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ABSTRACT

The Northern Plains region of the United States is home to a significant

amount of potential wind energy. However, in winter months capturing this

potential power is severely impacted by the meteorological conditions, in the form of

icing. Predicting the expected loss in power production due to icing is a valuable

parameter that can be used in wind turbine operations, determination of wind

turbine site locations and long-term energy estimates which are used for financing

purposes. Currently, losses due to icing must be estimated when developing

predictions for turbine feasibility and financing studies, while icing maps, a tool

commonly used in Europe, are lacking in the United States. This study uses the

Modern-Era Retrospective Analysis for Research and Applications (MERRA)

dataset in conjunction with turbine production data and in-situ wind measurements

to investigate six methods of predicting seasonal losses (October-March) due to

icing at two sites located in Petersburg, ND and Valley City, ND. The prediction of

icing losses is based on temperature and relative humidity thresholds and is

accomplished using six methods. Three methods use a Measure-Correlate-Predict

(MCP) and flow model (WAsP) analysis for the determination of wind speeds and

MERRA for temperature and relative humidity, while three methods use MERRA

for all three variables. For each season from 2002 to 2010, the predicted losses due

to icing are determined for a range of relative humidity thresholds and compared

with observed icing losses. An optimal relative humidity is then determined and

tested on all seasons from 2002 to 2013. The prediction methods are then compared

to a common practice used in the wind energy industry of assuming a constant

xvi



percentage loss for icing over the same time period.

The three methods using MERRA data alone show severe deficiencies in the

accurate determination of wind speeds which leads to a large underprediction in

accurate power output. Of the three MCP/WAsP methods, the method using

boundary-layer similarity theory to determine temperature and relative humidity

shows the most accuracy in predicting icing losses closest to observed losses at the

Petersburg location with an average absolute difference of 2.13 % ± 1.29 %. This is

a significant improvement over using a constant value which produces an average

absolute difference of 5.87 % ± 4.64 %. Analysis at the Valley City location shows

similar results when the datasets are retrained to that location.

xvii



CHAPTER 1

INTRODUCTION

Wind turbines operating in cold regions of the world are prone to higher production

losses and increased loads due to ice accumulation compared to those operating in

temperate locales. In many cases, standard turbines are operating outside their design

limits when exposed to either extremely low temperatures or meteorological condi-

tions conducive to icing. As a result, these extreme conditions can lead to premature

mechanical failures and thus financial losses. In addition to the mechanical issues,

icing can also impact the health and safety of those in the vicinity. Heavy loads of

ice can increase the noise levels of a wind turbine and ice can be thrown from the

blades, potentially onto nearby roadways. In addition, energy yield calculations for

sites where icing conditions prevail have a higher uncertainty compared with standard

conditions (Baring-Gould et al., 2012).

The selection of potential wind turbine locations involves a rigorous process that

comprises long-term feasibility studies, siting studies, and a financial analysis. As part

of these feasibility studies, power losses due to icing must be estimated. These losses

are typically estimated as a constant percentage of total annual production. Power

losses due to icing can be highly variable between icing events, between seasons,

and across different locations within a wind farm or regionally, so by utilizing a

constant and unchanging percentage for prediction of these losses, that variability is

not represented. For instance, if the predicted power losses for a location are under-
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predicted, the turbine owner or operator will be losing anticipated revenue since the

turbine experiences more icing than was estimated. On the other hand, suppose at

a potential location, predicted icing losses are so high that it would make a wind

turbine inviable financially and so a decision is made to not build. If that location,

however, actually experiences less icing than predicted and thus, less power losses

thereby making the location financially viable, then that represents a complete loss

of financial revenue since the decision was made to not build at that location.

It is clear that the accurate prediction of power losses due to icing can have significant

financial implications, so the goal of this thesis is to develop methods that are more

accurate than the commonly used methods to determine these losses. The presented

methods are based on climatological data from a reanalysis dataset and verified using

wind turbine power production data. Chapter 2 provides an overview of wind power

and the meteorological aspects important for icing. Chapter 3 introduces the datasets

used and the methods and procedures that are developed to determine an improved

method of predicting power losses due to icing. Chapter 4 provides the results of

the analysis, including the accuracy of the datasets used in the analysis. Chapter 5

discusses the results, highlights the best performing method, and includes an anal-

ysis of a second turbine based on the best performing method. Finally, Chapter 6

summarizes the main conclusions of the research.
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CHAPTER 2

BACKGROUND

The harnessing of wind resources has long been utilized for providing mechanical

means for pumping water or grinding grain, but by the early 20th century the emer-

gence of fossil fuel-generated power provided a much more consistent power source.

The 1970s saw the re-emergence of wind energy as a means to provide power due to

the increasing cost of fossil fuels. Since the 1970s, the technology has steadily im-

proved and during the late 20th century worldwide capacity had been doubling every

year (Ackerman and Söder, 2000). Since 1999, the cumulaitve capacity in the United

States has increased by 2500 % (American Wind Energy Association, 2013, Figure 1)

to become one of the top two countries in total capacity (Fried, 2013) and the leading

producer of wind energy in 2010 (U.S. Energy Information Administration, 2013).

Wind energy technology utilizes a number of scientific disciplines such as aerody-

namics, structural dynamics, various branches of engineering, and meteorology. This

chapter aims to provide a general overview of the science behind the extraction of

power from wind and emphasizes some of the meteorological aspects important for

icing that must be taken into account.
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Figure 1: U.S. annual and cumulative wind power capacity growth including new
installations for each quarter of each year. Figure from American Wind Energy
Association (2013).

2.1 Physics of Wind Energy Extraction

The total amount of energy (E) flowing through some area (A), over some time (t) is

E =
1

2
AtρV 3 (2.1)

where ρ is the air density in kg m-3 and V is the wind speed in m s-1. The amount of

power (P) is simply the rate at which energy is generated over time and is therefore

P =
1

2
ρAV 3 (2.2)

The energy in the wind is converted into the rotational energy of the wind turbine,

which reduces the speed of the air as it passes through the turbine area. In an isolated

system, extracting all of the energy from the airstream would result in the wind speed

dropping to zero as all of the wind’s kinetic energy would be converted to rotational
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energy. If the wind on the downstream side of the turbine blades is zero, then no

further air is physically able to flow through the same area from the upstream side. If

this ideal situation were the case, then the flow of air through the turbine blade area

would stop and no further power could be generated. In reality, there is a limit to how

much energy can be extracted from an airstream by the turbine blades, known as the

Betz Law which states that no turbine can extract more than 59.3 % of the available

kinetic energy of the wind (Betz, 1926). More recently, however, CFD models have

shown this limit to be even lower at 30.1 % (Gorban et al., 2001).

2.2 Wind Turbine Overview

Wind turbines can be categorized on both their orientation (horizontal or vertical) and

by the aerodynamic principle by which they generate power (lift or drag). Turbines

in use today are predominantly horizontal-axis and operate using aerodynamic lift

(Ackerman and Söder, 2000).

Figure 2: Schematic of a typical wind turbine with major components labelled (En-
cylopædia Britannica).
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As wind interacts with the blades of a typical turbine (Figure 2), both lift and drag

forces are generated. Lift acts perpendicular to the airflow and drag acts parallel to

the airflow. The lift force causes the blades to spin and generate torque. As the wind

speed increases, the lift and drag forces also increase and thus the power generated

increases as well. At high wind speeds, safety must be considered, and so turbines

will cease operation at what is termed the cut-out wind speed, typically 20 - 25 m s-1

at hub height, to prevent excessive loads on the structure. Conversely, the turbine

will not operate at speeds below what is called the cut-in speed, typically 3 - 5 m s-1

at hub height. Below this speed, sufficient lift is not generated and so the turbine

will not spin (Ackerman and Söder, 2000).

Modern-day utility-scale turbines reach the highest efficiency with wind speeds typ-

ically between 12 and 16 m s-1 . Above this speed but below the cut-out speed, the

power output must be limited to keep the power output close to its rated capacity,

thereby preventing the electrical system from being overloaded. In addition, the driv-

ing forces on the blades cause excessive loads on the entire structure that must be

limited. To accomplish this, turbine blades are regulated via stall regulation, pitch

regulation, or a combination of both. Stall regulation involves promoting the stall ef-

fect by means of altering the turbine blade profile through the use of spoilers or stall

strips. These have the effect of lowering the power output at higher wind speeds.

Pitch regulation involves changing the angle at which the blades encounter the on-

coming air stream, thus the aerodynamic forces are altered in order to maintain a

constant power output (Ackerman and Söder, 2000).
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2.3 Power Losses Due to Icing

The moving parts of a turbine lead to frictional losses, contamination of the blade

surfaces (insects, dust, and dirt) lead to changes in the aerodynamics of the blades,

turbulence of the air stream changes the aerodynamic performance of the turbine,

and finally, meteorological factors causing icing can also impact the blade surfaces.

During icing events, ice accumulates on the turbine blades, reducing the aerodynamic

efficiency and torque, which leads to power losses. Light icing events, can produce a

large enough change in surface roughness of the blade to cause a drop in production,

while severe icing events can introduce complete loss of production if the turbine

blades stop turning (Hochart et al., 2008). Jasinski et al. (1998) mention that the

slightest amount of surface roughness caused by icing has the potential to reduce

energy production by 20 %.

The three main forms of icing which impact wind turbine power production, are

rime ice, glaze ice, and wet snow accretion. Each has different properties and is

formed under different atmospheric conditions (Tables 1 and 2). Typically forming

between 0 ◦C (273.15 K) and -20 ◦C (253.15 K), rime ice occurs when super-cooled

liquid water droplets from clouds or fog are transported by the wind or by gravity

and impact a hard surface, such as a turbine blade, whose temperature is near or

below freezing. Small droplets form soft rime, which is fragile and snow-like, while

large droplets form hard rime which has a higher density and can adhere firmly on

surfaces, making it difficult to remove. Glaze ice, typically forming between 0 ◦C

(273.15 K) and -6 ◦C (267.15 K), is caused by freezing precipitation or wet in-cloud

icing and forms a smooth, transparent, and homogeneous layer of ice that adheres

strongly to the structure. Glaze ice is typically of higher density than rime ice. Wet
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snow, typically forming between 0 ◦C (273.15 K) and 3 ◦C (276.15 K), occurs when

wet snow accumulates and adheres to the surface. If a temperature decrease occurs

after accretion, the wet snow will freeze and form a layer of ice on a surface (Baring-

Gould et al., 2012).

Table 1: Typical properties of accreted atmospheric ice. Table from International
Standards Organization (2001).

Type of
Ice

Ice Density
(kg m-3)

Adhesion and
Cohesion

Color Shape

Glaze 900 Strong Transparent Evenly
Distributed/Icicles

Wet
Snow

300 to 600 Weak(forming)
Strong (frozen)

White Evenly
Distributed/Eccentric

Hard
Rime

600 to 900 Strong Opaque Eccentric, Pointing
Windward

Soft
Rime

200 to 600 Low to
Medium

White Eccentric, Pointing
Windward

Table 2: Meteorological parameters controlling atmospheric icing. Table from Inter-
national Standards Organization (2001).

Type of
Ice

Air
Temperature

(◦C)

Wind Speed
(m s-1)

Droplet
Size

Water
Content
of Air

Typical
Duration

Glaze
(precip)

-10 to 0 Any Large Medium Hours

Wet
Snow

0 to 3 Any Flakes Very High Hours

Glaze
(in-

cloud)

see Figure 3 see Figure 3 Medium High Hours

Hard
Rime

see Figure 3 see Figure 3 Medium Medium Days

Soft
Rime

see Figure 3 see Figure 3 Small Low Days
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Figure 3: Type of accreted ice as a function of wind speed and air temperature.
Figure from International Standards Organization (2001).

Low temperature climate areas are those regions where periods with temperatures

below the operational limits of standard wind turbines without cold weather modi-

fications occur. More specifically the temperature must average -20 ◦C (253.15 K)

more than nine days per year or the average annual temperature must be below 0 ◦C

(273.15 K). Icing climate areas are those where icing events occur. A cold climate

region exists when both types of climate occur (Baring-Gould et al., 2012).

To classify the current study area, a nearby Automated Surface Observing System

(ASOS), located in Devils Lake, ND, is used. This ASOS is located approximately 73

km to the west of one of the study sites in Petersburg, ND. Table 3 shows that from

1990 to 2005, the average number of days per year during which the temperature

dropped below -20 ◦C (253.15 K) was 30.1.
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Table 3: Number of days during which the average temperature was below -20 ◦C
(253.15 K) at the Devil’s Lake (DVL) ASOS station from 1990-2005

Year # of Days
Below
-20 ◦C

1990 22
1991 20
1992 23
1993 43
1994 44
1995 39
1996 55
1997 31
1998 21
1999 22
2000 28
2001 17
2002 21
2003 41
2004 31
2005 23

Average 30.1

Due to the close proximity and similar topography, it is safe to assume that a similar

temperature statistic exists at the study location and since icing is known to occur it

can be classified as a cold climate region.

When power loss occurs due to icing, the incident is termed an icing event. Each icing

event is made up of four separate phases: meteorological icing, instrumental icing,

incubation time, and recovery time (Baring-Gould et al., 2012). Meteorological icing

is the period during which meteorological conditions are favorable for ice accretion.

Instrumental icing is the period during which ice remains on a structure, or when

the turbine is disturbed by ice. Incubation time is the delay between the onset of
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meteorological icing and instrumental icing. Lastly, recovery time is the delay between

the end of meteorological icing and the end of instrumental icing. It is important to

note that the incubation time and recovery time are not equal since they depend on

different factors. The recovery time is a function of how quickly ice will melt or fall

off and, if conditions are right, ice may remain on a turbine for many hours, or even

days, after meteorological icing has ended.

2.3.1 Methods of Determining Icing Conditions

Determining whether icing conditions are present can be accomplished directly, by

measuring the ice accretion, or indirectly, by measuring variables that cause icing or

that correlate with the occurrence of icing (Fikke et al., 2007). Total ice accretion

can be measured directly using various types of instruments that measure changes in

vibrating frequency, changes in electrical properties, or optical properties (Fikke et al.,

2007). To indirectly determine icing conditions, one has to consider the meteorological

conditions that impact icing, including wind speed, air temperature, liquid water

content (LWC), and droplet size distribution. LWC and droplet size distribution are

difficult to measure operationally since there are many unwanted variables, such as

turbine shadowing, that exist when placing an instrument at the turbine hub height,

so other variables must be measured. A simplified approach has been to define icing

events as periods of time where the temperature is below 0 ◦C (273.15 K) and the

relative humidity is above 95% (Fikke et al., 2007). However, recommended practices

(Baring-Gould et al., 2012) suggest that the combination of air temperature below

0 ◦C (273.15 K) and a high relative humidity strongly overestimates the frequency

of icing on structures. If water droplets are small enough, they may be transported

around a turbine blade rather than hitting it and accreting on the surface. In addition,

measurements of relative humidity are generally performed using WMO standards
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where the saturation water vapor pressure is calculated with respect to water. Below

0 ◦C (273.15 K), saturation cannot be reached using that procedure. Cattin et al.

(2008) showed that calculating relative humidity with respect to the saturation vapor

pressure over ice for temperatures below 0 ◦C (273.15 K), improved the detection of

icing conditions by 10 % in their studies. In addition, they found that by including

a third parameter, sky temperature, which uses the incoming long-wave radiation,

icing detection seemed to improve.

2.3.2 Modeling of Icing

The modeling of icing on turbine blades focuses on short-term icing events and is

used to understand ice accretion mechanisms and how this accreted ice affects the

aerodynamic characteristics of the blades. Although the goal of this study is the

prediction of seasonal icing losses (i.e. not single icing events), this section is in-

cluded to provide information on ice modeling research and to contrast it with the

icing prediction algorithm used in this study. In order for the modeling of icing to be

successful, it must describe the frequency, duration, and severity of icing events, in

addition to estimating the amount of ice accreted. As computing power improves, the

precision and accuracy of these models increases as well. In general, the two main cat-

egories of ice models are empirical models, relying on statistical analysis of historical

data and physical models, relying on the specific definition of the required parameters.

Empirical models rely on historical or climatological data at a particular location.

Most are used to determine only the frequency of icing events, but some more sophis-

ticated models can describe both the frequency and the rate of icing accretion that

occurs. For example, the frequency of in-cloud icing events could be determined given

historical temperature, site elevation, and cloud information. The empirical model is
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modified to include statistical values of other parameters such as wind speed, wind

direction, and droplet size distribution in order to estimate the ice accretion at a

particular site (Rindeskär, 2010). Nevertheless, the physical models can still describe

icing events more accurately.

Physical models rely on the specific definition of both the meteorological parameters

and the turbine shape and size. These models can be used to determine ice accretion

or to predict icing events in the short-term by combining mesoscale models such as the

Weather Research and Forecasting (WRF) model or the Coupled Ocean/Atmosphere

Mesoscale Prediction System (COAMPS) (Chen et al., 2003) with ice accretion mod-

els. Ice accretion prediction can be accomplished using the Turbine Blade Icing Model

(TURBICE) (Makkonen et al., 2001) or the Lewis Ice Accretion Program (LEWICE)

(Wright, 2008), which model ice growth on two-dimensional airfoil sections. TUR-

BICE, developed by the Technical Research Centre of Finland, models ice growth

in an airflow perpendicular to the airfoil axis. It calculates the impact point on the

turbine blade and can determine the ice density and surface roughness. In addi-

tion, it determines the heating demand for melting of accumulated ice. Wind tunnel

tests show the TURBICE models ice accretion in good agreement for dry-growth

but not for wet-growth, which is common where temperatures are near 0 ◦C (273.15

K). LEWICE, developed by NASA, is primarily used to model accretion on airplane

wings but has been modified for other applications. It uses an iterative process to

model both dry growth and wet growth icing in addition to calculating heating power,

similar to TURBICE (Rindeskär, 2010).

Case studies performed in Switzerland using a physical model developed by Makkonen

(2000) combined with two mesoscale models showed good potential for describing the
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frequency of icing but simulating ice loads were less precise (Dierer et al., 2009). In ad-

dition, Rindeskär (2010) used both a statistical method, dependent on temperature,

wind speed, and liquid water content, and physical models to determine ice loads.

That study found that the statistical approach was unsatisfactory in reproducing ice

loads that compared well with observations, but similar to Dierer et al. (2009), the

physical models did show some promise in the timing of icing events. That study also

was unable to determine any significant correlation between ice load and power losses.

The model used in this study is an empirical model that uses downscaled global

historical meteorological data in order to predict total seasonal power losses due

to icing at a particular location. By predicting seasonal losses rather than losses

associated with individual events, the temporal error, especially in terms of length

and severity, is not as critical as in the case studies previously mentioned.
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CHAPTER 3

DATA AND METHODOLOGY

This chapter aims to describe the methods and procedures that are developed in or-

der to determine the best method for predicting annual power losses due to icing at

specific wind turbines located in North Dakota. The first section describes each of the

three datasets used in the analysis. These data include the Modern-Era Retrospective

Analysis for Research and Applications (MERRA) provided by the National Aero-

nautics and Space Administraion (NASA), the wind turbine production data, and

in-situ anemometer data. In addition, the procedure to extrapolate the anemometer

dataset to the turbine locations is included. The second section outlines the six meth-

ods of determining the required atmospheric variables (wind speed, temperature, and

relative humidity) at the turbine height. The final section describes the method used

to determine icing-induced power losses.

3.1 Experimental Data

3.1.1 Modern-Era Retrospective Analysis for Research and
Applications (MERRA) Dataset

NASA’s MERRA dataset (Rienecker et al., 2011) is one of several reanalysis datasets

that are used to create a completely gridded meteorological dataset with worldwide

coverage from 1979 to the present, which corresponds to the satellite era. The location

of the two wind turbines and the area of MERRA coverage used to analyze each one

are shown in Figure 4.
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Figure 4: The location of the turbines used in this study within North Dakota. The
four MERRA gridpoints used at each turbine are the vertices of the purple squares.

Three subsets of the MERRA dataset are used: a two-dimensional, surface-level,

hourly-averaged dataset containing standard meteorological parameters, herein re-

ferred to as the surface-level dataset; a three-dimensional, 72-level, 6-hourly instan-

taneous dataset containing standard meteorological parameters, herein referred to as

the model-level dataset; and a two-dimensional, surface-level, hourly-averaged dataset

containing surface turbulent flux parameters, herein referred to as the surface flux

dataset. The surface-level dataset contains temperature and specific humidity at 2 m

and 10 m, wind speed at 2 m, 10 m, and 50 m, and surface pressure. The model-level

dataset contains temperature, specific humidity, and wind speed at 72 levels through-

out the atmosphere. For each time step, the vertical distance between each of the 72

levels varies, so the depth of each level (in Pa) is provided as well. However, only the

first level above the surface is needed. The surface flux dataset contains parameters

that can be used in surface layer and boundary layer analyses. These include sensible
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and latent heat fluxes, roughness lengths, displacement height, and surface scaling

parameters. Each variable is determined at the location of the turbine using a lin-

ear, horizontal interpolation between the four grid points that surround the turbine

location. These grid points are spaced 2/3◦ (≈ 52 km) in the east-west direction and

1/2◦ (55.6 km) in the north-south direction.

3.1.2 Turbine Production Dataset

Minnkota Power Co-Op (herein referred to as Minnkota), based in Grand Forks,

North Dakota, owns and operates the two wind turbine sites shown in Figure 4. The

turbines are NEG Micon NM52/900 with a 72.3 m hub height, rotor diameter of

52 m, and rated power of 900 kW. The turbine production dataset contains hourly

power production data of both turbines since they began operation in 2002 until

the present. These data are calculated by taking the average of the four 15-minute

instantaneous values over each one hour period. In addition to production data, a

record of periods when the turbines underwent maintenance is included for 2008 until

2012. Some of these records indicate periods when the turbines were not running due

to icing, however, since a full record does not exist for the time period of this study,

these data are not used.

3.1.3 Anemometer Dataset

A meteorological tower located in close proximity to one of the turbines (location

with-held due to confidentiality), is outfitted with several instruments, including cup

anemometers (Vector A100LK and NRG #40C), direction vanes (NRG #200P), a

temperature sensor (NRG #110S), and a barometric pressure sensor (NRG #BP20).

One of each type of anemometers are placed in pairs opposite each other at three

heights above the ground (20.12 m, 41.53 m and 59.46 m) while a direction vane is
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located two meters below each of the pairs of anemometers. The temperature and

pressure sensors are located two meters and one meter above the ground, respec-

tively. These instruments were in use and collecting data beginning in June 2010 and

continue to collect data at the time of this writing. The subset of data from June

2010 to December 2012 is used in this study. As with any in-situ measurement, the

data from each anemometer must undergo a quality control procedure to eliminate

any invalid data. The quality control procedure is accomplished using Windographer,

wind industry software developed by Mistaya Engineering Inc (2013). The two major

issues impacting the data are tower shading and instrument icing. Tower shading oc-

curs when the airflow is disrupted by the tower structure itself, leading to inaccurate

measurements for certain wind directions. Since the anemometers at each height are

located on opposite sides of the tower, only one of each pair will ever experience tower

shading at a given time and only for specific wind directions. For these data, wind

directions within 25 degrees of the orientation of any anemometer were eliminated.

For example, if an anemometer is oriented at 90 degrees, data whose wind directions

are from 65 degrees through 115 degrees are eliminated for that anemometer only.

Unfortunately, eliminating data due to instrument icing is not as straightforward as

the tower shading elimination process. In cases where there is no instrument that di-

rectly measures icing, the data elimination process becomes subjective. For example,

when a direction vane shows a minimal change in its measurement (less than 0.01

degrees per 10 minute time step), and the temperature is less than 2 ◦C (275.15 K),

icing is assumed for that time period. If during that same time period an anemometer

at the same height shows a wind speed of less than 0.5 m s-1, icing is assumed to be

affecting that device as well. Data can also be removed if it appears that ice may

be impacting the measurements outside of the above criteria, which can occur if ice
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remains on one of the instruments for a significant period of time before it finally

melts or falls off.

The quality controlled anemometer data for each pair is combined together to produce

a single set of measurements for each height, also known as a patched dataset. The

Vector anemometer is used as the primary source, except in cases where data had been

removed in the quality control process, and then the measurements from the NRG

anemometer are used for that time period. If, for the same time period, measurements

from the NRG anemometer were also removed in the quality control process, then that

time period will have no data. The resultant dataset then consists of one set of wind

speed and direction measurements at three heights. The quality control procedure

was done by EAPC Wind Energy who have provided the data for this study.

3.1.4 Extrapolation of Anemometer Dataset

The quality controlled dataset covers only a short period of time and a single location

that is not co-located with the turbine and so it must be lengthened, or long-term

corrected to cover the same time period of both the Minnkota and MERRA datasets.

The dataset also must be extrapolated spatially to the turbine location and verti-

cally to the turbine hub height. The long-term correction is accomplished by using

Measure-Correlate-Predict (MCP) analysis. MCP analyses are used to predict the

wind resources for wind power development. This prediction is accomplished by mod-

eling the relationship between in-situ wind data and concurrent data from a nearby

reference site with the desired long-term time record. The regression model is then

used to predict the long-term wind speed and direction distributions at the target

site based on long-term data. Although several MCP algorithms exist (Rogers et al.,

2005), the method used for this study is a 1st order linear regression model as outlined

19



in Thørgersen et al. (2013). The MCP analysis is performed using WindPRO, wind

industry software developed by EMD International A/S (2013b).

For this algorithm, the anemometer dataset is the in-situ measurement, while the long-

term reference data is the 50-m wind speed data from the closest MERRA grid point,

located 18 km from the meteorological tower. Using the closest grid point is more

beneficial than interpolating to the measurement site using the four nearest MERRA

grid points, as was done section 3.1.1. The regression model used in WindPRO has

the form

Y = β1x+ β0 + e (3.1)

where Y is the MERRA wind speed, x is the measured wind speed, e is the residual

error and the β terms are the regression parameters. The regression model is binned

in one-degree increments according to the wind direction of the reference data and so

each wind direction will have its own set of regression parameters and residual error.

The regression parameters are estimated by minimizing the squared sum, SSR, of the

following equation:

n∑
i=1

[Yi − (β1xi + β0)]
2 (3.2)

The residual errors are calculated using what is referred to as first order Gaussian

resampling. The reference wind speed range is divided into a number of intervals.

Within each interval, the observed scatter, or residual, is found as a standard de-

viation of the scatter together with the bias of the observations. Both are applied

when transferring the reference data to the site data (EMD International A/S, 2013a).

WindPRO allows the user to turn on or turn off the residual error in its calculations,
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with the documentation recommending they be left on. In consultation with Dr.

Brandon Storm, however, leaving the residual error on can introduce an unrealistic

wind speed time series, that could impact analyses on time scales shorter than a day

(2014, personal communication). The residual error is left on for the initial analysis,

however, the impact of removing the residual is presented as a comparison in Chap-

ter 5.

The result of the MCP analysis is that the wind speeds are estimated at the meteo-

rological tower for the required time period (August, 2002 through July, 2013). The

use of measured or long-term corrected data for wind resource calculations results in

estimates that are only representative of the location of the measurements. In order

to apply these measured wind speed statistics to a region, some method is required to

transform the wind speed statistics. This is accomplished using Wind Atlas Analysis

and Application Program (WAsP) (Troen and Petersen, 1989). WAsP consists of

a comprehensive set of models for the horizontal and vertical extrapolation of me-

teorological data in order to estimate wind resources. The models are based on the

physical principles of flows within the boundary layer and take into account the effects

of surface conditions, sheltering due to obstacles, and the variations in height of the

meteorological station in which the measurements are taken. WindPRO allows the

user to apply WAsP to the data using the PARK module in order to produce a long-

term corrected dataset at the turbine location and height (72.3 m AGL). This module

also includes an air density correction at the turbine height based on climatological

data.
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3.2 Methods of Determining Atmospheric Variables at the Turbine
Height

In order to properly relate the MERRA and anemometer datasets to the Minnkota

dataset, the atmospheric variables that will be used in the icing prediction algorithms

need to be calculated at the height of the turbine. A single height is used rather

than a range because since the turbine blades are 26 m long, they will experience

different meteorological conditions as they rotate. The center of this axis of rotation

is the hub height of the turbine (72.3 m AGL) and so this point represents the

average conditions experienced by the blades. Three methods have been developed to

determine temperature, relative humidity, and wind speed using the MERRA dataset.

In the preceding section, wind speeds were determined from the anemometer dataset

and so for each method, both sets of wind speeds are used, for a total of six methods

for testing, shown in Table 4.

Table 4: Overview of the six methods used to determine temperature, relative hu-
midity and wind speed at the turbine hub height (72.3 m).

Temperature Relative
Humidity

Wind Speed

Method 1a Boundary-Layer
Similarity Theory

Boundary-Layer
Similarity Theory

Boundary-Layer
Similarity Theory

Method 1b Boundary-Layer
Similarity Theory

Boundary-Layer
Similarity Theory

MCP/WAsP-
Analysis

Method 2a 10 m Values 10 m Values Extrapolation of
Surface Values

Method 2b 10 m Values 10 m Values MCP/WAsP-
Analysis

Method 3a Interpolation of
Surface and
Upper Level

Interpolation of
Surface and
Upper Level

Interpolation of
Surface and
Upper Level

Method 3b Interpolation of
Surface and
Upper Level

Interpolation of
Surface and
Upper Level

MCP/WAsP-
Analysis
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3.2.1 Methods 1a and 1b: Boundary-Layer Similarity Theory

In many situations within the boundary layer, deriving laws based on first principles is

limited to our knowledge of the governing physics involved (Stull, 1988). Turbulence

within the boundary layer is one such example. The equations of motion describe

turbulent fluctuations but generating solutions to these equations is very difficult.

Similarity theory aims to organize and group experimental data in order to create

empirical relationships for these types of situations (Beljaars, 1992). Atmospheric

stability plays an important role in the behavior of the atmosphere and the profile of

atmospheric variables. From Beljaars (1992) the stability of the boundary layer can

be represented by the Obukhov length, L (m), defined as:

L = −
U3
∗o θ̄v

κg(w′θ′v)
(3.3)

where U∗o is the shear velocity (m s-1), κ is the von Karmen constant, typically equal to

0.41, θ̄v is the surface virtual potential temperature (K), w′θ′v is the kinematic virtual

potential temperature flux (K m s-1), and g is the gravitational constant (9.81 m s-2).

Obukhov lengths with positive values less than 500 m are considered stable, negative

values greater than -500 m are unstable, and values above 500 m or below -500 m

are neutral (Pena et al., 2009). The wind, temperature, and moisture profiles behave

differently throughout the boundary layer and so each is represented by its own set

of equations based on the stability of the atmosphere. However, these relationships

change depending on the position within the boundary layer. The surface layer ex-

tends to approximately 10% of the height of entire planetary boundary layer while

above that is the mixed layer.
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Within the surface layer, many properties are assumed to be constant, including sur-

face fluxes and friction velocities, while in the mixed layer they are decreasing until

the top of the boundary layer (Stull, 1988; Gryning et al., 2007).

The MERRA surface flux dataset and the surface level dataset contain all the variables

needed to perform boundary layer similarity calculations. The kinematic virtual

potential temperature flux used to calculate the Obukhov length is determined from:

w′θ′v =
h

ρCp
+ 0.61θ

e

ρλ
(3.4)

where h is the sensible heat flux (W m-2), ρ is the air density (kg m-3), Cp is specific

heat capacity of air at constant pressure (J kg-1), e is the latent heat flux (W m-2), λ

is the latent heat of vaporization of water (J kg-1), and θ is the potential temperature

(K).

Pena et al. (2009) show that the following equations for the wind profile can be used

above the surface layer as they showed good agreement with observations up to 100 m

for a very stable atmosphere, and up to 300 m for all other stability classes. The sta-

bility parameter Ψm is taken from Beljaars and Holtslag (1991).

For a stable atmosphere:

U =
U∗o
κ

[ln(
z

zo
) + b

z

L
(1− z

2zi
)] +

U∗o
κ

[
κz

λ
(1− z

2zi
)− z

zi
] (3.5)

For a neutral atmosphere:

U =
U∗o
κ

[ln(
z

zo
) +

κz

λ
(1− z

2zi
)− z

zi
] (3.6)
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For an unstable atmopshere:

U =
U∗o
κ

[ln(
z

zo
)−Ψm +

κz

λ
(1− z

2zi
)− z

zi
] (3.7)

where:

Ψm = 2 ln(
1 + x

2
) + ln(

1 + x2

2
)− 2 tan−1 x+

π

2
(3.8)

x = (1− 16
z

L
)
1
4 (3.9)

λ = 0.00027
G

fc
(3.10)

and

G =
U∗o
κ

√
(ln(

U∗o
zofc

)− 1.9)2 − 4.92 (3.11)

z is the height above the deplacement height (m), zo is the roughness length (m), zi is

the height of the planetary boundary layer (m), and fc is the Coriolis parameter (s-1).

The coefficient, b, is an experimentally determined constant and found to be either

6.0 or 4.7 depending on the experimental data (Pena et al., 2009). For time periods

where the turbine is determined to be above the boundary layer, the geostrophic wind

speed, G, will be assumed.

25



Within the surface layer, Paulson (1970) showed that the potential temperature profile

is given by:

θ = θs + θ∗[ln(
z

zo
)−ΨH ] (3.12)

where for stable conditions:

ΨH = (1 +
2z

3L
)
3
2 +

2

3
(
z

L
− 5

0.35
) exp(−0.35z

L
) +

7

3
(3.13)

and for unstable conditions:

ΨH = 2 ln(
1 + x2

2
) (3.14)

θ is the potential temperature (K) at some height, z (m), above the displacement

height. θs is the potential temperature at the surface (K), and θ∗ is the surface tem-

perature scale (K).

For neutral conditions, the stability parameter, ΨH , is zero. Above the surface layer,

the potential temperature profile is assumed to be constant from the top of the sur-

face layer to the entrainment zone which is consistent with Stull (1988).

Similar to the potential temperature profile, the moisture profile within the surface

layer is:

q = qs + q∗[ln(
z

zo
)−ΨQ] (3.15)
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where for stable conditions:

ΨQ =
−5z

L
(3.16)

and for unstable conditions:

ΨQ = 2 ln(
1 + x2

2
) (3.17)

q is the specific humidity at some height, z (m), above the displacement height, qs

is the surface specific humidity, and q∗ is the surface humidity scale. For neutral

conditions, the stability parameter, ΨQ, is zero. Similar to the temperature profile,

the moisture profile is assumed to be constant from the top of the surface layer to

the entrainment zone.

The potential temperature is converted to temperature using:

T =
θ

(100000
P

)0.286
(3.18)

and the specific humidity is converted to relative humidity, φ, using:

φ = 100× w

ws
(3.19)

and

w = − q

q − 1
(3.20)

where w is the water vapor mixing ratio and ws is the saturation water vapor mixing

ratio.
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The saturation water vapor mixing ratio is temperature dependent and calculated

according to Murray (1967):

ws =
380

p
exp(

17.269(T − 273.16)

T − 35.86
) (3.21)

for T ≥ 273.16 K and:

ws =
380

p
exp(

21.875(T − 273.16)

T − 7.66
) (3.22)

for T < 273.16 K.

The pressure, p (Pa), is adjusted for the height, h, above ground using:

p = po − ρgh (3.23)

where po is the surface pressure (Pa). For temperatures below freezing, the saturation

water vapor mixing ratio is calculated with respect to ice because using the World

Meteorological Organization (WMO) standard of calculating with respect to water

results in saturation never being reached as shown in Figure 5.

28



Figure 5: Relative humidity calculation using World Meteorological Organization
(WMO) standards, showing that below 0 ◦C (273.15 K), saturation is never achieved
(Cattin et al., 2008).

3.2.2 Methods 2a and 2b: Extrapolation of Variables

The surface level MERRA dataset contains derived wind speeds at 2 m, 10 m, and

50 m, and temperature and moisture variables at 2 m and 10 m. To determine the

wind speed at the height of the turbine, the provided wind speeds are fitted to a curve

of the form:

z = aub (3.24)

where z is the height above the ground (m), and u is the wind speed (m s-1), as shown

in Figure 6.
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Figure 6: Equation 3.24 fitted to the 2 m, 10 m, and 50 m MERRA wind speed data
for a single time step with a=0.03416, b=0.9201, R2=0.9999, and RMSE=0.2603.

The coefficients of fit are given by a and b, with each time step having different

coefficients. Equation 3.24 is rearranged and solved for the wind speed at the turbine

height (z=72.3 m):

u =
ln( z

a
)

b
(3.25)

Unlike the wind speed, the temperature and moisture variables cannot be extrapolated

from the 2 m and 10 m values as their atmospheric profiles cannot be accurately

defined by an exponential function. For this method, the temperature and relative

humidity values at 10 m will be used as the turbine height value.

3.2.3 Methods 3a and 3b: Interpolation of Variables

This method combines the surface level dataset and the model level dataset in order to

interpolate the atmospheric variables at the turbine height. The model level dataset,
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with a six hour temporal resolution, is resampled to a one hour resolution, using

linear interpolation of each variable. At each hour, the two layers that bracket the

turbine height are chosen. In all cases, one layer will be the surface level, and the

second layer will be the first layer in the model level dataset. In order to interpolate

between these two levels, the height of the first model layer is computed using the

hypsometric equation:

h =
RT

g
ln(

P1

P2

) (3.26)

where R is the gas constant for dry air (287 J kg-1 K-1), T is the mean temperature

of the layer (K), P1 and P2 are the atmospheric pressure (Pa) at the top and bottom

of the layer, respectively, and g is the acceleration due to gravity (9.81 m s-2). The

temperature and relative humidity are easily calculated using a linear interpolation

between these two levels. The wind speed, Vturb, at the turbine height, zturb, is

interpolated between the levels according to Holt and Wang (2012):

Vturb = Vb(
Zturb
Zb

)α (3.27)

and

α =
ln Vb

Va

ln Zb

Za

(3.28)

where Va and Vb are the wind speed at the levels above and below the turbine,

respectively. Za and Zb are the heights of the levels above and below the turbine,

respectively. In this case, the values below the turbine height are always the surface

level values at a height of 10 m, while the values above the turbine height are always

those at the first model level, which has a different height at each time step.
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3.3 Methods of Determining Power Losses Due to Icing

3.3.1 Wind Industry Method

In the siting process of proposed wind turbines, the industry standard is to estimate

the amount of power that will be lost annually due to various factors. This can be

done by assuming a general loss for all factors such as maintenance, turbulence effects,

and environmental factors or specific losses for each factor. In some cases, where data

are available, icing losses can be more readily determined through the use of icing

maps, while in other cases, a simple estimate is used. Although there is no universal

industry method, most consulting agencies and developers do not use complex icing

prediction algorithms that may be in use by wind turbine manufacturers. As such,

for this study a constant value is used that represents the best estimate for icing

losses prior to construction of a turbine or wind farm. For the turbines investigated

in this study, no previous icing loss data is available and so in consultation with Dr.

Brandon Storm of EAPC Wind Energy, the estimated annual loss in power due to

icing (Lind) would amount to approximately 4.7% (2013, personal communication).

3.3.2 Method to Determine Observed and Predicted Power Losses Due
to Icing

Reanalysis data does not include complex variables such as liquid water content or

droplet size distribution, so the icing prediction algorithm will be based on the sim-

plified approach outlined in Fikke (2007). The relative humidity will be calculated

with respect to ice when temperatures are below freezing, as suggested by Cattin et

al. (2008). Icing is assumed to occur when the temperature is less than 273.16 K

and the relative humidity is above a certain threshold, with Fikke (2007) suggesting

the threshold be 95%. The goal of this study is to determine the optimal relative
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humidity threshold that should be used when predicting power losses due to icing.

Observed icing losses are determined from the Minnkota dataset in conjunction with

wind speeds from the other datasets. The Minnkota dataset does not include nacelle-

based anemometry or indicators for icing and so periods of icing need to be estimated.

The observed power output is compared to the expected power output (Figure 8),

which is converted from wind speed to power using the turbine power curve. A typical

power curve (Figure 7) allows wind speed to be converted directly to turbine power

output and is based on the manufacturer’s own analysis of the turbine under various

atmospheric conditions. Since power curves are dependent on air density, the 10 m

air density from the MERRA dataset is used. This could have an effect on both

the observed and predicted icing losses in that the expected power output would be

slightly higher than it should be which could cause an increase in both the observed

and predicted losses.
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Figure 7: Manufacturer’s power curve for a NEG Micon NM52/900 turbine with air
density of 1.27 kg m-3.
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Icing is assumed when the following conditions are met:

• Temperature is below 273.16 K.

• Predicted wind speed is greater than 4 m s-1.

• Observed power output is 80% or less than that of the expected power output.

The 80% threshold is chosen in order to maximize the capture of light icing events

as Jasinski et al. (1998) found that even minor icing can cause a 20% drop in power

production. When the above conditions are met, icing loss is calculated as the differ-

ence between the observed power output and the expected power output.
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Figure 8: Observed power production at the Petersburg location (blue) compared with
expected power production (green) calculated using the boundary-layer similarity
method for the first week of November 2009. Icing is assumed to occur when observed
power production is less than 80% of the expected power production for time periods
that meet the temperature and wind speed criteria (red).

For the entire six-month period of each season, the observed total amount of power

lost due to icing, Iobs, is determined, while the total amount of power generated,
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Pobs, for the twelve month period from August 1 to July 31, is given in the Minnkota

dataset. Due to the fact that Pobs is the total power generated after all losses are

taken into account, the observed annual loss, LO, as a percent includes the total loss

due to icing in the denominator and is:

LO = 100× Iobs
Iobs + Pobs

(3.29)

Predicted icing losses are determined for each method outlined in Section 3.2. For

each one-hour time step, the calculated temperature and relative humidity are checked

against the chosen thresholds (e.g. 273.16 K and 95%) as shown in Figures 9 and 10.
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Boundary Layer Similarity Method
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Figure 9: Temperature profile at the Petersburg location as calculated using
boundary-layer similarity theory for the first week of November 2009 (blue) com-
pared with the temperature threshold for icing prediction (red).
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Boundary Layer Similarity Method
Relative Humidity Threshold

Figure 10: Relative humidity profile at the Petersburg location as calculated using
boundary-layer similarity theory for the first week of November 2009 (blue) compared
with the 95% relative humidity threshold for icing prediction (red).

For those periods of time where both thresholds are met, it is assumed that all power

that would be generated for those times is lost due to icing. Figure 11 shows the

expected power generated for the first week of November 2009 and the three periods

of time where the thresholds are met.
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Boundary Layer Similarity Method

Figure 11: Expected power generated at the Petersburg location calculated from
boundary-layer similarity theory for the first week of November 2009 (blue). Periods
of time where both temperature and relative humidity thresholds are met for icing
are shown in red.

For the six-month period of each season, the total predicted power lost due to

icing,Ipred, is determined from all periods when the thresholds are met. The total

amount of power, Ppred, expected to be generated for the twelve-month period from

August 1 to July 31, assuming no losses, is also determined. The predicted annual

loss, LP , due to icing is simply:

LP = 100× Ipred
Ppred

(3.30)

For the full analysis, the predicted annual loss due to icing is determined for relative

humidities ranging from 90% to 105% in 0.2% increments, for each of the six methods

outlined in the preceding sections, and for each of the eight training years beginning

August 1, 2002 and ending July 31, 2010. To determine the optimal relative humidity

threshold for each method, the difference, LD, between the observed losses, LO, and
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the predicted losses, LP , is calculated for each relative humidity threshold for each

season. LD is then averaged for each relative humidity value over the eight seasons.

The optimal relative humidity threshold exists when this averaged LD is minimized.

This minimum point is the interpolated value between the two relative humidities

that bracket the point at which LD is zero. The three years from August 1, 2010 to

July 31, 2013 are used to test the optimal relative humidity threshold using the same

procedure outlined in this section, where the optimal value is used instead of the full

range that is used in the training years.
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CHAPTER 4

RESULTS

This chapter aims to provide a summary of the performance of each of the methods

described in section 3.2 in predicting power losses due to icing as outlined in sec-

tion 3.3. The first section looks at the accuracy of the MERRA-derived wind speeds

and quantifies the differences between those and the MCP/WAsP-derived wind speeds

to determine the best method of calculating wind speeds. The next section provides

an analysis of and quantifies the temporal variability of icing prediction in order to

determine the best time period over which to sum icing losses in the analysis. The

final two sections provide the results of the methods used to predict power losses due

to icing and how the best method applies to a second location.

4.1 Accuracy of MERRA-Derived Wind Speeds and Energy Production

In order to determine if MERRA makes a suitable dataset for icing prediction, the

accuracy of each method outlined in section 3.2. for calculating wind speeds, and

by extension, energy production, must first be determined. Unfortunately, no wind

speed data is available at the Minnkota turbine site used for this research. However,

the turbine dataset represents a proxy for the wind speeds, in the form of energy

production since the turbine power curve can be applied to the wind speeds. To

eliminate any possibility of turbine icing affecting the data, the month of October

2011 is chosen as the best month for comparison of derived winds to observations. In

general, October is early enough in the season that any periods of icing, if they occur,
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are limited in duration due to the fact that temperatures drop below freezing much less

than during the other 5 months tested. Based solely on this month, the MCP/WAsP-

derived winds (green lines on Figs. 12, 13, and 14) seem to be more accurate than

simply using MERRA-derived winds (blue lines on Figs. 12, 13, and 14) to calculate

power production.
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Boundary Layer Similarity Method
Boundary Layer Similarity with MCP/WAsP−Derived Winds
Observed

Figure 12: A comparison of energy production at the Petersburg location calculated
from wind speed derived from boundary layer similarity theory (blue) and boundary
layer similarity theory with Measure-Correlate-Predict (MCP) derived wind speed
(green). The observed production is shown in red.
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Interpolation Method
Interpolation with MCP/WAsP−Derived Winds
Observed

Figure 13: A comparison of energy production at the Petersburg location calculated
from wind speed derived from the interpolation method (blue) and the interpolation
method with Measure-Correlate-Predict (MCP) derived wind speed (green). The
observed production is shown in red.
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Extrapolation Method
Extrapolation with MCP/WAsP−Derived Winds
Observed

Figure 14: A comparison of energy production at the Petersburg location calculated
from wind speed derived from the extrapolation method (blue) and the extrapolation
method with Measure-Correlate-Predict (MCP) derived wind speed (green). The
observed production is shown in red.
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One pattern that stands out is that the interpolation method and extrapolation

method produce curves that are much more smoothed out than the boundary layer

similarity method curve (blue lines on Figs. 13, 14, and 12, respectively). In addi-

tion, with the exception of the area between 100 hours and 175 hours, each method

does seem to match with the pattern of the observed energy production curve (red

line in Figs. 12, 13, and 14). Although the curves seem to match with the ob-

served energy production curves, the average expected hourly energy production for

the interpolation, extrapolation, and boundary layer similarity methods are 290.5

kWh, 357.2 kWh, and 361.8 kWh, respectively. For the three MCP/WAsP-derived

methods, these values average 403.6 kWh, while the observed average hourly energy

production is 417.55 kWh. To investigate further, the average hourly energy produc-

tion calculated using each method is compared for each season. Each of the three

methods using MCP/WAsP-derived winds (dashed colored lines on Figure 15) show

a better correlation to the observed values (dashed black line on Figure 15) than the

methods using MERRA-derived winds (solid colored lines on Figure 15).
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Observed
Interpolation Method
Extrapolation Method
BL Similarity Method
Interpolation with MCP/WAsP−Derived Winds
Extrapolation with MCP/WAsP−Derived Winds
BL Similarity with MCP/WAsP−Derived Winds

Figure 15: Average hourly energy production for each season (October to March) at
the Petersburg location as calculated from wind speed derived from boundary layer
similarity theory (solid blue), the extrapolation method (solid magenta), and the
interpolation method (solid green). The same methods using MCP/WAsP-derived
wind speeds are shown as dashed lines. Observed is shown with the dashed black
line.

Each of the three methods using MERRA-derived wind speeds produces a different

wind speed profile from the surface to the turbine height, as shown in Figure 16.

As expected based on the power production correlation, the wind profiles generated

using only MERRA data (red, blue, and green lines on Figure 16) show wind speeds

at the turbine height that are lower than the MCP-method (magenta dot).
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Figure 16: A comparison of wind speed as a function of height for the interpolation
method (red), the extrapolation method (blue), and the boundary layer similarity
method (green) for December 23, 2011 at 0600Z. The cyan dots are the MERRA-
provided wind speeds, and the magenta dot is the MCP/WAsP-derived wind speed.

On a seasonal basis, the same wind speed correlation exists, with the mean seasonal

MCP/WAsP-derived winds (red line on Figure 17) being the highest and the wind

speeds determined from the interpolation method (green line on Figure 17) being

significant lower. This enforces the result that the methods using only MERRA data

are under predicting the wind speeds at the turbine height, and thus under predicting

the power production.
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Figure 17: Seasonal average wind speed calculated from boundary layer similarity
theory (blue), the extrapolation method (magenta), the interpolation method (green),
and the MCP/WAsP method at the Petersburg location.

The 11-season means (Table 5) for both wind speed and hourly energy production

agree with each of the relationships seen in the seasonal means (Figs. 15 and 17).

The energy production from the MCP/WAsP methods is between 1.1 % and 1.9 %

higher than observed, while the three methods not using MCP/WAsP-derived wind

speeds are between 9.2 % and 27.3 % lower than observed. In addition, the mean wind

speed of the three non-MCP/WAsP methods is between 7.1 % and 15 % lower than

the mean MCP/WAsP-derived wind speeds. Again, this shows that the wind speeds

derived solely from MERRA data are being under predicted, leading to an under

prediction of energy production. Although the MERRA-derived winds are being

under predicted, they are still used in three of the methods to better understand how

the under prediction will impact the icing prediction algorithms and allow a better

comparison of all methods.
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Table 5: Eleven-season mean of wind speed (m s-1) and hourly energy production
(kWh) and their standard deviations for each of the six methods used in this study.
No observed wind speed data exists for this location

11-Season Mean Wind
Speed (m s-1)

11-Season Mean Hourly
Energy Production

(kWh)

Extrapolation Method 7.678 ± 0.380 283.10 ± 31.41
Interpolation Method 7.030 ± 0.333 230.38 ± 26.61

Boundary Layer
Similarity Method

7.680 ± 0.368 285.97 ± 30.04

Extrapolation with
MCP/WAsP Winds

8.267 ± 0.343

306.82 ± 33.49

Interpolation with
MCP/WAsP Winds

306.02 ± 35.67

Boundary Layer
Similarity with

MCP/WAsP Winds

305.88 ± 34.28

Observed - 359.79 ± 37.30

4.2 Temporal Variability in Icing Prediction

In order to determine the significance of time periods over which the predicted icing

losses are determined, a test is performed on one season to analyze time scales shorter

than six months (i.e. shorter than one season). For this test season, the predicted

and observed icing loss (MWh) is determined for the three-month periods of October

through December and January through March using the boundary-layer similarity

theory method with MCP/WAsP-derived winds. Figure 18 shows that for both three-

month periods, the predicted losses due to icing (LP ) match closely with the observed

losses due to icing (LO).
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Figure 18: Predicted and observed icing losses (MWh) at the Petersburg location
using the boundary-layer similarity method with MCP/WAsP-derived winds and a
relative humidity of 97.7 % for each three month period making up the 2007/2008
winter season.

Looking at monthly time scales (Figure 19) there is some variability. For the months

of October, November, January, and March, the icing losses are under-predicted,

while in the remaining months, the icing losses are over-predicted.
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Figure 19: Predicted and observed icing losses (MWh) at the Petersburg location
using the boundary-layer similarity method with MCP/WAsP-derived winds and a
relative humidity of 97.7 % for each monthly period making up the 2007/2008 winter
season.

As the month of January has the highest amount of observed losses due to icing while

also having predicted losses that closely match the observed losses, a weekly analysis

is performed on this month (Figure 20). Similar to the monthly analysis, the weekly

analysis also shows both under-prediction and over-prediction of icing losses.
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Figure 20: Predicted and observed icing losses (kWh) at the Petersburg location using
the boundary-layer similarity method with MCP/WAsP-derived winds and a relative
humidity of 97.7 % for each weekly period of January 2008.

In addition to the raw energy losses due to icing, the icing prediction methods are

highly dependent on accurately determining the optimum relative humidity. As such,

the variability of the temporal resolution used for the seasonal analyses is investigated

to determine its effect on relative humidity. Each method is analyzed every hour and

the resultant observed and predicted icing losses are summed and analyzed monthly,

three-monthly, and six-monthly (seasonally). The difference between the observed

icing losses and predicted icing losses (LD) is calculated for each relative humidity

threshold between 90 % and 105 %. The monthly analysis is performed on October

2009 (Figure 21) and January 2010 (Figure 22).
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Figure 21: The difference between the predicted icing losses (LP ) and observed icing
losses (LO) at the Petersburg location for October 2009 using the boundary layer
similarity method.
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Figure 22: The difference between the predicted icing losses (LO) and observed icing
losses (LO)at the Petersburg location for January 2010 using the boundary layer
similarity method.
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In the case of October, the optimum relative humidity is not located within the

range of the data, as the difference between the observed and predicted icing losses

never reaches 0 for any of the relative humidity thresholds. For January, however, an

optimal relative humidity does exist at just over 98 %. Of note, however, is that a

small change in the relative humidity produces a large change in the difference between

the predicted and observed losses. For example, a change from 97 % to 98 % in the

relative humidity produces a change of over 20 % in the difference between observed

and predicted icing losses. These types of patterns emerge in all six methods when

analyzing the data on monthly time scales and show that a monthly time scale is

too variable for the required analysis. There is some improvement when looking at

three-monthly time scales (Figures 23 and 24) in that an optimum humidity exists

for both periods, however there is a significant difference.
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Figure 23: The difference between the predicted icing losses (LP ) and observed icing
losses (LO)at the Petersburg location for the period October 2009 to December 2009
using the boundary layer similarity method.
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Figure 24: The difference between the predicted icing losses (LP ) and observed icing
losses (LO) at the Petersburg location for the period January 2010 to March 2010
using the boundary layer similarity method.

The optimum relative humidity threshold is 96.1 % for the October to December

period and 98.6 % for the January to March period, showing that some variability is

still evident at three-month time scales. In addition, for the the January to March

time period the rate of the change of the difference between the predicted and ob-

served losses is quite significant for small changes in relative humidity, similar to the

monthly analysis in January. At the seasonal scale (Figure 25), the rate of change

of the difference is smaller than both three-month periods and the optimum relative

humidity lies between their respective values, at 97.9 %.
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Figure 25: The difference between the predicted icing losses (LP ) and observed icing
losses (LO) at the Petersburg location for the period October 2009 to March 2010
(blue dots) using the boundary layer similarity method.

The temporal resolution analysis shows that variability does exist over the three

different time periods, however, the six-month time scale shows the lowest variability.

In addition, the wind industry reports on annual time scales and with icing generally

not occuring in the Northern Plains for more than six months of a year, moving

forward, the icing prediction methods are all analyzed over this six-month seasonal

time scale.

4.3 Prediction of Annual Power Losses Due to Icing

Each of the six methods is analyzed for each of the eight winter seasons from 2002 to

2010 and the optimal relative humidity is calculated for each method, shown in Table

6. The methods using MCP/WAsP-derived wind speeds each produce a relative hu-

midity threshold lower than their non-MCP/WAsP method counterpart, however, in

the case of the boundary layer similarity methods, the difference is not as significant.
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Table 6: The optimal relative humidity values at the Petersburg location determined
for each method based on eight years of data.

Method Optimal Relative Humidity

Extrapolation 95.9 %
Extrapolation with MCP/WAsP-derived

winds
94.9 %

Interpolation 95.9 %
Interpolation with MCP/WAsP-derived

winds
94.1 %

Boundary Layer Similarity 97.9 %
Boundary Layer Similarity with

MCP/WAsP-derived winds
97.7 %

The optimal relative humidity threshold is tested on all eleven winter seasons, eight

of which were used in its development, and three that were not, in order to determine

which method performs the best against current industry methods. Table 7 shows

that for the three test seasons alone, and for the full eleven seasons, all of the tested

methods more closely predict the annual icing losses than the industry method, and

the methods using MCP/WAsP-derived wind speeds perform the best. One important

note to make is that although the MCP/WAsP-derived methods use the identical

wind speeds, the difference between the observed losses and the industry method

does change between those methods. Since temperature is required to determine the

observed losses and it is calculated differently for each of the methods, it leads to

small differences in the observed icing losses.
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Table 7: A comparison of the mean absolute difference between the observed annual
losses and both the predicted annual losses and the industry method at the Petersburg
location for the three test seasons and the entire dataset.

Method 3 Year 11 Year
Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Extrapolation 2.21 ± 1.93 % 3.24 ± 1.67 % 1.80 ± 1.54 % 1.99 ± 1.83 %
Interpolation 1.78 ± 2.15 % 2.47 ± 1.56 % 1.69 ± 1.59 % 1.89 ± 1.24 %

Boundary layer
similarity

2.08 ± 1.31 % 4.16 ± 2.91 % 1.96 ± 1.35 % 3.11 ± 2.34 %

Extrapolation
with

MCP/WAsP-
derived
winds

2.50 ± 1.62 % 5.86 ± 4.61 % 2.04 ± 1.27 % 5.36 ± 2.60 %

Interpolation
with

MCP-dervied
winds

2.60 ± 2.35 % 5.83 ± 4.58 % 2.24 ± 1.54 % 5.33 ± 2.59 %

Boundary layer
similarity with
MCP/WAsP-

derived
winds

2.13 ± 1.29 % 5.87 ± 4.64 % 1.94 ± 1.13 % 5.40 ± 2.63 %

On closer inspection of the raw energy production data, it is found that for the

methods that do not use MCP/WAsP-derived winds, the amount of predicted energy

production(Ppred) is significantly less than would be expected from the observed values

(Pobs), as shown in Figure 26. This also backs up the results of section 4.1, in that

the non-MCP/WAsP methods under predict the wind speeds at the turbine height.
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Figure 26: A comparison of the eleven-year, eight-year, and three-year mean annual
predicted energy production in MWh at the Petersburg location for each method.

Knowing that the non-MCP/WAsP methods cannot accurately predict the proper

wind speed at the turbine height, any comparison of them to the industry method can-

not prove or disprove that they are more accurate. However, the three methods that

utilize MCP/WAsP-derived wind speeds can be compared to the industry method

and their accuracy can be determined. In all but one season, the three MCP/WAsP

methods more accurately predicted the annual losses due to icing (Lpred) than the

industry method (Lind), as shown in Figure 27.
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Figure 27: A comparison of the three MCP/WAsP methods and the industry method
in predicting the annual losses due to icing at the Petersburg location.

When looking at the three, eight, and eleven-year mean annual icing losses shown

in Figure 28, it is clear that the MCP/WAsP methods (Ipred) are also much more

accurate than the industry method (Iind) in predicting annual energy lost due to

icing (Iobs), with the boundary layer similarity method slightly outperforming the

other two methods.
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Figure 28: A comparison of the eleven-year, eight-year, and three-year mean an-
nual predicted energy lost due to icing in MWh at the Petersburg location for the
MCP/WAsP methods (Ipred) and industry method (Iind).

4.4 Applicability to a Different Location

Minnkota owns and operates an identical turbine in Valley City, ND, located approx-

imately 121 km to the south of the Petersburg turbine. The same anemometer data

used in the MCP/WaSP analysis at the Petersburg location is used for the Valley

City location. In addition, the data is not retrained for the Valley City location, but

instead the relative humidity threshold results from the Petersburg location are ap-

plied to the new location. Lastly, as the three MCP/WAsP-derived methods perform

best for the Petersburg location, only those three are tested at Valley City. Table 8

shows that the three methods more closely predict the percentage observed annual

losses than the industry method, with the boundary layer similarity theory method

performing the best.
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Table 8: A comparison of the mean absolute difference between the observed annual
losses and both the predicted annual losses and the industry method at the Valley
City location for the three test seasons and the entire dataset.

Method 3 Year 11 Year
Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Extrapolation
with

MCP/WAsP-
derived
winds

4.09 ± 1.16 % 5.59 ± 3.76 % 2.79 ± 1.11 % 4.98 ± 1.87 %

Interpolation
with

MCP/WAsP-
derived
winds

4.46 ± 1.08 % 5.58 ± 3.75 % 3.33 ± 1.26 % 4.97 ± 1.87 %

Boundary layer
similarity with
MCP/WAsP-

derived
winds

3.66 ± 1.03 % 5.71 ± 3.88 % 2.94 ± 1.11 % 5.10 ± 1.93 %

On a seasonal basis, Figure 29 shows that similar to the Petersburg location, in

all but one season, the three MCP/WAsP methods more accurately predicted the

annual losses due to icing than the industry method. As expected from Table 8, the

prediction for each season is not as accurate as at the Petersburg location.

59



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 20132

4

6

8

10

12

14

Year Ending

An
nu

al
 L

os
s 

D
ue

 to
 Ic

in
g 

(%
)

 

 

Observed
Industry Method
Interpolation Method
Extrapolation Method
BL Similarity Method

Figure 29: A comparison of the three MCP/WAsP methods and the industry method
in predicting the annual losses due to icing at the Valley City location.

When looking at the three, eight, and eleven-year mean annual icing losses shown

in Figure 30, it is clear that even at the new location the MCP/WAsP methods are

still more accurate than the industry method in predicting annual energy lost due to

icing. In comparison with the Petersburg location, however, the average predicted

power loss due to icing is farther away from the observed values at the Valley City

location for each of the respective methods.
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Figure 30: A comparison of the eleven-year, eight-year, and three-year mean annual
predicted energy lost due to icing in MWh for the MCP/WAsP methods and industry
method at the Valley City location.
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CHAPTER 5

DISCUSSION

The previous chapter showed that the MCP/WAsP-derived methods of predicting

power losses due to icing outperformed the industry method, however the question

remains whether those methods are accurate considering the sources of error that are

present in the analysis. The first two sections of this chapter discuss the accuracy of

the wind speed, relative humidity, and temperature from the MERRA data while the

next section discusses the accuracy of the MCP/WAsP-derived wind speeds. Next,

the three methods using MCP/WAsP-derived wind speeds are discussed, including

financial implications and an analysis of the assumptions made and how they impact

the final results. The regional applicability of the final results is then tested by

applying them to the Valley City location. Lastly, a short summary of potential

future work is presented for this research.

5.1 Suitability of the MERRA-Derived Wind Speeds

As the results in Section 4.1 show, the MERRA-derived wind speeds resulted in

average hourly energy production (Figure 15, solid lines) that was, in general, lower

than the observed energy production (dashed black line). Of the three methods

utilizing MERRA-derived wind speeds, only the boundary-layer similarity (blue solid

line) method resulted in a predicted hourly average energy production that was higher

for at least one of the eleven seasons tested, and in that case it was only for two

seasons. The extrapolation method (magenta solid line) produced predicted hourly
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average energy production that was similar to the boundary-layer similarity method

but all seasons were under-predicted. The interpolation method (green solid line)

produced hourly average energy production that was significantly lower than the

observed values for all seasons. The under-prediction could be explained by a variety

of factors but the most likely reason is that due to the spatial and temporal resolution

of the MERRA datasets, the wind speeds are already under predicted even before they

are interpolated to the turbine location. In addition, the interpolation in space and

time of the MERRA dataset to the turbine location also introduces some inherent

error into the wind speed calculations. To investigate this potential error, wind speeds

at a height of 50 m are derived at a MERRA grid point (N 48.00◦, W 98.00◦) using the

MCP/WAsP method outlined in Section 3.1.4, and then compared to the 50 m wind

speeds contained within the MERRA dataset at the same location. Figure 31 shows

that for October, the MCP/WAsP-derived wind speeds show much higher variability

than the MERRA wind speeds. In addition, the mean monthly wind speed for the

MCP/WAsP-derived winds is 7.63 m s-1 while for the MERRA winds, this value is

7.46 m s-1.
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Figure 31: A comparison of the 50 m wind speeds determined using the MCP/WAsP
method (green) and the MERRA-derived wind speeds (blue) at a MERRA grid point
located at N 48.00◦, W 98.00◦.

In order to determine if the time of year has an effect, the same analysis is done

for January 2006, as shown in Figure 32. Similar to the October comparison, the

MCP/WAsP-derived wind speeds show much greater variability than the MERRA

wind speeds. In addition, the mean monthly wind speeds are 7.24 m s-1 and 6.84 m s-1

for the MCP/WAsP-derived and MERRA-derived winds, respectively. Finally, for the

six-month period from October 2005 through March 2006, the average wind speeds

are 7.36 m s-1 for the MCP/WAsP-derived winds and 7.11 m s-1 for the MERRA

winds.
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Figure 32: A comparison of the 50 m wind speeds determined using the MCP/WAsP
method (green) and the MERRA-derived wind speeds (blue) at a MERRA grid point
located at N 48.00◦, W 98.00◦.

Based on the analysis of this particular season, it is evident that the MERRA wind

speeds are lower than they should be, which helps to explain why the hourly average

energy production is lower than the observed production for the MERRA-derived

wind speeds. The interpolation of the MERRA data to the turbine location can also

help explain any error that is found in the the wind speeds. Due to the spacing of

the MERRA dataset (1/2◦ latitude by 2/3◦ longitude), the turbine location is not

located at any of the grid points and so all variables were interpolated linearly to the

turbine location using the four nearest MERRA grid points. This interpolation would

thus assume a linear relationship for all variables, including any terrain-based vari-

ables. Since the terrain does not change linearly, any surface-based variables would

be less accurate than those at the actual grid points in the MERRA datasets. For

the boundary-layer similarity method, this would include all surface fluxes and sur-

face scaling parameters. For the interpolation method, this would include the surface
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pressure and the thickness of each layer of the atmosphere. For the extrapolation

method, this would include all surface variables in addition to the 50 m variables.

Since the extrapolation method and the boundary-layer similarity method produce

average hourly production values similar to each other but much higher than the

interpolation method, it is believed that the interpolation method has a further re-

duction in accuracy, most likely due to the temporal resolution of the datasets used

with this method.

The MERRA dataset consists of two hourly-averaged datasets and one six-hourly

instantaneous dataset. The boundary-layer similarity method and the surface value

method each use one of the hourly-averaged datasets while the interpolation method

uses a combination of the six-hourly instantaneous dataset and one of the hourly-

averaged datasets. Although data with hourly and six-hourly temporal resolutions

are useful for many applications, determining accurate wind speeds can be problem-

atic because short-term variability in wind speeds cannot be resolved. As a result,

the MERRA datasets are not able to capture any sudden increases or decreases in

wind speed and thus the energy production based on these wind speeds may not be

representative of the observed values. Secondly, since the interpolation method uses

two datasets with different temporal resolution, the one with six-hourly resolution

is converted to an hourly temporal resolution by interpolating linearly between time

points. In doing so, any variability that may exist in reality is lost and replaced

with a smooth transition. For example, if the wind speed at time 0 UTC is 10 m s-1

and the wind speed at 6 UTC is 10 m s-1, the linear interpolation would cause the

time periods in between to also be 10 m s-1 when in reality there could be significant

changes in the wind speed that aren’t inherently visible in the MERRA datasets.
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This could easily explain the significant under-prediction of the average hourly wind

speeds using the interpolation method.

Overall, it appears that the main source of error for the MERRA wind speeds is due

to the low temporal and spatial resolution of the dataset rather than the interpolation

to the turbine location. The turbine is located on a small elevated area which would

also not be well represented in the MERRA data. For the six month period from

October 2005 through March 2006 the mean 50 m MERRA wind speed at the grid

point previously mentioned is 3.4 % lower than the MCP/WAsP-derived wind speed

at the same location. Interpolating to the turbine location using the four nearest grid

points produces a wind speed that is only 3.9 % lower than the MCP/WAsP-derived

wind speed at the turbine location.

5.2 Suitability of the MERRA-Derived Temperature and Relative
Humidity

In the absence of in-situ measurements, the accuracy of both temperature and relative

humidity derived from the MERRA datasets at the turbine location cannot be directly

measured. However, observations from the nearest ASOS station at Devil’s Lake

(DVL) can be used to indirectly determine the accuracy of the MERRA temperature

and relative humidity data. For two different months, the temperature trend of the

MERRA data (Figs. 33 and 34) follows closely with the observed data, while the

mean monthly temperatures, shown in Table 9, agree closely with each other.
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Figure 33: A comparison of hourly 10 m MERRA temperature (green) and observed
surface temperature (blue) recorded at the Devil’s Lake ASOS station for January
2007.
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Figure 34: A comparison of hourly 10 m MERRA temperature (green) and observed
surface temperature (blue) recorded at the Devil’s Lake ASOS station for January
2010.
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Table 9: A comparison of the mean monthly temperatures of the 10 m MERRA data
and at the Devil’s Lake (DVL) ASOS station.

Month MERRA
Temperature

DVL Temperature

January 2007 263.4 K ± 7.4 K 261.5 K ± 8.1 K
January 2010 260.2 K ± 9.0 K 260.3 K ± 9.0 K

The calculated relative humidity at the ASOS station is highly variable, however,

the MERRA data does follow the same overall trend for each month, as shown in

Figures 35 and 36. The relative humidity at the ASOS station is calculated auto-

matically using the dry bulb temperature and the dew point temperature, while the

relative humidity for the MERRA data is calculated using the procedure outlined in

section 3.2.1.
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Figure 35: A comparison of hourly 10 m MERRA calculated relative humidity (green)
and observed surface relative humidity (blue) recorded at the Devil’s Lake ASOS
station for January 2007.
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Figure 36: A comparison of hourly 10 m MERRA calculated relative humidity (green)
and observed surface relative humidity (blue) recorded at the Devil’s Lake ASOS
station for January 2010.

Table 10 shows that the MERRA relative humidity is slightly higher than the observed

data but still within range so it is safe to assume that the accuracy of the MERRA

surface relative humidity is acceptable for this study.

Table 10: A comparison of the mean monthly relative humidity of the 10 m MERRA
data and at the Devil’s Lake (DVL) ASOS station.

Month MERRA Relative
Humidity

DVL Relative
Humidity

January 2007 79.4 % ± 10.0 % 75.4 % ± 10.4 %
January 2010 83.8 % ± 7.1 % 77.2 % ± 9.4 %

With the accuracy of the MERRA surface data considered to be acceptable, the

accuracy of these same variables at the turbine height is required. The temperature

and relative humidity at the turbine height can be compared to the surface values and,
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based on a typical atmospheric profile, their accuracy can be validated. Assuming a

well-mixed boundary layer, i.e. constant specific humidity and potential temperature,

the relative humidity should increase with height within the boundary layer, and

so the surface value should be lower than those calculated by the interpolation and

boundary-layer similarity methods. For the entire month of December 2007, the

relative humidity calculated using the boundary-layer similarity method (blue line

on Figure 37) is greater than or equal to the surface value (green line on Figure 37)

for all time periods as expected. However, the relative humidity calculated using the

interpolation method (red line on Figure 37) is, over many time periods, lower than

the surface value.
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Figure 37: Comparison of the relative humidity calculated using the boundary-layer
similarity method at 72.3 m (blue), the interpolation method at 72.3 m (red), and
the surface value at 10 m (green).

A possible reason for this discrepancy is that the first model level may not always

be within the planetary boundary layer and so a direct interpolation may not be the

most accurate representation of the state of the atmosphere between the surface and
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that particular height. In addition, the specific humidity is typically constant from

the top of the surface layer until the top of the boundary layer and this type of profile

is not taken into account with the interpolation method.

The comparison of this month between the three methods for temperature is not

as straight forward as the relative humidity comparisons. Typically, the potential

temperature remains constant from the top of the surface layer until the entrainment

zone, and since the pressure decreases with height, the temperature decreases with

height. As such, the temperature determined by the boundary-layer similarity method

(blue line on Figure 38) and interpolation method (red line on Figure 38) at the

turbine hub height should be lower than the surface value method (green line on

Figure 38).
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Figure 38: Comparison of the temperature calculated using the boundary-layer sim-
ilarity method at 72.3 m (blue),the interpolation method at 72.3 m (red), and the
surface value at 10 m (green).
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In many cases, the temperature determined by the boundary-layer similarity method

is lower than the surface value, most notably in the overnight hours, while other times

it is higher than the surface value. However, the overall temperature trend matches

well with the surface values. The temperatures determined with the interpolation

method also follow a trend that matches well with the surface values, however, the

variability between the maximum and minimum temperatures for each day seem to

be less than both the surface values and those determined with the boundary-layer

similarity method. In agreement with the typical temperature profile, there are some

periods of time where the temperature calculated using the interpolation method is

lower than the surface value, however there remain many periods of time where the

temperature is higher than the surface value. In the cases where calculated temper-

atures using interpolation and boundary-layer similarity are higher than the surface

values, there may be a temperature inversion layer present, however, the existence of

such a layer within the boundary layer is not able to be verified.

Table 11 shows that for the month of December 2007, the boundary layer similar-

ity method has more time periods where the temperature at the turbine height is

lower than the surface and where the relative humidity is higher than the surface, as

compared to the interpolation method.
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Table 11: Comparison of the percentage of time for the month of December 2007
when calculated temperatures are lower than the surface value and calculated relative
humidities are higher than the surface value.

Percent of Month When
Calculated Temperature is

Lower than the Surface
Value

Percent of Month When
Calculated Relative

Humidity is Higher than
the Surface Value

Boundary-Layer
Similarity Method

75.54 % 88.71 %

Interpolation
Method

37.50 % 24.06 %

Based on the comparison between methods, it is clear that the temperature and

relative humidity calculated using the boundary-layer similarity are a more realistic

representation of the atmosphere at the height of the turbine hub than the interpo-

lation method. Due to the fact that both methods have the same inherent sources

of error, the boundary-layer similarity method is shown to be the best method of

determining the required atmospheric variables at the hub height.

5.3 Suitability of MCP/WAsP-derived Wind Speeds

Section 5.1 outlined the sources of error and the drawback of using MERRA-derived

wind speeds, and so this section aims to determine any increased accuracy in using

MCP/WAsP-derived wind speeds. Figure 15 shows that the MERRA-derived wind

speeds produced average hourly energy production values that were less than the ob-

served values of the turbine. Figure 17 shows that MCP/WAsP-derived wind speeds

are higher than the MERRA-derived wind speeds, which leads to a higher average

hourly energy production and one that is closer to the observed energy production of

the turbine. Using the observed energy production as a proxy for the wind speeds,

it is clear that having a nearby meteorological tower with wind speed measurements
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allows for a more accurate representation of the actual wind speeds at the turbine

location than by using reanalysis alone.

As outlined in section 3.1.4, the method to determine MCP/WAsP-derived winds

combines both the MCP analysis of the anemometer-measured winds and a trans-

lation to the turbine location by using a WAsP analysis. Together, they appear

to produce the best representation of the wind speeds at the turbine location, but

analyzing their individual contributions may help in determining which of the two

components is most important, if at all. For the month of October 2005, the wind

speeds calculated using both MCP and WAsP (green line on Figure 39) seem to

correlate well with those using only MCP (blue line on Figure 39).
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Figure 39: Comparison of wind speeds derived solely from MCP (blue) at the meteo-
rological tower and derived from both MCP and WAsP (green) at the turbine location
for October 2005.
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Figure 40 verifies this conclusion, showing that the wind speeds are highly corre-

lated over the entire time period. At higher wind speeds, the WAsP translation

adds a higher increase in wind speed than at lower wind speeds. Overall, the mean

wind monthly wind speed for the MCP-only method is 8.01 m s-1 while for the full

MCP/WAsP method, the mean monthly wind speed is 8.41 m s-1.
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Figure 40: Comparison of wind speeds derived using only MCP and both MCP and
WAsP for October 2005 at the Petersburg location with the line of best fit shown in
red (slope=1.032, y-intercept=0.1392).

A similar result appears when looking at January 2006, shown in Figure 41. Here,

the analysis shows the same correlation between the two methods, including the

small difference in mean monthly wind speed. For the MCP-only method, the mean

monthly wind speed is 7.61 m s-1 while for the full MCP/WAsP method, the mean

monthly wind speed is 8.06 m s-1.
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Figure 41: Comparison of wind speeds derived using only MCP and both MCP and
WAsP for January 2006 at the Petersburg location with the line of best fit shown in
red (slope=1.045, y-intercept=0.1088).

Since the WAsP translation depends only on factors that don’t change over time such

as surface conditions, obstacles, and the height of the measurements, the effect of

doing a WAsP translation is essentially identical over all time periods and is simply

a shift of the MCP wind speeds upwards.

One potential drawback of using the MCP/WAsP method to derive the wind speeds,

however, is that it assumes the same correlation over a long period of time. For this

study, the anemometer data are correlated to MERRA data for the two-year period

ending June 30, 2012 and the correlation is assumed to be constant for the period

from July 1, 2002 to June 30, 2013. If, for example, there was a change made to

the reference data or if an error was present in the anemometer data, the correlation

would be incorrect.
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5.4 Prediction of Annual Losses Due to Icing

Section 4.3 compares the results of each of the six methods in terms of their accu-

racy in predicting annual icing losses compared with the industry standard. It is

important to note that the industry standard used in this study is not a universal

method employed by all within the wind energy industry. In sections 5.1 and 5.3 it is

clear that MCP/WAsP-derived wind speeds are more accurate than MERRA-derived

wind speeds, and so of the six methods used in predicting annual losses due to ic-

ing, the three methods utilizing MCP/WAsP-derived wind speeds will be the focus

of this discussion. When looking at the three test years, all three methods predict,

on average, annual icing losses that are closer to the observed icing losses, both in

terms of actual energy lost (Figure 28) and as a percent of the total annual energy

produced (Table 7), as compared to the industry method. Among the three methods,

the boundary-layer similarity method is the most accurate predictor of annual icing

losses, while the interpolation method is the worst performing. This verifies the con-

clusions of section 5.2 that showed the boundary-layer similarity method produced

relative humidities and temperatures that are more realistic than the interpolation

and surface value methods. Looking at the full eleven-year dataset a similar pattern

emerges, with all three methods outperforming the industry method. Again, the in-

terpolation method performs the worst of the three methods, however, in this case

both the boundary-layer similarity method and surface value methods are identical

in terms of predicting percentage icing losses, while the boundary-layer similarity

method is still the best predictor of actual energy losses. An important advantage

that the prediction methods hold over the industry method is their ability to more

accurately represent the variability inherent in icing losses. The industry method is

developed to account for average conditions over a long period of time and cannot
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take into account the year-to-year variability. As an example, the 2012 study year

showed a significant difference in observed icing losses than all previous years, but

the prediction methods are able to capture this variability by predicting the smaller

amount of icing losses. If an average value is used for all years, as in the industry

method, that particular year would not be well represented.

Over the course of the eleven seasons, one noticeable visible pattern seen in Figure 27

is that for the majority of seasons, each of the methods under-predicts the percentage

annual losses, with only three seasons being over-predicted. The eleven-,eight-, and

three-year averages in Figure 28 also show that each of the methods under-predicts

the actual energy losses. This can be the result of either the observed losses not

being estimated accurately, or the predicted losses being lower than they should be.

In determining both observed and predicted losses, assumptions were made that may

impact their results.

5.4.1 Assumptions and Potential Errors in Observed Icing Losses

The method to determine observed icing losses includes the assumption that if the

observed energy output is less than 80 % of the expected energy output, icing is as-

sumed to be occurring. By stipulating this threshold of 80 %, the aim is to maximize

the time periods where icing is most likely to occur. Knowing that even a small

amount of icing can reduce the energy output of a turbine by 20 % (Jasinski et al.,

1998), this threshold aims to capture these types of events. In reality, this threshold

may need to be adjusted lower to account for local climatology, and so in this study,

observed icing losses may be overestimated as a result. For example, if some other

factor is influencing energy output, e.g. turbulence, the difference between the ob-

served energy output and the expected energy output could be a result of that factor
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and not icing. As a result, this difference would be misclassified as being caused by

icing, and thus overestimating the observed icing losses. By adjusting the threshold

to a lower value, i.e. less than 80 %, the possibility of non-icing factors impacting the

results could be lessened.

Human factors also play a large role in the determination of observed icing losses for

this particular turbine. In cases where there are single turbines in remote locations,

when there is severe build-up of ice, it may take longer for the turbines to be reset,

which happens more quickly at larger wind farms. Because of this delay, the turbine

will continue to generate less than the expected amount of energy long after the

atmospheric icing conditions have subsided. In the case of the Petersburg turbine, this

period of time could extend to many days, especially if an icing event is followed by

extreme cold weather that does not allow the ice to melt or fall off the turbine blades.

Although there exists some recovery time from icing events that can be estimated

for larger wind farms or turbines where ice build-up is removed in a timely manner,

any recovery time for the Petersburg turbine will be highly variable and cannot be

estimated. As such, periods of time where ice has built-up and yet icing conditions

are no longer present, are included in the observed icing losses calculations, which

causes the observed losses to be over-estimated. Lastly, all turbines require regular

maintenance, however, the Petersburg turbine does not have a full set of records for

when maintenance was performed. In some cases during the winter months, downtime

due to maintenance could be mistaken for periods of icing, which, again, would cause

the observed losses to be over-estimated.
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5.4.2 Assumptions and Potential Errors in Predicted Icing Losses

In determining the predicted icing losses, it is assumed that 100 % of the energy is

lost during the periods of icing. This has the effect of potentially over-estimating the

icing losses since it is known that not all potential energy is necessarily lost when ice

begins to build up on turbine blades. However, by assuming 100 % loss during icing

periods, it eliminates the guesswork needed to determine exactly what percentage of

potential energy is lost when ice begins to form. Further analysis would need to be

performed in order to determine a better estimate of the effects that icing has on

the turbine blades and on the direct reduction in energy production. One aspect of

icing that is not directly taken into account in this study is icing due to precipitation

such as freezing rain or wet snow. Although the environment in which these types

of precipitation fall is typically one of high relative humidity, temperatures may not

necessarily be below 0 ◦C (273.15 K). This would introduce a slight under-prediction

in icing losses since the prediction methods require temperatures be below freezing.

The potential error due to this assumption may not be significant in the Northern

Plains region, but for regions further south that may be impacted more by freezing

rain and wet snow events, icing prediction should take precipitation into account.

5.5 Losses Due to Other Factors

In using equation 3.29 to determine annual observed icing losses, the value of Pobs is

taken directly from the Minnkota dataset and represents the net total production after

all losses have been accounted for. These losses include, but are not limited to, icing,

turbulence, electrical, and mechanical losses. The calculation of observed annual

icing losses (LO) uses this net total production in addition to observed icing losses

(Iobs) in the denominator and so the annual losses as calculated are overpredicted
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since other losses are not taken into account. For the turbine locations used in this

study, these other losses typically amount to approximately 5.5 % of the gross annual

production but can be variable from year-to-year much like losses due to icing. In

using equation 3.30 to determine annual predicted losses, the denominator (Ppred)

uses the total expected production without any losses being accounted for (ie. the

gross annual expected production). In order to compare both LO and LP and to

ensure the methods are trained properly, these values must be calculated with similar

denominators to avoid the inclusion of other losses with icing losses. To remain

consistent with annual predicted losses, future analysis should include the calculation

of annual observed losses due to icing as:

LO =
Iobs
Ppred

(5.1)

and icing losses using the industry method as:

Iind = Ppred × Lind (5.2)

where Lind is the percent annual losses (4.7 %). By using equation 5.1, other losses are

then excluded from the training of the prediction methods and by using equation 5.2,

the seasonal losses (in MWh) based on the industry method can be directly compared

to Iobs and Ipred without the impact of other losses affecting the comparison.

5.6 Financial Implications of Icing Losses

The potential financial losses due to icing can be estimated based solely on the results

of this study. Assuming an energy price of $30/MWh, Table 12 shows the estimates

of annual financial losses due to icing for one turbine at the Petersburg location based
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on Figure 28 for the three prediction methods and industry methods compared with

the observed icing losses.

Table 12: Estimates of annual financial losses for a single turbine at the Petersburg
location for each of the three MCP/WAsP prediction methods, the industry method,
and the observed icing losses, assuming a cost of energy production of $30/MWh.

Average Annual
Losses for the Test

Years

Average Annual
Losses for the
Training Years

Average Annual
Losses for All Years

Observed $9351.90 ±
$3659.46

$9279.33 ±
$1683.69

$9299.13 ±
$2159.61

Industry Method $3798.99 ± $428.46 $3976.68 ± $252.18 $3928.23 ± $295.89
Boundary-Layer

Similarity Method
$7452.54 ±

$2996.76
$7961.79 ± $779.16 $7822.92 ±

$1509.21
Extrapolation

Method
$7095.24 ±

$2811.69
$7881.03 ± $684.45 $7666.74 ±

$1429.62
Interpolation

Method
$6960.75 ±

$3208.89
$7795.71 ±

$1008.84
$7568.01 ±

$1706.91

As the analysis in section 5.4 showed, the three methods far outperform the industry

method in predicting icing losses, with the boundary-layer similarity method per-

forming the best. Looking at the average financial losses for all eleven years, the

industry method corresponds to financial losses almost 60% lower than the observed,

while the interpolation method, the worst performing of the three corresponds to

only a 19% under-prediction of the financial losses. If this analysis is performed for

a large wind farm with up to 50 turbines, then the industry method under-predicts

the observed losses by over $268,000 while the boundary layer similarity method only

under-predicts observed losses by $73,000. Bearing in mind the assumptions out-

lined in sections 5.4.1 and 5.4.2, it would be fair to assume that the actual financial

losses due to observed icing losses are most likely lower than this study shows, but by
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how much is indeterminable without knowing the actual icing losses at the turbine

location.

5.7 Extrapolating Results Regionally

Although the results of section 4.4 (Figure 29) show that the three methods outper-

form the industry method at the Valley City location for all but one year, it is worth

noting that all three methods under-predict the annual losses due to icing for every

year that was tested, bringing their results closer to that of the industry method.

In addition, the industry method also performed relatively better at the Valley City

location than at the Petersburg location, as both the three- and eleven-year average

differences decreased when moving to the new location (Table 8). When analyzing

the predicted average annual energy lost due to icing for the three methods and the

industry method, the losses calculated from the industry method are similar to those

at Petersburg, however, the losses calculated using the three methods are significantly

lower than those at Petersburg, as shown in Table 13.
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Table 13: Predicted average annual losses due to icing compared with observed icing
losses for Valley City and Petersburg locations over all eleven years, over the eight
training years, and over the three testing years.

Predicted Average Annual Losses Due to Icing (kWh)

Interpolation
Method

Boundary-
Layer
Similarity
Method

Extrapolation
Method

Industry
Method

Observed

1
1
y
ea
r

Petersburg 251468 260764 255558 145509 309971

Valley
City

183217 198796 189317 140690 291996

8
y
ea
r

Petersburg 258974 265393 262701 147094 309971

Valley
City

189357 200312 193269 142014 288270

3
y
ea
r

Petersburg 231450 248418 236508 141284 311730

Valley
City

166846 194752 178779 137160 301930

Two things become evident when comparing the energy losses at both locations.

First, the observed losses at Valley City are lower than those at Petersburg. This

is to be expected as Valley City is located at a more southern latitude, and one

would expect temperatures to be slightly warmer at this location. This would only

have impacts on icing when temperatures are near 0 ◦C (273.15 K) as above freezing

temperatures could exist at Valley City while below freezing temperatures could exist

at Petersburg. Secondly, one would expect the predicted icing losses for all methods

to be similar at both locations, as they are in the same geographic area. Instead,

applying the results from one location to another location in the same region does

cause a noticeable deficiency in the predicted icing losses. It has yet to be determined

the regional extent to which results can be applied, however, the distance between

Petersburg to Valley City does show that the extent is not particularly wide. In
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addition, a short-term in-situ wind speed data set is required for each method in

order to perform the MCP/WAsP analysis and it is currently unknown the regional

extent to which MCP/WAsP analysis can be performed from a single location.

5.7.1 Retraining the Dataset at Valley City

To provide a better understanding of the regional extent of the MCP/WAsP analysis,

the boundary layer similarity method using MCP/WAsP-derived winds was applied

at the Valley City location with the data being retrained to determine a new optimal

relative humidity (Figure 42), rather than simply applying the relative humidity from

the Petersburg location.
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Figure 42: A comparison of the determination of the optimal relative humidity using
the boundary layer similarity method with MCP/WAsP winds at Petersburg (green)
and Valley City (red).

By retraining the data at the new location (Figure 43), the prediction of icing loses

improves significantly, and brings the results closer in line to what was seen at the
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Petersburg location, with some years being over-predicted while the majority are

under-predicted.
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Figure 43: A comparison of the boundary-layer similarity method with MCP/WAsP-
derived winds at Valley City using the Petersburg result (dark blue) and by retraining
the data (light blue) to predict annual losses due to icing. Observed losses are the
red dashed line while the industry method losses are the black line.

In addition, Table 14 shows that by retraining the data, the average difference between

the predicted losses and the observed losses improves over the untrained data, and,

in fact, shows similar results to the Petersburg location using the same method (last

row of Table 7).
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Table 14: A comparison of the mean absolute difference between the observed annual
losses and both the predicted (untrained and trained) annual losses and the industry
method for the three test seasons and the entire dataset. Data is for the Valley City
location

Method 3 Year 11 Year
Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Boundary-layer
similarity with
MCP/WAsP-

derived
winds

3.66 ± 1.03 % 5.71 ± 3.88 % 2.94 ± 1.11 % 5.10 ± 1.93 %

Boundary-layer
similarity with
MCP/WAsP-
derived winds

(trained)

2.01 ± 0.35 % 5.71 ± 3.88 % 1.62 ± 1.00 % 5.10 ± 1.93 %

Lastly, in comparing the mean annual energy losses due to icing (Figure 44), the

retrained dataset increases the mean annual losses due to icing to be more in line

with the mean observed losses.
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Figure 44: A comparison of the eleven-year, eight-year, and three-year mean annual
predicted energy lost due to icing in MWh at the Valley City location for the indus-
try method and both untrained and trained boundary-layer similarity methods with
MCP/WAsP-derived winds.

It is clear from the analysis in this section that training the dataset at a particular lo-

cation is an improvement over simply reapplying the results from a different location.

It appears that the main factor influencing icing prediction is the proper determination

of the optimal relative humidity for a particular site, and that MCP/WAsP-derived

winds can, in fact, be applied across a large geographic area, the extent to which

would need to be determined in a future analysis.

5.8 Impact of Residual Error on the MCP/WAsP Analysis

To better understand how the residual error within the MCP/WAsP analysis impacts

the icing prediction, a case study using the boundary layer similarity method at the

Petersburg location is performed with the MCP/WAsP method of determining wind

speeds, neglecting the residual error of equation 3.1. The method of Section 3.3.2
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is performed with the new MCP/WAsP wind speeds and a new optimal relative

humidity is found. Figure 45 shows that both the observed icing losses and the

predicted icing losses decrease for each season when the residual error is not included

in the analysis.
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Figure 45: The boundary layer similarity method with MCP derived winds (with
and without residual error) to predict percentage annual losses due to icing at the
Petersburg location as compared to the industry method.

This decrease causes the industry method to perform better than the boundary layer

similarity method for three of the eleven seasons (2004, 2006, and 2008), however

over all three test seasons the boundary layer similarity method performs better than

the industry method. Table 15 shows the same pattern when looking at the test-year

and eleven-year averages. Over both time periods, the absolute difference between

the observed and predicted losses does decrease when not using residual errors in the

MCP/WAsP calculations. The difference between the observed losses and industry
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method decreases as well, but by a larger margin, suggesting that using the residual

error creates a high bias in the observed icing losses.

Table 15: A comparison of the mean absolute difference between the observed annual
losses and both the predicted annual losses (with and without residuals) and the
industry method at the Petersburg location for the three test seasons and the entire
dataset. Predicted losses are determined with MCP/WAsP-derived wind speeds.

Method 3 Year 11 Year
Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Absolute
Difference
Between

Observed and
Predicted

Losses

Absolute
Difference
Between

Observed and
Industry
Method

Boundary-layer
Similarity with

Residuals

2.13 ± 1.29 % 5.87 ± 4.64 % 1.94 ± 1.13 % 5.40 ± 2.63 %

Boundary-layer
Similarity
without

Residuals

1.64 ± 2.08 % 3.90 ± 3.12 % 1.68 ± 1.51 % 3.08 ± 2.30 %

Comparing the raw power production (Figure 46) the same decrease in both observed

icing losses and predicted icing losses is seen for all three time periods, however the

boundary layer similarity method without residuals still predicts icing losses closer to

the observed losses than the industry method.
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Figure 46: The boundary layer similarity method with MCP derived winds (with and
without residual error) to predict annual losses due to icing at the Petersburg location
as compared to the industry method.

Evidently, the use of residual errors in the MCP/WAsP analysis does create some

significant differences in the icing prediction algorithm. Most notably, the observed

icing losses decrease when no residual errors are used, which also decreases the pre-

dicted losses. The cause of this decrease is due to the decrease in variability in the

wind speeds as shown in Figure 47.
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Figure 47: MCP/WAsP-derived wind speeds with and without residual error included
in the analysis at the Petersburg location for January 2006.

In both analyses, the overall trend of wind speed is similar over the entire month,

however using residual errors does appear to introduce a high degree of variability

that may or may not be as realistic a representation of the actual wind speeds as the

analysis without using residual error. A more thorough analysis of both methods is

needed to determine which would be the best choice.

5.9 Future Work

The long term goal of this research is the eventual creation of some form of icing cli-

matology map for the Northern Plains region of the United States. Since this research

focuses mainly on one location, with a small analysis at a secondary location, it is

hoped that it can be expanded to include other locations across the Northern Plains.

This would require a denser set of in-situ measurements so that the MCP/WAsP
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method of determining wind speeds can be performed with as little spatial error as

possible. Secondly, the use of data from other wind turbines in the region is neces-

sary in order to verify the prediction algorithm and to provide a better estimate of

observed power losses due to icing, which may prove difficult if owners are unwilling

to share their production data due to proprietary reasons. Some of the assumptions

in determining observed losses due to icing could also me mitigated with some form

of realtime observation of the turbines. Periods of icing could then be distinguished

from maintenance issues or other non-icing related factors.

A major assumption in this research was using relative humidity as a proxy for other

moisture variables such as liquid water content and droplet size distribution, to avoid

significant amounts of complexity. For a more skillful turbine icing prediction, these

additional moisture variables should be included in the prediction algorithm. How-

ever, without observations of these variables, testing of any newly developed algo-

rithms is difficult. Note that informal discussions at recent scientific meetings (e.g.

Weather-Driven Renewable Energy Section, 2013 AGU Fall Meeting) suggest that

wind turbine manufacturers are already using more complex algorithms. However, as

the wind manufacturers have not made these algorithms public, the details are not

included here.

Finally, climate prediction models could be used to analyze the energy production

outlook under changing climate conditions. Historical runs of the climate models

would be first assessed, to quantify performance of the turbine icing prediction. Then,

the turbine icing algorithms could be applied to future conditions for an ensemble of

models with various climate change scenarios.
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CHAPTER 6

CONCLUSIONS

The main goal of this research was to develop methods of predicting power losses due

to icing that are more accurate than the current method of using a constant percent-

age. Six methods were developed, three of which used a combination of MCP and

WAsP analysis to determine wind speeds while reanalysis data was used for specific

humidity and temperature. The three remaining methods used only reanalysis data

for all three meteorological variables. The three methods using reanalysis data for

wind speeds showed severe deficiencies in calculating accurate power output compared

with the MCP/WAsP methods. It was also determined that of the three methods

employing MCP/WAsP-derived wind speeds, the boundary-layer similarity method

for thermodynamic variables performed the best, as this method produced predicted

losses closest to the observed losses. For this method, the average annual absolute

difference between observed and predicted power losses due to icing (|Lo−Lp|) for the

three test years was 2.13 % ± 1.29 % compared with 5.87 % ± 4.64 % for the industry

method of prediction (|Lo−Lind|). In terms of financial implications, observed power

losses due to icing for a single turbine amount to annual losses averaging $9351.90

for the same three years. The boundary-layer similarity method calculated average

annual losses of $7452.54 compared with only $3798.99 for the industry method. An

important caveat to take into consideration, however, is that the observed power losses

due to icing may be overestimated in this study due to incomplete or non-existent

records of icing events at the turbine location. Even with this potential overestima-
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tion, it is felt that the impact would not hinder the conclusions of this study. However,

a better estimation of observed power losses due to icing would strengthen the results

considerably.

The six methods were initially trained and applied at a single location in Petersburg,

North Dakota. The results of the three MCP/WAsP-derived methods were subse-

quently applied at a second location in Valley City, North Dakota without being

retrained. Compared with Petersburg, this resulted in an increase of the average an-

nual absolute difference between the observed and predicted losses for the three meth-

ods and a decrease while using the industry method. Although the three methods

still outperformed the industry method in this case, it was felt that an improvement

could be made. As such, the boundary-layer similarity method with MCP/WAsP-

derived winds was applied to the Valley City location but the data was retrained. In

this case, the average annual absolute difference between the observed and predicted

losses was similar to the Petersburg location, which shows that training the datasets

at a particular location provides a more accurate prediction, rather than assuming

some regional similarity. In cases where retraining the dataset is not viable option,

however, reapplying the results still provides valuable inter-annual variability and is

much improved over simply using the industry method.

This research shows that there is a significant need to improve current icing prediction

methods for wind energy applications. Here, it is shown that using a relative humid-

ity threshold to define icing conditions provides a marked improvement on current

industry methods. Since industry methods involve using a constant value of icing

losses for each year, variability inherent in icing losses is not taken into account. By

using a relative humidity threshold, the variability in icing losses is accounted for and
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so even for anomalous years, the icing prediction methods can be a more accurate

method of prediction. For the best performing method, both relative humidity and

temperature were calculated using boundary-layer similarity theory from the MERRA

reanalysis dataset, while wind speeds were determined using MCP/WAsP analysis of

in-situ wind data. In addition, turbine production data was needed in order to train

the dataset to a particular location. For the current industry method, it was shown

that predicted losses due to icing amount to financial losses under $4000.00 for a

single turbine, which is well below the actual observed losses of nearly $10000.00 for

the turbine used in this study. The boundary-layer similarity method, however, pre-

dicted financial losses of nearly $8000.00, showing a significant improvement. For a

moderate sized wind farm, the financial implications of using this new method over

the industry method would be quite significant.
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