be unlimited@his represents
deficiency of de Bruijn graph when dealing with eépve sequenct dl de Bruijn

graph-based algorithnshould hav a loop detection process avoid logical errcs.



2.2.3 Comparing de Bruijn Graph with Overlap Graph

The overlap graph uses short read-to-short reagpaoson. The algorithm must
compare short reads one by one, and also it neatiddte the short reads that overlap to
the aligned contigs. Therefore, the overlap gragéeld method is time consuming. The
de Bruijn graph-based algorithm uses k-mer to k-nwnparison. It does not need to
consider the overlap issue (as does the overlgghgtaased method) but instead
generates a large topology. Therefore, the de Bariph-based algorithm is faster than
the overlap graph-based algorithm. However, th8mégn graph-based algorithm is not

an accurate assembly method; we will discuss thésfuture section.

2.3 Different Methods Based on de Bruijn Graph-Bla&kgorithm

The common assemblers based on the de Bruijn gnaplde Assembly by Short
Sequences (ABYSS), Velvet, Oases, and Trinity. ABYS a parallelized sequence or
short reads assembler. It has two steps to asseshbly reads: First, it splits all short
reads into k-mers. Second, it uses a de Bruijnigtalign k-mers and generate contigs
(Birol et al., 2009; Simpson et al., 2009).(Biret, al., 2009) (Simpson, Kim, Jackman,
Schein, Jones, & Birol, 2009) Trinity was develope@010 by Grabherr and colleagues,
and it has three steps: The first they call “Inchwbbecause it splits short reads to
k-mers and aligns k-mers to contigs. The seconitedcéChrysalis,” clusters contigs to
pools when they share at least one (k-1)-mers.thind, “Butterfly,” splices pools and
generates transcripts (Grabherr MG, 2011). Ano#ssembler is Velvet, which runs in
two steps: Velveth and Velvetg. Velveth helps carddtthe dataset for Velvetg. It takes in
a number of sequence files and produces a hash taid then it outputs two files into an

10



output directory. The twoutputfiles, Sequences and Roadmaps, are necessary to \k
Velvetg is the core of th&klvel software, where the de Bruijgraph is builtand
processedZerbino & Birney, 200¢. The last assembler, Oases, is an updeatesion of
Velvet (Schulz, Zerbino, Vingron, & Birney, 201.

2.4 Motivation

The Chimeric Edgés the major problem ithe de Bruijn graph-basedgorithm.

The de Bruijn graph algorithmvill not detect those Chimeric Edges.

TGATTA™

A

Figure 3.Example of Chimeric Ed¢in a de Bruijn graph

Figure 3shows two short rea, “ACCTGATTAGCC” and ‘CTGTGATTACAT.”
They share k-mer “TGATTA,also callecthe Chimeric Edge. When tlgogram run a
de Bruijngraph algorithm, erroneous merge of reads will leapshort reads are align

as “ACCTGATTACAT.”

11
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Figure 4.Comparison of Chimeric Edges with different k-raize.

In Figure 4, we randomly collect 10,000 short refsdsn human genomes, which
have 23 pairs of chromosomes. Since Oases usestBg &-mer size, we also use 31 as
the k-mer size to test. The result shows there88 pairs of short reads from different
chromosomes that share the same k-mers. That shwevgle Bruijn graph-based
algorithm has a high error rate.

Since de Bruijn based assemblers, such as ABySS/aludt, usually have high
error rates, we proposed optimizing the sequensenalsly to make the assembly more

accurate than in the de Bruijn graph-based alguorith

2.5 Objective

This research presents a method to improve themude novo assembly method
for RNA-Seq. The method of improving the assembbuitt is by providing a “clustering

method” before the sequence assembly.

12



The ClusteringBased Assemb method also uses k-mer to judge takationshig
of two short reads, and it alsountsthe number of k-mers overlapped beem two shor
reads. If two short reads sharere than 20 -mers, it means they mayme fron the
same gene.

If one group has fiver more short reads sling 14 to 20 kmers with anothe

group’s short reads, the clustering process will mergdwlogroups togetheffFigure 5.

Figure 5.Clusterbased algorithm can be usto avoid Chimeric Edge.

The clusteringalgorithir is different from the de Bruijigraph algorithr in that

the de Bruijn graph aligrtsvo short readwhen they share only one k-n{&igure 6.

Figure 6.The de Bruijn algorithm Chimeric Ed.

The clusteringprocess gives a more accu solution for the Chimeric Edc
problem, and it will divide different n-relationship genomestim different groups. Th

is why the clusteringrocess reduces errrate of contigs mapping.

13



This research was completed by implementing tHevahg three major steps:
1. The program designed a hash table for the groupiettpod.
2. The program clustered short reads into groups.
3. The program ran Oases parallel for each grouplaemmerged all Oases’
results into the final result.
The clustering algorithm plus the sequence assembtihod provides a more
accurate assembly result when compared to dirasthyg the sequence assembly

methods. This model can be collated with all curcennovo assembly methods.

14



CHAPTER Il - METHODS

In this chapter, we present the basic ideas othhstering-based assembly (CBA)
method. The program was implemented in the C++Uagg. CBA has two major steps:
clustering and alignment. In this thesis, we foonshow to cluster short reads. We use the

current prominent software Oases to align eacttariung).

3.1 Method Overview

The CBA algorithm first splits short reads to k-siand then uses a MurmurHash
function (Appleby, 2011) to transfer k-mer into hagalue. The program creates a hash
table, which size is 2”32 to store k-mer’s hasluesl The program creates a hash map,
which is mapped to the hash table and stores saxits’ index that share the same k-mer.
Secondly, based on the hash table and hash map, diBfers all short reads into
different groups. Then CBA runs Oases in parateldach group. Finally, CBA uses a
single thread to merge all result files generatgdoases into a new contigs file. The

CBA process is shown on the right side of Figure 7.
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Figure 7.CBA process and Oases process.

3.2 Clustering

Clustering is the core of our program. The ideaclistering is simple: It
merges overlapped short reads in one group. Howévere are many steps to get to
the finished clustering process. The major stepdude: hash table, hash map,
clustering, and merging groups. The hash tablaiareay. It stores the indexes of the
hash map into cells. Those cells’ indexes repretantk-mers’ hash value, and the
k-mers’ hash value are calculated by hash funciite. hash map is also an array, with
each cell storing short reads that map to a spekifner. Because the hash table is a

discrete structure, it may have many empty ceflsvd directly store all short reads
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information in the hash table, those empty celly Bw@st our system too much memory.
That is why the hash map is needed: The hash magdhtinuous structure; all data

will be stored one by one with no skipping. Thestéuing process clusters short reads
into groups. Finally, the clustering process wilknge together unstable groups that

have weak linkages.

3.2.1 Hash Table and Hash Map

The hash map stores the information of the shadsehat share a specific k-mer.
Whenever the program finds a new k-mer, the hagh with assign a new cell for storing
all short reads mapping to this k-mer. The hasketatores only integer numbers, which
represent the hash map’s index. The hash tablees 1o located different k-mers. In other
words, when the program finds a new k-mer, thatek-mill be transferred into a hash
value by the hash function, and the hash map V8dl areate a new cell for the new k-mer.
The index of the new cell in the hash map will bered in a cell of the hash table; that
location or index is the hash value. We explainriationship of the hash table and hash

map in Figure 8.
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Figure 8.Relationship between the hash table and the hapt

In Figure 8 we show ho\ the hash table links to the hash map. tep3\, at the
beginning, both théash table and hash map are emThe program initiakes all cell
values of hash table tel andinitializes all cell valuesf hash map to NULL, sting the
variable “counter” to 0. In t8p B, the program transfers anker to hash value £2.”
Based on this value, we can lte the hash table cell position, and tlen inset the value
of “counter” into hash table ce“2,” which is “0.” The program alsinserts a structur
adding the kmer into hash map cell, and the cell's indethe value of tounte.” Finally
the program makes the “couriténcrease by 1. Right now, “counter” isHinally, our hash
table cell “2” has a value “0,Andthe hash map cell “Ostores a structure. Step C rejs
Step B. After the program rurg@ep C, the hash table owns two values in ‘t&lland cell
“5,” the hash map insertsnew structure to ce*1l,” and the variable “countefiecomes 2.

For memory saving, @transfer a,t,g,c to 00,11,10,01 binnumbers than transfer binar
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numbers to strings (8 binary dmme: 1 byte 1 character). The program stdtes stringin
the hash mag-or example, short reATTC” will transfer to binary bits 0011110,” and
then the binary bits amnverte: to the character “=.” Finally, thehort read strin“ATTC”
is stored as character “=" inthe hash map, saving 75% of memory. We ¢aik procesa
“zipping string.”

We have two structures fthe hash map: smodel and mg:

struct smodel {
mg* srs; //a link list of structure mg, and it stores all short reads mapping to the new k-mer.
char* value; //stores zipping string of the new k-mer.
smodel* next; };

Figure 9.Structure smodel.

struct mg {
long long int sr num; //short read index
mg¥ next; };

Figure 10.Structure mg.

Whenever a newghort rea comes in, the program will split it tm many |-mers.
For each k-mer, thprogram first checs whether the k-mer already existghe hash table.
We can have three situations:

In the first case, aBigure8 shows, if the k-mer is not stored in th@shmap, the
program will create a new cell the hash map. The new cell is initialed“asstructure
smodel,”and the program puts the short reads index inheagiabl. As the same time

theprogram will store the new cell’s indexthe hash table.
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Figure 11.Construction of the hash map: no collis.

The second case is shown Figure 11, when the k-mée already store in the hash
map. The pogram will find the index othe hash map by searching thash tabl, and
directly goes to the cell of teash map trough the index. The cell alreatigc an smodel
structure. Thegrogram creates a new mg struc for storing the new short re’s index.

Finally, the program linkthe new mg structure to the variable in the cell.
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Figure 12.Construction of the hash map: collisi

The third case is shown Figure 12, if the k-mer is not stored in theshmap but
the k-mer’s hash value collidewith other -mer’s hash valuaie first find the cell il the
hash map as we did in teecond case, and then we create a new smodelus&uatstore
the new k-mer and short reatthsit belong to the k-mer. Finally, we lirtke new smodel t

the cell in the hash map.

3.2.1.1 Memory Usage

The hash table is 2*320dhg long in” array, it will take 32GB. The dshmap takes
up alot of memory because the map stores the smodgitstes, and the smodel struct
is a two-dimension link list. 'ong long in” style costs 8 bytes, and albinter: cost 4
bytes. For one smodel structuree need at least 24 bytes. If thenler size is 45, we me

have 4745 different kaers. At mos, we may need 4°45*24 bytes space. Tamount of
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space is impossible to beltiby any machineln actuality,in typical data siz® we have

approximate 14,000,000rkers, an a hash map takes only 200GB.

3.2.2.2 Time Efficiency

The hash table, whosge is 23, is generated by the MurmurHafsimctior.

unsigned int MurmurHashNeutral2 ( const void * key, int len, unsigned int seed ){
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = seed " len;
const unsigned char * data = (const unsigned char *)key;
while(len >= 4){
unsigned int k;
k = data[0]:
k |= data[1] << 8;
k |- data[2] << 16;
k |= data[3] << 24;
k *=m;
k*=k>>r;
k *=m;
h *=m;
h "=k;
data +=4;
len = 4;}
switch(len){
case 3: h "= data[2] << 16;
case 2: h = data[1] <<8;
case 1: h *= data[0];
h *=m;};
h*=h>>13;
h *=m;
h*=h>>15;
return h;}

Figure 13.MurmurHash function.

Because one kier has two directions, we choose the higher hadhevas thi

k-mer’s hash value.

* 10,000,000 short reads data.
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Figure 14.The way to choose arker’s hash value

Figure 14shows how to choosa k-mer’s valueBecause most DNA molecules :
double-stranded helicesvhen DNA is transcribed into RNA, the RNA may e two
directions. As Figure 14hows, strins “ATTGCCAG” and “CTGGCAAT” representhe
same kmer from different directions. Because the twongfsiindicate the samemer, we
only need one hash value foattk-mer. We run both stringsriugh the hash function, a
we may get two hash valuds this cas, the string “ATTGCCAG” transfers o value 764,
and the string “CTGGCAATtransfes into value 850. We will choose the greater on
the k-mer’s hash valu&hat means we wicalculate hash values twice feach l-mer.

Normally, thesearch time complexitof the hash tablés close to O(J, but it is
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really based on how many different input sts via hash function transfertinthe same
hash value. If two k-merbash valuehave acollision, we have to make a link list to st
the two different k-mersVhen th program searches a k-mer witkdallision hash value i
the hash table, it will go to theell of hash map. Then the program sthe cellthat stores
the link list. It has to compaitie current k-mer with the stored k-mersthe link lis,, one
by one, to find the k-mes’ positior. In this case, our hash table and hash map’s

complexity would be greaténan O(1)

3.3 Clustering Process

The clustering process based on the hash map. We have two taliles:table o
“k-mer->short readsfs a link list array ar stores all short reads’ indexesmpping to eac
k-mer. The index of the array represer-mer’s index, and each cell hastaucture calle
“glink.” The glink hastwo variable: Variable “seq” stores a short read’s indeapping to
the kmer, the other pointer variee points to the next glink structyrehich stores othe
short reads’ indexes thatap to thesame k-mer. The “short read->k-meisalso a linled
list array and stores all k-meiis’dexe: mapped to each short redkhe index of the arre
represents k-mer indexes, and each cell ha structure called “klink.” Tiere are tw
variables: The k-mer variabioresthe k-mer’s index that exists in tis@ort readand the
other pointer variable point® the text “klink” structure, whichstores otheik-mers’

indexes in the same short read.

struct glink{
long long int seq;
glink *next;};
struct klink{
long long int k-mer;
klink *next;};
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Figure 15.Structure glink and Kklink.

Based on “short read ->k-mers” array, the program find all k-mers from a short
read. For each k-mer, the program checks the “ksrsbhort reads” array to find all other
short reads sharing the same k-mer with the cusienitt read. We use three cut-off values
to control how the short reads are grouped. Ths ¥izlue is called “ori-cut,” which is the
number of k-mers shared between two short readsvdfshort reads share a number of
k-mers less than the ori-cut value, the two sheads will not be thought to have any
relationship by the program. The second value iead¢d&max-cut,” which means if two
short reads share a number of k-mers that is temiax-cut value, then the program will
put the two short reads in one group. The lastevasucalled “ave-cut”; it is used for
merging small groups. If two groups share a nuntferveak linkage short reads palirs,
and this number is greater than ave-cut, then thgram will merge the two small groups

together.

* Paired short reads in different groups that shiaeenumber of k-mers less than max-cut and grehger t
ori-cut.
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Figure 16.Statistic result ohumbe of sequences based on different cut-off values

We decide the orcut valle based on statistic results. In Figure 1&xis means
how many k-mers short readse shared, and y-axis means the nundfeshort reac that
share the same number ofrlers, and k-mer length is 31. This graph shawat 14 is a
magic number because thembe of short reads sharing from 12 and I4n&rs drops
quickly. We can use 14 as a -@aff number and discard short reads tslaarecfewer than
14 k-mers. That also decreasies numbeof short reads.

In the groupingprocess, tr program creates a pointer array, called arra.” The
length of the array is theumbe of short reads, and each cell represerstsoat reac

If the short read thaghars a number of k-mers is over the nax-vaue, we call

those short readstrong Linked (SL short reads with each other.
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We have two situationis the grouping proces
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Figure 17.The methodo cluster SL short read:

If the program findsome SL short rea linked with each other, thahe program
links them together to a new noand generates a small tree. In Figuredll7red cell are
SL short reads linkeaith each oth¢, and then th@rogram will create a new node and

all red cells to the node. In this c, the program considers them one group.
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Figure 18.The method to link two groups toget!

If there existglifferent groupsthe program will check these groupsiédshort rea
from the yellow group is a Skhort read linked with the red groupnéther short rea
from the yellow group is a SL short re linked with the blue groupin this casethe
program will merge the thregroup: together (Figure 18).

The program goes tbugh thc whole sr_array and runs the two caabsve After
the grouping processll short reads are grouped. Some groups are ismal—only 1 to
5 short reads. We will regatbose small grougas useless and discard them.

3.4 Group Merging
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We called paired short reads in different grothat share a numbef k-mers less
than maxeut and greater than -cut as Weak Linkage (WL) pairh& short reads in WL
pair must differ from otheWWL pairs’ short reads. The program stok% pair in a
structure array. We create thucture callec*halfc” that includes twovariables the two

variables store the WL pair:

struct halfc {
long long int fstn; //the first short reads number of WL pair
long long int sndn ; //the second short reads number of WL pair };

Figure 19.Structure halfc.

After thegrouping process, we have a structure cé‘gp_rcd.” It offers a mappint

between short reads and groups:

struct gp_rcd
long long int sr; //shot read mdex
long long int gp: //group index, the short read belong to.§:

Figure 20.Structure gp_rcd.

Considering soméranscript have a low number of short reads, thisansshort
reads in this transcript may alito many groups with a weak connectione Bét evalue,
“ave-cut,” which representsow mény WL pairs areshared between two grou When the

number of WLpairs in two groupare greater than ave-cute will merge the twgroups.
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Figure 21.Example ofmerging two groups

In Figure 21, all WLpairs are stored in structure halfc. The gm give: a group
number for every short reads WL pairs. Then the program will calculatee number of
WL pairs between thevo group. If the value is greater than ave-cet will merge the

two group or will keep bothroups.

3.5 Alignment

After we gé every group, we use OpenMo run theOases method for each gr
in parallel. In Figure 22,dr each three, we create a buffer folder. Each thread has one
group each time and stores thases assembly mett result file (transcript.fain its buffer
folder. When the results aready, we use a single thread merge all results files to the

final contigs file (contigs.fa).
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Figure 22.Alignment process.

#pragma omp critical {
sprintf{commandbb. *“cat %s/%d/Oases/transcripts.fa >> %s/CBA/contigs.fa”.strPath.omp _get thread num(). strPath):
system(commandbb); }

Figure 23.0penMP batrrier.
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CHAPTER IV — RESULTS

This chapter presents the results of testing oogram using various types of data
and then compares them with other assembly algosithin the results, the most important
comparisons are short reads mapping rate, contayggpimg rate, and recovery rate. The
short reads mapping rate shows how many short raezlsised for assembly. Contigs
mapping rate shows how many contigs are valid, witan be mapped to the template.
Recovery rate shows how many nucleotides in thekses are covered by contigs. Those

three statistics indicate how well the assemblyho@s$ work.

4.1 Testing Data
We use ERCC-BGI data, human Chromosome 22 real, datd human

Chromosome 22 simulation data to test the CBA-base@ases program. We compared
the CBA-based-on-Oases program with Oases, TriABySS, and Mira. All experiments
were run with Velvet version 1.2.03, Oases 1.24ABySS 1.3.3, Mira 3.0.4.1, and Trinity
2012-10-05.
4.1.1 ERCC Data

To control the quality of RNA quantification, a comn set of external RNA
controls was developed by the External RNA Contl@tmsortium (ERCC), an ad-hoc
group of academic, private, and public organizatitosted by the National Institute of
Standards and Technology (NIST). Approximately 8thpanies, universities, and federal

laboratories in the ERCC are developing materiatstaols that can be used to benchmark
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(Baum, 2006). Therefore, ERCC data can be usedltbrate bioinformatics methods in
analyses of RNA-Seq data.

Our ERCC data come from Beijing Genomics Insti{@&l). We used ERCC data
to test CBA and other assembly methods. Our ERC@ Has 92 transcripts. We got
220,000 short reads with 50 bp in length from BI@troduction to BGI-Hong Kong, 2013).
Not all 92 transcripts contained mapped short reddsreduce noise and variability, we
removed all transcripts with fewer than 1k sho@d® mapped and also removed their
corresponding short reads from the raw data. Binale had 216k short reads and 16
transcripts.

We use Bowtie 2 (Ben Langmead, 2011) to calculas@ping rates: short reads
map to contigs, and recovery rate: nucleotides rceweranscripts. We use ABySS-fac
(Simpson et al., 2009) (Simpson, Kim, Jackman, B¢ld@nes, & Birol, 2009) to calculate
N: how many contigs, and N50: average length oftigen We randomly collected short

reads from raw data for each number 3 times andddkem.
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Figure 24.ERCC-BGI data test results.
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In Figure 24, the x-axis indicates the number adrsheads collected from the
ERCC-BGI short reads file. The y-axis shows outigtiaal measures.

Figure 24A shows N value, which indicates the numbk contigs for each
assembly method. We expect N will be closer torthmber of transcripts, which is 16.
Mira has highest value at 70 contigs, when the rermebshort reads was low. As the short
reads number increased, Mira and CBAs N valueppld to about 25—Dbut still higher
than other de Bruijn graph-based programs. The INegaof Oases, ABySS, and Trinity
were very close to the expected value.

Figure 24B shows the short reads mapping rate, wimidicates how many short
reads are overlapped to contigs. ABySS mapped 88% short reads to contigs at the
beginning. As short reads numbers increased, ABy&&pping rate was increasing but
was still lower than the other methods. Mira anithifyy were stable and almost mapped all
short reads to contigs. CBA and Oases were alsngdai good job here, with a 98%
mapping rate.

Figure 24C shows the recovery rate, which indica®s many nucleotides in the
template are covered by contigs. When the numbehait reads was low, all methods had
recovery rates lower than 60% except Mira, whicls 88%. But as short reads numbers
increased, all method recovery rates were highaar 80%—especially Mira, Trinity, Oases
and CBA, with recovery rates higher than 90%, § Vegh value.

CBA did not outperform other assembly methods f& ERCC tests because the
ERCC templates have few overlapped nucleotides,den@ruijn graph-based assembly

methods would not have many Chimeric Edges. Thezef0BA showed little difference
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against other assembly methods in short reads mgppte, contigs mapping rate, and
recovery rate.
4.1.2 Human Chromosome 22 Simulation Data
Simulated data is generated from a genomic regidmiman chromosome 22 that
has 5,000,000 nucleotides and 337 transcripts.sirhalation program randomly generates
100 to 1,000 short reads for each transcript, aod seads randomly generate a 0.2% error
rate. We also randomly generated short reads fransc¢ripts for each number 3 times and

tested them.
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Figure 25.Human chromosome 22 simulation data test results.

In Figure 25, the x-axis indicates the number afrsheads generated from human
chromosome 22 transcripts file. The y-axis showsstatistical measures.

Figure 25A shows the number of contigs. Real N us expected value, which
equals 337. Oases showed a very good and stable, atlose to value 337. CBA and
AByYSS had very high values at the beginning. ThéA€Brve was dropping to 500 and the

AByYSS curve increased to over 1,000 when the nurobehort reads in each transcript
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began increasing. Trinity and Mira both had an Nu®aof 500 when the short reads
number was low. Th Trinity curve increased to 76@d Mira kept stable at 500, when the
short reads number was increasing.

Figure 25B shows N50, which means the averageHeofgtontigs. This is a very
clear graphic. Trinity and Oases had a higher N&lde; both generating longer contigs,
with an average length of 3400 bp. CBA and Miraayated medium-length contigs,
average length of 2400 bp. ABySS generated veryt slomtigs, average length only 100
bp.

Figure 25C shows the short reads mapping rate. @&8d\ the worst short reads
mapping rate, 83% when the short reads number was As short reads numbers
increased, CBA had the best short reads mappieag 98%6. Trinity and Oases’ short reads
mapping rate were close to 95%. ABySS'’s short reaasping rate was lower than 90%.

Figure 25D shows the contigs mapping rate. Mira ABySS’s contigs mapping
rates were stable and close to 100%. Next highast@BA, which had about 95% contigs
mapping rate. Oases and Trinity had a little bitdo contigs mapping rate, about 80%.

Figure 25E shows the recovery rate. When shortsreagnbers were low, all
methods’ recovery rates were lower than 50%. Astsleads numbers increased, Trinity’s
recovery rate increased fast, finally at 72%. Oamed CBAs recovery rate increased to
65%. Mira’s and ABySS'’s recovery rate stayed lotian 50%.

Results show CBA had the best short reads mapjgiteg better contigs mapping
rate, and better recovery rate. Oases had bettandNN50 value. Trinity had the best

recovery rate but had the worst contigs mapping. rABySS and Mira were not doing a
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good job in this test. Even Trinity had a highezaeery rate, but its contigs mapping rate
was too low. In Figure 25A and B, we can see thatity generated more contigs than
others except for ABySS, and its contigs averaggtle was high, even higher than
template average length. That indicated lots otigenTrinity generated but cannot map to
the template, but it still had some long contigspped to the template, which is why
Trinity had a high recovery rate but low contigsppimg rate. ABySS had the highest
contigs mapping rate, but its short reads mappitg and recovery rate were both low. In

summary, CBA had the best result in Chromosomargdlation test.

4.1.3 Human Chromosome 22 Real Data

Chromosome 22 was the first human chromosome tofutlg sequenced,
representing between 1.5-2% of the total DNA inscéVe randomly collect 200k to 2m
short reads from original chromosome 22 file, whiats 24,388,258 short reads. We used
those short reads to test CBA, Oases, Mira, amityriThe results showed N, N50, short
reads mapping rate, contigs mapping rate, and ezgaoate. We randomly collected short

reads from raw data for each number 3 times anddaekem.
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Figure 26.Human chromosome 22 real data test results.
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In Figure 26, the x-axis indicates the number afrsheads, collected from human
chromosome 22 real short reads file. The y-axisvshaur statistical measures.

Figure 26A shows the number of contigs. Real N shtvanscripts number, which
is our expected value. When the short reads numbegased to 5,000,000 per transcript,
Mira had 30,000 contigs, higher than the expectaldiesr 6 times. This value was not
acceptable. The next highest N value was CBA, whids 3 times higher than the
expected value.

Figure 26B shows N50. Oases has the highest wahieh means Oases generated
the longest contigs, average length was 1200 bpA @Bd Trinity also generated long
contigs when the short reads number was increadiga had stable low N50 value,
contigs, and an average length was 420 bp. Thiseuahs not acceptable.

Figure 26C shows a short reads mapping rate. Abéginning, Mira and Trinity
had the highest short reads mapping rate. The grstpbw their short reads mapping rate at
greater than 70%. As the short reads numbers isededMira’s short reads mapping rate
was going down, but Trinity’s short reads mappiatgrwas going up. Finally, Trinity had
the highest short reads mapping rate, 90%. Miracther methods only had 70-75% short
reads mapping rate.

Figure 26D shows the contigs mapping rate. Wherslioet reads number was low,
Trinity and CBA had 83% contigs mapping rate, anidald and Oases’ contigs mapping
rate were lower than 75%. As the short reads nusnbereased, Trinity’s contigs mapping
rate was going down, and CBA's and Oases’ contigppimg rate were going up. CBA and

Oases had 85% contigs mapping rates when the sdaas number was 5,000,000. Mira
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kept a low contigs mapping rate, lower than 70%,wlorst one.

Results show that CBA had the best contigs mapgtey Oases had better N and
N50 value, which means Oases generated longergsoriirinity had the best short reads
mapping rate. Mira showed the worst results in thg. Trinity had the best short reads
mapping rate, but its contigs mapping rate was [Bwat shows a classic de Bruijn graph
algorithm error. High short reads mapping rate aaté de Bruijn graph assembles short
reads when they share one k-mer, so almost alt séads can map to contigs. But some of
those contigs may generate by Chimeric Edges, wéacimot map to the template. That is
why Trinity had a low contigs mapping rate. CBA htd second-highest short reads
mapping rate and kept the highest contigs mapgitey in conclusion, CBA was the best
algorithm in the Chromosome 22 real test.

Mira is the only one that uses the overlap graptetdalgorithm. In the ERCC test,
Mira did a good job when compared with other deijBrgraph-based algorithms. But in
the human Chromosome 22 test, Mira did not havel gesults, which means Mira cannot
solve complex gene structures. Further, the ovegigph-based algorithm usually runs
slowly. Table 1 shows the time cost for each as§embthod when the short reads number
was 5,000,000 in the human Chromosome 22 realNst’s running time was twice that

of CBA's and 10 times longer than other de Bruijapgh-based assembly method.
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Table 1

Running Time Comparison of All Assembly Methods

Short Reads Number /Time

Consume (Minutes) CBA  Oases Trinty ABySS  Mira

5,000,000 615 40 150 15 1203
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CHAPTER V - DISCUSSION

We have developed the Clustering Based AssemblyAjCBethod, a novel
approach that uses clustering and de Bruijn grased algorithm (Oases) for de novo
assembly of non-model species, such as plantstsyessd animals such as the snapping
turtle.

The ori-cut value, max-cut value, and ave-cut vadoe used in the program to
control how to create groups. For example, in thmd&n chromosome 22 real test, based
on Figure 16, the x-axis means how many k-merstgieads are shared, and the y-axis
means the number of short reads that share the saimber of k-mers. We tested
chromosome 22 real data for different k-mer sizeer€ is a big gap in the frequencies of
short reads between 12 and 14 (changing more thames), implying most of the
k-mer—sharing k-mers below 14 are random noise.M&d 25 as the max-cut value
because it gave the lowest error rate after testidigto 30 in all ERCC and human
chromosome studies. Finally, we set ave-cut vatua aontrol value for merging groups.
We tested number 2 and number 5 as ave-cut vatual ERCC and human chromosome
study, and the simulation study shows number 2 glaeehighest mapping rate. If two or
more WL pairs connect two groups, we will then ¢deswhether the two groups should
be merged. We require each group to contain 5 oe sivort reads.

CBA is an accurate assemble algorithm, but groupngme consuming. Using

openMP can make the programs run in parallel, whales running time. Another way to
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save time is using hash table as the searching method. As we edin chapter 3, has
table’s time complexity is close to O. It is still important to choose the ri¢ hash
function. We choose Murmugsh function in our program. MurnHashfunction is a kinc
of hash function used by Goo’s search engine. Compar&dth other hash inctions,
MurmurHash has faster computing speed and lower collision hasheze

Table 2

Comparison of MurmurHash Function with Ott in Speed and Collision Field

Hash function | Speed Collided item
Crc32 1.725 0

Crc-O 0.185 0

Md5 2.86 112

Doobs 0.251 110

Murmur 0.033 0

Stdhash 0.917 992336
Jhash 0.239 126

In Table 2 (Sina, 2012)the author compared Murmuakh function with othe
accepted hash functionSpeedanalysis indicates how much time is uselden ruming
10,000 times with 1,000,00different words. Collided item indicatdsow many collisior
valueshash functions generat MurmurHash has the highest speed amd collided
items. As we know, &ash table is memory consumirso our program mapa discrete
hash table to a hash map save memoryFurther, CBA uses discrete memory stol
structure that meansemory will notbe easy to release. Boost pool algorithm gi\s a

solution to create a big block memory poold for assigningsingle discrete memol
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block. When we need to release memory, we remoiyetba memory pool, which helps
save time and memory. Even with all the optimizatiehown, CBA still used more than
200GB in memory. It cannot be used in a personaipeger.

CBA cannot work for two transcripts that overlafpag fragment of nucleotides. If
the length of the overlapped fragment is longenttiee length of the short read, it means
short reads from the two transcripts share almb&tmers in the critical area. The cluster
process of CBA will think all short reads from tiwe transcripts have strong links. Finally,
CBA will cluster them into one group. To our knoddg, no algorithm can split those
transcripts that share long fragment nucleotides. @A is better than any other program
in the condition of overlapping transcripts.

CBA has another limitation: Since CBA is memory stpained; it cannot run on a
personal computer. We used 40 threads parallelOBA, so CBA would run better in
multiple core servers.

Currently, we use Oases as the CBA alignment mebewduse Oases performs
well overall by adapting to varying conditions aisdsuperior overall compared to other
alignment methods (Schulz et al., 2012). (Schudzbifio, Vingron, & Birney, 2012)

In the future, we will develop a new alignment altion to work with the grouping
algorithms. We will try to discover a way to asséenishort reads more accurately

compared to the de Bruijn graph-based algorithm.
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CHAPTER VI — CONCLUSIONS

The fast development of next-generation sequenaiegents a major challenge to
bioinformatics analysis. One of the underdevelopeghs in bioinformatics is de novo
assembly of RNA-Seq data. Although many assemblerge been developed for
next-generation sequencing data, few can providarate accuracy as well as maintain
satisfactory computing speed. We set out to devalopvel assembler, taking two steps to
assemble RNA-Seq short reads: clustering and akghnBy combining a clustering step
with de Bruijn graph-based algorithm, we targetedimizing the error rate of sequence
alignments.

Our results show that CBA is the best assembleovierall performance when
comparing with other de Bruijn graph and overlagpir-based algorithms in various types
of data. For ERCC data, all assemblers gave addepferformance. This is because
ERCC templates have few overlapped nucleotides, ergh de Bruijn graph-based
assembly methods would not generate many incorentigs. The human genome,
however, has long transcripts, and there existsynarerlapped fields between each
transcript. As the results for human chromosomei@fulated and real data illustrate, the
de Bruijn graph-based assembly methods had higir eates, as shown by the low short
reads mapping rates, contig mapping rates, andreegcoates. For the human data, CBA
consistently had high short reads mapping ratagjgcoapping rates, and recovery rates.

It was expected that an overlap graph-based assgnsbich as Mira, would have a high
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accuracy rate for human data. However, our tedtsdfdo show that. Actually, Mira
performed rather poorly on human data. Furthermeteen comparing the computational
time for all these methods, Mira took at least ntice running time than did other methods.
Therefore, an overlap graph-based algorithm isuoéble for assembling NGS sequences.
Based on the test results, we proved our CBA meikodhluable in RNA-Seq
applications. CBA not only provides a high accuragyen assembling RNA-Seq data but
also gives acceptable computational speed. We eipe€BA method will be widely used
for RNA-Seq studies. We look forward to developinggraded versions of CBA by

optimizing the alignment step.
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