
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

1-1-2013 

Comparison Of Denitrification Potential Around A Tile Drain And In Comparison Of Denitrification Potential Around A Tile Drain And In 

Aquifer Sediments: Oakes, ND Aquifer Sediments: Oakes, ND 

Chase Christenson 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Christenson, Chase, "Comparison Of Denitrification Potential Around A Tile Drain And In Aquifer 
Sediments: Oakes, ND" (2013). Theses and Dissertations. 1408. 
https://commons.und.edu/theses/1408 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator 
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/1408
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1408?utm_source=commons.und.edu%2Ftheses%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


COMPARISON OF DENITRIFICATION POTENTIAL AROUND A TILE DRAIN 
AND IN AQUIFER SEDIMENTS: OAKES, ND. 

 

 

by 

 

 

Chase Joseph Christenson 
Bachelor of Science, University of North Dakota, 2008 

 

 

A Thesis 

Submitted to the Graduate Faculty  

of the 

University of North Dakota 

In partial fulfillment of the requirements 

for the degree of 

Master of Science 

 

 

Grand Forks, North Dakota 
May 
2013 

 





 iii 

PERMISSION 

Title:                Comparison of Denitrification Potential around a Tile Drain and in           
                         Aquifer Sediments: Oakes, ND 
 
Department:     Geology 
 
Degree:            Master of Science 
 

In presenting this thesis in partial fulfillment of the requirements for a graduate 
degree from the University of North Dakota, I agree that the library of this University 
shall make it freely available for inspection. I further agree that permission for 
extensive copying for scholarly purposes may be granted by the professor who 
supervised my thesis work or, in his absence, by the Chairperson of the department or 
the dean of the Graduate School. It is understood that any copying or publication or 
other use of this thesis or part thereof for financial gain shall not be allowed without my 
written permission. It is also understood that due recognition shall be given to me and 
to the University of North Dakota in any scholarly use which may be made of any 
material in my thesis. 

 

                                                                                                    Chase J. Christenson 
                                                                                April 22, 2013



 iv 

TABLE OF CONTENTS 

LIST OF FIGURES .................................................................................................... vi 

LIST OF TABLES ...................................................................................................... vii 

ACKNOWLEDGEMENTS ........................................................................................ ix 

ABSTRACT................................................................................................................ x 

CHAPTER 

       I.          INTRODUCTION ................................................................................... 1 

                    Agricultural Tile Drainage ............................................................ 2 

       II.         SITE DESCRIPTION AND GEOLOGY ............................................... 6 

      III.        MATERIALS AND METHODS ............................................................ 11 

                    Aquifer Denitrification Research .................................................. 11 

                    Tile Drain Denitrification Research .............................................. 15 

       IV.        RESULTS AND DISCUSSION ............................................................. 17 

                    Aquifer Sediments ........................................................................ 17 

  Organic Carbon .................................................................... 19 

  Inorganic/Organic Sulfide.................................................... 20 

  Ferrous Iron.......................................................................... 21 

  Manganese ........................................................................... 21 

                    Statistical Correlations .................................................................. 23 

                    ISM/ISm Results ........................................................................... 24 

                    Drain Tile Tracer Test................................................................... 28



 v 

       V.         CONCLUSIONS..................................................................................... 32 

APPENDICES ............................................................................................................ 36 

       A.           Detailed Methodologies ........................................................................ 37 

       B.           Detailed Results .................................................................................... 47 

REFERENCES ........................................................................................................... 62 



 vi 

LIST OF FIGURES 

Figure                              Page 
 

1. State-Wide Distribution of Approved and Pending Tile-Drainage Permits 
 (ND State Water Commission Database, December, 2012 ............................... 3 
 
2. Underlying Bedrock near the Oakes Irrigation Test Area (OITA) (created  
 using data from NDGIS Hub) ............................................................................ 7 
  
3. Map of Surficial Geology of Dickey County, ND (created using data from 

NDGIS Hub ....................................................................................................... 8 
 
4. Overview of BMP Test Site Showing Sediment Sample Locations,  
 ISM/ISm Locations, and Tile Drain Transects .................................................. 9 
 
5. Weight Percent of Electron Donors ................................................................... 17 
 
6. Chart Showing Textural Analysis of ISM-C1 and ISM-G1 .............................. 22 
 
7. Important Anions from ISM/ISm Tracer Tests.................................................. 27 
 
8. Zero-order Dentitrification Rates Observed from ISM/ISm Tracer Tests ......... 28 
 
9. Comparison of Analytes from Tile Drain Tracer Test ....................................... 30 
 

 

 

 

 

 



 vii 

LIST OF TABLES 

Table                      Page 
 

1. Simplified Stratigraphic Column of Dickey County, Showing Formations  
 of Interest (adapted from Bluemle 1979a ............................................................ 10 
 
2.   Reagents Added for 2nd Tile Drain Tracer Test .................................................. 16 
 
3.   Results of Each e- Donor Test. All Results are Reported by Weight %.  
 Results for the Organic Donors Represent Values Adjusted for Pre-treatment 
 (PT) Weights ........................................................................................................ 18 
 
4. Results of Spearman's Rho Test ........................................................................... 24 
 
5.  Name, Depth Interval, and Location for Each Sampled Core. The Designation 

"A" Indicates the Sample Closest to the Ground Surface.. .................................. 39 
 
6.  Inorganic Sulfide Analysis Results ...................................................................... 48 
 
7.  Inorganic Sulfide Analysis Pyrite Recoveries. ..................................................... 49 
 
8.  Organic Carbon Analysis Results. Columns Labeled 1 and 2 Represent  
 Duplicates of Each Sample. OC is Calculated by Subtracting the IC Value 

from the TOC Value. Negative IC Values are Reported as Zero. Average OC 
is the Average Value of the Duplicates OC 1 and OC 2. TC - Total Carbon,  

 IC - Inorganic Carbon, OC-Organic Carbon ........................................................ 50 
 
9.  PT 1 and PT 2 are Calculated from OC 1 and OC 2 from Table 3 on 
 Previous Page. IC-Inorganic Carbon, PT-Pre-Treatment, AT-After  
 Treatment, % Diff-% Difference .......................................................................... 51 
 
10. Fe(II) Extraction Analysis Results. Wt-Weight, AA-Amount Acid, BT- 
 Boiling Time, RT-Rotation Time, DF-Dilution Factor, MR-Machine  
 Reading ................................................................................................................. 53 
 
11. Fe(II) Extraction Analysis Standards Results. Standard is Siderite-48.2%  
 Fe(II). Wt-Weight, AA-Amount Acid, BT-Boiling Time, RT-Rotation Time, 
 DF-Dilution Factor, MR-Machine Reading ......................................................... 54



 viii 

12. Manganese Extraction Analysis Results. Wt-Weight, AA-Amount Acid,  
 BT-Boiling Time, RT-Rotation Time, DF-Dilution Factor, MR-Machine 
 Reading ................................................................................................................. 55 
 
13. Manganese Extraction Analysis Standards Results. Standard is  

Rhodochrosite - 47.8% Manganese. Wt-Weight, AA-Amount Acid, BT- 
Boiling Time, RT - Rotation Time, DF - Dilution Factor, MR - Machine  
Reading................................................................................................................ 56 

 
14. Results of OITA Textural Analyses ..................................................................... 57 
 
15. Munsell Soil Color for OITA Sediments ............................................................. 58 
 
16. Summary of the Results from the First Tile Drain Tracer Test ........................... 59 
 
17.  Summary of the Results from the Sample Analyses for the Second Tile Drain 

Test. Samples below Detection Limit (DL) were Analyzed as 0.50 of DL. 
Samples 5.5, 7.5, 13.5 and 17.5 were taken for Isotope Analysis (15N and 18O 
in NO3

-) and were not Analyzed for TP or NH4
+-N) ............................................ 60 

 
18. Results of the  Shapiro  &  Wilk  “W-Test” (Gilbert, 1987) for Normal  
 Distribution of Electron Donor Data .................................................................... 61 
 

 
 

 



 ix 

ACKNOWLEDGMENTS 

Without the unfailing patience and support from my committee chairman, Dr. 

Scott Korom, during my undergraduate and graduate career this work would have gone 

unfinished. I would also like to thank the other members of my committee; Dr. Philip 

Gerla and Dr. Richard LeFever for their assistance and insight. 

This work was made possible by funding from the U.S. Bureau of Reclamation, 

contract number 08FC602281, and the North Dakota Water Resources Research 

Institute.   

I would like to thank Allen Schlag from the USBR for his guidance and 

assistance in obtaining sediment cores, Hanying  Xu,  director  of  UND’S  Environmental  

Analytical Research Laboratory, for his knowledge and guidance throughout the 

analytical work, as well as Ryan Salinas Klapperich and Bijesh Maharjan for their 

guidance and encouragement. 

I would like to thank my parents, Kent and Donna Christenson, for their love, 

support, and for always believing in me. 

 



 x 

ABSTRACT 

Denitrification, the microbial reduction of nitrate (NO3
-) in groundwater, has 

three requirements: limited oxygen, bacteria capable of mediating the reaction, and 

electron donors for the bacteria to use in the redox reactions. The critical factor for 

aquifer denitrification is the concentrations of electron donors. Without an adequate 

supply of electron donors, bacteria cannot reduce concentrations of either oxygen or 

NO3
-. 

Artificial drainage within agricultural areas may allow contaminants to bypass, 

or increase conveyance through, reduced areas in which denitrification is likely to 

occur. This contributes to elevated NO3
- yields as it is discharged directly into surface 

water. Depending on site geology, however, bacterial biofilms capable of NO3
- 

reduction may cultivate within the tile drainage. This study aims to quantify and 

compare the potential for denitrification, as well as denitrification rates, within tile 

drainage and aquifer sediments at the Best Management Practices (BMP) site, within 

the Oakes Irrigation Test Area (OITA) near Oakes, North Dakota.  

For the aquifer sediment study, sediment samples (n=43) were collected from 

10 locations at the BMP site. All samples were analyzed for the following potential 

electron donors: organic carbon, ferrous iron, manganese, and inorganic sulfide. A 

subset of samples was analyzed for organic sulfur, but all were below detection limits 

(<0.01%). Samples were also analyzed for texture and color. For the subsurface 



 xi 

drainage study, a nutrient tracer test was conducted within a drain tile transect at the 

BMP site. Sediment samples (n=6) from the gravel pack surrounding the tile drains 

were analyzed in the same manner as the aquifer sediments. 

The major finding was that the biofilm accumulation within the gravel pack 

surrounding the tile drains contains adequate electron donor concentrations. However, 

when compared with denitrification rates occurring in the aquifer sediments, the tracer 

test in the drain tile produced no observable denitrification. Secondary findings 

indicated that electron donors are correlated with one another and electron donor 

concentrations are inversely correlated with grain size in the aquifer sediments.
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CHAPTER I 

INTRODUCTION 

The use of drain tiles for subsurface drainage has several advantages, including 

increased cropped acreage (Pavelis 1987), earlier planting seasons, increased crop 

yields (Eidman  1997), and decreased compaction of soil (Spaling and Smit 1995). 

Subsurface drainage may also reduce the use of and need for pesticides and fungicides 

by improving crop quality, thereby reducing the susceptibility of a crop to pests (Fraser 

and Fleming 2001). Drain tiles may also have disadvantages, such as increased peak 

flows during storm events (Robinson and Rycroft 1999), increasing nutrient 

concentrations in agricultural runoff (Downing et al. 1999) and they may become 

obstructed, resulting in reduced hydraulic efficiency. Obstructions can include silt 

deposits, roots, or sludge deposits and biofilms associated with bacterial activity (Ford 

2005).  Obstructions associated with bacterial activity involve the oxidation-reduction 

(“redox”)  cycling  of  sulfur  (S),  iron  (Fe), and manganese (Mn) (Ford 2005) with 

oxygen in the drain tile.  However, NO3
-, like oxygen, is also a strong oxidant and it 

may be denitrified with these same elements (Korom 1992).  Denitrifying bacteria have 

been confirmed in drain tiles (Ivarson and Sojak 1978, Knighton 1997) and biological 

clogging of drainage systems has improved water quality in situations involving 

extended retention time (Rowe and VanGulck 2004). Some investigators have 

speculated that denitrification may be occurring in the tile drain system in the Oakes 

Irrigation Test Area (OITA) (Knighton 1997, Casey et al. 2002, Derby et al. 2009, 
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Sawatsky 2009). Significant denitrification has also been known to occur in North 

Dakota aquifers (Korom et al. 2005, Korom et al. 2012). In this paper it is hypothesized 

that within the saturated zone, substantially more of the NO3
- reduction in the OITA is 

occurring within the aquifer sediments at the site, rather than within the drain tiles.  The 

aquifer sediments within the saturated zone of the OITA, not the drain tiles, are able to 

reduce NO3
- at a rate which could be beneficial to water quality. 

Agricultural Tile Drainage 

Since the first recorded installation of drain tiles in 1835, the reclamation of 

land by subsurface drainage has transformed the American landscape (Framji and 

Mahajan 1969). Today, it is estimated that within the Mississippi basin alone, drainage 

pipes lie in the subsurface of an estimated 40-70 million acres (Hey 2001). The use of 

subsurface drainage continues to grow in the Midwest and has converted up to 30% of 

poorly drained wetlands to agricultural areas (Pavelis 1987).  The recent wet cycle 

within the Red River Valley basin of North Dakota has caused tile-drainage to be 

installed within the region at a rapid pace (Figure 1). One drain tile installer within the 

region has reported installing more than 20 million feet of tile in the Red River Valley 

since 2005 (Nodak Electric 2011). 

Overall, subsurface drainage remains a major pathway for nutrient (N and P) 

loss to surface waters (Blann et al. 2009). Subsurface drainage delivers nutrients to 

surface water via different pathways, and at different magnitudes. Enrichment of 

surface waters with nutrients is common in regions where intensive agriculture is 

practiced; the greatest riverine NO3
- fluxes are observed from basins draining 

extensively drained agricultural regions (McIsaac and Hu 2004). 
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The eutrophication of downstream water bodies may be attributed to the 

leaching of NO3
- and P out of the soil through subsurface drains (Dinnes et al. 2002). 

As subsurface drainage reclaims more land for agricultural production, it also creates 

environmental hazards on a global scale.  

 
Figure 1. State-wide distribution of approved and pending tile-drainage permits (ND 
State Water Commission database, December, 2012). 
  

Tile drains skim the NO3
- from the surface of the aquifer and release it to nearby 

surface water. It is estimated that the principal contributor of nitrogen inputs to the Gulf 

of Mexico and the North Atlantic Ocean are agricultural in origin (Randall and Mulla 

2001, Howarth et al. 1996). Increased NO3
- loading in the Mississippi has been directly 

linked to the spread and increased severity of hypoxia within the Gulf of Mexico 

(Rabalais et al. 1996). Subsurface drains bypass the reduced zones where denitrification 
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is most likely to occur, contributing to higher NO3
- yields as they discharge directly to 

surface water (Dinnes et al. 2002).  

In some geologic environments, subsurface drainage may be beneficial to water 

quality. Draining soils increases their capacity to store moisture, which can reduce 

surface runoff volumes in certain situations. In comparison with surficial agricultural 

drainage, decreased surface runoff associated with drain tiles can improve water quality 

by reducing soil, chemical, and nutrient losses from a field (Fraser and Fleming 2001). 

Drain tiles have the potential to decrease pesticide loads by orders of magnitude; and 

phosphorus losses, which are generally associated with erosion, may be reduced 

(Gilliam et al. 1999, Ayars and Tanji 1999).  

In agricultural soils, a high water table can have numerous negative impacts on 

crops. By removing excess water from the soil and lowering the water table, drain tiles 

enhance crop yields by allowing proper root-zone aeration and facilitating root 

proliferation, function, and metabolism (Fraser and Fleming 2001). Hydraulic 

efficiency in drain tiles is commonly reduced by mineral deposits, silt deposition and 

roots from nearby vegetation (Grass 1976). Biological clogging from bacteria may also 

affect hydraulic efficiency in drain tiles. The most prevalent and problematic form of 

biofilm accumulation is iron ochre, but biofilms may also be composed of manganese 

deposits, sulfur slimes, and iron-sulfides (Ford 2005).  

Remediation of NO3
- is effectively completed through the process of 

denitrification. This naturally-occurring process reduces NO3
- to non-reactive nitrogen 

gas (Korom 1992). Denitrification requires the following: the availability of electron 

donors, an anaerobic environment, and the presence of nitrogen digesting bacteria 
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(Korom 1992, Starr and Gillham 1993). The availability of suitable electron donors 

within aquifer sediments has been shown to be the controlling factor in this reaction 

(Korom 1992 and references therein). According to Korom (1992), the most common 

electron donors are organic carbon, sulfide (typically as pyrite, FeS2), and ferrous iron 

minerals, with manganese also possibly contributing. The same species are also cycled 

in drain tiles and may form biofilms or deposits that reduce hydraulic efficiency in 

drain tiles (Ford 2005).   

 Research has suggested that biofilms may be responsible for denitrification 

within subsurface lines in eastern North Dakota (Casey et al. 2002, Derby et al. 2009, 

Sawatzky 2009). As noted above, subsurface drainage tiles clogged with biofilm 

accumulation are potentially capable of the natural attenuation of NO3
- by 

denitrification. Species of bacteria capable of denitrification, Arthrobacter spp. and 

Brevibacter spp., have been found within biofilm samples taken from subsurface drain 

tiles (Knighton 1997). 

 Samples of tile drain discharge from the Oakes Best Management Practices 

(BMP) research field have shown significantly lower NO3
- concentrations than the 

nearby surrounding groundwater. These samples suggest that denitrification may be 

occurring via the manganese biofilm within the tile drains (Sawatzky 2009). On the 

other hand, Korom et al. (2005, 2012) showed that significant denitrification occurs by 

electron donors in aquifer sediments in North Dakota.  My hypothesis is that more 

denitrification at the BMP site is occurring through the consumption of electron donors 

present within the aquifer sediments at the site, rather than through denitrification 

occurring within the tile drain system.
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CHAPTER II 

SITE DESCRIPTION AND GEOLOGY 

The BMP site (Figures 2, 3, and 4) is a 64-ha agricultural field in the NW1/4, 

Sec. 29, T.130N, R.59W, Dickey County, ND, containing two transects of buried 

subsurface agricultural drainage. The primary objective for the BMP field site was to 

develop methods of monitoring leachate losses under irrigated crops (Derby et al. 

1997). The BMP site is within a larger site, the OITA, which was constructed by the 

United States Bureau of Reclamation (USBR) in the 1980s to investigate feasibility of 

irrigation and artificial recharge in southeastern North Dakota from diverted James 

River water (Frietag and Esser 1986). 

There are two lines of drain tiles that run from the south end of the BMP site to 

the north (Figure 4) where they intersect a drainage canal, which flows into the nearby 

James River. The drains at the site consist of corrugated plastic pipe, 6-inches (15 cm) 

or 8-inches (20 cm) in diameter, and buried approximately 8 feet (2.4 m) below the 

surface at the site. The BMP site tile drainage system differs from most current designs, 

in that the drainage is deeper and more widely spaced, six to eight feet (1.9 to 2.5 m) 

deep and 1,200 feet (366 m) apart. As a comparison, tile drain depths are generally 

three to four feet (1 to 1.2 m) deep and 40 to 100 feet (12 to 30 m) wide (Schuh 2008). 

Surrounding the tile drains is a 12-inch (30 cm) gravel envelope, with gravel brought in 

from off-site.  A number of monitoring wells and field lysimeters (Derby and Knighton 

2001) are installed in parallel east to west transects across the site. Details of the 
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instrumentation can be found in Derby and Knighton (2001), Derby et al. (1998), and 

Casey et al. (2002). 

At the BMP site, a variety of clay, sand, silt, and gravel deposits cover the 

present surface. These sediments, the Oahe Formation, were deposited in environments 

including river, pond, wind-blown, and mass-movement (Bluemle 1979a). 

  

 
Figure 2. Underlying Bedrock near the Oakes Irrigation Test Area (OITA) (created 
using data from NDGIS Hub). 
 

Several glacier advances and retreats likely scoured the underlying Niobrara and 

nearby Pierre formations to derive the facies of the Coleharbor. Till samples from the 

Coleharbor at various depths exhibit an average of 36% shale composition by weight 

(Bluemle 1979a).   



 8 

 
Figure 3. Map of surficial geology of Dickey County, ND (created using data from 
NDGIS Hub) 
 

The Coleharbor Group overlies the Cretaceous Pierre Formation shale, with the 

exception of the eastern part of Dickey County where the Cretaceous Niobrara 

Formation is the underlying calcareous shale formation (Figure 2 and Table 1). The 

shales of the Pierre Formation are commonly found exposed on the east side of the 

Missouri Escarpment, where Coleharbor Group sediments become thin. In a similar 

study involving electron donor potential, the Niobrara Formation was shown to have 

over twice the amount of available electron donors as the Pierre Formation in east-

central North Dakota (Klapperich 2008). 

The BMP site sits atop the unconfined Oakes aquifer, underlying an area of 

about 93 mi2 (240 km2), with the James River creating a flow boundary along the 

western edge. The aquifer was the result of a two separate stages of deposition. The 

early, lower aquifer materials were deposited as valley fill. These deposits consist of 
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fine to coarse sand and gravel with interbedded silt and clay deposits. After the valley 

became blocked in the south, glacial Lake Dakota was formed and covered an area 

from South Dakota to 3 miles (5 km) north of Oakes. During the Lake Dakota stage, the 

deposited aquifer materials were of deltaic and lacustrine origins, with fine to medium 

sand and silt, and silt and silty clay.  

 
Figure 4. Overview of BMP test site showing sediment sample locations, ISM/ISm 
locations, and tile drain transects. 
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These deposits form the majority of the present land surface in the region 

(Armstrong 1980). Oakes sits near the stratified sand and gravel deposits similar to a 

deltaic complex. These delta deposits are composed of quartz, shale, lignite, Canadian 

shield silicate, and carbonate sediments (Bluemle 1979a). Considering the proximity of 

the Oakes aquifer, the black noncalcareous shales within the delta deposits are likely 

derived from the Niobrara shale.  

Table 1 
 
Simplified Stratigraphic Column of Dickey County, Showing Formations of Interest 
(adapted from Bluemle 1979a) 
 

AGE UNIT NAME DESCRIPTION THICKNESS 
(m) 

Quaternary 
Oahe (Holocene) Sand, silt, and clay ? 

Coleharbor (Pleistocene) Till, sand, gravel, silt, 
and clay 0 – 183 

Tertiary   Absent 

Cretaceous 
Pierre Formation Shale 

366 – 549 Niobrara Formation Calcareous shale 
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CHAPTER III 

MATERIALS AND METHODS 

The overall objective of this research is to quantify, locate, and understand the 

occurrence of denitrification within an artificially drained agricultural site. It was 

determined that three possible settings existed within the OITA that may be capable of 

denitrification: the aquifer sediments, the tile-drain gravel pack, and within the tile 

drain itself. In order to determine and compare the denitrification potential of these 

three sources, a two-part study was created. Analysis of aquifer sediments for electron 

donors, and the measurement of denitrification rates within the sediments and tile drain 

gravel pack comprise the first part of the study. For the second part of the study, a pair 

of tracer tests were conducted within a transect of drain tile. 

Aquifer Denitrification Research 
 

Subsurface sediment samples were collected in September of 2008 by coring 

the aquifer sediments at the study site. Eighteen potential sample locations were 

identified based on previous well logs. Hydraulic soil sampling equipment from the 

USBR was used to collect the samples. Several samples were collected from each site 

at varying intervals. Additional samples were collected from the tile drain gravel pack 

during June and July of 2009.  A total of 15 sites yielded 49 samples, the locations of 

which are marked on Figure 4. Samples were collected in acrylic core sleeves (ID = 

2.54 cm, OD = 2.82 cm), labeled, and capped at both ends before being placed in 
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coolers and transported to the University of North Dakota. The samples were later 

placed in glass jars, labeled, and frozen until needed for analysis.  

The samples were analyzed for texture, inorganic carbon (IC) and organic 

carbon (OC) content, inorganic sulfide (IS) and organic sulfide (OS) contents, ferrous 

iron [Fe(II)] content, manganese (Mn) contents, and Munsell color. Only the sediments 

smaller than gravel (<2.0mm) were analyzed for electron donor contents and IC. Prior 

to any chemical analysis, each sample was first oven dried overnight at 103°C and 

ground into a fine powder. 

OC was determined by a high temperature combustion method (Churcher and 

Dickout, 1986). IS was determined by chromium reduction modified slightly by using 

larger amounts of reagents (Canfield et al. 1986). Fe(II) and Mn were measured 

through wet chemical extraction (Klapperich 2008) by adapting methods used by 

Kennedy et al. (1999). The results of total Fe(II) combined the Fe(II) recovered by the 

wet chemical extraction method and the Fe(II) corresponding to IS, which is assumed 

to be primarily from pyrite (FeS2). From the sediment samples, 14 were randomly 

selected for analysis of OS in a Leco SC-432 DR Sulfur Analyzer. All chemical 

analyses were completed at  UND’s  Environmental Analytical Research Laboratory 

(EARL). Duplicate analyses were performed as quality control for the entire OC 

analyses, and less frequently for other analytical techniques.  Appendix A includes 

detailed methodologies for all analyses. 

Statistical analysis was carried out on the electron donor data from the 49 

aquifer sediment sample locations. The normality of the individual populations was 

tested prior to the comparison of electron donor distribution. This was accomplished 
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via the Shapiro  and  Wilk  “W-test”  (Gilbert  1987). Each donor was tested for both the 

lognormal transformed and non-transformed populations.  Based on the results from the 

“W-test”  (Appendix  B)  the non-parametric Spearman Rho test (Conover 1971), which 

does not assume an underlying distribution, was employed for statistical analysis.  

Correlations between the different donors and different sediment facies were 

tested. The data for the tile drain gravel pack samples were not included in the sediment 

correlation, as no textural analysis was performed on those samples. The one-tailed 

version of the Spearman Rho test using critical values corresponding to α  =  0.10,  α  =  

0.05, and  α  =  0.01  was used to determine if positive or negative correlations existed.  

In-situ denitrification rates for the aquifer sediments at the OITA were 

measured using a pair of stainless steel chambers driven into the aquifer sediments, 

referred to as “in-situ  mesocosms”  (ISMs). The ISM developed by Schlag (1999) is a 

larger version, with an aquifer volume of 186 L, of the in-situ microcosms (ISm) used 

for Gillham et al. (1990) and Bates and Spalding (1998). The ISM, a stainless steel 

cylindrical chamber measuring 0.39 m in diameter by 1.5 m long, permits sizeable 

water quality samples ( 1L) to be obtained regularly over long periods (>2 years). 

Since their first use in the Elk Valley Aquifer in northeastern North Dakota, ISMs have 

successfully monitored the chemical evolution of groundwater at several sites (Korom 

et al. 2005, Korom et al. 2012).  

Suitable ISM locations were determined based on cross sectional maps of the 

aquifer sediments provided by the USBR. Locations were selected with the goal of 

measuring the denitrification rates in distinctly different aquifer sediment textures. In-

situ denitrification rates were measured using stainless steel chambers at four sites.  
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Two sites employed ISMs, ISM-C1 and ISM-G1 (Figure 4), which enclosed coarse 

aquifer materials and fine-grained sands, respectively. For the remaining sites, a much 

smaller chamber was used, an in-situ microcosm (ISm) with a sediment volume of 3.2 

L. The smaller chamber size of the ISm allowed for a water sample from within the 

gravel pack surrounding the tile drains.  

 ISM-G1 was installed 4.5-6 meters below the land surface, in fine-grained 

aquifer sediments near the G1 well nest (Figure 4). ISM-C1 was installed 4-5.6 meters 

below the land surface, in coarse-grained aquifer sediments near the C1 well nest 

(Figure 4). Two tracer tests were performed in each ISM to determine in situ 

denitrification rates. The first gravel pack ISm, ISm-C3, was installed 1.5-2 meters 

below the land surface, within the tile drain gravel pack next to well nest C3 (Figure 4).  

The ISm was later reinstalled at the same depth in the gravel pack near well nest C7 

(Figure 4). Gravel for the envelope around the tile drains was imported from off-site, 

denitrification occurring within the envelopes would likely be from the development of 

manganese bacteria growth within the gravel pack pore spaces. 

For the sampling of the ISMs and ISms, Groundwater was pumped from the site 

into a reservoir, amended with NO3
- and Br-, and then siphoned back into sampling 

devices. The dilution of amended water with native groundwater was measured with 

Br- tracer. Any loss of NO3
- beyond what is explained by the dilution of Br- was 

attributed to denitrification. Korom et al. (2005) described in detail ISM installation, 

amendment, and sampling methodology. 
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Tile Drain Denitrification Research 

On the 3rd and 4th of June 2008, two tracer tests were performed within a 

transect of drain-tile at the Oakes BMP site. The tests were conducted for the purpose 

of investigating the possibility of NO3
-, PO4

3- and NH4
+ removal and/or uptake by drain 

tile biomass. The tracer tests were conducted with the 20-cm (8-inch) diameter tile-

drain between manhole T04 and manhole T01 (Figure 4).  

The first tracer test, performed on June 3, 2008, involved the injection of NaCl 

into the drain at manhole T04.  The purpose of this test was to establish a sampling 

schedule for the second tracer test based on the comparison of electrical conductivity 

(EC) versus time at the downstream manhole T01 (Table 16).  

A total volume of 15 L of water was bailed from manhole T04 and transferred 

into a reservoir. The water in the reservoir was amended with 737 g of food grade 

NaCl, thoroughly mixed, and then injected directly into the drainage pipe at manhole 

T04 over two minutes. The EC was recorded within the drainage pipe at manhole T01 

for approximately three hours.  

 The data from the first tracer test showed that the peak EC occurred 

approximately 100 minutes following the injection, with the beginning pulse arriving in 

86 minutes and returning to near-background levels in 200 minutes. Based on this 

information, monitoring of the second tracer test would begin one hour subsequent to 

the injection and continued at regular intervals for nearly four hours following the 

injection. 

 The second tracer test was performed on June 4, 2008. A total volume of 10 L 

of water was bailed from manhole T04 and transferred into a reservoir. The water in the 
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reservoir was amended with reagents listed on Table 2. The amended water was 

injected directly into the drainage pipe at manhole T04 over the course of one minute.  

Water samples were collected using an improvised sampling device within the 

drainpipe at Manhole T01. Following collection, the samples were passed through 0.45 

µm disposable filters, then preserved and stored for analysis. Samples to be analyzed 

for NO3
--N and Br- were filtered directly into 60 mL plastic bottles. Samples to be 

analyzed for total phosphorus (TP) and NH4
+-N were filtered directly into 250 mL 

plastic bottles containing 1 mL of concentrated H2SO4 for every 50 mL of sample.  

Table 2 
 
Reagents Added for 2nd Tile Drain Tracer Test 
 
Reagent Constituent 

Monitored 
Constituent Amount Added 
(g) 

NaNO3 NO3
--N 39.00 

NaBr Br- 32.50 
NaH2PO4

.H20 Total P (TP) 8.03 
NH4Cl NH4

+-N 7.80 
 Volume:  10 L  
  Rate of Injection: 10 L/min 
  Duration of Test: 229 min 

 

Analyses were performed at the University of North Dakota’s EARL. Br- and 

NO3
--N were analyzed with the use of a Dionex DX-120 Ion Chromatograph. TP was 

analyzed using HACH kit, method #8190. NH4
+-N was analyzed as NH3 using an 

Accument ion selective electrode. However, at the pH levels of the water in the tile 

drain, ammonium is the dominant species. To return the pH of acidified samples to 

neutral, NaOH was added as required during analysis of TP. 
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CHAPTER IV 

RESULTS AND DISCUSSION 
 

Aquifer Sediments 
 
The textural analysis was modified based on the classification of grain sizes 

adopted from USGS (2003). All 49 samples were analyzed for gravel, sand (coarse, 

medium, and fine), silt, and clay contents. Figure 5 illustrates the weight percent of 

electron donors for each sediment texture classification including the gravel pack for 

comparison. Detailed results of the sediment texture analysis are reported in Appendix 

B.  

 
Figure 5. Weight percent of electron donors. 
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Table 3 
 
Results of Each e- donor Test. All Results are Reported by Weight %. Results for the 
Organic Donors Represent Values Adjusted for Pre-treatment (PT) Weights 
 

 
Sample ID 

Textural 
Classification 

%S- OC (PT 
Eq) (%) 

Mn (%) Fe(II) 
(%) 

 

Avg 
Pyrite  Fe 

(%) 

Total Fe(II) 
(%) 

ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

Sandy Loam 
Loamy Sand 

Sand 
Sand 
Sand 
Sand 
Sand 

Silt Loam 

0.007 
0.011 
0.024 
0.004 
0.009 
0.020 
0.032 
0.014 

0.087 
0.067 
0.104 
0.073 
1.664 
1.186 
0.150 
0.557 

0.299 
0.089 
0.012 
0.035 
0.098 
0.019 
0.021 
0.112 

0.090 
0.030 
0.327 
0.153 
0.302 
0.267 
0.300 
1.591 

0.006 
0.010 
0.021 
0.004 
0.008 
0.018 
0.029 
0.012 

0.096 
0.040 
0.348 
0.157 
0.310 
0.285 
0.329 
1.603 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

Loamy Sand 
Loamy Sand 
Sandy Loam 

Silt Loam 

0.000 
0.102 
0.169 
0.232 

0.404 
0.312 
0.753 
0.739 

0.068 
0.041 
0.080 
0.206 

0.324 
0.455 
0.566 
0.118 

0.000 
0.091 
0.151 
0.207 

0.324 
0.546 
0.717 
0.325 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

Loamy Sand 
Loamy Sand 
Sandy Loam 
Sandy Loam 

Silt Loam 

0.003 
0.071 
0.103 
0.083 
0.044 

0.067 
0.136 
4.410 
2.101 
0.729 

0.047 
0.040 
0.065 
0.241 
0.073 

0.118 
0.208 
0.445 
0.814 
0.535 

0.003 
0.063 
0.092 
0.074 
0.039 

0.121 
0.271 
0.537 
0.888 
0.574 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

Sand 
Sandy Loam 

Silt Loam 
Silt Loam 

0.013 
0.157 
0.132 
0.224 

0.180 
0.172 
0.444 
0.510 

0.002 
0.035 
0.071 
0.160 

0.422 
0.296 
0.542 
0.624 

0.012 
0.140 
0.118 
0.200 

0.434 
0.436 
0.660 
0.824 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

Loamy Sand 
Loamy Sand 
Loamy Sand 

Sand 

0.003 
0.057 
0.099 
0.091 

0.020 
0.036 
0.096 
0.035 

0.115 
0.047 
0.118 
0.055 

0.030 
0.336 
0.533 
0.472 

0.003 
0.051 
0.088 
0.081 

0.033 
0.387 
0.621 
0.553 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

Sand 
Loamy Sand 
Sandy Loam 

Sand 
Sand 

0.015 
0.007 
0.076 
0.084 
0.119 

0.023 
0.084 
0.357 
0.389 
0.727 

0.100 
0.027 
0.034 
0.028 
0.004 

0.177 
0.475 
0.561 
0.533 
0.534 

0.013 
0.006 
0.068 
0.075 
0.106 

0.190 
0.481 
0.629 
0.608 
0.640 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

Sand 
Loamy Sand 
Loamy Sand 

Silt 

0.000 
0.107 
0.127 
0.187 

0.036 
0.091 
0.056 
1.012 

0.006 
0.003 
0.005 
0.110 

0.151 
0.485 
0.480 
1.640 

0.000 
0.096 
0.113 
0.167 

0.151 
0.581 
0.593 
1.807 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

Loamy Sand 
Loamy Sand 

Sand 
Sand 

0.002 
0.021 
0.136 
0.149 

0.068 
0.361 
0.108 
0.169 

0.018 
0.052 
0.064 
0.051 

0.120 
0.398 
0.417 
0.508 

0.002 
0.019 
0.121 
0.133 

0.122 
0.417 
0.538 
0.641 
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Table 3 (continued) 
 

Sample ID Textural 
Classification 

%S- OC (PT 
Eq) (%) 

Mn (%) Fe(II) 
(%) 

 

Avg 
Pyrite  
Fe (%) 

Total Fe(II) 
(%) 

C8.5 A 
C8.5 B 
C8.5 C 

Sand 
 Sand 

Loamy Sand  

0.001 
0.082 
0.126 

0.133 
0.065 
0.106 

0.024 
0.017 
0.053 

0.177 
0.421 
0.501 

0.001 
0.073 
0.112 

0.178 
0.494 
0.613 

ISM-G1 A 
ISM-G1 B 

Sand 
Loamy Sand 

0.093 
0.000 

0.222 
0.166 

0.003 
0.045 

0.449 
0.484 

0.083 
0.000 

0.532 
0.484 

ISm-C3GP Gravel Pack 0.012 0.888 3.233 0.029 0.011 0.040 
ISm-C3BGP Gravel Pack 0.000 0.413 0.415 0.059 0.000 0.059 
48PSISmC3 Gravel Pack 0.023 1.193 0.221 0.138 0.021 0.159 
52PNISmC3 Gravel Pack 0.005 1.485 0.220 0.179 0.004 0.183 
ISmC7GP Gravel Pack 0.002 0.723 0.221 0.016 0.002 0.018 
50PSISmC7 Gravel Pack 0.001 0.370 0.083 0.045 0.001 0.046 

  

Organic Carbon 

From 49 individual samples, 98 OC analyses were performed (Table 3). The 

highest OC concentrations were measured in silt with 1.01% by weight, and the lowest 

OC values were 0.02% by weight for loamy sand and sand. OC accounted for 

approximately 42% of the e- donors available in the sampled material from the OITA. A 

few sandy-loam and sand samples contained anomalous percentages of OC. These were 

assumed to be buried paleosols, and remained included in the analysis. It is also a 

significant e- donor within each sediment facies. Duplicates show fair reproducibility 

well below a percent difference of 25%. The complete OC results and calculations are 

reported in Appendix B.  

Silt loam samples contained the highest amounts of organic carbon, ranging 

from 0.38% to 0.84% by weight. OC accounted for about 31% of the e- donors 

available within the silt loam sediment facie samples. Loamy sand analyses showed an 

average OC concentration of 0.17% by weight, contributing to 27% of the e- donors 
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available within that particular facies. The sand facies also showed significant OC 

contents, at 0.33% OC by weight, contributing to 40% for e- donors available within the 

facies.  

Inorganic/ Organic Sulfide 

Overall, IS accounts for about 5% of the total electron donors present in the 

sediment samples. Values ranged from 0.003% in sand to 0.232% in silt loam. With 

pyrite noted as the most commonly occurring sulfide mineral, it was assumed that all of 

the IS measured in this test was in the form of pyrite (Schoonen 2004). IS was 

measured below the detection limit in eight of the samples, all of them texturally 

classified as sand or loamy sand. 

Inorganic sulfide within the silt loam samples averaged about 0.14% by weight 

and account for about 7% of the e- donors present within the silt loam (Figure 5). 

Within the loamy sand samples, IS averaged nearly 0.06% by weight and accounted for 

about 8.8% of the e- donors present within the loamy sand samples. The sand samples 

also averaged 0.06% IS by weight accounting for nearly 10% of the e- donors present 

within the sand samples. Pyrite recoveries for inorganic sulfur analysis were >95%. The 

complete results and calculations are shown in Appendix B. 

Klapperich (2008) determined that a modified method of inorganic sulfide 

analysis could be used for organic sulfide (OS) analysis. Based on his methods, testing 

for IS was repeated on 14 samples. The entire set of 14 samples yielded OS results 

below detection. The duplicate analyses yielded organic sulfide results below detection. 

Therefore, OS as an electron donor was not considered further in the present study. 
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Klapperich (2008) noted that OS yielded the lowest values of e- donors tested in his 

electron donor research within bedrock formations.  

Ferrous Iron 

Ferrous iron results are the product of two tests: the Fe(II) associated with pyrite 

as is measured by the Canfield method, and measured as non-pyritic Fe(II) by the 

modified Kennedy technique using wet chemical extraction. Ferrous iron follows the 

pattern of the other e- donors within the facies, being low in sand and higher in silt 

loam. Ferrous iron is also a dominant e- donor present in all the facies, averaging near 

46% Fe(II) by weight of all samples included in this study. Of the 49 analyses, the 

highest value came from a silt sample with an average value of 1.81%. The lowest 

Fe(II) values, 0.03% and 0.02% were from loamy sand and gravel samples, 

respectively. The complete Fe(II) results and calculations are reported in Appendix B. 

Ferrous iron was significantly more abundant in the silt loam facies than the 

other e- donors. The overall Fe(II) average for the silt loam facies was  0.97% by 

weight. The loamy sand and sand facies showed nearly the same overall Fe(II) average 

with 0.38% and 0.40% concentrations by weight, respectively. 

Manganese 

A method similar to that used for Fe(II) was applied to determine manganese 

concentrations in the sediment facies. Rhodochrosite (MnCO3) recovery produced an 

average manganese recovery of 85%. The complete manganese results and calculations 

are reported in Appendix B.  

Overall, manganese accounted for approximately 6% of the total e- donors 

present in all the samples. Values ranged from 0.002% to 0.299% within a sand and 
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sandy loam, respectively. The tile drain gravel pack contained significant amounts of 

manganese, averaging 0.74% by weight, likely due to the manganese biofilm 

accumulation associated with the tile drains. With the exception of the tile-drain gravel 

pack, the values for manganese also appear to follow the pattern of increasing e- donor 

concentration with decreasing sediment size. 

 
Figure 6. Chart showing textural analysis of ISM-C1 and ISM-G1. 
 

Comparison of electron donors by weight percent with another site of 

denitrification study within eastern North Dakota shows the OITA having higher OC 

percentages within the three finer-grained sediment textures. The sandy loam, silt loam, 

and silt present at the OITA have an average range of 0.665% to 1.319% OC by weight, 

whereas sediments from the Elk Valley Aquifer in eastern North Dakota had a 

maximum OC content of 0.43% (Korom et al. 2005). Both of these sites contain 



 23 

relatively high OC when compared with the Karlsruhe site, having 0.017% OC (Korom 

et al. 2012).  

Statistical Correlations 
 
The results from  the  Shapiro  and  Wilk  “W-test”  (Appendix B) showed that the 

electron donors could not be considered to be normally distributed, regardless of log 

transformation or not. The results of the Spearman Rho test, presented in Table 4, 

indicated that a positive  correlation  at  a  significance  level  of  α  =  0.01  was  found  

between inorganic sulfide and ferrous iron, as well as organic carbon and manganese. 

At  a  significance  level  of  α  =  0.10, positive correlations exist between inorganic sulfide 

and organic carbon, organic carbon and ferrous iron. Organic carbon and manganese 

were  positively  correlated  with  silt  at  α  =  0.01,  whereas  ferrous  iron  was  correlated 

with  silt  at  α  =  0.05.  Once  again,  if the significance level is expanded to  α  =  0.10,  

inorganic sulfide is also positively correlated with silt. All of the electron donors 

showed a negative correlation with sand textures. Manganese was positively correlated 

to both silt and clay. Organic carbon was positively correlated with both gravel and silt. 

The sediment textures failed to show a positive correlation, with gravel and sand 

negatively correlated as well as sand and silt.  

Maharjan (2009) found similar correlations between electron donors and 

sediment texture at a study site within eastern Iowa. The eastern Iowa site showed a 

higher correlation of electron donors with clay than silt, whereas the OITA electron 

donors were correlated with silt. This difference is likely due to the sandy nature of the 

aquifer at the OITA and its lack of clay textures. Also similar to the eastern Iowa site, 

the electron donors IS and Fe at the OITA are positively correlated to one another at α  
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= 0.01. If we increase the significance level to α  =  0.10; IC, Fe, and OC are all 

positively correlated to one another. Manganese as an electron donor was not studied at 

the eastern Iowa site. 

Table 4 
 
Results of Spearman's Rho Test 
 
Spearman Rho for positive correlation 

  
Ho: There is not a positive correlation of the two donors' average values 

 
IS OC Fe Mn Gravel Sand Silt Clay 

IS X 0.187* 0.748 -0.071 0.178 -0.298 0.206* 0.222* 

OC 
 

X 0.234* 0.398 0.405 -0.463 0.424 0.104 

Fe 
  

X -0.160 0.108 -0.390 0.281 0.212* 

Mn 
   

X 0.199* -0.463 0.456 0.295 

Gravel 
    

X -0.269 0.064 0.097 

Sand 
     

X -0.912 -0.108 

Silt 
      

X 0.011 

Clay 
       

X 

 Positively  correlated  at  0.05  α 
 

Negatively  correlated  at  0.05  α 

 Positively  correlated  at  0.01  α 
 

Negatively correlated  at  0.01  α 

*.  Indicates  correlation  significant  at  0.10  α 

  

ISM/ISm Results 

 The first ISM tracer test (TT1) lasted 112 days, starting August 13, 2008 and 

ending December 2, 2008, the first ISm tracer test was initiated at the same time. The 

second ISM tracer test (TT2) lasted 129 days, starting June 2, 2009 and ending October 

10, 2009. The second ISm tracer test began on day 50, or July 3, 2009, of the second 

ISM tracer test. During both periods the general aqueous chemistry species were 

monitored, which included products and reactants associated with denitrification 
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 The relative change of the dilution-tracing Br- is of importance to our study of 

denitrification in the aquifer sediments.  Tracking Br- in  the  ISM/ISm’s permits the 

evaluation for NO3
--N removal via dilution or through denitrification. The normalized 

concentrations of these anions are displayed in Figure 6 for the tracer tests at the four 

Oakes sites. This shows the concentration trends and relative changes compared to 

dilution.  

During the first tracer test, the NO3
--N concentration in the ISM-G1 began at 

76.2 mg/L and was reduced to 6.63 mg/L throughout the 112 day test. The Br- 

concentration in ISM-G1 began at 44.4 mg/L and remained at 95.1% of the amended 

concentration for the course of the experiment.  When corrected for dilution, the 

denitrification rate in ISM-G1 was 0.59 mg/L/day for TT1. In contrast, during the first 

tracer test for ISM-C1 the Br- began at 40.7 mg/L and diluted to 18.2 mg/L, retaining 

44.7% of its initial concentration. When TT1 for ISM-C1 is corrected for dilution, the 

denitrification rate becomes 0.06 mg/L/day. It appears as though ISm-C3 also exhibited 

a similar dilution as shown by Br- concentrations, with 51.0% of the amended 

concentration remaining. When corrected for dilution, the denitrification rate within 

ISm-C3 was 0.11 mg/L/day.  Figure 7 illustrates the dilution corrected Br- and NO3
--N 

zero order denitrification rates.  

During the second tracer test (TT2), the NO3
--N concentration in the ISM-G1, 

experienced a less significant loss (Figure 7) beginning at 72.5 mg/L and dropping to 

30.5 mg/L throughout the 129 day test. The Br- concentration in ISM-G1 began at 43.4 

mg/L and remained within 91.3% of the initial concentration. When corrected for 

dilution, TT2 for ISM-G1 indicates a denitrification rate of 0.28 mg/L/day.  Once 
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again, during the second tracer test for ISM-C1 the Br- shows evidence of tracer test 

dilution, with Br- concluding TT2 with 46.7% of the initial concentration.  

The denitrification rate for TT2 within ISM-C1 is comparable to the first at 0.03 

mg/L/day. During the course of TT2, ISm-C7 Br- concentrations remained within 

93.1% of their initial concentration. When corrected for dilution, ISm-C7 indicated a 

denitrification rate of 0.30 mg/L/day; however, fit of the data to zero-order 

denitrification is not as good as for the other tracer tests (Figure 8). The ISm-C7 tracer 

test began 48 days after the start of the second tests in ISM-G1 and ISM-C1. 

Denitrification rates for the tracer tests conducted at the OITA are expressed as 

zero-order denitrification reactions. Zero-order reactions are generally the standard for 

the majority of published aquifer denitrification rates (Korom 1992, Green et al. 2008, 

Korom 2012). Compared to another eastern North Dakota ISM site, a site whose 

published zero-order denitrification rate was amongst the highest recorded in the 

literature, the ISM-G1 rate is 1.9 times faster at 0.59 mg/L/day (Korom et al. 2005, 

Green et al. 2008).   

Comparison of the rate found within ISM-C1to the same site shows ISM-C1 to 

be 4.9 times slower at 0.06 mg/L/day. The zero-order denitrification rate for ISM-C1 is 

comparable to those rates found within the Karlsruhe aquifer of north-central North 

Dakota. The zero-order denitrification rates found within the ISms placed in the tile-

drain gravel pack at the OITA, an average of 0.20 mg/L/day, were similar to the first 

tracer test in the Elk Valley Aquifer (Korom et al. 2005).  
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Figure 7. Important anions from ISM/ISm tracer tests. 
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Figure 8. Zero-order denitrification rates observed from ISM/ISm tracer tests. 

 
Drain Tile Tracer Test 

 
For the drain tile test conducted on June 4, 2008, the concentrations for each 

analyte were plotted versus time (Figure 8). The area under each curve was calculated 

and background concentrations were removed. Anions, NO3
--N and Br-, were analyzed 

twice with two injections per analysis.  The concentration of each analyte was then 

plotted with the concentration of bromide over time and the ratio of the two areas 

calculated (Table 4). The ratios of bromide to each analyte for the amended water and 

the ratios obtained from the tracer analysis are presented in Figure 9.  

The amended water for the tracer test had a Br- to NH4
+-N ratio of 1: 0.24, and 

the results from the analysis yielded a ratio of 1: 0.30. This increase indicates a 
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production of NH4
+. Being the only cation measured during the tracer test, the 

increased Na+ in the amended water was likely exchanged for NH4
+ on cation exchange 

sites on minerals and organic matter in the biomass in the tile drain. Without the 

analysis of all major cations, this hypothesis cannot be further evaluated.  The amended 

water for the tracer test had a Br-  to TP ratio of 1: 0.24, and the results from the tracer 

analysis yielded a ratio of 1: 0.23. Based on the sensitivity of the TP test, it is unlikely 

that the small decrease in TP was significant. The amended water for the tracer test had 

a  Br- to NO3
--N ratio of 1: 1.20, and the results from the tracer test yielded a ratio of 1: 

1.215 – 1.254. The increase of NO3
--N shown in the analysis is not assumed to be 

production of NO3
--N, rather was a result of the sampling methodology. In conclusion, 

no loss of NO3
--N was evident during the tracer test in the tile drain. 

The temporal analysis of water quality patterns can be affected by advection, 

chemical diffusion/dispersion, and chemical reactions. At the scale of the tile drain 

tracer test, advection response time would be short, with a horizontal scale of 396 

meters and a horizontal flow velocity of 0.07 m/sec, yielding a response time of 94 

minutes. According to Sawatsky (2009), tracer tests performed near wells at the OITA 

provided a hydraulic conductivity ranging from 0.44 – 0.95 m/hour. The advection 

response time from the injection wells to discharge within the subsurface drain would 

be between 3.2 – 6.9 hours.  
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Figure 9. Comparison of analytes from tile drain tracer test.  

Based on the data provided from the sediment analyses and the ISm tests in the 

gravel pack, we know that denitrification occurs within the imported gravel pack.  

Fetter (2001) lists between 0.36 to 36 m/hour as the range for hydraulic conductivities 

of well-sorted gravel. Using this range, the travel time within the gravel pack would be 
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between 18 minutes and 11 seconds until groundwater is discharged into the tile drains. 

Using the maximum zero-order denitrification rate from the ISm gravel pack tests of 

0.296 mg/L/day, the gravel pack would reduce the nitrate concentration of groundwater 

entering the tile-drains by approximately 4 x10-3 mg/L, which is too low to detect with 

the methodologies used herein. 
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CHAPTER V 

CONCLUSIONS 
 

A study of denitrification potential within multiple mediums was conducted in 

the Oakes Irrigation Test Area of southeastern North Dakota, and showed differences in 

their possible potential. Aquifer materials containing fine-grained materials had the 

highest amount of electron donors, and in-situ tracer tests performed in fine-grained 

aquifer materials exhibited the highest rate of NO3
- attenuation. Both the electron donor 

analysis and the ISM tracer tests performed in aquifer sediments showed that finer-

grained materials remove NO3
- more quickly. The tile-drain tracer test indicated that the 

manganese biofilm present at this site have no significant effect on NO3
- removal. 

Organic carbon, inorganic sulfide, and ferrous iron were the substantial electron 

donors at the site, with no measureable quantity of organic sulfide present. Manganese 

was present the sedimentary facies at the site, however it was found to be concentrated 

within the tile drains and tile drain gravel pack. Organic carbon concentrations in silt-

loam ranged from 0.44% to 0.74%, 0.09 % to 4.41% in sandy-loam, 0.06% to 0.40% in 

loamy-sand, and 0.03 to 1.664% in sand. The percentage of pyrite as inorganic sulfide 

(IS) was between 0.01% to 0.23% in combined silt-loam and silt. IS concentrations 

ranged between 0.01% to 0.17% in sandy-loam, 0.003% to 0.13% in loamy-sand, and 

0.001% to 0.15% in sand. Ferrous iron concentrations ranged between 0.32% to 1.81% 

in silt and silt-loam combined, 0.10% to 0.89% in sandy-loam, 0.03% to 0.62% in 

loamy sand, and 0.15% to 0.64% in sand facies. Manganese was found in higher 
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concentrations within the three finer grained facies with concentrations ranging 

between 0.03% to 0.30%, whereas loamy-sand ranged between 0.003% to 0.12%, and 

sand between 0.003% and 0.10%. ISM-G1, which recorded the fastest rates of 

denitrification had a larger percentage of the e- donor IS than ISM-C1. ISM-G1 also 

had larger percentages of e- donors IS and Fe2+. 

Statistically significant correlations exist for various e- donors, showing a 

general increase in donor content as sediment size decreases. These results are similar 

to  those  of  Maharjan’s  (2009) research involving electron donors and sediment size. 

The donors are also generally correlated with each other, indicating that if increased 

concentrations of one donor are found, it is likely that high concentrations of the other 

important donors will be found.  

Results from the ISM/ISm tracer tests help to confirm the correlation between 

sediment size and denitrification potential. The denitrification rates for the two tracers 

tests performed in ISM-G1 were 0.59 and 0.28 mg/L/day. ISM-G1 was installed in a 

fine-grained loamy sand facies (Figure 8). The denitrification rates from the two tests 

performed in ISM-C1 were 0.061 mg/L/day and 0.033 mg/L/day. ISM-C1 was installed 

in a sand facies composed primarily of coarse and medium grained sands. The rates 

found in ISM-G1 were the highest rates measured amongst 25 denitrification tests 

conducted throughout the Midwest (Korom, personal communication), with ISM-C1 

rates comparatively similar to previous tests. The elevated denitrification rates present 

within ISM-G1 suggest that any denitrification occurring at the site is occurring rapidly 

from within the fine-grained sediment facies. The textural analysis from ISM-G1 

indicates that the ISM was installed in nearly 65% very fine-grained sand, with less 
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than 1% of the ISM-C1 sediment textures classified as larger than fine-grained sand.  

ISM-C1 was installed in primarily medium-grained sand (Figure 6). The sediments 

contained within ISM-C1 contain more electron donors by weight than the very fine-

grained sands of ISM-G1 (Figure 5).Ism-C3 was installed in the gravel envelope, next 

to the tile drain near well nest C3. The denitrification rate measured in ISm-C3 

measured was 0.11 mg/L/day. The tracer test within Ism-C3 showed evidence of heavy 

dilution by native groundwater. The ISm was later reinstalled in the tile drain gravel 

envelope next to well nest C7, resulting in less dilution from native groundwater. ISm-

C7 recorded a zero-order denitrification rate of 0.30 mg/L/day, with a less reliable 

goodness of fit than that of ISm-C3. The increased size of the gravel in the gravel pack 

reduces the surface area, thus reducing the reactivity of the drains. The substantial 

denitrification in ISm-C7 is likely to be the result of manganese bacterial influences.  

Within the tile drains, also congested with manganese biofilm, the results from 

the tracer test show no significant uptake of nutrients. The tracer test does indicate a 

slight production of NH4
+, which was possibly exchanged with Na+ during the 

amendment. It is suggested that future tile drain tracer tests provide analysis of all 

major cations, to further evaluate this hypothesis. Total phosphorus in the tile drains 

showed a slight decrease in concentration, which was considered insignificant or within 

analytical error. The amended water for the tracer test had a Br- to NO3
--N ratio of 1: 

1.20, with the tracer test yielding a ratio of 1: 1.215–1.254. The increase of NO3
--N 

shown in the analysis is not assumed to be production of NO3
--N, rather inadequacies in 

the sampling methodology. 
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The results of the tile drain tracer tests, the ISM tracer tests, and the aquifer 

sediment analyses support the hypothesis that denitrification at the Oakes BMP site is 

occurring mainly within the aquifer sediments at the site and not from within the tile 

drains. It is concluded that the biomass within the drain tile did not react with or store 

NO3
--N.  Based on analyses of material from the tile drain gravel pack and from the tile 

drain biofilm, the tile drains are likely to have the chemical potential to remove NO3
- 

via natural attenuation; however, retention times are too low for any denitrification to 

noticeably decrease nitrate concentrations in the drain effluent. Reducing the hydraulic 

retention time of the tile drain (and thereby reducing its hydraulic efficiency) may be 

necessary for it to serve as a functional in-line denitrification bioreactor. 
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APPENDIX A 
DETAILED METHODOLOGIES 
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Sampling Methods 
 
 Samples were collected in September of 2008 by coring the aquifer sediments at 

the study site. Eighteen potential sample locations were identified based on previous 

well  logs.  The  United  States  Bureau  of  Reclamation’s  drill  rig  was  used  to  collect  the  

samples. Upon extraction from the subsurface, aquifer sediments were placed in glass 

jars, labeled and frozen until needed for analysis. After sampling was completed the 

holes were filled with source sediments. Several samples were collected from each site 

at varying intervals. Sampling locations and depths are reported in Table 5.  

 A total of ten sites yielded 43 samples. Additional samples from the tile drain 

gravel pack were collected during June and July of 2009. The samples taken closest to 

the  surface  are  designated  “A”.  The  deepest  sample  from  a  location  was  designated  

“H”.  Facies  were  identified  and  divided  in  the  field  before  freezing for later review. 
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Table 5 
 
Name, Depth Interval, and Location for each Sampled Core. The Designation "A" 
Indicates the Sample Closest to the Ground Surface 
 

Sample ID Depth interval 
(ft below surface) 

Sample Date 

ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

9-10 
10-12 

12 (shale layer) 
12-13 
13-15 

14 
15-20 
20-22 

9/25/2008 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

8-10 
10-14 
14-18 
18-22 

9/23/2008 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

7-11 
11-13 
13-16 
16-19 
19-21 

9/23/2008 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

7-10 
10-13 
13-18 
18-22 

9/24/2008 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

7-10 
10-12 
12-16 
16-20 

9/24/2008 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

8-12 
12-14 
14-17 
17-19 
19-22 

9/24/2008 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

7-11 
11-16 
16-20 
20-22 

9/25/2008 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

 8-14 
14-16 

                                 16-22 
                                  18-20 

                9/25/2008 
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Table 5 (continued) 
Sample ID Depth interval 

(ft below surface) 
Sample Date 

ISM-G1 A 
ISM-G1 B 

13-15 
15-18 

7/30/2008 

ISmC3GP 8 6/2/2009 
ISmC3BGP 8 6/2/2009 
48PSISmC3 8 6/3/2009 
52PNISmC3 8 6/3/2009 
ISmC7GP 8 6/3/2009 
50PSISmC7 8 6/3/2009 
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Laboratory Analysis 

Analysis consisted of inorganic sulfide analysis by the method of Canfield et al., 

(1986), a method for organic sulfide which Klapperich (2008) adapted from Tabatabai, 

(1996) and LaCount et al., (1998), total carbon analysis by the method of Churcher and 

Dickout, (1987), ferrous iron and manganese using a method of Kennedy et al., (1999) 

modified by Klapperich (2008) and a textural analysis adapted from USGS (2003) and 

ASTM (1998).  Prior to analysis, all samples were thawed overnight in a refrigerator, 

ground to a fine powder with a mortar and pestle, and dried at 105° C for 24 hours. All 

chemical  analyses  were  carried  out  at  UND’s  Environmental  Analytical  Research  

Laboratory (EARL) under the supervision of the Lab Director. 

Duplicates 

When the percent difference of duplicate analyses was less than 25%, it was 

assumed that the results were reproducible and both values were kept. If percent 

difference was greater than 25%, the results were discarded for that sample. Results 

below detection limit were given the quantifiable detection limit value. The duplicate 

analyses for sediment facies are reported in Appendix B.  

Inorganic Sulfide 

 The method of Canfield et al., (1986) was used to obtain measurements of 

inorganic sulfide. Approximately one gram of sample was subjected to a rigorous 

digestion process. Each sample was boiled for 1.75 hours with an acidified and reduced 

(via Jones Reductor) CrCl2 solution that converts the inorganic sulfide to H2S gas. A 

3% zinc acetate solution collects the converted gas. This solution is then acidified with 

35mL of 6 M HCl. Each step occurs within the presence of a nitrogen carrier gas and is 
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contained in sealed glassware. After acidification the solution is treated with a 1% 

starch solution and a commercially prepared 0.1 N iodine indicator solution. The 

quantity of S- is then determined by back titration with 0.1 N sodium thiosulfate 

(Na2S2O3) solution. According to Klapperich, (2008) this quantity is assumed to be 

predominately the mineral pyrite. Recovery of a pyrite standard averaged 95.4 ± 3.0% 

(n=5) (Appendix B). 

 The sodium thiosulfate solution is not perfectly equivalent in strength to the 

iodine solution so the Na2S2O3 is titrated into a known quantity of iodine solution to 

calculate the equivalent difference. This should be done at least once every few days 

during an analysis run. The results of this test are reported as the I2 ratio (Appendix B). 

The ratio is then applied to the quantity of Na2S2O3 added to the sample solution to 

convert it to its equivalence as I2. At this point the final calculations are made using 

Equation 2. This mass of S- is compared to the original sample mass to find the 

percentage quantity. 

Organic Sulfur 

  According to Tabatabai (1996) the occurrence of sulfur can take place in a 

variety of organic and inorganic forms. Organic sulfur is typically quantified as the 

difference between total S and inorganic S as SO4
2- (Tabatabai, 1996). Klapperich, 

(2008) devised a simplified technique of analysis, using lab techniques available. 

Figure 2 in LaCount et al. (1998, page 6) notes that inorganic sulfates oxidize at 

temperatures above 600° C while organic sulfur compounds oxidize at a temperature 

range of 350° C to 425° C. The nearly two hour long exposure of the sample to a large 

quantity (20 mL) of concentrated HCl and a temperature of 100° C by the method of 
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Canfield et al. (1986) specifically targets inorganic sulfide. This method leaves behind 

insoluble sulfates and organic sulfides as the digestion effectively removes any soluble, 

inorganic S from the samples.  Barite was the most common inorganic sulfate expected 

to survive the Canfield Method. Klapperich (2008) showed combustion of pure barite at 

600° C went undetected by this method.  

 Organic sulfur analysis was conducted using the LECO SC-432 DR Sulfur 

Analyzer. Following the digestion of the sample via the method for inorganic sulfide 

(Canfield method), the sample was filtered, rinsed with deionized H2 and dried for 24 

hours at 104° C. The LECO Sulfur Analyzer was used to oxidize approximately 0.2g of 

the sample at a temperature of 600° C. The resulting sulfur readings are understood to 

be the result of OS. To produce a 0.5% organic sulfur standard, the EARL Laboratory 

director mixed the organic sulfur compound cystine (C6H12N2O4S2) with an inert 

sediment sample. 

  Since a portion of the sample is removed in the processing stages, 

through acidification, reduction, and other losses, the final measured concentration 

must be adjusted to reflect the pre-treatment weight. This is done by dividing the 

measured concentration of OS by the quantity of 1 minus the percent of the material 

lost to treatment. Duplicate samples were run for each test and then averaged into a 

single value. Results from the analysis of a selection of 14 samples detected no organic 

sulfur within the sediment samples. Based on these results it was deemed unnecessary 

to continue on with organic sulfur analyses for the remaining samples.  
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Organic Carbon 

 The Shimadzu TOC-VCSN Total Organic Carbon Analyzer and SSM-5000A 

were used for analysis of total organic carbon analysis by the method of Churcher and 

Dickout (1987). Samples were ground to a fine powder and inorganic carbon was 

removed by treatment with a 5% HCl acid solution for 24 hours. High levels of 

inorganic carbon can interfere with organic carbon measurements. Samples were then 

filtered, dried at 104° C for 24 hours, reground, and weighed to quantify the net 

inorganic carbon compound removed. The TOC-VCSN then measures both inorganic 

carbon by acidification at 200° and total carbon by combustion at 960° C. Organic 

carbon concentration is then determined as difference between the two measurements. 

Standards of powdered carbonate (CaCO3, 12% carbon) and glucose (C6H12O6, 40% 

carbon) were used for inorganic and total organic carbon respectively. 

  Organic carbon results must be adjusted to reflect the pre-treatment sample 

weight, since a portion of the sample is lost to acidification. This is done in the same 

fashion as OS, where the measured value of OC is divided by the quantity of 1 minus 

the % carbonate removed, which accounts for the mass lost. All percentages of OC 

reflect this pre-treatment equivalence. Duplicate analyses have been performed on all 

samples, as combustion analysis is very sensitive and relatively rapid. Results from the 

duplicates are averaged to get a singular value for each sample. Complete results of OC 

analysis can be found in Appendix B. 

Ferrous Iron 

A modified method of Kennedy et al., (1999) was used to conduct ferrous iron 

analyses. This method calls for the sample to be treated with 5M HCl, boiled in a water 
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bath for one hour, and then shaken for a period of three days. Klapperich, (2008) found 

this method irreproducible and attempted to optimize the procedure by experimenting 

with varying methods. When the acid concentration was reduced and the reaction times, 

both in the bath and shaking time increased, the test became much more reliable.  

Approximately 0.5 grams of dried and powdered sample was digested with 

15mL of 1M HCl in a sealed vial. After boiling the solution in a water bath for a period 

of two hours it was then set on a rotator for seven days. The vial was centrifuged and 

the liquid extract analyzed by spectrophotometer. The HACH method 8446 for ferrous 

iron involves 1-10 phenathroline, which reacts with ferrous in the solution to produce 

an orange color. A dilution factor of 1000 was used to bring Fe(II) levels to within the 

range of the method. Recovery using a siderite (FeCO3) standard averaged 91.3± 4.3% 

(n=6) (Appendix B). Ferrous iron percentage was calculated using Equation 2 from 

Tesfay (2006). 

Manganese 

 The remaining liquid extract from the Fe(II) analyses was used to determine 

manganese within the sediments. The HACH method 8034 for manganese involves 

sodium periodate, which reacts with manganese in the solution to produce a violet 

color. Dilution factors between 5 and 50 were used to provide adequate sample for 

analysis.  Recovery using a rhodochrosite (MnCO3) standard averaged 84.9± 5.4% 

(n=6) (Appendix B). Manganese percentage was calculated in the same fashion as 

Fe(II), through use of Equation 2 from Tesfay (2006).  

 

 



 46 

Textural Analysis 

Following the method of textural analysis put forth in USGS (2003), sediment 

samples were divided into gravel (>2.0mm), very coarse sand (≤2.0 and >1.0mm), 

coarse sand (≤1.0 and >0.5mm), medium sand (≤0.5 and >0.25mm), fine sand (≤0.25 

and >0.125mm), very fine sand (≤0.125 and >0.0625mm), silt (≤0.0625 and 

>0.004mm) and clay (≤0.004mm). The hydrometer method of sedimentation analysis 

determined particle sizes smaller than 0.0625mm, while a wet-sieve analysis classified 

those sediments larger than 0.0625mm (ASTM, 1998). 

Particle sizes less than 0.0625 mm were determined by the hydrometer method 

of sedimentation analysis and sizes larger than 0.0625 mm were determined by wet-

sieve analysis (ASTM, 1998). Sediment grains were divided into gravel (>2.0mm), 

sand  ≤  2.0  and  >  0.0625  mm),  silt  (≤  0.0625  mm  and  >  0.004  mm)  and  clay  (≤  0.004  

mm). Sand particles were further differentiated into fine, medium and coarse (USGS, 

2003). Some of the clay contents were found to be below the quantifiable detection 

limit (1%) and for the purpose of the statistical analysis, 1/2 the detection limit value 

was assigned to them. Only two samples were below the quantifiable detection limit for 

silt and one other was below the detection limit for gravel. We reported these quantities 

as 0%.
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APPENDIX B 
DETAILED RESULTS 
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Table 6 
 
Inorganic Sulfide Analysis Results 
 

Sample ID Weight 
(mg) 

I2 ratio A 
I2 (mL) 

B 
N2S2O4 
(mL) 

C 
N2S2O4 

as I2 (mL) 

mg S- 

(A-C)* 
1.603 

%S- 
(mg S- / 

mg 
samp*100) 

 
ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

1002.0 
1000.1 
1000.9 
1000.4 
1000.6 
999.6 

1008.7 
1008.2 

1.0417 
1.0381 
1.0274 
1.0345 
1.0274 
1.0309 
1.0274 
1.0381 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.92 
0.90 
0.83 
0.94 
0.92 
0.85 
0.78 
0.88 

0.958 
0.934 
0.853 
0.972 
0.945 
0.876 
0.801 
0.913 

0.067 
0.105 
0.236 
0.044 
0.088 
0.198 
0.318 
0.139 

0.007 
0.011 
0.024 
0.004 
0.009 
0.020 
0.032 
0.014 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

1000.1 
1028.7 
1150.0 
1045.4 

1.1152 
1.0490 
1.0526 
1.0345 

1.0 
1.0 
2.0 
2.0 

0.91 
0.33 
0.75 
0.47 

1.015 
0.346 
0.789 
0.486 

0.000 
1.048 
1.940 
2.427 

0.000 
0.102 
0.169 
0.232 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

1088.8 
1404.7 
1228.7 
1022.2 
1042.1 

1.0345 
1.0381 
0.9934 
0.9967 
0.9934 

1.0 
1.0 
1.0 
1.0 
1.0 

0.95 
0.36 
0.21 
0.47 
0.72 

0.983 
0.374 
0.209 
0.468 
0.715 

0.028 
1.004 
1.269 
0.852 
0.456 

0.003 
0.071 
0.103 
0.083 
0.044 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

1018.0 
1036.7 
1059.4 
1003.3 

1.0204 
1.0239 
0.9868 
1.0000 

1.0 
2.0 
1.0 
2.0 

0.90 
0.96 
0.13 
0.60 

0.918 
0.983 
0.128 
0.600 

0.131 
1.630 
1.397 
2.244 

0.013 
0.157 
0.132 
0.224 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

1131.1 
1083.6 
1023.3 
1003.9 

1.0000 
0.9967 
1.0239 
1.0204 

1.0 
1.0 
1.0 
1.0 

0.98 
0.62 
0.36 
0.42 

0.980 
0.618 
0.369 
0.429 

0.032 
0.612 
1.012 
0.916 

0.003 
0.057 
0.099 
0.091 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

1011.1 
997.3 

1008.8 
1012.1 
1007.7 

1.0563 
1.0638 
1.0870 
1.0909 
0.9615 

1.0 
1.0 
1.0 
1.0 
1.0 

0.86 
0.90 
0.48 
0.43 
0.26 

0.908 
0.957 
0.522 
0.469 
0.250 

0.147 
0.068 
0.767 
0.851 
1.202 

0.015 
0.007 
0.076 
0.084 
0.119 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

1004.9 
1010.8 
1009.0 
997.4 

1.0989 
1.0239 
1.0490 
1.0345 

1.0 
1.0 
1.0 
2.0 

1.02 
0.32 
0.19 
0.81 

1.121 
0.328 
0.199 
0.838 

0.000 
1.078 
1.284 
1.863 

0.000 
0.107 
0.127 
0.187 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

996.6 
1002.0 
1010.0 
999.5 

1.0490 
1.0601 
1.0381 
1.0453 

1.0 
1.0 
2.0 
1.0 

0.94 
0.82 
1.10 
0.07 

0.986 
0.869 
1.142 
0.073 

0.022 
0.210 
1.376 
1.486 

0.002 
0.021 
0.136 
0.149 
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Table 6 (continued) 
 
Sample ID Weight 

(mg) 
I2 ratio A 

I2 
(mL) 

B 
N2S2O4 
(mL) 

C 
N2S2O4 

as I2 
(mL) 

mg S- 

(A-
C)* 

1.603 

%S- 
(mg S- / 

mg 
samp*100) 

 
C8.5 A 
C8.5 B 
C8.5 C 

1002.2 
1006.2 
1006.3 

1.0830 
1.1070 
1.1152 

1.0 
1.0 
1.0 

0.92 
0.44 
0.19 

0.996 
0.487 
0.212 

0.006 
0.822 
1.263 

0.001 
0.082 
0.126 

ISM-G1 A 
ISM-G1 B 

992.0 
1001.7 

1.1450 
1.1628 

1.0 
1.0 

0.37 
0.92 

0.424 
1.070 

0.924 
0.000 

0.093 
0.000 

ISmC3GP 972.4 1.0563 1.0 0.88 0.930 0.113 0.012 
ISmC3BGP 991.7 1.0526 1.0 0.95 1.000 0.000 0.000 
48PSISmC3 1009.5 1.0526 1.0 0.81 0.853 0.236 0.023 
52PNISmC3 1009.3 1.0526 1.0 0.92 0.968 0.051 0.005 
ISmC7GP 1042.3 1.0601 1.0 0.93 0.986 0.023 0.002 
50PSISmC7 1013.2 1.0714 1.0 0.93 0.996 0.006 0.001 
 

Table 7 
 
Inorganic Sulfide Analysis Pyrite Recoveries 
 
Standards Weight 

(mg) 
I2 ratio A 

I2 
(mL) 

B 
N2S2O4 
(mL) 

C 
N2S2O4 

as I2 
(mL) 

mg S- 

(A-C)* 
1.603 

% 
Recovery 

Pyrite 
Pyrite 
Pyrite 
Pyrite 
Pyrite 
Pyrite 
Pyrite 

10.4 
10.1 
15.7 
11.0 
10.4 
10.3 
9.4 

1.0239 
1.0601 
0.9934 
0.9934 
1.0204 
1.0638 
1.0526 

4.0 
4.0 
5.0 
4.0 
4.0 
4.0 
3.0 

0.57 
0.69 
0.09 
0.67 
0.63 
0.59 
0.11 

0.584 
0.731 
0.089 
0.666 
0.643 
0.628 
0.116 

5.476 
5.239 
7.872 
5.435 
5.382 
5.406 
4.623 

98.5 
97.1 
93.8 
90.9 
96.8 
98.2 
92.0 

      Average  = 95.3 
        
 

 



 50 

Table 8 
 
Organic Carbon Analysis Results. Columns Labeled 1 and 2 Represent Duplicates of 
Each Sample. OC is Calculated by Subtracting the IC Value from the TOC Value. 
Negative IC Values are Reported as Zero. Average OC is the Average Value of the 
Duplicates OC 1 and OC 2. TC – Total Carbon, IC – Inorganic Carbon, OC – Organic 
Carbon 
 

Sample ID TC 1 TC 2 TC Avg IC 1 IC  2 IC 
 Avg 

OC 1 OC 2 OC  
Avg 

 
ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

0.090 
0.060 
0.110 
0.068 
1.672 
1.176 
0.143 
0.552 

0.085 
0.075 
0.099 
0.078 
1.655 
1.196 
0.157 
0.562 

0.088 
0.068 
0.105 
0.073 
1.664 
1.186 
0.150 
0.557 

0.001 
0.001 
0.002 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 

0.089 
0.059 
0.108 
0.068 
1.672 
1.176 
0.143 
0.552 

0.085 
0.075 
0.099 
0.078 
1.655 
1.196 
0.157 
0.562 

0.087 
0.067 
0.104 
0.073 
1.664 
1.186 
0.150 
0.557 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

0.409 
0.312 
0.764 
0.730 

0.398 
0.312 
0.742 
0.748 

0.404 
0.312 
0.753 
0.739 

0 
0 
0 
0 

0 
0 
0 
0 

0.000 
0.000 
0.000 
0.000 

0.409 
0.312 
0.764 
0.730 

0.398 
0.312 
0.742 
0.748 

0.404 
0.312 
0.753 
0.739 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

0.063 
0.154 
4.393 
2.090 
0.746 

0.071 
0.117 
4.427 
2.112 
0.711 

0.067 
0.136 
4.410 
2.101 
0.729 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0.000 
0.000 
0.000 
0.000 
0.000 

0.063 
0.154 
4.393 
2.090 
0.746 

0.071 
0.117 
4.427 
2.112 
0.711 

0.067 
0.136 
4.410 
2.101 
0.729 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

0.178 
0.171 
0.452 
0.514 

0.182 
0.172 
0.435 
0.505 

0.180 
0.172 
0.444 
0.510 

0 
0 
0 
0 

0 
0 
0 
0 

0.000 
0.000 
0.000 
0.000 

0.178 
0.171 
0.452 
0.514 

0.182 
0.172 
0.435 
0.505 

0.180 
0.172 
0.444 
0.510 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

0.026 
0.045 
0.100 
-0.007 

0.028 
0.042 
0.110 
0.078 

0.027 
0.044 
0.105 
0.036 

0.008 
0.009 
0.010 
0.009 

0.007 
0.007 
0.008 
0.008 

0.008 
0.008 
0.009 
0.009 

0.018 
0.036 
0.090 
0.000 

0.021 
0.035 
0.102 
0.070 

0.020 
0.036 
0.096 
0.035 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

-0.008 
0.098 
0.371 
0.393 
0.746 

0.055 
0.088 
0.358 
0.403 
0.725 

0.024 
0.093 
0.365 
0.398 
0.736 

0.010 
0.010 
0.008 
0.010 
0.009 

0.009 
0.008 
0.008 
0.009 
0.009 

0.010 
0.009 
0.008 
0.010 
0.009 

0.000 
0.088 
0.363 
0.383 
0.737 

0.046 
0.080 
0.350 
0.394 
0.716 

0.023 
0.084 
0.357 
0.389 
0.727 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

0.032 
0.093 
0.057 
1.013 

0.039 
0.088 
0.055 
1.010 

0.036 
0.091 
0.056 
1.012 

0 
0 
0 
0 

0 
0 
0 
0 

0.000 
0.000 
0.000 
0.000 

0.032 
0.093 
0.057 
1.013 

0.039 
0.088 
0.055 
1.010 

0.036 
0.091 
0.056 
1.012 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

0.068 
0.357 
0.108 
0.175 

0.068 
0.365 
0.107 
0.162 

0.068 
0.361 
0.108 
0.169 

0 
0 
0 
0 

0 
0 
0 
0 

0.000 
0.000 
0.000 
0.000 

0.068 
0.357 
0.108 
0.175 

0.068 
0.365 
0.107 
0.162 

0.068 
0.361 
0.108 
0.169 
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Table 8 (continued) 

Sample ID TC 1 TC 2 TC Avg IC 1 IC 2 IC 
 Avg 

OC 1 OC 2 OC  
Avg 

 
C8.5 A 
C8.5 B 
C8.5 C 

0.001 
0.070 
0.113 

0.272 
0.070 
0.114 

0.137 
0.070 
0.114 

0.005 
0.003 
0.008 

0.007 
0.007 
0.007 

0.006 
0.005 
0.008 

0.000 
0.067 
0.105 

0.265 
0.063 
0.107 

0.133 
0.065 
0.106 

ISM-G1 A 
ISM-G1 B 

0.223 
0.168 

0.221 
0.164 

0.222 
0.166 

0 
0 

0 
0 

0 
0 

0.223 
0.168 

0.221 
0.164 

0.222 
0.166 

ISmC3GP 0.911 0.864 0.888 0 0 0 0.911 0.864 0.888 
ISmC3BGP 0.408 0.418 0.413 0 0 0 0.408 0.418 0.413 
48PSISmC3 1.236 1.150 1.193 0 0 0 1.236 1.150 1.193 
52PNISmC3 1.493 1.477 1.485 0 0 0 1.493 1.477 1.485 
ISmC7GP 0.731 0.715 0.723 0 0 0 0.731 0.715 0.723 
50PSISmC7 0.371 0.369 0.370 0 0 0 0.371 0.369 0.370 

 

Table 9 
 
PT 1 and PT 2 are Calculated from OC 1 and OC 2 from Table 3 on Previous Page.  
IC – Inorganic Carbon, PT – Pre-Treatment, AT – After Treatment, %Diff - % 
Difference 
 

Sample ID Mass 
PT 

Mass 
filter 

Mass 
At 

+ Filter 

Mass 
IC 

IC % 
as 

xx-CO3 

PT eq 
(%C) 

1 

PT eq 
(%C) 

2 

% 
Diff 

 
ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

5.1960 
5.0312 
5.0117 
5.0288 
5.0711 
5.2109 
5.0527 
5.0286 

0.9703 
0.9869 
0.9348 
0.9597 
0.9775 
0.9873 
1.0050 
1.0056 

5.6784 
5.5750 
5.4952 
5.5114 
5.3884 
5.5399 
5.8158 
5.3405 

0.4879 
0.4431 
0.4513 
0.4771 
0.6602 
0.6583 
0.2419 
0.6937 

9.39 
8.81 
9.00 
9.49 
13.02 
12.63 
4.79 
13.80 

0.0806 
0.0538 
0.0983 
0.0615 
1.4543 
1.0274 
0.1362 
0.4759 

0.0770 
0.0684 
0.0901 
0.0706 
1.4395 
1.0449 
0.1495 
0.4845 

2.299 
-11.940 
4.348 
-6.849 
0.511 
-0.843 
-4.667 
-0.898 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

5.0710 
5.2110 
5.0530 
5.0270 

0.9990 
1.0017 
0.9843 
1.0161 

5.7174 
5.8054 
5.4914 
5.1672 

0.3526 
0.4073 
0.5459 
0.8759 

6.95 
7.82 
10.80 
17.42 

0.3806 
0.2876 
0.6815 
0.6028 

0.3703 
0.2876 
0.6618 
0.6177 

1.363 
0.000 
1.461 
-1.218 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

5.1962 
5.1297 
5.0780 
5.2863 
5.1035 

0.9989 
0.9707 
1.0050 
0.9821 
0.9768 

5.8189 
5.6384 
5.6388 
5.1258 
5.2828 

0.3762 
0.4620 
0.4442 
1.1426 
0.7975 

7.24 
9.01 
8.75 
21.61 
15.63 

0.0584 
0.1401 
4.0087 
1.6383 
0.6294 

0.0659 
0.1065 
4.0397 
1.6555 
0.5999 

-5.970 
13.653 
-0.385 
-0.524 
2.402 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

4.7180 
5.2197 
5.8882 
5.1243 

1.0024 
0.9826 
1.0033 
0.9878 

5.3952 
5.7917 
6.1492 
5.2530 

0.3252 
0.4106 
0.7423 
0.8591 

6.89 
7.87 
12.61 
16.77 

0.1657 
0.1575 
0.3950 
0.4278 

0.1695 
0.1585 
0.3802 
0.4203 

-1.111 
-0.292 
1.917 
0.883 
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Table 9 (continued) 
 
Sample ID Mass 

PT 
Mass 
filter 

Mass 
At 

+ Filter 

Mass 
IC 

IC % 
as 

xx-CO3 

PT eq 
(%C) 

1 

PT eq 
(%C) 

2 

% 
Diff 

 
C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

5.1387 
5.2172 
5.4075 
5.0857 

0.9752 
0.9994 
0.9868 
0.9891 

5.6312 
5.7135 
5.9600 
5.6512 

0.4827 
0.5031 
0.4343 
0.4236 

9.39 
9.64 
8.03 
8.33 

0.0163 
0.0325 
0.0828 
0.0000 

0.0190 
0.0316 
0.0938 
0.0642 

-7.692 
1.408 
-6.250 

-
100.000 

 
C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

5.2912 
5.5380 
5.2602 
5.3110 
5.2873 

0.9996 
1.0081 
0.9994 
1.0041 
0.9775 

5.9488 
6.0849 
5.9016 
5.9233 
5.7301 

0.3460 
0.4612 
0.3580 
0.3928 
0.5347 

6.54 
8.33 
6.81 
7.40 
10.11 

0.0000 
0.0807 
0.3383 
0.3547 
0.6625 

0.0430 
0.0733 
0.3262 
0.3649 
0.6436 

-
100.000 

4.762 
1.823 
-1.416 
1.445 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

5.5149 
5.4987 
5.4158 
5.0480 

0.9655 
1.0058 
1.0092 
0.9483 

6.0080 
5.9905 
5.5705 
5.1199 

0.4724 
0.5140 
0.8545 
0.8764 

8.57 
9.35 
15.78 
17.36 

0.0293 
0.0843 
0.0480 
0.8371 

0.0357 
0.0798 
0.0463 
0.8347 

-9.859 
2.762 
1.786 
0.148 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

6.0982 
5.5446 
6.0747 
6.0838 

0.9696 
0.9763 
1.0203 
0.9760 

6.1752 
6.0929 
6.5344 
6.5323 

0.8926 
0.4280 
0.5606 
0.5275 

14.64 
7.72 
9.23 
8.67 

0.0580 
0.3294 
0.0980 
0.1598 

0.0580 
0.3368 
0.0971 
0.1480 

0.000 
-1.108 
0.465 
3.858 

C8.5 A 
C8.5 B 
C8.5 C 

5.2862 
5.6777 
5.3578 

1.0120 
0.9682 
0.9776 

6.0444 
6.1693 
5.8585 

0.2538 
0.4766 
0.4769 

4.80 
8.39 
8.90 

0.0000 
0.0614 
0.0957 

0.2523 
0.0577 
0.0975 

-
100.000 

3.077 
-0.943 

ISM-G1 A 
ISM-G1 B 

5.0406 
5.0190 

0.9783 
0.9841 

5.6280 
5.6164 

0.3909 
0.3877 

7.76 
7.72 

0.2057 
0.1550 

0.2039 
0.1513 

0.439 
1.208 

ISmC3GP 1.0170 0.9888 1.5433 0.4625 45.48 0.4967 0.4711 2.648 
ISmC3BGP 0.3034 0.9896 1.1774 0.1156 38.1 0.2525 0.2587 -1.211 
48PSISmC3 2.1049 0.9912 2.3627 0.6434 31.93 0.8413 0.7828 3.604 
52PNISmC3 0.6430 1.1394 1.5684 0.214 33.28 0.9961 0.9854 0.539 
ISmC7GP 1.5006 1.0165 2.0715 0.4456 29.69 0.5139 0.5027 1.107 
50PSISmC7 1.5089 0.9958 1.9227 0.582 38.57 0.2279 0.2267 0.27 
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Table 10 
 
Fe(II) Extraction Analysis Results. Wt – Weight, AA – Amount Acid, BT – Boiling 
Time, RT – Rotation Time, DF – Dilution Factor, MR – Machine Reading  
 
Sample ID Weight 

(g) 
Acid  
Conc. 

AA 
(L) 

BT 
(hr) 

RT 
(dy) 

 

DF MR % Fe(II) 

ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

0.5009 
0.5071 
0.5043 
0.4907 
0.4966 
0.5061 
0.5006 
0.5090 

1M 
1M 
1M 
1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 
2 
2 
2 

7 
7 
7 
7 
7 
7 
7 
7 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

0.03 
0.01 
0.11 
0.05 
0.10 
0.09 
0.10 
0.54 

0.090 
0.030 
0.327 
0.153 
0.302 
0.267 
0.300 
1.591 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

0.5093 
0.4943 
0.5039 
0.5092 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

1000 
1000 
1000 
1000 

0.11 
0.15 
0.19 
0.04 

0.324 
0.455 
0.566 
0.118 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

0.5070 
0.5060 
0.5051 
0.5159 
0.5048 

1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 

7 
7 
7 
7 
7 

1000 
1000 
1000 
1000 
1000 

0.04 
0.07 
0.15 
0.28 
0.18 

0.118 
0.208 
0.445 
0.814 
0.535 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

0.4980 
0.5072 
0.4977 
0.5047 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

1000 
1000 
1000 
1000 

0.14 
0.10 
0.18 
0.21 

0.422 
0.296 
0.542 
0.624 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

0.5003 
0.4912 
0.5065 
0.5089 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

1000 
1000 
1000 
1000 

0.01 
0.11 
0.18 
0.16 

0.030 
0.336 
0.533 
0.472 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

0.5080 
0.5051 
0.5076 
0.5062 
0.5058 

1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 

7 
7 
7 
7 
7 

1000 
1000 
1000 
1000 
1000 

0.06 
0.16 
0.19 
0.18 
0.18 

0.177 
0.475 
0.561 
0.533 
0.534 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

0.4977 
0.4953 
0.4996 
0.5032 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

1000 
1000 
1000 
1000 

0.05 
0.16 
0.16 
0.55 

0.151 
0.485 
0.480 
1.640 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

0.4984 
0.4898 
0.5040 
0.5015 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

1000 
1000 
1000 
1000 

0.04 
0.13 
0.14 
0.17 

0.120 
0.398 
0.417 
0.508 
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Table 10 (continued) 

Sample ID Weight 
(g) 

Acid Conc. AA 
(L) 

BT 
(hr) 

RT 
(dy) 

 

DF MR % Fe(II) 

C8.5 A 
C8.5 B 
C8.5 C 

0.5072 
0.4993 
0.5092 

1M 
1M 
1M 

0.015 
0.015 
0.015 

2 
2 
2 

7 
7 
7 

1000 
1000 
1000 

0.06 
0.14 
0.17 

0.177 
0.421 
0.501 

ISM-G1 A 
ISM-G1 B 

0.5009 
0.4962 

1M 
1M 

0.015 
0.015 

2 
2 

7 
7 

1000 
1000 

0.15 
0.16 

0.449 
0.484 

ISmC3GP 0.2552 1M 0.015 2 7 100 0.05 0.029 
ISmC3BGP 0.1013 1M 0.015 2 7 100 0.04 0.059 
48PSISmC3 0.2720 1M 0.015 2 7 100 0.25 0.138 
52PNISmC3 0.2177 1M 0.015 2 7 100 0.26 0.179 
ISmC7GP 0.2526 1M 0.015 2 7 25 0.11 0.016 
50PSISmC7 0.2003 1M 0.015 2 7 100 0.06 0.045 

 

Table 11 
 
Fe(II) Extraction Analysis Standards Results. Standard is Siderite – 48.2% Fe(II). Wt – 
weight, AA – Amount Acid, BT – Boiling Time, RT – Rotation Time, DF – Dilution 
Factor, MR – Machine Reading 
 
Standards Weight 

(g) 
Acid Conc. AA 

(L) 
BT 
(hr) 

RT 
(dy) 

 

DF MR Recovery (%) 

Siderite 0.0119 1M 0.015 2 7 1000 0.36 94.2 
Siderite 0.0105 1M 0.015 2 7 1000 0.30 88.9 
Siderite 0.0110 1M 0.015 2 7 1000 0.32 90.5 
Siderite 0.0097 1M 0.015 2 7 1000 0.29 93.0 
Siderite 0.0122 1M 0.015 2 7 1000 0.38 96.9 
Siderite 0.0092 1M 0.015 2 7 1000 0.25 84.6 
Siderite 0.0930 1M 0.015 2 7 100 2.90 97.0 
       Average 92.2 
         
Pyrite 0.0134 1M 0.015 2 7 100 0.05 12.0 
Pyrite 0.0162 1M 0.015 2 7 100 0.07 13.9 
Pyrite 0.0096 1M 0.015 2 7 100 0.03 10.1 
Pyrite 0.0178 1M 0.015 2 7 100 0.08 14.5 
       Average 12.6 
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Table 12 
 
Manganese Extraction Analysis Results. Wt – Weight, AA – Amount Acid, BT – 
Boiling Time, RT – Rotation Time, DF – Dilution Factor, MR – Machine Reading  

         
Sample ID Weight 

(g) 
Acid Conc. AA 

(L) 
BT 
(hr) 

RT 
(dy) 

 

DF MR % Mn 

ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

0.5009 
0.5071 
0.5043 
0.4907 
0.4966 
0.5061 
0.5006 
0.509 

1M 
1M 
1M 
1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 
2 
2 
2 

7 
7 
7 
7 
7 
7 
7 
7 

10 
5 
5 
5 
5 
5 
5 
5 

10.00 
6.00 
0.80 
2.30 
6.50 
1.30 
1.40 
7.60 

0.299 
0.089 
0.012 
0.035 
0.098 
0.019 
0.021 
0.112 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

0.5093 
0.4943 
0.5039 
0.5092 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

5 
5 
5 
10 

4.60 
2.70 
5.40 
7.00 

0.068 
0.041 
0.080 
0.206 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

0.5070 
0.5060 
0.5051 
0.5159 
0.5048 

1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 

7 
7 
7 
7 
7 

5 
5 
5 
5 
5 

3.20 
2.70 
4.40 
16.60 
4.90 

0.047 
0.040 
0.065 
0.241 
0.073 

C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

0.4980 
0.5072 
0.4977 
0.5047 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

5 
5 
5 
5 

0.10 
2.40 
4.70 
10.80 

0.002 
0.035 
0.071 
0.160 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

0.5003 
0.4912 
0.5065 
0.5089 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

5 
5 
5 
5 

7.70 
3.10 
8.00 
3.70 

0.115 
0.047 
0.118 
0.055 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

0.508 
0.5051 
0.5076 
0.5062 
0.5058 

1M 
1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 
2 

7 
7 
7 
7 
7 

5 
5 
5 
5 
5 

6.80 
1.80 
2.30 
1.90 
0.30 

0.100 
0.027 
0.034 
0.028 
0.004 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

0.4977 
0.4953 
0.4996 
0.5032 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

5 
5 
5 
5 

0.40 
0.20 
0.30 
7.40 

0.006 
0.003 
0.005 
0.110 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

0.4984 
0.4898 
0.504 

0.5015 

1M 
1M 
1M 
1M 

0.015 
0.015 
0.015 
0.015 

2 
2 
2 
2 

7 
7 
7 
7 

5 
5 
5 
5 

1.20 
3.40 
4.30 
3.40 

0.018 
0.052 
0.064 
0.051 
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Table 12 (continued) 

Sample ID Weight 
(g) 

Acid Conc. AA 
(L) 

BT 
(hr) 

RT 
(dy) 

 

DF MR % Mn 

C8.5 A 
C8.5 B 
C8.5 C 

0.5072 
0.4993 
0.5092 

1M 
1M 
1M 

0.015 
0.015 
0.015 

2 
2 
2 

7 
7 
7 

5 
5 
5 

1.60 
1.10 
3.60 

0.024 
0.017 
0.053 

ISM-G1 A 
ISM-G1 B 

0.5009 
0.4962 

1M 
1M 

0.015 
0.015 

2 
2 

7 
7 

5 
5 

0.20 
3.00 

0.003 
0.045 

ISmC3GP 0.2552 1M 0.015 2 7 25 22 3.233 
ISmC3BGP 0.1013 1M 0.015 2 7 5 5.6 0.415 
48PSISmC3 0.272 1M 0.015 2 7 5 8 0.221 
52PNISmC3 0.2177 1M 0.015 2 7 5 6.4 0.22 
ISmC7GP 0.2720 1M 0.015 2 7 5 8.00 0.221 
50PSISmC7 0.2526 1M 0.015 2 7 5 2.8 0.083 

 

Table 13 
 
Manganese Extraction Analysis Standards Results. Standard is Rhodochrosite – 47.8% 
Manganese. Wt – Weight, AA – Amount Acid, BT – Boiling Time, RT – Rotation 
Time, DF – Dilution Factor, MR – Machine Reading 
 

Standards Weight 
(g) 

Acid 
Conc. 

AA 
(L) 

BT 
(hr) 

RT 
(dy) 

 

DF MR Recovery 
(%) 

Rhodochrosite 0.0106 1M 0.015 2 7 50 6.1 90.294 
Rhodochrosite 0.0114 1M 0.015 2 7 50 5.7 78.452 
Rhodochrsite 0.0092 1M 0.015 2 7 50 4.8 81.863 
Rhodochrosite 0.0108 1M 0.015 2 7 50 5.9 85.716 
Rhodochrosite 0.0087 1M 0.015 2 7 50 5.1 91.978 
Rhodochrosite 0.0122 1M 0.015 2 7 50 6.3 81.024 
Rhodochrosite 0.0121 1M 0.015 2 7 50 7.2 93.364 
       Average 86.099 
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Table 14 
 
Results of OITA Textural Analyses 
 
Sample ID Gravel 

(%) 
  Sand  

(%) 
   Silt 

(%) 
Clay 
(%) 

  Very 
Coarse 

Coarse Medium Fine Very 
Fine 

Total   

ISM-C1 A 1.6 0.7 2.9 34.9 14.0 15.0 67.4 26.1 4.9 
ISM-C1 B 0.0 0.4 0.7 3.2 35.1 45.7 85.1 11.3 3.5 
ISM-C1 C 0.7 3.1 18.4 51.9 10.6 6.0 90.0 6.0 3.3 
ISM-C1 D 1.1 0.6 12.6 55.2 18.6 4.7 91.9 3.9 3.2 
ISM-C1 E 1.7 5.2 10.1 48.0 19.8 4.3 87.3 7.7 3.2 
ISM-C1 F 1.4 4.1 13.2 47.5 19.2 4.8 88.8 7.5 2.3 
ISM-C1 G 0.0 0.2 2.2 53.5 32.7 4.2 92.9 3.8 3.3 
ISM-C1 H 0.6 0.6 1.6 6.4 8.2 5.4 22.2 72.3 5.0 
C1.5 A 0.0 0.0 0.6 1.7 14.8 57.3 74.3 23.8 1.9 
C1.5 B 0.0 0.0 0.2 1.3 20.1 61.3 82.8 14.7 2.5 
C1.5 C 0.0 0.1 0.1 0.3 12.7 58.1 71.4 26.3 2.2 
C1.5 D 4.8 2.3 3.7 7.4 10.6 11.0 35.0 51.1 9.2 
C2.5 A 0.0 0.0 0.2 0.9 13.9 69.9 84.8 14.5 0.8 
C2.5 B 0.5 0.3 3.1 8.7 42.0 33.1 87.2 9.9 2.4 
C2.5 C 3.6 8.9 8.5 7.0 18.5 32.5 75.4 19.3 1.6 
C2.5 D 10.3 14.2 28.7 17.3 6.6 7.9 74.6 13.1 2.1 
C2.5 E 0.5 0.5 2.1 2.9 3.6 7.2 16.2 74.9 8.4 
C3.5 A 0.0 0.0 0.2 1.8 38.4 48.7 89.1 8.9 2.0 
C3.5 B 0.0 0.2 1.1 1.8 51.9 12.5 67.5 29.2 3.3 
C3.5 C 0.2 0.2 0.9 5.1 8.3 29.2 43.6 53.2 3.0 
C3.5 D 2.5 2.5 4.0 8.7 12.4 13.6 41.2 52.1 4.2 
C4.5 A 0.0 0.0 0.2 1.2 56.2 25.8 83.4 13.6 3.0 
C4.5 B 0.0 0.0 0.2 1.4 37.3 47.8 86.7 9.1 4.1 
C4.5 C 0.0 0.0 0.0 4.6 42.0 38.1 84.7 11.9 3.3 
C4.5 D 0.0 0.0 0.2 7.3 59.3 25.1 91.9 2.9 5.2 
C5.5 A 0.0 0.0 0.2 4.3 59.0 31.0 94.5 1.4 4.1 
C5.5 B 0.0 0.0 3.2 0.0 44.5 34.0 81.7 15.8 2.5 
C5.5 C 0.0 0.0 7.7 0.0 35.3 21.5 64.5 30.0 5.5 
C5.5 D 0.0 0.0 1.3 24.4 28.3 37.6 91.6 3.0 5.4 
C5.5 E 1.8 2.3 11.7 23.5 17.8 31.2 86.5 8.4 3.4 
C6.5 A 0.0 0.0 0.2 2.9 40.6 47.3 91.0 8.0 1.0 
C6.5 B 0.0 0.0 0.0 1.0 39.6 41.6 82.2 15.7 2.0 
C6.5 C 16.0 2.7 2.5 5.8 55.5 14.4 80.9 0.4 2.7 
C6.5 D 0.0 0.0 0.0 0.3 0.6 1.1 2.0 93.7 4.3 
C7.5 A 0.2 0.2 0.2 2.6 39.3 41.9 84.3 13.3 2.2 
C7.5 B 0.0 0.0 0.2 8.9 35.9 32.5 77.5 20.3 2.2 
C7.5 C 0.0 0.2 0.5 3.9 55.7 32.3 92.6 3.9 3.5 
C7.5 D 0.2 0.2 0.2 4.1 38.6 47.4 90.4 6.3 3.0 
C8.5 A 0.0 0.0 0.7 4.9 36.1 49.2 90.9 7.9 1.2 
C8.5 B 0.0 0.0 0.0 0.4 11.0 77.1 88.6 9.3 2.1 
C8.5 C 0.0 0.0 0.2 1.7 21.4 59.9 83.2 15.7 1.1 
ISM-G1 A 0.0 0.0 0.1 0.8 24.3 63.9 89.1 5.7 5.1 
ISM-G1 B 0.0 0.0 0.3 0.5 19.0 65.6 85.4 8.0 6.7 
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Table 15 
 
Munsell Soil Color for OITA Sediments 
 
Sample ID Depth Munsell soil color 

(moist sample) 
  Hue Value Chroma Color 
      
ISM-C1 A 
ISM-C1 B 
ISM-C1 C 
ISM-C1 D 
ISM-C1 E 
ISM-C1 F 
ISM-C1 G 
ISM-C1 H 

9-10 
10-12 

12 (shale layer) 
12-13 
13-15 

14 
15-20 
20-22 

2.5Y 
2.5Y 
2.5Y 
10YR 
2.5Y 
2.5Y 

Gley 1 
Gley 1 

3.0 
3.0 
3.0 
3.0 
2.5 
2.5 
4.0 
3.0 

/3 
/1 
/1 
/6 
/1 
/1 

/10Y 
/10Y 

Dark olive brown 
Very dark gray 
Very dark gray 
Dark yellowish 

Black 
Black 

Dark greenish 
Very dark greenish gray 

C1.5 A 
C1.5 B 
C1.5 C 
C1.5 D 

8-10 
10-14 
14-18 
18-22 

2.5Y 
Gley 1 
Gley 1 
Gley 1 

4.0 
4.0 
4.0 
4.0 

/3 
/10Y 
/N 

/10Y 

Olive brown 
Dark greenish 

Dark gray 
Dark greenish gray 

C2.5 A 
C2.5 B 
C2.5 C 
C2.5 D 
C2.5 E 

7-11 
11-13 
13-16 
16-19 
19-21 

10YR 
Gley 1 
Gley 1 
Gley 1 
Gley 1 

4.0 
4.0 
3.0 
3.0 
4.0 

/4 
/10Y 
/10Y 
/10Y 
/10Y 

Dark yellowish 
Dark greenish 

Very dark 
Very dark 

Dark greenish gray 
C3.5 A 
C3.5 B 
C3.5 C 
C3.5 D 

7-10 
10-13 
13-18 
18-22 

10YR 
Gley 1 
Gley 1 
Gley 1 

3.0 
4.0 
3.0 
4.0 

/3 
/10Y 
/10Y 
/10Y 

Dark brown 
Dark greenish 

Very dark 
Dark greenish gray 

C4.5 A 
C4.5 B 
C4.5 C 
C4.5 D 

7-10 
10-12 
12-16 
16-20 

10YR 
2.5Y 

Gley 1 
Gley 1 

3.0 
4.0 
4.0 
4.0 

/4 
/2 
/N 
/N 

Dark yellowish 
Dark grayish 

Dark gray 
Dark gray 

C5.5 A 
C5.5 B 
C5.5 C 
C5.5 D 
C5.5 E 

8-12 
12-14 
14-17 
17-19 
19-22 

2.5Y 
10YR 
Gley 1 
Gley 1 
Gley 1 

4.0 
3.0 
4.0 
4.0 
4.0 

/3 
/3 
/N 
/N 
/N 

Olive brown 
Dark brown 
Dark gray 
Dark gray 
Dark gray 

C6.5 A 
C6.5 B 
C6.5 C 
C6.5 D 

7-11 
11-16 
16-20 
20-22 

10YR 
Gley 1 
2.5Y 

Gley 1 

3.0 
4.0 
5.0 
4.0 

/4 
/N 
/2 

/10Y 

Dark yellowish 
Dark gray 

Grayish brown 
Dark greenish gray 

C7.5 A 
C7.5 B 
C7.5 C 
C7.5 D 

8-14 
14-16 
16-22 
18-20 

2.5Y 
Gley 1 
Gley 1 
Gley 1 

4.0 
4.0 
5.0 
5.0 

/4 
/10Y 
/10Y 
/10Y 

Olive brown 
Dark greenish 
Greenish gray 
Greenish gray 
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Table 15. (continued) 

Sample ID Depth Munsell soil color 
(moist sample) 

  Hue Value Chroma Color 
      
C8.5 A 
C8.5 B 
C8.5 C 

8-12 
12-14 
14-22 

2.5Y 
2.5Y 

Gley 1 

4.0 
4.0 
5.0 

/2 
/2 

/10Y 

Dark grayish 
Grayish brown 
Greenish gray 

ISM-G1 A 
ISM-G1 B 

13-15 
15-18 

2.5Y 
2.5Y 

4.0 
3.0 

/2 
/2 

Dark grayish 
Very dark grayish brown 

      
 
Table 16 
 
Summary of the Results from the First Tile Drain Tracer Test 
 

Time Time (min EC 
(uS/cm) 

 Time 
(cont.) 

Time (min) 
(cont.) 

EC 
(uS/cm) 
(cont.) 

 
2:29:00 0 1068  4:27:00 82 1040 
3:05:00 10 Injection 4:29:00 84 1049 
3:15:00 13 1063 4:31:00 86 1065 
3:18:00 16 1059 4:33:00 88 1087 
3:21:00 19 1058 4:35:00 90 1107 
3:24:00 22 1057 4:37:00 92 1120 
3:27:00 25 1050 4:39:00 94 1128 
3:30:00 28 1050 4:41:00 96 1131 
3:33:00 31 1049 4:43:00 98 1133 
3:36:00 34 1048 4:44:40 99 1132 
3:39:00 37 1047 4:45:00 100 1132 
3:42:00 40 1046 4:48:00 103 1131 
3:45:00 43 1046 4:51:00 106 1130 
3:48:00 46 1045 4:54:00 109 1129 
3:51:00 49 1044 4:57:00 112 1126 
3:54:00 52 1043 5:00:00 115 1123 
3:57:00 55 1043 5:05:00 120 1120 
4:00:00 58 1042 5:10:00 125 1118 
4:03:00 61 1042 5:15:00 130 1115 
4:06:00 64 1041 5:26:00 141 1107 
4:09:00 67 1040 5:36:00 151 1097 
4:12:00 70 1040 5:46:00 161 1085 
4:15:00 73 1039 5:56:00 171 1068 
4:18:00 76 1038 6:06:00 181 1049 
4:21:00 79 1038 6:16:00 191 1036 
4:24:00 0 1037 6:23:00 198 1030 
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Table 17 
 
Summary of the Results from the Sample Analyses for the Second Tile Drain Test. 
Samples below Detection Limit (DL) were Analyzed as 0.50 of DL. Samples 5.5, 7.5, 
13.5 and 17.5 were taken for Isotope Analysis (15N and 18O in NO3

-) and were not 
Analyzed for TP or NH4

+-N 
 

 
Sample # 

Time Time 
 (min) 

Br- 

 (mg/L) 
NO3

--N  
(mg/L) 

TP  
(mg/L) 

NH4
+-N 

 (mg/L) 
         
Tracer Start 9:26  0      

1 10:26 0 0.2 2.9 0.05 0.03 
2 10:29 63 0.1 2.9 0.08 0.05 
3 10:35 69 0.2 3.0 0.10 <0.01 
4 10:45 79 0.2 3.1 0.08 <0.01 
5 10:50 84 2.6 5.8 0.82 0.85 

5.5 10:53 87 5.6 9.5 N/A  
6 10:55 89 7.3 11.5 1.60 1.66 
7 11:00 94 7.5 11.8 1.60 1.69 

7.5 11:03 97 6.4 10.5 N/A  
8 11:05 99 5.9 10.1 1.27 1.49 
9 11:10 104 4.7 8.6 1.06 1.52 

10 11:15 109 3.7 7.3 0.77 1.17 
11 11:20 114 2.5 6.0 0.57 0.92 
12 11:30 124 0.9 4.2 0.31 0.47 
13 11:40 134 0.5 3.7 0.19 0.27 

13.5 11:45 139 0.4 3.6 N/A  
14 11:50 144 0.3 3.6 0.20 0.14 
15 12:00 229 0.3 3.5 0.15 0.08 
16 12:15:20 169.333 0.2 3.5 0.09 0.01 
17 12:30 184 0.3 3.5 0.13 <0.01 

17.5 12:32 186 0.2 3.4 N/A  
18 12:50 204 0.2 3.5 0.12 <0.01 
19 1:15 229 0.2 3.5 0.11 <0.01 
20 1:45 229 0.2 3.5 0.07 <0.01 
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Table 18 
 
Results of  the  Shapiro  &  Wilk  “W-test”  (Gilbert,  1987)  for  Normal Distribution of 
Electron Donor Data 
______________________________________________________________________ 
 

Electron 
Donor 

Ho NOT 
Rejected 

Ho 
Rejected 

 

 Electron 
Donor 

W W (0.05)* 

Ln IS X   Ln IS 0.955 0.947 
IS  X  IS 0.861 0.947 
Ln OC X   Ln OC 0.979 0.947 
OC  X  OC 0.612 0.947 
Ln Fe  X  Ln FE 0.903 0.947 
Fe  X  Fe 0.828 0.947 
Ln Mn X   Ln Mn 0.959 0.947 
Mn  X  Mn 0.251 0.947 

_______________________________________________________________________ 
Ho: The population has a normal distribution 
Ha: The population does not have a lognormal distribution 
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