
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Theses and Dissertations Theses, Dissertations, and Senior Projects 

January 2012 

Constraints And Equivalence In Cvar Portfolio Optimization Constraints And Equivalence In Cvar Portfolio Optimization 

Casey Rozowski 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/theses 

Recommended Citation Recommended Citation 
Rozowski, Casey, "Constraints And Equivalence In Cvar Portfolio Optimization" (2012). Theses and 
Dissertations. 1317. 
https://commons.und.edu/theses/1317 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator 
of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/theses
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/theses/1317
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1317?utm_source=commons.und.edu%2Ftheses%2F1317&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


Constraints and Equivalence in CVaR Portfolio Optimization

by

Casey Rozowski

Bachelor of Arts, North Central University, 2003

Bachelor of Science, University ofWisconsin Superior, 2008

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

August

2012





Title Constraints and Equivalence in CVaR Portfolio Optimization

Department Economics

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this Uni-

versity shall make it freely available for inspection. I further agree that permission

for extensive copying for scholarly purposes may be granted by the professor who

supervised my thesis work or, in his absence, by the Chairperson of the department

or the dean of the Graduate School. It is understood that any copying or publica-

tion or other use of this thesis or part thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be

given to me and to the University of North Dakota in any scholarly use which may

be made of any material in my thesis.

Casey Rozowski

July 12, 2012

ii



Contents

1 ACKNOWLEDGMENTS vi

2 ABSTRACT vii

3 CHAPTERS 1

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1.1 Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . . 5

3.2.2 Mean-CVaR Optimization . . . . . . . . . . . . . . . . . . . . . 9

3.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 MVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 APPENDICES 29

5 REFERENCES 43

iii



List of Figures

Figure Page

1 CVaR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Generated MVO 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Actual MVO 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Generated MVO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Actual MVO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Generated MVO 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Actual MVO 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Generated CVaR 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Actual CVaR 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Generated CVaR 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 Actual CVaR 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 Actual CVaR Constrained . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 Actual CVaR Perturbed . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



List of Tables

Table Page

1 Generated MVO Equivalence . . . . . . . . . . . . . . . . . . . . . . . 20

2 Actual MVO Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Generated CVaR Equivalence . . . . . . . . . . . . . . . . . . . . . . . 26

4 Actual CVaR Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Generated MVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Generated MVO Equivalence . . . . . . . . . . . . . . . . . . . . . . . 37

7 Generated MVO Equivalence Continued . . . . . . . . . . . . . . . . 38

8 Actual MVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Actual MVO Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Actual MVO Equivalence Continued . . . . . . . . . . . . . . . . . . . 41

11 Actual MVO Equivalence Continued . . . . . . . . . . . . . . . . . . . 42

v



1 ACKNOWLEDGMENTS

I wish to express my sincere appreciation to the members of my advisory com-

mittee for their guidance and support during my time in the M.S.A.E. program at

the University of North Dakota.

I would also like to acknowledge the contributions of Chris Bemis, Varunyu

Khamviwath, Eric Olson, and Kaleb Stracke to the initial stages of this thesis.

vi



2 ABSTRACT

The implementation of constraints are standard practice for a portfolio man-

ager. The effect, mathematical and practical, is a study still in development. This

thesis offers a standardized approach to finding a potential explanation of these

constraints. It considers this approach in both the MVO and CVaR settings both

theoretically by providing a mathematical proof, and practically by simulating

portfolio optimizations with both generated and actual market data. In the MVO

setting an MVO with constraints is equivalent to an unconstrained MVO with

perturbed covariance matrix. With regards to CVaR, the CVaR optimization with

constraints is equivalent to an unconstrained CVaR optimization with a perturbed

asset returns matrix. While this study clarifies how this process can be applied to

other portfolio optimizations under constraint it leaves room for a deeper study of

how the adjustment of particular individual constraints can effect portfolio opti-

mization.

vii



3 CHAPTERS

3.1 INTRODUCTION

3.1.1 Review of Literature

Economist Harry Markowitz introduced modern portfolio theory in 1952 (Markowitz,

1952). Modern portfolio theory involves weighting the assets of a portfolio in a

way that maximizes return and minimizes portfolio variance. This practice is of-

ten referred to as Mean-Variance Optimization (MVO). The portfolio variance is

calculated using the sample covariance matrix of the securities. Mean-variance op-

timization was the standard portfolio optimization method from its introduction

until nearly 50 years later. More recently the limitations of the MVO framework

have challenged its widespread use. The mathematical framework for MVO is

based upon an assumption of a normal distribution of returns. In application this

is a problem since returns tend toward a log-normal distribution. MVO also fails

to take significant losses into consideration since it relies only on the first two mo-

ments of the return distribution. The sample covariance matrix, which is central to

the MVO process, is estimated with significant error (Ledoit, 2003). Consequently,

alternatives have emerged which attempt to remedy or replace MVO. Ledoit and

Wolf introduced a method of shrinkage that will decrease the estimation error of the

sample covariance matrix (Ledoit, 2003). Attempts were also made to complement

the MVO with the use of Value-at-Risk in order to incorporate another moment.

Value-at-Risk (VaR) is defined at a given beta value (typically .90, .95, or, .99) as

the portfolio loss associated with the given beta value. Including a VaR calculation
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with an MVO optimization gave managers a more robust understanding of the risk

associated with a portfolio and allowed managers to compare differing portfolios

in a new way. However, this has been short lived. Soon after the implementation

of VaR as a risk measure the limitations of this measure were recognized. VaR has

undesirable mathematical characteristics like subadditivity and convexity. In the

case of subadditivity the VaR of a portfolio can be larger than the sum of the risks of

its components. It is also only coherent when based on the assumption of a normal

distribution of returns (Rockafellar, 1999). In practice, the use of VaR models has

recently been shown to have masked a 2 billion dollar loss at JP Morgan (Whittall,

2012).

Meanwhile, Conditional Value-at-Risk (CVaR) improves upon these limitations

by giving a more coherent representation of risk. CVaR is often referred to as

expected shortfall or tail risk. While VaR only represents the loss at a particular

beta value, CVaR is the expected loss beyond the beta value. This measure takes

the shape of the tail of the loss distribution into consideration. CVaR also has better

mathematical properties than VaR (Artzner, 1997). CVaR, unlike MVO and VaR

is not dependent on the assumption of a normal distribution of returns (Acerbi,

2002). The use of CVaR does not preclude the use of VaR or portfolio variance as

risk measures but simply provides a more coherent measure of risk.

Mean-CVaR optimization is performed separate from MVO and without the

use of a sample covariance matrix, reducing estimation error concerns. This new

portfolio optimization technique was first introduced by Rockafellar and Uryasev

in 1999 (Rockafellar, 1999). By minimizing CVaR given a minimum expected

return, the optimization necessarily produces a low VaR as well. Consequently

Mean-CVaR optimization provides portfolio managers an opportunity to limit and

evaluate numerous portfolio allocation risk metrics.

Portfolio theory has undergone major challenges and changes in the last decade.

The recognition of the limitations of MVO and subsequently VaR has led to in-

creased interest in the properties and utilization of CVaR in portfolio optimization.

In fact, the Basel report signified the shift from the use of VaR to CVaR in May of

2



this year.

”Moving from value-at-risk to expected shortfall a number of weak-

nesses have been identified with using value-at-risk (VaR) for deter-

mining regulatory capital requirements, including its inability to cap-

ture tail risk. For this reason, the Committee has considered alternative

risk metrics, in particular expected shortfall (ES)....The Committee rec-

ognizes that moving to ES could entail certain operational challenges;

nonetheless it believes that these are outweighed by the benefits of re-

placing VaR with a measure that better captures tail risk. Accordingly,

the Committee is proposing the use of ES for the internal models-based

approach and also intends to determine risk weights for the standard-

ised approach using an ES methodology” (Haug, 2012).

However, the use of CVaR as a risk metric is not yet standard in the finance

industry and there are properties of Mean-CVaR optimization that have yet to be

investigated. This includes the effects of constraints on portfolio characteristics.

3.1.2 Hypothesis

A common occurrence in modern portfolio theory is the use of constraints.

Theoretically, an unconstrained portfolio allocation method should yield superior

performance results. In MVO, this is not true; constrained portfolios typically out-

perform their unconstrained counterparts by decreasing estimation error (Ledoit,

2003). Constraints are important because not all allocations are possible for all man-

agers. There may be restrictions on short selling, maximum weight allocations, and

beta values. The effects of constraints in the MVO setting was first investigated

by Jagannathan and Ma (2002). Their research centered on understanding why

imposing constraints improved portfolio performance in practice. They found that

constraints effectively shrank the covariance matrix, reduced sampling error, and

consequently improved performance. However, with the emergence of new port-

folio optimization techniques a more thorough and universal understanding of the

3



effect of constraints is needed. In this paper, I examine how constraints affect two

types of portfolio optimization problems. First, I examine the use of constraints in

a mean-variance optimization (MVO) setting, and then I move to the Conditional

Value-at-Risk (CVaR) setting.

I will first generalize the results of Jagannathan and Ma in the MVO setting.

I will provide a proof of how numerous constraints affect the sample covariance

matrix. We will see that the no-shortselling constraint decreases covariance among

individual assets. Meanwhile, maximum allocation constraints increases covari-

ance among returns and maximum beta exposure leads to an increase in covariance

which is proportional to the betas of the individual assets. Finally the minimum ex-

pected return condition negatively affects the covariance of assets whose expected

returns exceed the minimum return while it positively affects the covariance of

assets with a lower expected returns than the minimum return. Then I will pro-

vide numerical examples highlighting this effect. First by performing MVO using

generated normally distributed market returns and secondly by preforming MVO

using actual market returns.

Next I will extend this work to the CVaR setting. In the CVaR setting there is the

possibility for numerous perturbations that will satisfy the Karush-Kuhn-Tucker

(KKT) equivalence conditions. One particular perturbation is considered. From

this result, the no-shortselling and maximum allocation constraints adjust returns

of individual assets up and down by the Lagrange multiplier. Similarly to the MVO

scenario, the minimum expected return and maximum beta exposure conditions

affect the unconstrained problem by adjusting returns up and down proportionally

to the Lagrange multipliers. Again, I will then perform CVaR portfolio optimization

using generated normally distributed market returns. Lastly I will highlight the

effects with actual market data.
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3.2 METHOD

3.2.1 Mean-Variance Optimization

The goal in the MVO setting is to minimize the expected portfolio variance

given a minimum expected return for the portfolio. A typical constrained MVO

problem with expected portfolio variance ωTΣω, and expected return α, is

minimize: ωTΣω

subject to: wTµ ≥ α
n∑

i=1

ωi = 1

0 ≤ ωi ≤ ω̄

where ω represents the weights on the assets in the portfolio, Σ represents the

covariance matrix, and µ represents the expected returns of the assets. Next, we

show how to find an equivalent problem in the unconstrained case.

5



Constrained MVO

min
ω∈W

ωTΣω

s.t. 0 ≤ ω ≤ ω̄

Unconstrained MVO

min
ω∈W

ωTΣ̃ω

Constrained CVaR

min
ω∈W

CVaRα(ω)

s.t. 0 ≤ ω ≤ ω̄

Unconstrained CVaR

min
ω∈W

CVaRα(ω)

J & M

MVO Constrained-to-Unconstrained Jagannathan and Ma (2002) converted con-

strained MVO problems into unconstrained MVO problems via Lagrange multi-

pliers (or, more precisely, KKT conditions) and recognized this as a problem with

perturbed Σ̃.

Constrained

min ωTΣω

s.t.
n∑

i=1

ωi = 1

0 ≤ ωi ≤ ω̄

KKT conditions

(Lagrange multipliers)

=⇒

Unconstrained

min ωTΣ̃ω

s.t.
n∑

i=1

ωi = 1

6



KKT first-order conditions

Constrained MVO

∇ωL = Σω − λ01 − λ + δ = 0

ωT1 = 1

λiωi = 0

δi(ωi − ω̄) = 0

λi ≥ 0, δi ≥ 0

Unconstrained MVO

∇ωL̃ = Σ̃ω − λ̃01 = 0

ωT1 = 1

In order to solve the unconstrained MVO using the solution of the constrained

MVO we first match the problems by finding Σ̃, λ̃ in terms of Σ, λ0, λ, δ that satisfy

∇ωL̃ = 0. We then make sure that Σ̃ is a symmetric and positive semi-definite

matrix.

=⇒ Σ̃ = Σ + (δ1T + 1δT) − (λ1T + 1λT) (1)

Interpretation

The introduction of minimum/maximum-weight constraints effectively changes

covariance between securities. Meanwhile, the no short-selling restriction de-

creases covariance of individual assets uniformly with all securities. Conversely,

the maximum holding restriction increases covariance of individual assets uni-

formly with all securities.

Σ̃i, j = Σi, j + (δi + δ j)︸  ︷︷  ︸
Max holding

− (λi + λ j)︸   ︷︷   ︸
No short sells

(2)
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Additional Constraints

Generalizing the approach of Jagannathan and Ma to other constraints I found

that limiting maximum portfolio β increases covariance of individual assets uni-

formly with all securities. The increase is proportional to βi of the securities. The

minimum-expected-return condition negatively affects covariance of assets whose

expected returns exceed the minimum return while it positively affects covariance

of assets with lower returns than the minimum return.

Σ̃ = Σ + (δ1T + 1δT) − (λ1T + 1λT) + η1(β1T + 1βT) − η2((µ − µ̄1)1T + 1(µ − µ̄1)T) (3)

See Appendix for proof.

Application Using Generated Data Market data were generated using the one-

factor model. Forty assets with 500 months of trailing data were generated. Each

asset has normally distributed monthly market returns (rm) using expected return

(E(rm))=.01, and variance (V(rm)) equal to the square root of 0.2337. The beta value

(βi) for each individual stock is generated normally with mean 1 and standard

deviation 0.4. The error term εi ∼ N(0, σ2
i ) was generated with a σ2

i for each i based

on the imported VIX data. The one-factor model was then used to generate the

month returns (ri) for 40 securities via

ri = βi · rm + εi (4)

Calculate Estimated Expected Return and Covariance Matrix

8



In order to solve for the optimal allocation of the constrained problem we first

calculated µ and Σ,

µ: Calculated as the monthly return for each security for the 500 month period.

µi = 1
500

∑500
k=1 ri(k)

Σ: Calculated as the covariance matrix of the 500×10 matrix of monthly returns.

Σi, j = 1
500 (ri(k) − µi)(r j(k) − µ j)

Then, using the barrier method implemented by the quadprog function in Matlab

I calculated the optimal allocation. This solver also provided me with the Lagrange

multipliers. I used these Lagrange multipliers to calculate Σ̃ according to equation

(3). This allowed me to investigate the validity of the proof and the effects of the

constraints more closely.

Application Using Market Data In the case of market data, data was provided

to me by a Sr Portfolio Manager - Quantitative Equity at Whitebox Advisors. This

included three sets of data each containing over 1100 assets with only 126 days

of trailing data. The expected returns and covariance matrix was calculated in

Matlab. Subsequently, the barrier method was once again implemented in Matlab

to calculate the optimal allocation and provide the Lagrange multipliers. These

multipliers were used to calculate Σ̃ according to equation (3). Once again I was

able to investigate the affects of the Lagrange multipliers and how these affects

compared to the case of generated data.

3.2.2 Mean-CVaR Optimization

CVaR optimization can be performed to reduce the risk of high losses. CVaR is

closely related to value at risk (VaR). With respect to a specified probability level

β, the β-VaR of a portfolio is the lowest amount α such that, with probability β, the

loss will not exceed α, whereas the β-CVaR is the conditional expectation of losses

9



Figure 1: CVaR Example

above that amount α. Both VaR and CVaR are risk measures used to assess the

probability of high losses, but we are only concerned with optimizing CVaR. VaR

has some undesirable math characteristics, such as a lack of subadditivity. This

is important when dealing with portfolio diversifications because if subadditivity

fails, we would be better off by splitting our portfolio in order to decrease risks.

CVaR does not lack subadditivity. VaR is only coherent when based on standard

deviation of normal distributions, where CVaR does not rely on any specific dis-

tribution. VaR does not give any information on the degree of the losses, just the

percent of extreme loss scenarios whereas CVaR gives the expected loss in those

extreme loss scenarios. CVaR also provides a more direct measure of potential loss.

I will first establish a constrained CVaR problem. Rockafellar and Uryasev

introduce a performance function and auxiliary variables to model the original

problem as a linear programming problem. By discretizing, CVaR is minimized

with samples generated from a distribution of scenarios y. Let f (x,y) denote the

loss function, where x = [x1, ..., xN]T denotes a vector of weights (those of assets

in the portfolio) and y = [y1, ..., yN]T denotes a vector of returns of assets. Let

p(y) describe the probability density function of y. The probability of f (x,y) not

exceeding a threshold is given by

10



ψ(x, α) =

∫
f (x,y)≤α

p(y)dy

Given a certainty level β, VaR and CVaR are defined as

VaRβ = VaRβ(x) = min{α ∈ R|ψ(x, α) ≥ β}

and

CVaRβ = CVaRβ(x) = (1 − β)−1
∫

f (x,y)≥VaRβ(x)
f (x,y)p(y)dy

It can be proved that β-CVaR associated with any x can be achieved by minimizing

the performance function with respect to α

Fβ(x, α) = α + (1 − β)−1
∫

f (x,y)≥VaRβ(x)
[ f (x,y) − α]+p(y)dy

By discretizing, Fβ(x, α) can be approximated with samples generated from the

distribution of y, i.e. yk, with k = 1, 2,..., q by

F̂β(x, α) = α +
1

q(1 − β)

q∑
k=1

[ f (x,yk) − α]+

I use the loss function f (x,y) = −xTy. With the introduction of auxiliary variables

uk, k = 1, 2,..., q, we may rewrite the objective function as

11



F̂β(x, α) = α +
1

q(1 − β)

q∑
k=1

uk

with constraints uk ≥ 0 and xTy + α + uk ≥ 0, k = 1,2,..., q. Therefore the original

problem is converted into a linear programming problem and can be presented as

minimize: α +
1

q(1 − β)

q∑
k=1

uk

subject to: xTy + α + uk ≥ 0

uk ≥ 0

x ≥ 0

1Tx = 1

−µTx ≤ −R

Hence, I minimize the CVaR value given the above constraints. Just as I did

in the MVO setting, I would like to find an equivalent portfolio expected return

value.

Constrained MVO

min
ω∈W

ωTΣω

s.t. 0 ≤ ω ≤ ω̄

Unconstrained MVO

min
ω∈W

ωTΣ̃ω

Constrained CVaR

min
ω∈W

CVaRα(ω)

s.t. 0 ≤ ω ≤ ω̄

Unconstrained CVaR

min
ω∈W

CVaRα(ω)

12



CVaR Constrained-to-Unconstrained By solving a constrained Mean-CVaR opti-

mization problem, extracting the Lagrange multipliers, and finding an appropriate

perturbation I expect to find the same solution with the perturbed unconstrained

Mean-CVaR optimization. This is done by using KKT conditions (Lagrange mul-

tipliers) and matching solutions of a perturbed unconstrained problem to the con-

strained problem in the following manner.

Constrained

min
x

CVaRα(x)

s.t.
n∑

i=1

xi = 1

0 ≤ xi ≤ x̄

xTβ ≤ β̄

xTµ ≥ µ

KKT conditions

(Lagrange multipliers)

=⇒

Unconstrained

min
x

C̃VaRα(x)

s.t.
n∑

i=1

xi = 1

where C̃VaRα(x) = 1
1−α

∫
f̃ (x,y)≥ ˜VaRα(x)

f̃ (x,y)p(y)dy

13



Conversion to Unconstrained CVaR

Now it is necessary to equate the first-order KKT conditions at solution x∗ of the

contrained problem so that first-order KKT conditions are the same.

∇xL̃(x∗) = ∇xL(x∗)

∇xC̃VaRα(x∗) − η̃01 = ∇xCVaRα(x∗) − η01 − λ + δ + η1β − η2µ

One possible perturbation is

f̃ (x,y) = −xT(y + λ − δ − η1β + η2µ) (5)

See Appendix for proof.

Interpretation

From this result, the no-shortselling constraint and the maximum-allocation

constraint affect the unconstrained problem by adjusting returns of individual as-

sets up and down by the Lagrange multiplier. Similarly, the introduction of a

minimum expected-return and maximum β-exposure conditions affect the uncon-

strained problem by adjusting the returns up and down proportionally to µ and β,

respectively.

If one prefers, the full-allocation constraint can be absorbed into individual re-

turns in the unconstrained problem. In general, any inequality constraints can be

treated in the same way as I have in this thesis.

Application Using Generated Data Data for this CVaR application was generated

via the same program that was used in the corresponding MVO application.

Then, using the barrier method implemented by the linprog function in Matlab

14



I calculated the optimal allocation. Similar to quadprog, linprog also supplied me

with the Lagrange multipliers. I used these multipliers to shift the matrix of returns

according to equation (5). The validity of the proof and the effects of the constraints

were then considered.

Application Using Market Data This CVaR application utilitized the same sets

of market data that were used in the corresponding MVO application.

The same method of implementation was used as in the generated data CVaR

application. Again, the proof and constraint effects were considered. Both simula-

tions will be performed with a β of .95.

15



3.3 RESULTS

3.3.1 MVO

The minimum expected return was increased and decrease over an interval of 0.1

in increments of 0.00005. By letting my minimum expected return fluctuate in both

the original and perturbed MVO I was able to graphically compare the estimated

return and estimated variance of both constrained MVO and particularly perturbed

unconstrained MVO using Σ̃. This same approach was taken in order to consider

how the constrained problem and the perturbed unconstrained problem compared

over different minimum expected returns. Lastly, the effect of the constraints was

highlighted by comparing the perturbed unconstrained MVO to the traditional

unconstrained MVO. Consider the following diagrams comparing these effects

using both generated market data and actual market data.

16



Figure 2: Generated MVO 1

Figure 3: Actual MVO 1

The previous figures illustrate that equivalence only occurs at the initial value.

This supports the uniqueness of the Lagrangians.
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Figure 4: Generated MVO 2

Figure 5: Actual MVO 2

If Σ̃ is, in fact, capturing the effect of the constraints then the optimal allocation

variance should be the same as we allow the minimum expected return to fluctuate.

This is illustrated in the previous figures.
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Figure 6: Generated MVO 3

Figure 7: Actual MVO 3

Recalculating Σ̃ and the optimal allocation for each minimum expected return

allowed me to illustrate how a change in expected return alters the significance of

the Lagrange multipliers.
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As expected, the MVO allocations were identical. That is, the expected portfolio

return, the portfolio variance, and the individual asset weight allocations matched

identically.

Table 1: Generated MVO Equivalence

Generated MVO Constrained Perturbed Unconstrained

Portfolio Variance 0.011813 0.011813
Expected Return 0.019843 0.019843

Table 2: Actual MVO Equivalence

Actual MVO Constrained Perturbed Unconstrained

Portfolio Variance 0.000019 0.000019
Expected Return 0.008972 0.008972

3.3.2 CVaR

In a similar fashion the minimum expected return was increased and decreased

over an interval of 0.05 in increments of 0.00005. This allowed me to create plots

of the data in order to consider whether the perturbation of the individual returns

effectively explained the effect of the constraints. Consider the following figures

(Constrained is blue, Perturbed Unconstrained is red);
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Figure 8: Generated CVaR 1

Figure 9: Actual CVaR 1

These figures illustrate that the CVaR values for the portfolio allocations are

not identical but converge at a single value. This interssection represents the point

at which there is no effect from the Lagrange multipliers. That is to say the in-

terssection point is the point at which the constraints have no effect on portfolio

performance. However, the shrinkage effect of the Lagrange multipliers is seen
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by the consistency of the CVaR values in the perturbed portfolio. These Lagrange

multipliers pull extreme values in and shrink the variance of the asset returns ma-

trix. Meanwhile, the effect of the constraints on the CVaR values of the constrained

portfolio are evident. In order to achieve higher minimum returns the allocation

must become less diversified leading to higher CVaR values.

This is exactly what would be expected considering equation (5). The perturbed

portfolio’s CVaR value is itself perturbed by the Lagrange multipliers. As the

minimum expected return increases the program seeks higher expected returns on

individual assets and the effect of the constraint is larger.

Figure 10: Generated CVaR 2
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Figure 11: Actual CVaR 2

The previous figures plot the variance of the portfolios as the minimum ex-

pected return was allowed to fluctuate to different values. In the case of generated

market data the variance of the perturbed portfolio was always greater then that

of the original constrained portfolio. However, these values remained within 0.002

of each other and increase as the minimum expected return increased. Using ac-

tual market data the results were more difficult to understand. The figure shows

almost constant portfolio variance values with the perturbed portfolio and origi-

nal constrained portfolio. As in the generated data case, the perturbed portfolio’s

variance was greater then that of the original constrained portfolio. A closer look

at the individual curves shows more detail.
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Figure 12: Actual CVaR Constrained

Figure 13: Actual CVaR Perturbed

When I plot the previous curves separately I am able to see how they are

performing over differing minimum expected returns. The constrained portfolio

recognizes growth in portfolio variance and the perturbed unconstrained portfolio

sees a decline. However, these incremental changes are very small in comparison

to the overall figure.
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Recognizing that the generated market figure and actual market figure are scaled

differently also offers some explanation. In each portfolio optimization simulation

the number of data points and computed values is based on the ability of Matlab

to find a Real valued solution within a specified number of recursions. If Matlab

is unable to do so on numerous occasions a break has been built into my code.

Consequently, the number of values provided in each simulation may differ.

In both cases the portfolio variance of the perturbed unconstrained optimization

is higher then its constrained counterpart. Once again this is representative of the

fact that the individual asset returns of the perturbed portfolio were effected by the

Lagrange multipliers.

It is important to note that the effect of the constraints, and in effect the Lagrange

multipliers, depends on how stringent the constraints are given the distribution of

returns of the individual assets. When the effect is minimal it is possible that the

constrained portfolio will recognize the same allocation and expected return while

maintaining lower risk metrics. However, when the minimum expected return is

increased, the perturbation of returns may lead to lower values in any of the risk

metrics dependent upon whether it is the lower bound or upper bound that is

producing the larger Lagrangian.

Regardless, the CVaR allocations should be identical. Just as in the MVO

setting, the expected return matched identically. The asset allocation was similar

but contained estimation errors. This occurred because the CVaR calculation is a

discretization of the actual CVaR value. Consequently, small differences would be

seen in the CVaR, VaR, and asset allocations for both the constrained and perturbed

unconstrained portfolios. Numerous simulations produced errors in the expected

returns as well. The ones presented here are some of the more accurate calculations.
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Table 3: Generated CVaR Equivalence

Generated CVaR Constrained Perturbed Unconstrained

Portfolio Variance 0.034561 0.027674
Expected Return 0.030693 0.030693

VaR 0.30508 0.33003
CVaR 0.36248 0.37988

Table 4: Actual CVaR Equivalence

Actual CVaR Constrained Perturbed Unconstrained

Portfolio Variance 2.64E-05 4.85E-05
Expected Return 0.0010886 0.0010886

VaR 0.0034521 0.004482
CVaR 0.004616 0.0050696
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3.4 DISCUSSION

The rapid pace at which the finance industry is attempting to integrate CVaR

as a risk metric into their portfolio allocation decisions means that there has not

been significant consideration of the characteristics of constrained Mean-CVaR op-

timized portfolios. In the case of Mean-Variance Optimization, portfolio managers

recognized for decades that constrained portfolios performed better than their un-

constrained counterparts and that this was a contradiction of the mathematical

foundations of MVO. However, it was not until the work of Jagannathan and Ma in

2002 that theorists could explain how constraints effectively increased the accuracy

of the sample covariance matrix via shrinkage and how this in effect led to better

portfolio results.

MVO has lost favor in finance because of its inability to account for differing

distributions of returns and the inaccuracy of finding other risk metric calculations

of the original MVO calculations. However, while CVaR has come to the forefront

it is not guaranteed to continue to be favored as an effective portfolio optimization

tool. Consequently, it is necessary for the finance community to standardize an ap-

proach that can be used to understand how constraints effect portfolio allocations.

That is what has been attempted here. A solution for equating a particular func-

tion’s constrained optimization to its correlated unconstrained optimization can be

done by the same method that was taken in both the MVO and CVaR settings. The

proposed result should be tested, as in this case, under differing constraints and

data to verify its validity.

In this particular case the results of the generalized MVO were exactly as had

been expected. Using both normally distributed and actual market data, the par-
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ticular perturbed covariance matrix was in fact a solution only to the original

problem. Also, the perturbed solution matched identically with the constrained

solution as each portfolio’s minimum expected return was allowed to vary. The

effect of the constraints was shown to become greater as the minimum expected re-

turn increased. The proof states that the optimal allocation, variance, and expected

returns should all be identical and in fact they were.

When this concept was extended to CVaR optimization, the proof and numerical

results were not as simple. Given the nature of the CVaR calculation it is impossible

to avoid rounding errors. The expected return values were typically accurate in that

they were identical between the two portfolio optimizations. However, the assets

allocation saw estimation error. The computing power and sheer size of the actual

market data set made calculations difficult and time consuming. Nonetheless the

CVaR equivalence is true analytically and could become more accurate numerically

with improved computing resources.

Given the limitations of a student license for Matlab and my personal com-

puter’s capabilities I was unable to incorporate substantial amounts of data into

this study. I was also unable to run the thousands of simulations that I would have

preferred as a single simulation using actual market data took upwards of thirty

minutes.

My hope is that this study can provide some insight and direction into the future

study of constraints in portfolio optimization. If one prefers, each constraint could

be considered individually. Consequently there are many further studies that could

be considered. However, I believe time would be better spent considering how

particular constraints that could be ”loosened” may affect portfolio performance.
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4 APPENDICES

Effects of constraints on portfolio variance-optimization problems

This proof is a generalization to the result by Jagannathan and Ma (Jagannathan,

2003). Consider a mean-variance problem with full-utilization, no-shortselling,

maximum-allocation, maximum-beta-exposure, and minimum-return constraints:

min
x

1
2

xTΣx

subject to
∑

i

xi = 1

xi ≥ 0

xi ≤ x̄i

xTβ ≤ β̄

xTµ ≥ µ̄

for all i. This problem has a Lagrangian

L(x, η0,λ,δ, η1, η2) =
1
2

xTΣx + η0(1 − xT1) + λT(−x) + δT(x − x̄) + η1(xTβ − β̄) + η2(µ̄ − xTµ)

while the KKT conditions read

∇xL = Σx − η01 − λ + δ + η1β − η2µ = 0

xT1 = 1

λixi = 0

δi(xi − x̄i) = 0

η1(xTβ − β̄) = 0

η2(µ̄ − xTµ) = 0

λi ≥ 0, δi ≥ 0, η1 ≥ 0, η2 ≥ 0
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for all i. We wish to compare this problem with an unconstrained variance-

optimization problem subject to full allocation:

min
x

1
2

xTΣ̃x

subject to
∑

i

xi = 1

The unconstrained problem has a Lagrangian

L̃ =
1
2

xTΣ̃x + η̃0(1 − xT1))

with the KKT conditions

∇xL = Σ̃x − η̃01 = 0

xT1 = 1

For suitable Σ̃ and η̃0, the solution for the constrained problem also minimizes

variance of the unconstrained problem. Suppose x∗ is a solution to the constrained

problem with Lagrange multipliers η0,λ,δ, η1, and η2. Let

Σ̃ = Σ + (δ1T + 1δT) − (λ1T + 1λT) + η1(β1T + 1βT) − η2((µ − µ̄1)1T + 1(µ − µ̄1)T)

We show that x∗ is also a solution to the unconstrained problem while Σ̃ is a valid

covariance matrix. First, it is clear that Σ̃ is symmetric. To check that Σ̃ is positive-

semidefinite, we compute
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xTΣ̃x = xTΣx + xT(δ1T + 1δT)x − xT(λ1T + 1λT)x+

η1xT(β1T + 1βT)x − η2xT(µ1T + 1µT
− 2µ̄11T)x

= xTΣx + 2(xT1)xT(δ − λ + η1β − η2µ) + 2η2µ̄(xT1)2

= xTΣx + 2(xT1)xT(−Σx∗ + η01) + 2η2µ̄(xT1)2

= xTΣx − 2(xT1)xTΣ
1
2 Σ

1
2 x∗ + 2(η0 + η2µ̄)(xT1)2

≥ xTΣx − 2(xT1)(xTΣx)
1
2 (x∗TΣx∗)

1
2 + 2(η0 + η2µ̄)(xT1)2

≥ xTΣx − 2(xT1)(xTΣx)
1
2 (η0 + η2µ̄)

1
2 + 2(η0 + η2µ̄)(xT1)2

=
(
(xTΣx)

1
2 − (xT1)(η0 + η2µ̄)

1
2

)2
+ (η0 + η2µ̄)(xT1)2

≥ 0

for any x since

0 ≤ xTΣx = −xT(−η01 − λ + δ + η1β − η2µ) = η0 − x̄Tδ − η1β̄ + η2µ̄ ≤ η0 + η2µ̄.

To show that x∗ solves the perturbed unconstrained problem, we first compute

Σ̃x∗ = Σx∗ + (δ1T + 1δT)x∗ − (λ1T + 1λT)x∗ + η1(β1T + 1βT)x∗ − η2(µ1T + 1µT
− 2µ̄11T)x∗

= Σx∗ + δ − λ + η1β − η2µ + 1(x̄Tδ + η1β̄ + η2µ̄)

= 1(η0 + x̄Tδ + η1β̄ + η2µ̄)

So all first-order conditions are satisfied where η̃0 = η0 + x̄Tδ + η1β̄ + η2µ̄.

Therefore, optimal weights of the constrained problem are also the optimal

weights for the unconstrained problem where the covariance matrix is perturbed

as follows:

Σ̃ = Σ + (δ1T + 1δT) − (λ1T + 1λT) + η1(β1T + 1βT) − η2((µ − µ̄1)1T + 1(µ − µ̄1)T).
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This result agrees with the result in Jagannathan and Ma (2000) that no-shortselling

and maximum allocation constraints artificially decreases and increases covari-

ance among individual assets in the variance-optimization problem respectively.

Moreover, we have shown that the maximum beta-exposure condition leads to

an increase in covarinace which is proportional to betas of the individual assets.

Finally, we obtained an interesting result that the minimum-expected-return con-

dition negatively affects covariance of assets whose expected returns exceed the

minimum return while it positively affects covariance of assets with less returns

than the minimum return.

Effects of constraints on Conditional-Value-at-Risk (CVaR) optimization prob-

lems

Let the loss function be f (x,y) = −xTy where x is current holding and y is one-

time-step return. Then the value-at-risk at probability β (β-VaR) for a given holding

x is

αβ(x) = min
{
α ∈ R :

∫
f (x,y)≥α

p(y)dy ≥ β
}

In addition, the conditional value-at-risk at probability β (β-CVaR) is the expectation

of loss given that the loss is greater than β-VaR

φβ(x) =
1

1 − β

∫
f (x,y)≥αβ(x)

f (x,y)p(y)dy

It is a measure of risk related to the holding which represents expected loss in ex-

treme cases. In some cases, it is beneficial to construct a portfolio which minimizes

β-CVaR.

Here, we will examine the effect of holding constraints on the β-CVaR optimiza-

tion problem. We wish to use KKT conditions to obtain our results so we need

φβ(x) ∈ C1(x). Under certain conditions, Tasche (Tasche, 2000) showed that for
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f (x,y) = −xTy, β-CVaR is differentiable. The derivatives are

∇xφβ(x) =
1

1 − β

∫
f (x,y)≥αβ(x)

−yp(y)dy

which are continuous in x.

Next, consider a constrained β-CVaR minimization problem

min
x

φβ(x)

subject to
∑

i

xi = 1

xi ≥ 0

xi ≤ x̄i∑
i

βixi ≤ β̄∑
i

µixi ≥ µ̄

for all i, where we have full-utilization, no-shortselling, maximum-allocation,

maximum-β-exposure, and minimum-expected-return constraints. The Lagrangian

for this problem is

L(x, η0,λ,δ, η1) = φβ(x) + η0(1 − 1Tx) + λT(−x) + δT(x − x̄) + η1(xTβ − β̄) + η2(µ̄ − xTµ)
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while the KKT conditions read

∇xL = ∇xφβ(x) − η01 − λ + δ + η1β − η2µ = 0

1Tx = 1

λixi = 0

δi(xi − x̄i) = 0

η1(xTβ − β̄) = 0

λi ≥ 0, δi ≥ 0, η1 ≥ 0, η2 ≥ 0

We wish to compare this to an unconstrained problem (subject to full utilization)

min
x

φ̃β(x)

subject to
∑

i

xi = 1

where φ̃β(x) = 1
1−β

∫
f̃ (x,y)≥α̃β(x)

f̃ (x,y)p̃(y)dy. The Lagrangian for this problem is

L̃(x, η0, λ) = φ̃β(x) + η̃0(1 − 1Tx)

and the optimization conditions are

∇xL = ∇xφ̃β(x) − η̃01 = 0

1Tx = 1

For suitable φ̃β, η̃0 , a solution for the constrained problem is also a solution for

the unconstrained problem if

∇xφ̃β(x∗) − η̃01 = ∇xφβ(x∗) − η01 − λ + δ + η1β − η2µ (6)
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where x is a solution to the constrained problem. Consider

f̃ (x,y) = −xT(y + λ − δ − η1β + η2µ)

while other parameters remain the same as in the unconstrained problem. Then

α̃β(x∗) = min
{
α ∈ R :

∫
f̃ (x∗,y)≥α

p(y)dy ≥ β
}

= min
{
α ∈ R :

∫
−x∗T(y+λ−δ−η1β+η2µ)≥α

p(y)dy ≥ β
}

= min
{
α ∈ R :

∫
−x∗Ty+x̄Tδ+η1β̄−η2µ̄≥α

p(y)dy ≥ β
}

= min
{
α ∈ R :

∫
−x∗Ty≥α−x̄Tδ−η1β̄+η2µ̄

p(y)dy ≥ β
}

= αβ(x∗) + x̄Tδ + η1β̄ − η2µ̄

Therefore,

∇xφ̃β(x∗) =
1

1 − β

∫
f̃ (x∗,y)≥α̃β(x∗)

−(y + λ − δ − η1β + η2µ)p(y)dy

=
1

1 − β

∫
f̃ (x∗,y)≥α̃β(x∗)

−yp(y)dy +
1

1 − β
(−λ + δ + η1β − η2µ)

∫
f̃ (x∗,y)≥α̃β(x∗)

p(y)dy

=
1

1 − β

∫
−x∗T(y+λ−δ)≥αβ(x∗)+x̄Tδ

−yp(y)dy − λ + δ + η1β − η2µ

=
1

1 − β

∫
−x∗Ty≥αβ(x∗)

−yp(y)dy − λ + δ + η1β − η2µ

= ∇xφβ(x∗) − λ + δ + η1β − η2µ

and the condition (1) is satisfied. The solution for the constrained problem is

also the solution of an unconstrained problem with adjusted return

f̃ (x,y) = −xT(y + λ − δ − η1β + η2µ).
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From this result, the no-shortselling constraint and the maximum-allocation con-

straint affect the unconstrained problem by adjusting returns of individual assets

up and down by the Lagrange multiplier. Similarly, introduction of minimum

expected-return condition and maximum β-exposure condition affect the uncon-

strained problem by adjusting the returns up and down proportionally to µ and β

respectively.

If one prefers, the full-allocation constraint can be absorbed into individual

returns in the unconstrained problem. In general, any equality and inequality

constraints can be treated in the same way as we have done in this report.

Note that there might be other perturbations which yield different uncon-

strained CVaR-optimization problems. Nevertheless, portfolio return adjustment

is a plausible way to interpret the effect of constraints on the problem.

MVO Values

Table 5: Generated MVO

Beta VaR CVaR

0.90 0.1591 0.2106

0.95 0.1986 0.2440

0.99 0.2727 0.3095
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Table 6: Generated MVO Equivalence

Generated MVO Constrained Perturbed Unconstrained

Portfolio Variance 0.011813 0.011813

Expected Return 0.019843 0.019843

Non-Zero Asset Weights (in %) 4.04 4.04

3.31 3.31

2.20 2.20

1.37 1.37

1.91 1.91

3.80 3.80

2.94 2.94

2.54 2.54

0.14 0.14

1.58 1.58

1.45 1.45

1.34 1.34

0.19 0.19

1.47 1.47

8.33 8.33

1.73 1.73

5.33 5.33

0.98 0.98

4.35 4.35

6.26 6.26

0.48 0.48

1.28 1.28

1.05 1.05
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Table 7: Generated MVO Equivalence Continued

Generated MVO Constrained Perturbed Unconstrained

5.96 5.96

4.90 4.90

1.13 1.13

2.70 2.70

4.01 4.01

2.28 2.28

3.98 3.98

4.75 4.75

3.21 3.21

2.11 2.11

0.03 0.03

1.93 1.93

1.81 1.81

1.37 1.37

1.78 1.78
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Table 8: Actual MVO

Beta VaR CVaR

0.90 0.0145 0.0165

0.95 0.0161 0.0179

0.99 0.0190 0.0205
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Table 9: Actual MVO Equivalence

Actual MVO Constrained Perturbed Unconstrained

Portfolio Variance 0.000019 0.000019

Expected Return 0.008972 0.008972

Non-Zero Asset Weights (in %) 1.35 1.35

1.48 1.48

0.52 0.52

1.94 1.94

0.78 0.78

1.30 1.30

2.60 2.60

0.93 0.93

0.70 0.70

3.60 3.60

0.77 0.77

1.75 1.75

0.57 0.57

1.09 1.09

0.98 0.98

1.47 1.47

1.32 1.32

0.51 0.51

1.04 1.04

1.63 1.63

0.31 0.31

0.45 0.45

0.57 0.57

0.19 0.19
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Table 10: Actual MVO Equivalence Continued

Actual MVO Constrained Perturbed Unconstrained

1.66 1.66

1.43 1.43

0.54 0.54

0.93 0.93

1.49 1.49

0.42 0.42

0.50 0.50

0.20 0.20

0.92 0.92

1.26 1.26

1.65 1.65

0.14 0.14

0.22 0.22

0.52 0.52

1.38 1.38

1.72 1.72

0.08 0.08

0.37 0.37

1.58 1.58

0.17 0.17

3.85 3.85

1.00 1.00

3.14 3.14

0.40 0.40

1.88 1.88

0.99 0.99

0.30 0.30
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Table 11: Actual MVO Equivalence Continued

Actual MVO Constrained Perturbed Unconstrained

1.62 1.62

1.31 1.31

3.01 3.01

1.60 1.60

2.29 2.29

0.93 0.93

0.86 0.86

1.09 1.09

2.14 2.14

2.18 2.18

1.30 1.30

1.05 1.05

2.16 2.16

2.59 2.59

1.44 1.44

0.48 0.48

1.35 1.35

1.83 1.83

2.44 2.44

2.28 2.28

1.94 1.94

0.23 0.23

1.08 1.08

1.21 1.21

2.81 2.81

1.78 1.78

0.43 0.43
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