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ABSTRACT 

 This work shows that a mix of Finite Element Analysis (FEA) and numerical 

differentiation and integration methods can be used in order to calculate the output charge 

of a thin piezoelectric film bonded to a shell structure. The method is applied to cases of a 

cylindrical shell structure, as well as a beam and plate for both generic and shaped 

piezoelectric films. An overview of the fundamentals of shell vibration theory is 

presented where the development of the piezoelectric film equation is reviewed and 

applied to the three different structure cases. The FEA process used is discussed in terms 

of mode frequency, harmonic, and spectrum analysis. The structural analysis data of the 

shell substrate is imported into Matlab for further processing using numerical 

differentiation and integration. The processed data is then used to calculate the film 

output charge assuming that the piezoelectric film is perfectly coupled with the structure 

continuum, but does not change its dynamic characteristics i.e. natural frequencies and 

mode shapes. The results presented herein indicate that the film correctly captures the 

modes of the structure. However, further investigation is needed for the film output to 

better predict other structural dynamic properties such as displacement, velocity, or 

acceleration. The proposed method can be applied to calculate the output charge of films 

attached to complex structures or structures with complex boundary conditions. Another 

application is cases where close form equations cannot be derived and the only data 

available are discrete or experimental. Moreover, in sensor design applications where the 

film is often shaped so that its output charge corresponds to a specific structural dynamic 

property, the proposed method greatly simplifies the design process. 
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CHAPTER I 

INTRODUCTION 

1.1 Literature Review 

 Piezoelectricity is described as the appearance of positive electric charge on one 

side of certain nonconducting crystals and negative charge on the opposite side when the 

crystals are subjected to mechanical pressure. Piezoelectricity was discovered in 1880 by 

Paul-Jacques and Pierre Curie, who found that when they compressed certain types of 

crystals including quartz, tourmaline, and Rochelle salt, along certain axes, a voltage was 

produced on the surface of the crystal. In 1881, they observed the converse effect, the 

elongation of such crystals upon the application of an electric current [1]. Basically, when 

a piezoelectric material expands or contracts, an electric charge collects on its surface. 

Conversely, when a piezoelectric material is subjected to a voltage change, it 

mechanically deforms. Many crystalline materials exhibit piezoelectric behavior. A few 

materials exhibit the phenomenon strongly enough to be used in applications that take 

advantage of their properties. One such material is barium titanate, the first piezoceramic 

discovered. It is a dielectric ceramic used for capacitors and it is a piezoelectric material 

used for microphone and other transducers.  

 Now, lead zirconate titanate (PZT) is the most commonly used piezoceramic 

today due to its higher Curie temperature, which is the temperature above which a 

piezoelectric material loses its piezoelectric characteristics. Another piezoelectric 

material, which is not a ceramic, but a polymer, is Polyvinylidene Fluoride (PVDF).  
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 In polymers, the polymer chains attract and repel each other when an electric field 

is applied, dissimilar to ceramics where its crystal structure creates the piezoelectric 

effect. In 1969, it was observed that PVDF had strong piezoelectric properties; having a 

piezoelectric coefficient of thin films as high as ten times that of any other polymer [2]. 

This makes it a better material for sensor applications. The electromechanical coupling of 

PVDF is lower than that of piezoceramics, but since the foil thickness can be as small as 

10 micrometers the vibration mass is extremely small. PVDF has a low density and low 

cost compared to other fluoropolymers. PVDF also has greater damping than ceramics, 

and the resulting dynamic characteristics allow very short pulses to be generated. This 

means that it is possible to measure shorter ranges using PVDF than is possible with 

piezoceramic transducers. PVDF is more frequently being used in aeronautics and 

aerospace applications.  

 It was discovered near the beginning of the 20
th
 century that piezoelectric 

materials could be used in practical applications. One such application is in the area of 

electrical sensing devices, also known as sensors, or more specifically, piezoelectric 

sensors [3]. A piezoelectric sensor is a device that uses the piezoelectric effect to measure 

pressure, acceleration, strain, or force by converting them to an electrical charge. 

Piezoelectric materials have inherent advantages: their modulus of elasticity is 

comparable to that of metals, the sensing elements have almost no deflection, have high 

natural frequencies, and have an extreme stability even at high temperatures [4]. 

Applications of sensing include: medical, automotive, communication, and aerospace.  

 In a paper by Hurlebaus et al. [5], PVDF film was used for sensors and actuators 

in an automotive application. They investigated active vibration control of more complex 
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geometries than beams and plates. They could not evaluate modal parameters from 

numerical calculations of local modes, because of the complications involved with proper 

boundary conditions. Therefore, they identified the modal data using experimental modal 

analysis. The objective of their work was to demonstrate the successful implementation 

of modal control to arbitrary curved panels using experimentally evaluated mode shapes. 

The applied modal formulation for the dynamics of the considered structure was 

advantageous, because it allowed for control of a small set of chosen modes. Also, they 

significantly reduced structural vibrations, which also lead to a reduction in acoustic 

radiation. However, their proposed concept has some drawbacks: the limitation of the 

frequency band limitation of the modal analysis, and the performance of the control 

method was compromised by modal spillover, and curve fitting to the experimental mode 

shapes. 

 Other research, done by Xu et al. [6], has also shown that PVDF film is being 

used in sensing applications. Their work was focused on the development of an acoustic 

pressure sensor with high sensitivity for aero-acoustic and clinical applications. They 

proposed a sensor design consisting of micron-sized PVDF pillars and patterned 

electrodes in which the pillars generated a charge when subjected to normal stresses 

associated with acoustic waves. The pillars are sandwiched between an electrode plate 

and a rigid membrane. They developed a constrained optimization algorithm as a 

function of geometric parameters and electrical parameters of the sensor and conditioning 

amplifier. One potential application for their proposed micro-acoustic sensor would be 

vehicle positioning. It would be able to provide localization of objects around the vehicle 

which would create safer driving conditions. 
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 The objective of research done by Choi et al. [7] was to enhance the damping 

performance for vibration suppression of rotating composite thin-walled beams using 

macro fiber composite actuators and PVDF sensors. They based their formulation on a 

thin-walled beam, including a warping function, centrifugal force, Coriolis acceleration 

and piezoelectric effect. They used a negative velocity feedback control algorithm to 

acquire adaptive capability of the beam. They performed numerical analysis using finite 

element method and Newmark time integration method was used to calculate the time 

response of the model. They observed that the feedback control gain had a linear effect 

on damping performance; hence, vibrations could be damped out quicker when a higher 

feedback control gain was applied within the limit of actuator voltage. The damping 

effect could be increased through structural tailoring. Furthermore, the position and 

distributed area of the sensor/actuator pair was an important factor in obtaining effective 

damping performance. 

 Very recent work by Song and Li [8] studied the aeroelastic flutter characteristics 

and active vibration control of supersonic beams. In their paper, they do further research 

applied to a supersonic composite laminated plate with piezoelectric actuator/sensor 

pairs. They used Hamilton‟s principle with the assumed mode method to develop the 

governing equation of the structural system. The impulse responses of the structural 

system were calculated by using the Houbolt numerical algorithm to study the active 

aeroelastic vibration control. From the numerical results, they observed that the 

aeroelastic flutter characteristics of the supersonic composite laminated plate can be 

improved and that the aeroelastic vibration response amplitudes can be reduced, 
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especially at the flutter points, by the velocity feedback control algorithm using the 

piezoelectric actuator/sensor pairs. 

 Other recent work was aimed to improve the efficiency of harvesting and reduce 

grain losses. Zhao et al. [9] designed a grain impact sensor utilizing PVDF films and a 

floating raft damping structure to monitor grain losses in the field. Through the analysis 

of a mathematical model of the sensor and the vibration characteristics of installation 

position, the sensor resonances were calculated. The performance of the sensor was 

verified by field experiments. They found that by using a floating raft damping structure, 

the acceleration amplitude and corresponding frequency spectrum of the PVDF films 

could be suppressed.  

 Saviz and Mohammedpourfard [10] presented work on the dynamic analysis of a 

laminated cylindrical shell with piezoelectric layers under dynamic loads. A cylindrical 

shell with finite length was simply supported at both ends and elasticity approach was 

used. The highly coupled partial differential equations are reduced to ordinary differential 

equations by means of trigonometric function expansion in plane directions. The resulting 

equations are solved by finite element method. Stress analysis and vibrational behavior 

are presented for different shell thicknesses and are compared for four different ring loads 

widths. Their worked showed that the dynamic elasticity solution provided an accurate 

analysis of active shell with piezoelectric layer as sensor and actuator.  

 In another recent paper, Benedetti et al. [11] presented a fast boundary element 

method for the analysis of three-dimensional solids with cracks and adhesively bonded 

piezoelectric patches used as strain sensors. Both the sensors and adhesive layer were 

modeled using a finite element approach, taking into account the full electromechanical 
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coupling in the piezoelectric layer. They utilize a generalized minimal residual method 

(GMRES) iterative solver with a preconditioner for the solution of the system of 

equations. They performed numerical experiments which showed that the sensor model 

offers accurate predictions of the output voltage. 

 In a paper by Alibeigloo and Kani [12], they address the free vibration problem of 

multilayered shells with embedded piezoelectric layers. The variable of the governing 

differential equation were changed to constant, and obtained the natural frequencies from 

the state equations. They investigated the effect of edges conditions, mid-radius to 

thickness ratio, length to mid-radius ratio, and the piezoelectric thickness on vibration 

behavior of a cylindrical shell. They consider simply-supported and clamped-clamped 

boundary conditions. Analytical solution was presented for the case of the simply-

supported edges, whereas for the clamped-clamped boundary condition, differential 

quadrature method is used. They also focused on the influence of the electromechanical 

coupling on the free vibration response of multilayered shells. The relevance of the 

effectiveness of the method in predicting the exact natural frequencies of vibration was 

checked by comparing numerical results for the shell without the piezoelectric layer and 

simply-supported boundary condition with corresponding numerical results from 

previous literature. 

1.2 Thesis Objectives and Significance 

 The vibration response of PVDF piezoelectric film in the context of sensor or 

actuator application is often investigated for structures with infinite radii of curvatures 

such as beams and plates. The objective is to develop a method to calculate the 

piezoelectric film output charge on any type of structure. In this research, a mix of finite 
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element and numerical differentiation and integration methods are utilized in order to 

calculate the output charge of a thin piezoelectric film which is bonded to a shell 

structure. Due to the complexity of structures, simple structures: a beam, a plate, and a 

cylindrical shell are used in this investigation. Generic and shaped films of the 

aforementioned structures are discussed. The proposed method can be applied to 

calculate the output charge of films attached to complex structures or structures with 

complex boundary conditions. An application is cases where close-form equations cannot 

be derived and the only data available are discrete or experimental. Furthermore, the 

proposed method greatly simplifies the design process in sensor design applications 

where the film is often shaped so that its output charge corresponds to a specific 

structural dynamic property. 

1.3 Approach 

 An approach to providing a way to calculate the output charge of a piezoelectric 

sensor can be found by looking at the generic output charge equation as described in 

Chapter II. In the equation, if the displacements are known, then the first and second 

partial derivatives of those displacements can be found, and therefore, the equation can 

be solved numerically. The displacement field can be obtained through measurement or 

finite element analysis. Then, another program, like Matlab, can be used to accomplish 

numerical differentiation and integration required by the piezoelectric charge equation. 

The results of the output charge equation are then obtained. This process is applied to the 

three structures: beam, plate, and cylindrical shell. The generic output charge equation is 

reduced for these structures to find their respective output charge equations, and a 

shaping function is added for the use of a shaped sensor to verify that the proposed 
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method can be applied to non-generic shaped sensors which can be designed to monitor 

specific nodes, such as a quadratic shape which was applied in this present work. This 

research employs ANSYS, a finite element analysis program, in order to model and 

simulate all three of the structures mentioned. Numerical differentiation and integration 

processes are then used with the program, Matlab, to determine the generic and shaped 

sensor output charges corresponding to the displacement frequency response of the 

coupled films‟ structures. The dynamic responses, i.e. natural frequencies and mode 

shapes of the film are finally compared to that of the structure. 

 In contrast to [5], the work in this thesis is focused on simple geometries: beams, 

plates, and cylindrical shells. Also, they use PVDF film as a point sensor, whereas here it 

covers the whole surface; hence, spillover may be reduced in this thesis by the 

implementation of a shaping function. In [6], they do not cover an entire surface with thin 

PVDF film, instead they use pillars of PVDF sandwiched between 2 rigid plates. 

Different from [7], the geometries used here do not include a thin-walled beam, do not 

include an actuator, and the sensor spans the entire length of the substrate. In [8], they 

used a simply supported composite plate; in contrast to work done here, the main focus is 

on a clamped-free aluminum beam, plate, and cylindrical shell. They are also interested 

in active vibration control, so they include an actuator and control algorithms in their 

analysis. In [9], they used three rectangularly-shaped sensors to measure vibration, 

whereas in this work, one sensor will be used which will cover an entire surface of a 

structure and also quadratically-shaped. In contrast to [10], they analyze rings, whereas in 

this work a beam, plate, and cylindrical shell are analyzed. Different from [11], they 

modeled a beam with small rectangularly-shaped sensors all along the length of the beam 
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be used to deactivate or reactivate selected elements if certain elements in a model may 

become existent or nonexistent when material is added or removed from a system. 

Table 3.2: KEYOPT Options for BEAM4 

KEYOPT (2) 

Stress stiffening option 

0: Use only the main tangent stiffness 

matrix when large deflection is ON. 

1: Use the consistent tangent stiffness 

matrix when large deflection is ON. 

2: Use to turn off consistent tangent 

stiffness matrix. 

KEYOPT(7) 

Gyroscopic damping matrix 

0: No gyroscopic damping matrix 

1: Compute gyroscopic damping matrix. 

Real constant SPIN must be greater than 

zero. IYY must equal IZZ. 

 

KEYOPT(6) 

Member force and moment output 

0: No printout of member forces or 

moments 

1: Print out member forces and moments 

in the element coordinate system 

KEYOPT(9) 

Output at intermediate points between 

ends I and J 

N: Output at N intermediate locations 

(N= 0, 1, 3, 5, 7, 9) 

 

 

Output Data 

The maximum stress is computed as the direct stress plus the absolute values of both 

bending stresses. The minimum stress is the direct stress minus the absolute value of both 

bending stresses. The stress output of the BEAM4 element is illustrated in Figure 3.2. 

 

Figure 3.2: BEAM4 Stress Output 
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Assumptions 

 The BEAM4 element has some assumptions associated with it. The beam must 

not have a zero length or area. However, the moments of inertia may be zero if large 

deflections are not used. The beam can have any cross-sectional shape for which the 

moments of inertia can be computed. However, the stresses will be determined as if the 

distance between the neutral axis and extreme fiber is one-half of the corresponding 

thickness. The element thicknesses are used only in the bending and thermal stress 

calculations. The applied thermal gradients are assumed to be linear across the thickness 

in both directions and along the length of the element. If the consistent tangent stiffness 

matrix is used, element real constants should be realistic, because the consistent stress-

stiffening matrix is based on the calculated stress in the element; hence, the calculated 

stress will become inaccurate. Eigenvalues calculated in a gyroscopic modal analysis can 

be very sensitive to changes in the initial shift value, leading to potential error in either or 

both the real or imaginary parts of the eigenvalues. 

Restrictions  

 There are also restrictions associated with ANSYS Professional using the BEAM4 

element. The SPIN real constant is not available. The damp material property is not 

allowed. The only special features allowed are stress stiffening and large deflections. 

KEYOPT(2) and (7) can only be set to 0, the default. 

3.3.2 SHELL63 

 SHELL63 is a shell structural element which has both bending and membrane 

capabilities. When modeled, it has the appearance of a thin sheet; Figure 3.3 gives a 

visualization of the SHELL63 geometry. Both in-plane and normal loads are permitted. 
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SHELL63 has six degrees of freedom at each node: displacements in the nodal x, y and z 

directions and rotations about the nodal x, y and z axes. Stress stiffening and large 

deflection capabilities are included. A consistent stiffness matrix option is available for 

use in large deflection analyses.  

 

Figure 3.3: SHELL63 Geometry 

Xij = Element x-axis if ESYS (Element Coordinate System) is not supplied. 

X = Element x-axis if ESYS is supplied. 

SHELL63 element is defined by four nodes: I, J, K and L, each with a thickness. The 

thickness is assumed to vary smoothly over the area of the element, with the thickness 

input at the four nodes. If the element has a constant thickness, only TK(I) needs to be 

input. Conversely, if the thickness is not constant, then all four thicknesses need input.  

Element Loads: Pressures may be input as surface loads on the element faces as shown 

on Figure 3.3. Positive pressures act into the element. Because shell edge pressures are 

input on a per-unit-area basis, per-unit-area quantities must be multiplied by the shell 

thickness.  
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Table 3.3: SHELL63 Real Constants 

No. Name Description 

1 TK(I) Shell thickness at node I 

2 TK(J) Shell thickness at node J 

3 TK(K) Shell thickness at node K 

4 TK(L) Shell thickness at node L 

5 EFS Elastic foundation stiffness 

6 THETA Element X-axis rotation 

7 RMI Bending moment of inertia ratio 

8 CTOP Distance from mid surface to top 

9 CBOT Distance from mid surface to bottom 

10,…,18 (Blank) -- 

19 ADMSUA Added mass/unit area 

 

Special Features: The SHELL63 element has the features of stress stiffening, large 

deflection and element birth and death. Stress stiffening is the stiffening of a structure 

due to its stress state. This effect usually needs to be considered for thin structures with 

bending stiffness very small compared to axial stiffness, such as cables, thin beams and 

shells. The stress stiffening effect also changes the regular nonlinear stiffness matrix 

produced by large strain or large deflection effects. Element birth and death options may 

be used to deactivate or reactivate selected elements if certain elements in a model may 

become existent or nonexistent when material is added or removed from a system. 
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Table 3.4: KEYOPT Options for SHELL63 

KEYOPT (1) 

Element stiffness 

0: Bending and membrane stiffness 

1: Membrane stiffness only 

2: Bending stiffness only 

KEYOPT(7) 

Mass matrix 

0: Consistent mass matrix 

1: Reduced mass matrix 

 

KEYOPT (2) 

Stress stiffening option 

0: Use only the main tangent stiffness 

matrix when large deflection is ON. 

1: Use the consistent tangent stiffness 

matrix when large deflection is ON. 

2: Use to turn off consistent tangent 

stiffness matrix. 

KEYOPT(8) 

Stress stiffness matrix 

0: “Nearly” consistent stress stiffness 

matrix (default) 

1: Reduced stress stiffness matrix 

KEYOPT(9) 

Element coordinate system defined 

0: No user subroutine to define element 

coordinate system. 

4: Element x-axis located by user 

subroutine. 

KEYOPT(3) 

0: Include extra displacement shapes 

1: Suppress extra displacement shapes 

2: Include extra displacement shapes KEYOPT (11) 

Specify data storage 

0: No user subroutine to define element 

coordinate system 

2: Store data for TOP, BOTTOM, and 

MID surfaces. 

 

KEYOPT(5) 

Extra stress output 

0: Basic element printout 

1: Nodal stress printout 

KEYOPT(6) 

Pressure loading 

0: Reduced pressure loading 

1: Consistent pressure loading 

 

Output Data 

 The solution printout includes the moments about the x face, the moments about 

the y face, and the twisting moment. The moments are calculated per unit length in the 

element coordinate system. The element stress directions are parallel to the element 

coordinate system. The stress output of the SHELL63 element is shown in Figure 3.4. 
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Figure 3.4: SHELL63 Stress Output 

Assumptions 

 There are some assumptions associated with the SHELL63 element. Zero area 

elements are not allowed; this occurs most often whenever the elements are not numbered 

properly. Also, zero thickness elements or elements tapering down to a zero thickness at 

any corner are not allowed. The applied transverse thermal gradient is assumed to vary 

linearly through the thickness and vary bilinearly over the shell surface. An assemblage 

of flat shell elements can produce a good approximation of a curved shell surface 

provided that each flat element does not extend over more than a 15° arc. If an elastic 

foundation stiffness is input, one-fourth of the total is applied at each node. Shear 

deflection is not included in this thin-shell element. A triangular element may be formed 

by defining duplicate K and L node numbers. The extra shapes are automatically deleted 

for triangular elements so that the membrane stiffness reduces to a constant strain 

formulation. For KEYOPT(1) = 0 or 2, the four nodes defining the element should lie as 

close as possible to a flat plane for maximum accuracy; however, a moderate amount of 

warping is permitted. For KEYOPT(1) = 1, the warping limit is very restrictive. In either 
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case, an excessively warped element may produce a warning or error message. If the 

lumped mass matrix formulation is specified, the effect of the implied offsets on the mass 

matrix is ignored for warped SHELL63 elements.  

Restrictions 

 There are also restrictions associated with ANSYS Professional using the 

SHELL63 element. The damp material property is not allowed. The only special features 

allowed are stress stiffening and large deflection. KEYOPT(2) and (9) can only be set to 

0, the default. 

3.4 ANSYS Verication Manual Test Examples 

 The primary purpose of this manual is to demonstrate a wide range of ANSYS 

elements and capabilities in straightforward problems which have readily-obtainable 

theoretical solutions. Furthermore, the close agreement of the ANSYS solutions to the 

theoretical results in the verification manual is intended to provide confidence in the 

ANSYS solution. These problems are served as the basis for additional validation and 

qualification of ANSYS capabilities for the application of interest in this work [20]. 

3.4.1 VM19: Random Vibration Analysis of a Deep Simply-Supported Beam 

Power Spectral Density (PSD) 

 The power spectral density (PSD) describes how the power of a signal or time 

series is distributed with frequency. Mathematically, it is defined as the Fourier 

Transform of the autocorrelation sequence of the time series. An equivalent definition of 

PSD is the squared modulus of the Fourier transform of the time series, scaled by a 

proper constant term. The Fourier transform and PSD are defined as in Eq. (3.1). 

Mathematically, the definition of the complex spectrum of a sound x(t) in the time range 

(t1, t2) is given by Eq. (3.1 ). 
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                                                                                 (3.1) 

For a sound x(t), defined for all times t in the domain (t1, t2) the complex spectrum X(f) for 

any frequency f is the Fourier transform of x(t), in the two-sided frequency domain 

( , )F F  , with a negative exponent is defined in Eq. (3.1). If x(t) is expressed in units of 

Pascal, X(f) is expressed in units of Pa/Hz. From the complex spectrum the one-sided 

power spectral density in HzPa /2  can be computed as 

PSD
2

2 1( ) 2 ( ) ( )f X f t t                                                                            (3.2) 

where the factor 2 is due to adding the contributions from positive and negative 

frequencies. 

Test Example 

 In this test example, a deep simply-supported square beam is reviewed. The 

ANSYS input log file for VM19 is listed in Appendix A. The beam is of length 10m  

and has a square cross-sectional area of thickness 2.0t m . The beam is subjected to 

random force power spectral density. There are three analysis types used: Mode-

Frequency, Spectrum Analysis and Harmonic Analysis. The element type used is 3-D 

Elastic Beam, or BEAM4. The peak response PSD value is to be determined. The simply-

supported beam finite element model and PSD is shown in Figure 3.5. 

 

Figure 3.5: Simply-Supported Beam Problem Sketch 
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Material Properties and Loading 

Young‟s Modulus 9 2200 10 /E N m   

Poisson‟s Ratio 3.0  

Mass Density 38000 /m kg m  

6 2 2(10 / ) /PSD N m Hz  

Damping 02.0  

Analysis Assumptions and Modeling 

 All degrees of freedom in the Y direction are selected as master degrees of 

freedom. A frequency range of 0.1Hz  to 70Hz  is used as an approximation of the white 

noise PSD forcing function frequency. White noise is a random signal with a flat power 

spectral density. The signal contains equal power within a fixed bandwidth at any center 

frequency. 

Table 3.5: Result Comparison for VM19 

Description Analytical ANSYS Ratio 

Modal Frequency f (Hz) 42.65 42.66 1.00 

PSD Freq (Hz) 42.66 42.64 1.00 

Peak Deflection PSD (mm
2
/Hz) 180.9 179.36 0.99 

Peak Stress PSD (N/mm
2
)

 2
/Hz 58516. 58533. 1.00 

 

3.4.2 VM203: Dynamic Load Effect on Supported Thick Plate 

 In this ANSYS test case, a simply-supported thick square plate is subject to 

random uniform pressure power spectral density in order to determine the peak one-

sigma, or one standard deviation, displacement at undamped natural frequency. The 

results follow a Gaussian distribution; 68.3% of the time the response will be less than 

the standard deviation value. The dimensions of the plate are 10m  and 1.0t m . The 
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analysis types used are Mode-Frequency, Spectrum Analysis and Harmonic Analysis. A 

modal analysis of the structure should be initially performed to provide information about 

the structure‟s dynamic behavior; determining the mode frequencies and mode shapes. 

Then, a harmonic analysis should be performed to analyze the steady-state behavior of a 

structure subject to cyclic loads. Lastly, a spectral analysis studies the response of a 

structure under the action of loads with known “spectra,” for example, random loading 

conditions. The element type used is the 8-Node Finite Strain Shell Elements, or 

SHELL281. The problem sketch is shown in Figure 3.6. The ANSYS input log file for 

VM203 is listed in Appendix B. 

 

Figure 3.6: Thick Square Plate Problem Sketch 

Material Properties and Loading 

Young‟s Modulus 9 2200 10 /E N m   

Poisson‟s Ratio 3.0   

Mass Density 38000 /m kg m  

6 2 2(10 / ) /PSD N m Hz  

Damping 02.0  

Analysis Assumptions and Modeling 

 When conducting a modal analysis, an option is to use the reduced mode 

extraction method; this requires that all degrees of freedom, in this case in the z direction, 
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4.2 Mode Frequency Analysis 

 In modal analyses, vibration characteristics, such as natural frequencies and mode 

shapes, of a structure or a machine component are determined. It can also serve as an 

initial point for another, more detailed, dynamic analysis, such as a transient dynamic 

analysis, a spectrum analysis, or a harmonic analysis. The natural frequencies and mode 

shapes are important parameters in the design of a structure for dynamic loading 

conditions. It is required to define stiffness as well as mass in some form. Stiffness may 

be specified using isotropic and orthotropic elastic material models, for example, 

Young‟s modulus and Poisson‟s ratio. Modal analysis is a linear analysis; any 

nonlinearity is ignored even if it is defined. The modal solution is needed to calculate the 

spectrum solution, and there are many mode-extraction methods available: Block 

Lanczos, Supernode, PCG Lanczos, reduced, unsymmetric, damped, and QR damped. 

Each method is unique, and which method should be used depends on what the situation 

requires. If the situation requires the inclusion of the missing mass effect in the spectrum 

analysis, then the Block Lanczos or PCG Lanczos method should be used. The number of 

modes extracted should be enough to characterize the structure‟s response in the 

frequency range of interest. 

4.2.1 Formulation 

 The general equation of motion for a damped system, expressed in matrix 

notation, and subjected to the force vector  F is given by Eq. (4.1). 

          M u C u K u F                                                                        (4.1)  
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 K  is the structural stiffness matrix,  C  is the structural damping matrix,  u  is the 

nodal displacement vector and  M  is the mass matrix. For a linear system, free 

vibrations are harmonic of the form: 

    cos ii
u t                                                                                             (4.2)  

where,  
i

 is an eigenvector representing the mode shape of the thi natural frequency and 

i  is the thi natural circular frequency (radians per unit time) and t  is the time. 

Substituting Eq. (4.2) into Eq. (4.1), Eq. (4.3) becomes: 

       2 0i i
M K                                                                                   (4.3) 

This equality is satisfied if either  
i

  is zero or if the determinant of     2

i M K  is 

zero. The first option is the trivial one and, therefore, is not of interest. Thus, the second 

one gives the solution as    2 0K M  . This is an eigenvalue problem which may be 

solved for up to n values of 
2

n  and n  eigenvectors  
i

  which satisfy Eq. (4.3) where 

n  is the number of DOFs. Rather than outputting natural circular frequencies{ } , the 

natural frequencies  f  are output, where 

2

i
if




                                                                                                     (4.4) 

If normalization of each eigenvector  
i

 to the mass matrix is selected,  
i

 is 

normalized such that its largest component is 1.0. 

     1
T

i i
M                                                                                               (4.5) 

Eq. (4.2) can also be written in a more general form as a set of modal coordinates, 

iy  , is defined such that: 
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   
1

n

i i

i

u y


                                                                                                 (4.6) 

where,  i  is the mode shape of mode i , and n  is the number of modes to be used. The 

inverse relationship does exist for the case where all the displacements are known, but 

not when only some are known. Substituting Eq. (4.6) into Eq. (4.1) gives Eq. (4.7). 

             
.. .

1 1 1

n n n

i i i i i i

i i i

M y C y K y F  
  

                                             (4.7) 

Pre-multiplying by a typical mode shape  T

i gives Eq. (4.8). 

                     
.. .

1 1 1

n n n
T T T T

j i i j i i j i i j

i i i

M y C y K y F      
  

         (4.8) 

The orthogonal condition of the natural modes states that 

     0
T

j iM    if ji          (4.9) 

     0
T

j iK    if ji          (4.10) 

In the mode superposition method using the Lanczos and other extraction methods, only 

Rayleigh or constant damping is allowed so that: 

     0i

T

j C   if ji         (4.11) 

The Lanczos methods use the Lanczos algorithm, which is an iterative algorithm used to 

find eigenvalues and eigenvectors of a square matrix. It is useful for finding 

decompositions of very large sparse matrices (matrices made up of mostly zeros). 

Rayleigh‟s damping is expressed as      C M K   where   and   are constants to 

be determined from two given damping ratios that correspond to two unequal frequencies 
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of vibration. It is also known as proportional damping, because C  is proportional to a 

linear combination of  M  and  K . 

Applying these conditions to Eq. (4.8), only the i j  terms remain: 

                  
.. .T T T T

j j j j j j j j j jM y C y K y F                        (4.12)    

The coefficient of 
..

jy , 
.

jy , and jy  are derived as follows: 

Coefficient of 
..

jy , by the normality condition in Eq. (4.5), 

     1
T

j jM           (4.13) 

Coefficient of 
.

jy : The damping term is based on treating the modal coordinate as a 

single degree of freedom system for which: 

     2
T

j j j jC C                                                                                        (4.14) 

     2 1
T

j j j jM M           (4.15) 

Eq. (4.43) can give a definition of 
j : 

1
j

jM
           (4.16)   

The critical damping constant:  

2j j j jC K M         (4.17) 

Where, j  is the fraction of critical damping for mode j and,  

j j jK M          (4.18) 

where, j  is the natural circular frequency of the mode j .  
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Combining Eq. (4.16) through Eq. (4.13) with Eq. (4.14), 

    
2

1
2 2

T

j j j j j j j

j

C K M
M

    
 
  
 
 

                                              (4.19) 

Coefficient of jy : 

from Eq. (4.3): 

     2

j j jK M           (4.20) 

Pre-multiplying Eq. (4.3) by a typical mode shape  
T

j , 

         2
T T

j j j j jK M                                                                      (4.21) 

Substituting Eq. (4.7) for the mass term, 

     2
T

j j jK           (4.22) 

For convenient notation, let 

   
T

j jf F         (4.23) 

represent the right-hand side of Eq. (4.40). Substituting Eq. (4.41), Eq. (4.47), Eq. (4.8) 

and Eq. (4.9) into Eq. (4.40), the equation of motion of the modal coordinates is obtained 

in Eq. (4.52). 

.. .
22j j j j j j jy y y f                                                                                     (4.24) 

Where, jy is modal coordinate, j  is natural circular frequency of mode j, j is fraction of 

critical damping for mode j  and jf  is force in modal coordinates. Since j  represents any 

mode, Eq. (4.10) represents n  uncoupled equations in the n  unknowns jy . 
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4.3 Spectrum Analysis 

 Two types of spectrum analyses are supported: the deterministic response 

spectrum method and the nondeterministic random vibration method. Both the excitation 

at the support and excitation away from the support are allowed. The three types of 

spectra are the single-point, multi-point, and dynamic design analysis method. The 

random vibration method uses the power spectral density, PSD, approach.  

4.3.1 Response Spectrum 

 A response spectrum represents the response of single degree of freedom systems 

to a time-history loading function. It is a graph of response versus frequency, where the 

response might be displacement, velocity, acceleration, or force. Two types of response 

spectrum analysis are possible: single and multi-point response spectra. In a single-point 

response spectrum analysis, one response spectrum curve is specified, or a family of 

curves, at a set of points in the model, such as at all supports, as shown in Figure 4.1 (a). 

In a multi-point response spectrum analysis, different spectrum curves are specified at 

different sets of points, as shown in Figure 4.2 (b). 

 

 (a)    (b) 

Figure 4.1: (a) Single-Point and (b) Multi-Point Response Spectra 
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4.3.2 Dynamic Design Analysis Method (DDAM) 

 The Dynamic Design Analysis Method (DDAM) is a technique used to evaluate 

the shock resistance of shipboard equipment. The technique is essentially a response 

spectrum analysis in which the spectrum is obtained from a series of empirical equations 

and shock design tables provided in the U.S. Naval Research Laboratory Report NRL-

1396. 

4.3.3 Power Spectral Density (PSD) Approach 

 Power spectral density, or PSD, is a statistical measure defined as the limiting 

mean-square value of a random variable. It is used in random vibration analyses in which 

the instantaneous magnitudes of the response can be specified only by probability 

distribution functions that show the probability of the magnitude taking a particular 

value. A PSD is a statistical measure of the response of a structure to random dynamic 

loading conditions. It is a graph of the PSD value versus frequency, where the PSD may 

be a displacement PSD, velocity PSD, acceleration PSD, or force PSD. Mathematically, 

the area under a PSD-versus-frequency curve is equal to the variance. Similar to response 

spectrum analysis, a random vibration analysis may be single-point or multi-point. In a 

single-point random vibration analysis, one PSD spectrum is specified at a set of points in 

the model; whereas in a multi-point random vibration analysis, different PSD spectra are 

specified at different points in the model.  

4.3.4 Single Point Response Random Vibration Analysis 

 The spectrum analysis must be preceded by a modal analysis. If mode 

combinations are needed, the required modes must also be expanded. One of the four 

options available is the single-point response spectrum method. Both excitation at the 
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support, base excitation, and excitation away from the support, force excitation, is 

allowed for the single-point response spectrum analysis.  

4.3.5 Random Vibration Method Formulation 

 The random vibration method allows multiple power spectral density (PSD) 

inputs in which these inputs can be: full correlated, uncorrelated, or partially correlated. 

The procedure is based on computing statistics of each modal response and then 

combining them. It is assumed that the excitations are stationary random processes. For 

partially correlated nodal and base excitations, the complete equations of motion are 

segregated into the free and the restrained degrees of freedom as: 
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where, { }fu  are the free DOF and { }ru  are the restrained DOF that are excited by 

random loading,  F  is the nodal force excitation activated by a nonzero value of force. 

The value of force can be other than unity, allowing for scaling of the participation 

factors. The free displacements can be decomposed into pseudo-static and dynamic parts 

as in Eq. (4.26). 

     f S du u u                                                                                            (4.26) 

The pseudo-static displacements may be obtained from Eq. (4.25) by excluding the first 

two terms on the left-hand side of the equation and by replacing  
fu by su . 

   
1

s ff fr ru K K u


         =   ruA                                                             (4.27) 
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in which  
1

ff frA K K


        . Physically, the elements along the thi column of  A  are 

the pseudo-static displacements due to a unit displacement of the support DOFs excited 

by thi  the base PSD. Substituting Eqns. (4.26) & (4.27) into (4.25) and assuming light 

damping yields: 

         { }ff d ff d ff d ff fr rM u C u K u F M A M u                              (4.28)    

The second term on the right-hand side of the above equation represents the equivalent 

forces due to support excitations. Using the mode superposition analysis, as described in 

the Mode Superposition Method section in ANSYS Help, gives the Eq. (4.29) 

       tytud                      (4.29) 

The above equations are decoupled yielding Eq. (4.30) 

.. .
22j j j j j j jy y y G            ( 1,2,3,..., )j n                                              (4.30) 

where, n  is the number of modes chosen for the evaluation, jy  are the generalized 

displacements, j  and j  are the natural circular frequency and modal damping ratio, 

respectively. The modal loads jG  are defined by Eq. (4.31) 

   
..T

j j r jG u                                                                                            (4.31)                

The modal participation factors corresponding to support excitation are given by: 

         
j

T

frffj MAM                                                                        (4. 32) 

and for nodal excitation: 

   
T

j j F                                                                                                 (4.33) 



67 

 

4.3.6 Response Power Spectral Densities and Mean Square Response 

 Using the theory of random vibrations, the response PSDs can be computed from 

the input PSDs with the help of transfer functions for single DOF systems  H  and by 

using mode superposition techniques. The response PSDs for thi DOF are given by the 

Dynamic part, Pseudo-static part and Covariance part as described below. 

Dynamic Part  

       

     

1 1

2 2

_
*

1 1 1 1

^
*

1 1

i

r rn n

d ij ik j mk j k m

j k m

r r

mj mk j K

k

S H H w S

H H S

      

  

   

 


 




  



 



 

Pseudo-Static Part    

   
2 2 ^

4
1 1

1
i

r r

ms i im

m

S A A S 
 

 
  

 
  

Covariance Part 

      
2 2 ^

2
1 1 1

1
i

r rn

msd ij i mj j

j m

S A H S   
  

 
   

 
  

where, n  is the number of mode shapes chosen for evaluation. 1r  and 2r  are the number 

of nodal (away from support) and base PSD tables, respectively. The transfer functions 

for the single DOF system assume different forms depending on the type of the input 

PSD and the type of response desired. The forms of the transfer functions for 

displacement as the output are listed below for different inputs in Eq. (4.34), (4.35), and 

(4.36).  

When input as a force or acceleration: 
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 
 2 2

1

2
j

j j j

H
i


    


 

                                                                      (4.34) 

When input as a displacement: 

 
 

2

2 2 2
j

j j j

H
i




    


 
                                                                      (4.35) 

When input is a velocity: 

 
 2 2 2

j

j j j

i
H

i




    


 
                                                                      (4.36) 

where   is the forcing frequency and j  is the natural circular frequency for the thj  

mode and 1i . Now, random vibration analysis can be used to show that the absolute 

value of the mean square response of the thi free displacement is Eq. (4.37) 

 2 2 2 2 ,
i i i i if d s v s dC U U                                                                        (4.37) 

where, 
2

id  is the variance of the thi  relative (dynamic) free displacement, 
2

is  is the 

variance of the thi  pseudo-static displacement and  ,
i iV s dC U U  is the covariance 

between static and dynamic displacements. The general formulation described above 

gives simplified equations for several situations commonly encountered in practice.  

Results from a random vibration analysis are written to the structural results file, which 

consists of expanded mode shapes from the modal analysis, static solution for base 

excitation, and the one sigma displacement solution output. These one sigma, or one 

standard deviation, values follow a Gaussian distribution. The interpretation is that 68.3% 

of the time the response will be less than the standard deviation value. The results may be 

reviewed in ANSYS POST1, the general postprocessor, and then response PSDs can be 

calculated in POST26, the time-history postprocessor. 
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4.4 Harmonic Response Analysis 

 The harmonic response analysis solves the time-dependent equations of motion 

for linear structures undergoing steady-state vibration. It is assumed this analysis is valid 

for structural, fluid, magnetic, and electrical degrees of freedom. Also, the entire structure 

has constant or frequency-dependent stiffness, damping, and mass effects. Another 

assumption is that all loads and displacements vary sinusoidally at the same known 

frequency, although not necessarily in phase. Element loads are assumed to be real (in-

phase) only, except for current density and pressures in SURF153 and SURF154 

elements. 

4.4.1 Formulation 

 Consider the general equation of motion for a structural system with damping. 

          aM u C u K u F                                                                    (4.38) 

where,  M  is the structural mass matrix,  C  is the structural damping matrix,  K  is the 

structural stiffness matrix,  u  is the nodal acceleration vector,  u  is the nodal velocity vector, 

 u  is the nodal displacement vector and  aF  is the applied load vector. All the points in the 

structure are moving at the same known frequency, however, not necessarily in the same phase. 

Also, it is known that the presence of damping causes phase shifts. Therefore, the displacements 

may be defined by Eq. (4.39). 

    tii eeuu  
max                                                                          (4.39)   

where, maxu  is the maximum displacement, i  is 1 ,   is the imposed circular frequency in 

(radians/time) or 2 f , f  is the imposed frequency (cycles/time), t  is time, and   is the 

displacement phase shift (radians). maxu  and   may be different at each degree of freedom. The 
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use complex notation allows a compact and efficient description of the problem. Eq. (4.39) can be 

rewritten as: 

    max cos sin i tu u i e          (4.40) 

or as:       1 2

i tu u i u e             (4.41) 

where,    1 max cosu u  which is the real displacement vector and    2 max sinu u   is the 

imaginary displacement vector. 

The force vector can be described analogously to the displacement: 

    tii eeFF  
max                                          (4.42) 

     tieiFF   sincosmax       (4.43) 

       tieFiFF  21                                                                                   (4.44) 

where, maxF  is the force amplitude.  ψ is force phase shift (in radians).    cosmax1 FF    is 

the real force vector.    sinmax2 FF   is the imaginary force vector. 

Substituting Eq. (4.41) and (4.44) into Eq. (4.38) produces Eq. (4.45). 

                2

1 2 1 2

i t i tM i C K u i u e F i F e                           (4.45) 

The dependence on time 
tie 
from both sides gives Eq. (4.46). 

               2121

2 FiFUiUKciM                                    (4.46) 

4.4.2 Complex Displacement Output 

 The complex displacement output at each degree of freedom may be given in 

one of two forms: first, the form 1u , the real displacement vector, and 2u , the imaginary 

displacement vector, and second, the form maxu , the amplitude, and  , the phase angle, 

computed at each degree of freedom as: 
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           2 2

max 2iu u u          (4.47) 

           1 2

1

tan
u

u
           (4.48) 

4.4.3 Nodal and Reaction Load Computation 

 Inertia, damping and static loads on the nodes of each element are computed. The 

real and imaginary inertia load parts of the element output are computed by: 

    2

1 1

m

e ee
F M u        (4.49) 

    2

1 2

m

e ee
F M u                                                                                    (4.50) 

where,  
e

m
F1  and  

e

m
F2  are the real and imaginary parts of the vector of element inertia 

forces, respectively.  1 e
u ,  2 e

u  are the real and imaginary parts of the element 

displacement vectors, respectively.  eM  is the element mass matrix. 

The real and imaginary damping loads, part of the element output, are computed by Eqs. 

(4.51) and (4.52) 

    1 2

c

e ee
F C u          (4.51) 

                2 1

c

e ee
F C u                                                      (4.52) 

where,  
e

c
F1  is a vector of element damping forces, the real part,  

e

c
F2  is a vector of 

element damping forces, the imaginary part, and  eC  is the element damping matrix. The 

real static load is computed the same way as in a static analysis using the real part of the 

displacement solution 1 e
u . The imaginary static load is computed also the same way, 

using the imaginary part  2 e
u . The imaginary part of the element loads is normally zero, 

except for current density loads. The nodal reaction loads are computed as the sum of all 
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three types of loads (inertia, damping, and static) over all elements connected to a given 

fixed displacement node.  There are three available methods for the solution of harmonic 

response analysis: Full Solution Method, Reduced Solution Method, and Mode 

Superposition Method, which is used in this simulation. 

4.4.4 Mode Superposition Method 

 Three harmonic response analysis methods are available: full, reduced, and mode 

superposition. The ANSYS Professional program allows only the mode superposition 

method. In this method a modal analysis is first performed to compute the natural 

frequencies and mode shapes. Then the mode superposition solution is carried where 

these mode shapes are combined to arrive at a solution. This method is faster and less 

expensive than either the reduced or the full method for many problems. The equation of 

motion can be expressed as in Eq. (4.53). 

          M u C u K u F                                                                       (4.53) 

 F  is the time-varying load vector, given by Eq. (4.54) 

     snd FsFF          (4.54) 

where,  ndF  are time varying nodal forces,  sF  are load vectors from the modal 

analysis, and s  is the load vector scale factor. The load vector  sF  is computed when 

doing a modal analysis and its generation is the same as for a substructure load vector. A 

set of modal coordinates iy  is defined, such that: 

   
1

n

i i

i

u y


                                                                                                 (4.55) 
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where,  i  is the mode shape of mode i , and n  is the number of modes to be used. The 

inverse relationship does exist for the case where all the displacements are known, but 

not when only some are known. Substituting Eq. (4.55) into Eq. (4.53) gives Eq. (4.56). 

             
.. .

1 1 1

n n n

i i i i i i

i i i

M y C y K y F  
  

                                             (4.56) 

Pre-multiplying by a typical mode shape  T

i gives Eq. (4.57). 

                     
.. .

1 1 1

n n n
T T T T

j i i j i i j i i j

i i i

M y C y K y F      
  

         (4.57) 

The orthogonal condition of the natural modes states that 

     0
T

j iM    if ji          (4.58) 

     0
T

j iK    if ji          (4.59) 

In the mode superposition method using the Lanczos and other extraction methods, only 

Rayleigh or constant damping is allowed so that: 

     0i

T

j C   if ji         (4.60) 

Applying these conditions to Eq. (4.57), only the i j  terms remain: 

                  
.. .T T T T

j j j j j j j j j jM y C y K y F                        (4.61)    

The coefficient of 
..

jy , 
.

jy , and jy  are derived as follows: 

Coefficient of 
..

jy : By the normality condition in Eq. (4.5), 

     1
T

j jM           (4.62) 
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Coefficient of 
.

jy : The damping term is based on treating the modal coordinate as a 

single degree of freedom system for which:  

     2
T

j j j jC C                                                                                        (4.63) 

     2 1
T

j j j jM M           (4.64) 

Eq. (4.64) can give a definition of 
j : 

1
j

jM
           (4.65)   

The critical damping constant:  

2j j j jC K M         (4.66) 

Where, 
j  is the fraction of critical damping for mode j 

and,  

j

j

j
M

K
          (4.67) 

where, j  is the natural circular frequency of the mode j .  

Combining Eq. (4.65) thru Eq. (4.62) with Eq. (4.63), 

    
2

1
2 2

T

j j j j j j j

j

C K M
M

    
 
  
 
 

                                              (4.68) 

Coefficient of jy : 

from Eq. (4.3): 

     2

j j jK M           (4.69) 
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Pre-multiplying by  
T

j , 

         2
T T

j j j j jK M                                                                      (4.70) 

Substituting Eq. (4.70) for the mass term, 

     2
T

j j jK           (4.71) 

For convenient notation, let 

   
T

j jf F         (4.72) 

represent the right-hand side of Eq. (4.61). Substituting Eq. (4.62), Eq. (4.68), Eq. (4.71) 

and Eq. (4.72) into Eq. (4.61), the equation of motion of the modal coordinates is 

obtained in Eq. (4.73). 

.. .
22j j j j j j jy y y f                                                                                     (4.73) 

Where, jy is modal coordinate, j  is natural circular frequency of mode j, j is fraction of 

critical damping for mode j  and jf  is force in modal coordinates. Since j  represents any 

mode, Eq. (4.73) represents n  uncoupled equations in the n  unknowns jy . The jy  are 

converted back into geometric displacements { }u  (the system response to the loading) by 

using Eq. (4.55). That is, the individual modal responses jy  are superimposed to obtain 

the actual response, and hence the name “mode superposition.” 

For a steady sinusoidal vibration, jf  has the form: 

i t

j jcf f e           (4.74) 

where jcf  is the complex force amplitude and   is the imposed circular frequency. 

For Eq. (4.73) to be true at all times, jy  must have a similar form as jf , or 
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ti

jcj eyy            (4.75) 

where, 
jcy  is the complex amplitude of the modal coordinate for mode j . Differentiating 

Eq. (4.75), and substituting Eq. (4.74) and Eq. (4.75) into Eq. (4.73), 

  2 22i t i t i t i t

jc j j jc j jc jcy e i y e y e f e              (4.76) 

Collecting coefficients of jcy  and dividing by tie   

 2 22 j j j jc jci y f              (4.77) 

Solving for jcy , 

   2 2 2

jc

jc

j j j

f
y

i  


  
                                                                        (4.78)  

The contribution from each mode is give by Eq. (4.79) 

   j j jcC y                                                                                                 (4.79) 

where,  
jC  is the contribution of mode j  and  j  is the mode shape for mode j . 

Finally, the complex displacements are obtained from Eq. (4.55) as 

   
1

n

c j

j

u C


                                                                                                 (4.80) 

where,  cu  is the vector of complex displacements. 

 This chapter discusses the three analysis types involved in the FRF: their 

purpose, and to show a general formulation of the three analysis types. Three analysis 

types are used in the simulation: mode-frequency, spectrum, and harmonic. The ultimate 

purpose is to obtain the nodal complex displacements when a single point excitation force 

is applied at the opposite end to the support on the beam, plate, and cylinder. The order in 

which the analyses are described is also the order in which they are performed in the 
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simulation in order to achieve the required objective of the structure simulation. The next 

chapter applies the method to the beam, plate, and cylindrical shell; the modeling and 

simulation, numerical differentiation and integration, and the results are discussed.
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CHAPTER V 

MODELING AND SIMULATION 

 This chapter describes the process of providing a way to calculate the output 

charge of a thin piezoelectric film bonded to a shell structure. The method is applied to 

cases of a cylindrical shell structure, as well as a beam and plate for both generic and 

shaped piezoelectric films. In Chapters III and IV, different ANSYS verification manuals 

and analyses are discussed. This process is carried out using ANSYS Parametric Design 

Language or APDL for short. Techniques for creating the structure, specifying material 

properties, and specifying boundary conditions are specified. Also discussed are the 

analyses techniques, and the process of reading ANSYS displacement results in Matlab. 

Then, the process of numerical differentiation and integration is performed per the 

requirements of the sensor equation. The results are then discussed. 

5.1 ANSYS Parametric Design Language 

 More frequently referred to as APDL, is a scripting language which may be 

used in order to more easily create the desired structure in terms of parameters. Some of 

the commands include repeating a command, macros, if-then-else branching, do-loops, 

and scalar, vector, and matrix operations. In this analysis, commands are written in a 

separate program, commonly used is notepad, and simply either copy-and-pasted into the 

ANSYS command prompt, or by using the Read Input From option under the File tab. 

APDL can be understood as a macro language; one can record a frequently used sequence 

of ANSYS commands in a macro file. A macro enables the creation of custom ANSYS 
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commands. In addition to executing a series of ANSYS commands, a macro can call GUI 

functions or pass values into arguments. 

5.2 Beam Modeling 

 The method is first applied to a beam with characteristics as described below. The 

beam is modeled using ANSYS, and the simulation is performed to find the displacement 

field. Then, numerical differentiation and integration are performed on the displacements 

in Matlab and inputted into the beam sensor output charge equation as described in the 

previous chapters. The results are then discussed. 

Beam Modeling and Material Properties 

 The cantilevered beam is first created using APDL code. The shape of the beam 

is decided upon standard manufactured materials; the beam geometrical and material 

properties [21] are shown in Table 5.1. 

Table 5.1: Geometrical and Material Properties for Cantilevered Beam 

Parameter Value Units 

Length, L  0.3048 m  

Height, H  0.003175 m  

Width, B  0.0508 m  

Substrate Material 6061-T6 Aluminum - 

Mass density,   2700 3/Kg m  

Young‟s modulus, E  70E9 2mN
 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix C, the beam substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the beam substrate. 

1. Assigning of the required length, height, and width. 
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2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify REAL Constants 

5. Define number of nodes in the x  direction, as in Figure 5.1. 

6. Fill the nodes with elements as depicted in Figure 5.2. 

Only the beam substrate is being modeled and simulated, because the PVDF film does 

not affect the dynamic characteristics of the beam substrate, as described in Chapter II. 

 

Figure 5.1: Node Creation using APDL Code 

 

Figure 5.2: Element Creation using APDL Code 

Element Type 

 BEAM4 element is selected. The area moment of inertias are calculated in the 

APDL code outlined in Appendix C. The nodes are generated using the N command 

which defines a node in the order it was created. Then the E command is used to define 

an element by node connectivity; this is done for the initial line of nodes. The EGEN 

command is then used to create more elements from an existing pattern of elements. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the beam. Figure 5.3 shows the boundary conditions on the 
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FEA model. All nodes are selected as master degrees of freedom; however, this is not 

illustrated. The input for the command is in Appendix C. 

 

Figure 5.3: Clamped-Free Aluminum Beam 

5.3 Beam Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the beam substrate. The sequence of the analyses is Mode 

Frequency Analysis, Single Point PSD Spectrum Analysis, and Harmonic Response 

Analysis. A more in depth look at these analyses are presented in Chapter III. 

5.3.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free beam, the first three mode shapes are shown in Figures 

5.4, 5.5, and 5.6; the first occurring at a natural frequency of 28.057 Hz, the second mode 

shape occurring at a natural frequency of 175.81 Hz, and the third at 492.18 Hz. In mode 

frequency analysis, the first six modes are expanded and extracted, with a frequency 

range of 0 to 1600 Hz. A list of the modes at their respective frequencies is laid out in 

Table 5.2. 

 

Figure 5.4: First Mode Shape of Cantilevered Beam (28.057 Hz) 



82 

 

 

Figure 5.5: Second Mode Shape of Cantilevered Beam (175.81 Hz) 

 

Figure 5.6: Third Mode Shape of Cantilevered Beam (492.18 Hz) 

Table 5.2: Frequencies at the First Six Modes 

Mode Frequency (Hz) 

1 28.057 

2 175.81 

3 492.18 

4 964.19 

5 1593.3 

6 2378.9 

 

5.3.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Y-direction with a force of 600 N and the modal responses 

are combined using power spectral density mode combination method. The damping ratio 

is set to 0.02. Lastly, a one-sigma displacement solution output is written to the results 

file from the PSD analysis.  
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5.3.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 

analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 1600 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. In Figure 

5.7, the frequency response function (FRF) for the clamped-free beam is plotted. The first 

four modes are easily distinguishable, defined by the peaks; hence, they have a greater 

effect on the displacement response than the fifth and sixth modes which are not visible.  

 

 

Figure 5.7: FRF Plot of Clamped-Free Beam 
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5.4 Processing of ANSYS Results of Beam in Matlab 

 The next step is to gather all of the displacement information at each frequency 

which is done with the harmonic analysis. The information is written to a *.rfrq file 

which is an ANSYS output binary file. This information will be imported in Matlab, 

which requires this data to be in text (ASCII) form. The ANSYS DUMP command 

converts the binary data into ASCII data. The nodal displacements are listed in ascending 

node order and then in ascending frequency. The format for this is outlined in Appendix 

I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 

This file contains all the complex displacement for the beam for each node at each 

frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix D as are the other 

Matlab files for the beam, reads the „FRFResult.txt‟ file and places the complex 

displacements in the y direction into matrix format for all the nodes and 

frequencies. 

5. The complex displacements are used to calculate the magnitude displacement at 

each frequency.  
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6. A plot of the FRF of the beam substrate is illustrated in Figure 5.8. This figure is 

obtained through Matlab; it confirms that the displacements were successfully 

transferred from ANSYS and organized correctly. 

 

Figure 5.8: FRF Plot of Clamped-Free Beam 

7. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. 

8. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the beam. The end result is the shape 

of the sensor pictured in Figure 5.9.  
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Figure 5.9: Generic Film Shape for Beam 

  

Figure 5.10: Shaped Film for Beam 

9. Here, a generic shaped sensor, a sensor which covers the entire surface of the 

beam as depicted in Figure 5.9, is analyzed. The displacement frequency response 

of the clamped-free beam and sensor output charge for each frequency is plotted 

as in Figure 5.11 for the generic sensor output charge equation: 
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10. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figure 5.10. The displacement frequency response of the clamped-free beam and 

sensor output charge for each frequency is plotted as in Figure 5.12 for the sensor 

output equation with a shaping function: 
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Figure 5.11: Frequency Response of Beam vs. Generic Sensor Output Charge 

 Electric potential
 
   is equal to the electric potential energy of a charged particle, 

measured in joules, divided by the charge of the particle, measured in coulombs, which 

equates to joules per coulomb, or volts.
 

 Suffixes are commonly attached to the basic dB unit in order to indicate the 

displacement reference level against which the decibel measurement is taken. The units 

when plotting the FRF are frequency on the horizontal axis and displacement on the 

vertical axis, whereas the unit for the vertical axis for the sensor voltage FRF output 

charge is voltage, dBV. 
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Figure 5.12: Frequency Response of Beam vs. Shaped Sensor Output Charge 

 It can be shown in both Figure 5.11 and Figure 5.12 that the films can correctly 

capture the natural frequencies of the beam. 

5.5 Plate Modeling 

 The method is then applied to a plate with characteristics as described below. The 

plate is modeled using ANSYS, and the simulation is performed to find the displacement 

field. Then, numerical differentiation and integration are performed on the displacements 

in Matlab and inputted into the plate sensor output charge equation as described in 

previous chapters. The results are then discussed. 
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Plate Modeling and Material Properties 

 The cantilevered plate is first created using APDL code. The shape of the plate 

is decided upon standard manufactured materials; the plate geometrical and material 

properties [21] are shown in Table 5.3. 

Table 5.3: Geometrical and Material Properties for Cantilevered Plate 

Parameter Value Units 

Length, L  0.6096 m  

Height, H  0.381 m  

Width, B  0.0047625 m  

Substrate Material 6061-T6 Aluminum  

Mass density,   2700 3/Kg m  

Young‟s modulus, E  70E9 2mN
 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix E, the plate substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the plate substrate. 

1. Assigning of the required length, height, and width. 

2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify REAL Constants. 

5. Define number of nodes in the x  and y  directions, as in Figure 5.13. 

6. Fill the nodes with elements as depicted in Figure 5.14. 

Only the plate substrate is being modeled and simulated, because the PVDF film does not 

affect the dynamic characteristics of the plate substrate, as described in Chapter II. 
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Figure 5.13: Node Creation using APDL Code 

 

Figure 5.14: Element Creation using APDL Code 

Element Type 

 SHELL63 element is selected. The area moment of inertias are calculated in the 

APDL code outlined in Appendix E. The nodes are generated using the N command 

which defines a node in the order it is created. The NGEN command is then used to 
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create more nodes from a pattern of nodes; in this case, a line is copied and generated in a 

linear pattern. Then the E command is used to define an element by node connectivity; 

this is done for the initial line of nodes. The EGEN command is then used to create more 

elements from an existing pattern of elements. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the plate. Figure 5.15 shows the boundary conditions on the 

FEA model. All nodes are selected as master degrees of freedom; however, only in the Z 

direction. The input for the command is in Appendix E. 

 

Figure 5.15: Clamped-Free Aluminum Plate 

5.6 Plate Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the plate substrate. The sequence of the analyses is Mode 
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Frequency Analysis, Single Point PSD Spectrum Analysis, and Harmonic Response 

Analysis. A more in depth look at these analyses are presented in Chapter III. 

5.6.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free plate, the first four mode shapes are shown in Figures 

5.16, 5.17, 5.18, and 5.19; the first occurring at a natural frequency of 10.881 Hz, the 

second mode shape occurring at a natural frequency of 40.363 Hz, the third at 67.644 Hz, 

and the fourth at 134.34 Hz. In mode frequency analysis, the first six modes are expanded 

and extracted, with a frequency range of 0 to 250 Hz. A list of the modes at their 

respective frequencies is laid out in Table 5.4. 

 

Figure 5.16: First Mode Shape of Cantilevered Plate (10.881 Hz) 

 

Figure 5.17: Second Mode Shape of Cantilevered Plate (40.363 Hz) 
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Figure 5.18: Third Mode Shape of Cantilevered Plate (67.644 Hz) 

 

Figure 5.19: Fourth Mode Shape of Cantilevered Plate (134.34 Hz) 

Table 5.4: Frequencies at the First Six Modes 

Mode Frequency (Hz) Mode Shape 

1 10.881 

 

2 40.363 

 

3 67.644 
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Mode Frequency (Hz) Mode Shape 

4 134.34 

 

5 187.98 

 

6 221.46 

 

 

Table 5.5: Natural Frequency Convergence 

Number 

of 

Elements 

35 105 171 253 360 713 1457 1989 2961 

Mode 1 

Freq. 

(Hz) 

10.87 10.87 10.87 10.87 10.88 10.88 10.88 10.88 10.88 

2 44.77 42.84 41.80 41.14 40.36 39.62 39.26 39.05 38.91 

3 68.15 67.66 67.64 67.63 67.64 67.62 67.62 67.62 67.62 

4 147.7 141.6 138.5 136.6 134.3 132.1 131.1 130.5 130.1 

5 192.8 189.4 188.9 188.5 187.9 186.8 186.1 185.6 185.2 

6 273.3 250.1 237.7 230.1 221.4 213.7 210.3 208.4 207.2 

 

 It can be observed from Table 5.5 that at mode six, the natural frequency 

converges to 207 Hz. In this thesis, using 360 elements is a beneficial number for 

reducing computation time and an adequate number for the accuracy of the natural 

frequency of mode six; therefore, 360 elements are used in this thesis for the simulation 

of a clamped-free plate.
 

5.6.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Z-direction with a force of 50 N and the modal responses are 
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combined using power spectral density mode combination method. The damping ratio is 

set to 0.02. Lastly, a one-sigma displacement solution output is written to the results file 

from the PSD analysis.  

5.6.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 

analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 250 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. A plot of 

the FRF of the clamped-free plate is presented in Figure 5.20. The second and fourth 

modes are torsional; hence, they do not have as great of an effect as the bending modes, 

modes one and three, on the displacement response of the plate. 
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Figure 5.20: FRF Plot of Clamped-Free Plate  

5.7 Processing of ANSYS Results of Plate in Matlab 

 As was with the beam, the next step is to gather all of the displacement 

information at each frequency which is done with the harmonic analysis. The information 

is written to a *.rfrq file which is an ANSYS output binary file. This information will be 

imported in Matlab, which requires this data to be in text (ASCII) form. The ANSYS 

DUMP command converts the binary data into ASCII data. The nodal displacements are 

listed in ascending node order and then in ascending frequency. The format for this is 

outlined in Appendix I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 
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This file contains all the complex displacement for the plate for each node at each 

frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix F along with the 

subsequent Matlab files for the plate, reads the „FRFResult.txt‟ file and places the 

complex displacements in the z direction into matrix format for all the nodes and 

frequencies. 

5. The complex displacements for each individual node at each frequency are then 

combined to create a displacement magnitude. 

6. A plot of the FRF of the plate substrate is illustrated in Figure 5.21. This figure is 

obtained through Matlab; it confirms that the displacements were successfully 

transferred from ANSYS and organized correctly. 
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Figure 5.21: FRF Plot of Plate 

7. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. This is required for the sensor output charge equation. 

8. After finding the derivatives, the „PLATEreadcoord_02.m‟ file is run. This file 

reads the „NLIST.lis‟ file to extract the nodal coordinates of the plate. Running 

this file essentially gives a [16 x 25] matrix of the x or y coordinates of each node 

to be used as an input for the charge output equation. 

9. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the plate. The end result is the shape 

of the sensor pictured in Figure 5.22, also in matrix format, depicted in Figure 

5.23 for calculations. During calculations, the matrix represents the sensor shape 
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function  1 2,SW    in the sensor output charge equation for a plate. Unlike a 

shaped sensor, a generic sensor would still have this matrix, only it would be 

filled with all 1s, representing the shape of the sensor. The sensor shape function 

matrix gets multiplied by the corresponding second derivatives in the sensor 

output charge equation. Wherever there is a “1” means that the sensor is covering 

that location; conversely, wherever there is a “0” means that there is not a sensor 

at that location. 

  

Figure 5.22: Generic Film Shape for Plate 
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Figure 5.23: Shaped Film for Plate 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 

Figure 5.24: Shaped Film in Matrix Form

 

10. Here, a generic shaped sensor, a sensor which covers the entire surface of the 

plate as depicted in Figure 5.22, is analyzed. The displacement frequency 

response of the clamped-free plate and sensor output charge for each frequency is 

plotted as in Figure 5.25 for the generic sensor output charge equation: 
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11. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figure 5.23. The displacement frequency response of the clamped-free plate and 

sensor output charge for each frequency is plotted as in Figure 5.26 for the sensor 

output charge equation with a shaping function: 

 
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Figure 5.25: Frequency Response of Plate vs. Generic Sensor Output Charge 
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Figure 5.26: Frequency Response of Plate vs. Shaped Sensor Output Charge 

It can be shown in both Figure 5.25 and Figure 5.26 that the films can correctly 

capture the natural frequency of the plate. The discrepancies in resonant frequencies 

between the sensor output charge and the frequency response of the plate can be 

accounted for by the following explanation. The output charge equation integrates 

“strains” over the whole surface of the sensor; it is the summation of the derivatives of 

displacements. The displacement frequency response function shown on the figure only 

takes into account one point on the substrate; this point may not see certain modes. For 

instance, in the case of the beam in Figure 5.27, the particular point considered is a node 

and will not correctly capture the third mode of the beam. The sensor output charge 

equation, however, captures all the modes and therefore will show more modes than the 

substrate point considered. 
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Figure 5.27: Node on a Beam Example 

As an example, an accelerometer attached to the substrate at a node of a mode will not 

measure that mode, because it will remain “still” at excitation coinciding with that mode. 

In surface shaping sensor design, the objective is to design a sensor which monitors those 

modes which need to be controlled. Hence, the FRF of a point may show fewer modes 

than the FRF of the sensor output charge.  

5.8 Cylindrical Shell Modeling 

 Lastly, the method is applied to a cylindrical shell with characteristics as 

described below. The cylindrical shell is modeled using ANSYS, and the simulation is 

performed to find the displacement field. Then, numerical differentiation and integration 

are performed on the displacements in Matlab and inputted into the cylindrical shell 

sensor output charge equation as described in previous chapters. The results are then 

discussed. 

Shell Modeling and Material Properties 

 The cylindrical shell substrate is first created using APDL code. The shape of 

the cylinder is decided upon standard manufactured materials; the cylinder geometrical 

and material properties [21] are shown in Table 5.6. 

Table 5.6: Geometrical and Material Properties for Aluminum Cylindrical Shell 

Parameter Value  Units 

Length, L  0.3048 m  
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Parameter Value  Units 

Outside Radius,  R  0.022225 m  

Thickness,  bh  0.000889 m  

Substrate Material 6061-T6 Aluminum - 

Mass density,   2700 3/Kg m  

Young‟s modulus, E  68.9E9 2mN
 

Poisson ratio,    0.33 - 

 

Using the APDL code in Appendix G, the shell substrate is created in ANSYS. The 

APDL code follows the stepwise process below for the creation of the shell substrate. 

1. Assigning of the required length, radius, and thickness. 

2. Define frequency, number of load steps, force, and number of nodes to be used. 

3. Define element type and material properties. 

4. Specify cylindrical coordinates 

5. Define number of nodes in the z  direction and number of nodes in the   

direction, as in Figure 5.28. 

6. Fill the nodes with elements as depicted in Figure 5.29. 

Only the shell substrate is being modeled and simulated, because the PVDF film does not 

affect the dynamic characteristics of the shell substrate, as described in Chapter II. 

 

Figure 5.28: Node Creation using APDL Code 
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Figure 5.29: Element Creation using APDL Code 

Element Type and Meshing 

 SHELL63 element with bending and membrane element stiffness option is 

selected. The nodes are generated using the N command which defines a node in the 

order it is created. The NGEN command is then used to create more nodes from a pattern 

of nodes; in this case, a line is copied and generated in a circular pattern. Then the E 

command is used to define an element by node connectivity; this is done for the initial 

line of nodes. The EGEN command is then used to create more elements from an existing 

pattern of elements. This is how the mesh is created. 

Boundary Conditions 

 In order to simulate the clamped-free model, all the degrees of freedom are 

constrained on the left end of the shell. Figure 5.30 shows the boundary conditions on the 

FEA model. The input for the command is Appendix G. 

 

Figure 5.30: Clamped-Free Aluminum Cylindrical Shell 
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5.9 Cylindrical Shell Simulation 

 A series of analyses are carried out in a specific sequence in order to study the 

dynamic frequency response of the cylindrical shell substrate. The sequence of the 

analyses is Mode Frequency Analysis, Single Point PSD Spectrum Analysis, and 

Harmonic Response Analysis. A more in depth look at these analyses are presented in 

Chapter III. 

5.9.1 Mode Frequency Analysis 

 This analysis type is used for natural frequency and mode shape determination. 

For this particular clamped-free cylindrical shell, the first six mode shapes are shown in 

Figures 5.31, 5.32, 5.33, 5.34, 5.35, 5.36; the first and second occurring at a natural 

frequency of 452.46 Hz, the third and fourth mode shapes occurring at a natural 

frequency of 1247.6 Hz, and the fifth and sixth at 1550.7 Hz. It is noted that the first and 

second, third and fourth, and the fifth and sixth modes occur at the same frequency. In 

mode frequency analysis, the first six modes are expanded and extracted, with a 

frequency range of 0 to 1600 Hz, with the element calculation key turned OFF. A list of 

the modes at their respective frequencies is laid out in Table 5.7. 

 

Figure 5.31: First Mode Shape of Cantilevered Cylinder (452.46 Hz) 
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Figure 5.32: Second Mode Shape of Cantilevered Cylinder (452.46 Hz) 

 

Figure 5.33: Third Mode Shape of Cantilevered Cylinder (1247.6 Hz) 

 

 

Figure 5.34: Fourth Mode Shape of Cantilevered Cylinder (1247.6 Hz) 

 

 

 Figure 5.35: Fifth Mode Shape of Cantilevered Cylinder (1550.7 Hz) 
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Figure 5.36: Sixth Mode Shape of Cantilevered Cylinder (1550.7 Hz) 

Table 5.7: Frequencies at the First Six Modes 

Mode Frequency (Hz) 

1 452.46 

2 452.46 

3 1247.6 

4 1247.6 

5 1550.7 

6 1550.7 

 

5.9.2 Single Point PSD Spectrum Random Vibration Analysis 

 The next step after mode frequency analysis is to perform a spectrum analysis. 

The first six modes are included in the spectrum analysis to calculate element stresses. 

The model is excited in the Y-direction with a force of 200 N and the modal responses 

are combined using power spectral density mode combination method. The damping ratio 

is set to 0.02. Lastly, a one-sigma displacement solution output is written to the results 

file from the PSD analysis.  

5.9.3 Harmonic Response Analysis 

 The third analysis is harmonic response using the mode superposition method 

option which sums factored mode shapes to calculate the harmonic response. A harmonic 



109 

 

analysis is performed after a spectrum analysis. The frequency ranges from 1.0 to 1600 

Hz. The harmonic output option to print complex displacements as real and imaginary 

components is turned on, whereas the cluster option is turned off for uniform spacing of 

frequency solutions. These results are written in binary file *.rfrq format. This binary file 

contains all the displacement data for all the nodes at each frequency interval. A plot of 

the FRF of the clamped-free cylinder is presented in Figure 5.37. The third, fourth, fifth, 

and sixth modes are not purely bending; hence, they do not have as great of an effect as 

the purely bending modes, modes one and two, on the displacement response of the 

cylindrical shell. 

 

Figure 5.37: FRF Plot of Clamped-Free Cylindrical Shell  

5.10 Processing of ANSYS Results of Cylindrical Shell in Matlab 

 The next step is to gather all of the displacement information at each frequency 

which is done with the harmonic analysis. The information is written to a *.rfrq file 
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which is an ANSYS output binary file. This information will be imported in Matlab, 

which requires this data to be in text (ASCII) form. The ANSYS DUMP command 

converts the binary data into ASCII data. The nodal displacements are listed in ascending 

node order and then in ascending frequency. The format for this is outlined in Appendix 

I. 

Stepwise Method of Processing the *.rfrq Binary File Data in Matlab 

1. The ANSYS DUMP command is found in the GUI under Main Menu> List> 

Files> Binary Files, while choosing All Records to be listed and Entire Record of 

output per record. The file „file.rfrq‟ is selected, creating the „DUMP.txt‟ file. 

This file contains all the complex displacement for the cylindrical shell for each 

node at each frequency. 

2. The „FRFResult.txt‟ file is created from the DUMP.txt file starting after Record 8. 

3. An „NLIST.lis‟ file is saved, containing all the nodes and their coordinates. 

4. The „FRFProc_01.m‟ Matlab file, which is listed in Appendix H along with the 

subsequent Matlab files for the cylinder, reads the „FRFResult.txt‟ file and places 

the complex displacements in the x , y , and z  directions into matrix format for 

all the nodes and frequencies. However, only the top half of the shell is taken into 

account for ease of computation. 

5. The complex displacements for each individual node at each frequency are then 

combined to create a displacement magnitude. 

6. Then the „NLIST.lis‟ file is read into Matlab to give the node numbers in order 

and their coordinates.  
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7. Since the displacements are in Cartesian coordinates, they are first converted to 

cylindrical coordinates, and then consolidated into one matrix. These are then 

placed into “Shell Coordinates”, three different [21x21x250] matrices 

representing the shell as if it was laid out with displacements of each node at each 

frequency. A plot of the FRF of the cylindrical shell substrate is illustrated in 

Figure 5.38. This figure is obtained through Matlab; it confirms that the 

displacements were successfully transferred from ANSYS and organized 

correctly. The plot illustrates the proposed assumption that the transverse 

direction exhibits a much greater displacement than that of the other two 

directions. Displacement in the X direction is negligible, whereas displacement in 

the Z is less than 22 % of that in the Y at the first mode, 10 % at the second mode, 

and negligible at the third mode. 

  

Figure 5.38: FRF Plot of the Cylindrical Shell 
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8. The „DisplDerivative_02.m‟ file is then run in order to obtain the required first 

derivatives and second derivatives of displacement with respect to the required 

direction. 

9. After finding the derivatives, the „Film_Shape_03.m‟ file is run. This file 

basically lists the attributes of the sensor and the cylindrical shell. The end result 

is the shape of the sensor pictured in Figure 5.40, also in matrix format, depicted 

in Figure 5.41 for calculations. During calculations, the matrix represents the 

sensor shape function  1 2,SW    in the sensor output charge equation for a 

cylindrical shell. Unlike a shaped sensor, a generic sensor would still have this 

matrix, only it would be filled with all 1s, representing the shape of the sensor. 

The sensor shape function matrix gets multiplied by the corresponding second 

derivatives in the sensor output charge equation. Wherever there is a “1” means 

that the sensor is covering that location; conversely, wherever there is a “0” 

means that there is not a sensor at that location. 

  

Figure 5.39: Generic Film Shape for Cylindrical Shell 
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Figure 5.40: Shaped Film for Cylindrical Shell 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 

Figure 5.41: Film Shape in Matrix Form 

10. Figure 5.39 shows a generic shaped sensor, a sensor which covers the entire 

surface of the cylindrical shell, is analyzed. The displacement frequency response 

of the clamped-free cylindrical shell and sensor output charge for each frequency 
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11. Running „SensorOutput_Shaped_05.m‟ analyzes the sensor shaped like that of 

Figures 5.40 and utilizes the values in Figure 5.41 in its calculations. The 

displacement frequency response of the clamped-free cylindrical shell and sensor 
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charge equation with a shaping function: 

 
2

31
31 2

33

2

32 2 2 2 2

( , ) ,
e

s
S sz R

S ze S

s s eR R

e h u u
z W z e r

e S z z

u uu u
e r r dS

R R R R

 
 

  

  

    
   

   

    
     

    


. 

 Here, the graphs of the displacement frequency response of the clamped-free 

cylindrical shell and sensor output charge for each frequency of the generic sensor and 

the shaped sensor are shown.  

 

Figure 5.42: Frequency Response of Shell vs. Generic Sensor Output Charge 
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Figure 5.43: Frequency Response of Shell vs. Shaped Sensor Output Charge 

It can be observed in both Figure 5.42 and Figure 5.43 that the films can correctly 
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sensor output charge equation, however, captures all the modes and therefore will show 

more modes than the substrate point considered. As an example, an accelerometer 

attached to the substrate at a node of a mode will not measure that mode, because it will 

remain “still” at excitation coinciding with that mode. In surface shaping sensor design, 

the objective is to design a sensor which monitors those modes which need to be 

controlled. Hence, the FRF of a point may show fewer modes than the FRF of the sensor 

output charge.  

5.11 Conclusions and Future Scope 

Conclusions 

 This work shows that a mix of finite element and numerical differentiation and 

integration methods can be used in order to calculate the output charge of a thin 

piezoelectric film bonded to a shell structure. The method was applied to cases of a 

cylindrical shell structure, as well as a beam and plate for both the generic and shaped 

piezoelectric film. The method can be applied to cases where the required input variables 

such as film shape and shell vibration profile are in discrete form. Therefore, 

experimentally obtained input variables can be used with the herein described method to 

calculate the piezoelectric film output charge and thus, design a sensor for desired output.  

The results indicate that sensor output captures the behavior of the structures as far as the 

modes are concerned. The proposed method can be applied to calculate the output charge 

of films attached to complex structures or structures with complex boundary conditions. 

This can also be applied in cases where close form equations cannot be derived and the 

only data available are discrete or experimental. Moreover, in sensor design applications 



117 

 

where the film is often shaped so that its output charge corresponds to a specific 

structural dynamic property, the proposed method greatly simplifies the design process. 

Future Scope 

 After the simulation of the beam, plate, and cylindrical shell and finding the 

output charge of their sensors, the next step would be to develop an actuator and use it in 

the same control system as the sensor. After that, an experiment should be performed to 

verify the findings. A possible change could be to apply the method to more complex 

structures, and a possible improvement could be to use an increased number of nodes for 

all three structures for increased resolution; this may decrease errors in numeric 

computing.  
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APPENDIX A 

ANSYS INPUT LOG FILE FOR VM19 

/COM,ANSYS MEDIA REL. 120 (02/19/2009) REF. VERIF. MANUAL: REL. 120 

/VERIFY,VM19 

/PREP7 

/TITLE, VM19, RANDOM VIBRATION ANALYSIS OF A DEEP SIMPLY-

SUPPORTED BEAM 

/COM REFERENCE:  NAFEMS FORCED VIBRATION BENCHMARKS TEST 5R 

ET,1,BEAM4                         ! DEFINE ELEMENT TYPE 

MP,EX,1,200E9                      ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.3 

MP,ALPX,1,0.1E-5 

MP,DENS,1,8000 

R,1,4,1.333,1.333,2,2,0            ! DEFINE REAL CONSTANTS 

RMORE,0,2.2496,1.177,1.177 

N,1,0 

N,11,10 

FILL 

E,1,2 

EGEN,10,1,1 

FINISH 
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/SOLU 

ANTYPE,MODAL                       ! DEFINE ANALYSIS TYPE 

MXPAND,9,,,YES                     ! EXPAND 9 MODES, CALC. STRESS VALUES 

MODOPT,REDUC 

D,1,UX,0,0,1,1,UY,UZ,ROTX          ! APPLY CONSTRAINTS 

D,11,UY,0,0,11,1,UZ 

M,2,UY,10,1 

SOLVE 

*GET,FREQ,MODE,1,FREQ 

FINISH 

/COPY,,tri,,mode,tri 

/SOLU 

ANTYPE,SPECTR                      ! PREFORM SPECTRUM PSD ANALYSIS 

SPOPT,PSD,9,ON                     ! CALC. STRESS RESPONSE FOR FIRST 9 MODES 

PSDUNIT,1,FORCE 

DMPRAT,0.02 

F,1,FY,-0.5E6                      ! SCALE LOADS 

F,11,FY,-0.5E6 

F,2,FY,-1E6,,10,1 

PSDFRQ,1,1,0.1,70. 

PSDVAL,1,1,1                       ! IN N**2/HZ 

PFACT,1,NODE 

PSDRES,DISP,REL 
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PSDCOM  

SOLVE 

FINISH 

 

/POST26 

STORE,PSD,10 

NSOL,2,6,U,Y 

RPSD,8,2 

PRTIME,42.640,42.641 

PRVAR,8 

*GET,P1,VARI,8,RTIME,42.64 

PM=P1*1000000 

FINISH 

 

/POST26 

STORE,PSD,10 

ESOL,3,5,6,LS,7   

RPSD,9,3 

PRTIME,42.640,42.641 

PRVAR,9 

*GET,P2,VARI,9,RTIME,42.64 

PM2=P2/(1E12) 

*DIM,LABEL,CHAR,3,2 
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*DIM,VALUE,,3,3 

LABEL(1,1) = 'FREQ1','PEAK d','PSD(N/mm' 

LABEL(1,2) = ' (Hz)',' mm^2/Hz','^2)^2/Hz' 

*VFILL,VALUE(1,1),DATA,42.65,180.9,58515.6 

*VFILL,VALUE(1,2),DATA,FREQ,PM,PM2 

*VFILL,VALUE(1,3),DATA,ABS(FREQ/42.65) ,ABS(PM/180.9 ),ABS(PM2/58515.6 ) 

FINISH 

/COM 

/OUT,vm19.vrt 

/COM,------------------- VM19 RESULTS COMPARISON --------------------- 

/COM, 

/COM,                 |   TARGET   |   ANSYS   |   RATIO 

/COM, 

*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3) 

(1X,A8,A8,'   ',F10.2,'  ',F10.2,'   ',1F5.2) 

/COM,----------------------------------------------------------------- 

/COM, 

/COM,----------------------------------------------------------------- 

/COM,NOTE: THERE ARE VERIFIED RESULTS IN VM19 NOT CONTAINED IN 

/COM,THIS TABLE 

/COM,----------------------------------------------------------------- 

/OUT 

*LIST,vm19.vrt 
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APPENDIX B 

ANSYS INPUT LOG FILE FOR VM203 

/VERIFY,VM203    

/PREP7 

/TITLE, VM203, DYNAMIC LOAD EFFECT ON SIMPLY-SUPPORTED THICK 

SQUARE PLATE 

/COM REFERENCE: NAFEMS FORCED VIBRATION BENCHMARKS, TEST 21R 

C***          USING SHELL281 ELEMENTS 

ET,1,SHELL281            ! DEFINE ELEMENT TYPE 

SECTYPE,1,SHELL 

SECDATA,1,1,0,5       ! THICKNESS 

MP,EX,1,200E9                ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.3 

MP,ALPX,1,0.1E-5 

MP,DENS,1,8000 

N,1,0,0,0                    ! DEFINE MODEL 

N,9,0,10,0 

FILL 

NGEN,5,40,1,9,1,2.5 

N,21,1.25,0,0 

N,29,1.25,10,0 



124 

 

FILL,21,29,3 

NGEN,4,40,21,29,2,2.5 

EN,1,1,41,43,3,21,42,23,2 

EGEN,4,2,1 

EGEN,4,40,1,4 

FINISH 

SAVE,MODEL 

*CREATE,SOLVIT,MAC 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,16,,,YES 

SFE,ALL,,PRES,,-1E6          ! PRESS LOAD OF 1000,000 N/M**2 

D,ALL,UX,0,,,,UY,ROTZ        ! APPLY CONSTRAINTS 

D,1,UZ,0,0,9,1,ROTX 

D,161,UZ,0,0,169,1,ROTX 

D,1,UZ,0,0,161,20,ROTY 

D,9,UZ,0,0,169,20,ROTY 

NSEL,S,LOC,X,.1,9.9 

NSEL,R,LOC,Y,.1,9.9 

M,ALL,UZ                      ! SELECT MASTERS 

NSEL,ALL 

SOLVE 
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*GET,F,MODE,1,FREQ 

FINISH 

/SOLU 

/TITLE, VM203, RANDOM VIBRATION , RESPONSE TO UNIFORM PSD FORCE 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,2,ON                ! USE FIRST 2 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,PRES                ! DEFINE TYPE OF PSD AS A PRESSURE SPECTRUM  

DMPRAT,0.02 

PSDFRQ,1,1,1.0,80.0 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

SFEDELE,ALL,,PRES,, 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

PLNSOL,U,Z 

PRNSOL,U,Z 
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L2=NODE(2,8,0)   

*GET,SIGEL2,NODE,L2,S,EQV    

NSEL,,NODE,,L2 

PRNSOL,S,COMP 

NSEL,ALL 

FINISH 

/SOLUTION 

ANTYPE,HARMIC                ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP                   ! USING MODE SUPERPOSITION HARMONIC 

ANALYSIS 

HROUT,OFF,ON                 ! PRINT AMPLITUDE & PHASE, CLUSTER 

FREQUENCIES 

KBC,1 

HARFRQ,1,80 

DMPRAT,0.02 

NSUBSTEP,10 

SOLVE 

FINISH 

/POST26 

FILE,,rfrq 

PRCPLX,1 

NSOL,2,85,U,Z 

PSDDAT,6,1,1.0,80,1.0 
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PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 

*DIM,LABEL,CHAR,2,2 

*DIM,VALUE,,2,3 

LABEL(1,1) = 'f ','PSD ' 

LABEL(1,2) = 'Hz','SQmmS/Hz' 

*VFILL,VALUE(1,1),DATA,45.9,3.4018E-3 

*VFILL,VALUE(1,2),DATA,F,P 

*VFILL,VALUE(1,3),DATA,ABS(F/45.9),ABS(P/(3.4018E-3)) 

FINISH 

*END 

SOLVIT 

SAVE,TABLE_1 

/NOPR 

RESUME,TABLE_1 

/COM 

/OUT,vm203,vrt 
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/COM,------------------- VM203 RESULTS COMPARISON -------------- 

/COM, 

/COM,                 |   TARGET   |   ANSYS   |   RATIO 

/COM, 

/COM, SHELL281 

/COM, 

*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3) 

(1X,A8,A8,'   ',F11.6,'  ',F11.6,'   ',1F6.3) 

/COM, 

/COM, 

/COM,----------------------------------------------------------- 

/COM, 

/OUT 

FINISH 

*LIST,vm203,vrt 

/DELETE,MODEL 

/DELETE,SOLVIT,MAC 

/DELETE,TABLE_1 
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APPENDIX C 

ANSYS INPUT LOG FILE FOR SIMULATION OF BEAM 

 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'j:\BeamPSD Verify' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

! INCHES TO METRIC 

*set,L,12*2.54/100 

*set,H,1/8*2.54/100 

*set,B,2*2.54/100 

*set,MYFRQ,1600 

*set,MyLoadStep,500 

*set,MYFORCE,-600 

*set,NODES,251 

A=B*H 

Izz=B*H**3/12 

Iyy=H*B**3/12 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,BEAM4                         ! DEFINE ELEMENT TYPE 

MP,EX,1,70E9                      ! DEFINE MATERIAL PROPERTIES 

MP,NUXY,1,0.33 

MP,DENS,1,2710 

R,1,A,Izz,Iyy,H,B,0            ! DEFINE REAL CONSTANTS 

 

! Geometry: 

!---------- 

N,1,0 

N,NODES,L 

FILL 

E,1,2 
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EGEN,NODES-1,1,1    !Generates elements from an existing pattern 

including pattern 

 

! BC and master nodes: 

!--------------------- 

D,1,ALL ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

M,ALL,UY, , , ! Define Master DOFs 

NSEL,ALL ! Reselect all nodes 

FINISH 

   

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,6,,,YES 

NSEL,ALL 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,4,ON                ! USE FIRST 4 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

F,2,FY,MYFORCE 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

PLNSOL,U,Y !Displays results as continuous contours. 

PRNSOL,U,Y !Prints the nodal solution results. 

FINISH 

 

/SOLUTION 
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ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP               ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLOadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

NSOL,2,NODES,U,Y 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 
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APPENDIX D 

MATLAB CODE FOR BEAM 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=500; 

Wy = fopen('FRFResult2.txt','r'); 

%junk1=fscanf(Wy,'%s',2651); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:102 % 102 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',26); 

end 

% Extract frequency 

for i=1:LoadStep 
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Freq(i)=RawData(101,1,i); 

end 

  

% Extract UY with column per load  

for j=1:LoadStep 

    RawDataV1=RawData(1:100,:,j)'; 

    RawDataV(:,j)=RawDataV1(:); 

end 

% Extract UY  per load  

for j=1:LoadStep 

    k=0; 

    for i=1:2:499 

        k=k+1; 

        UyReal=RawDataV(i,j); 

        UyIm=RawDataV(i+1,j); 

        Uy(:,k,j)=[UyReal;UyIm]; 

    end 

end 

% Check 

for j=1:LoadStep 

    Uplot(:,j)=Uy(:,250,j); %Last node 250 

    UplotMag(j)=sqrt(Uplot(1,j)^2+Uplot(2,j)^2); 

end 
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% Create U of magnitude 

for j=1:500 

    for i=1:250 

        Um(1,i,j)=sqrt(Uy(1,i,j)^2+Uy(2,i,j)^2); 

    end 

end 

save DispData Uy Um Freq UplotMag 

plot(Freq,UplotMag) 

title('FRF Plot of Clamped-Free Beam') 

legend('Beam Displacement') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (db/1mm)') 

 

DisplDerivative_02.m Matlab Code 

clc 

clear all 

% 

load DispData 

N=size(Uy); 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 
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for j=1:N(3) 

    tmp1(1,2:251)=Um(1,:,j); 

    Dpp(1,:,j)=diff(tmp1,2,2)/dx; 

end 

% 

save DisplDerivative Dpp Freq UplotMag 

 

Film_Shape_03.m Matlab Code 

close all 

clear all 

clc 

% 

hb=1/8*2.54/100; 

hs=28e-6; 

e31=7.25; 

b=2*2.54/100; 

L=12*2.54/100; 

k=-b/(2*e31*(hb+hs)); 

dx=L/250; 

x=0:dx:L;  

N=length(x); 

  

Fones=ones(N,1); 
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F=Fones*b/2; 

%Fs=k*(x-L).^2;   

Fs=k*(x.^2-L*x); 

save FilmShape F Fs e31 hb hs  

plot(x,Fs,x,-Fs) 

title('Shaped Film for Beam') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b/2 b/2]) 

  

%plot(x,F,x,-F) 

%title('Generic Film Shape for Beam') 

xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b/2 b/2]) 

 

SensorOutput_Generic_04 

close all 

clear all 

clc 

% 
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load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 

N=size(Dpp); 

F=F(1:end-2); 

NewCoord=x(1:end-2); 

for j=1:500 

   Itmp=-e31*(hs+hb)*F'.*Dpp(1,:,j); 

   q(j)=trapz(Itmp,NewCoord); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(1e1*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Beam vs. Generic Sensor Output Charge') 

xlabel('Frequency (Hz)') 
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legend('Beam Frequency Response','Sensor Output Charge') 

axis square 

 

SensorOutput_Shaped_05.m Matlab Code 

close all 

clear all 

clc 

% 

load DisplDerivative 

load FilmShape 

L=12*2.54/100; 

dx=L/250; 

x=0:dx:L;  

% 

N=size(Dpp); 

Fs=Fs(1:end-2); 

%Fones=ones(249,1); 

NewCoord=x(1:end-2); 

for j=1:500 

   Itmp=-e31*(hs+hb)*Dpp(1,:,j);  

   %Itmp=-e31*(hs+hb)*Fs.*Dpp(1,:,j); 

   q(j)=trapz(Itmp,NewCoord); 

end 
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% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(.22*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Beam vs. Shaped Sensor Output Charge') 

xlabel('Frequency (Hz)') 

legend('Beam Frequency Response','Sensor Output Charge') 
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APPENDIX E 

ANSYS INPUT LOG FILE FOR SIMULATION OF PLATE 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'j:\PlatePSD Verify' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

*set,H,15*2.54/100 

*set,L,24*2.54/100 

*set,B,3/16*2.54/100 

*set,MYFRQ,250 

*set,MyLoadStep,500 

*set,MYFORCE,-50 

*set,NODES,400 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,SHELL63   ! Element Type 

MP,EX,1,70E9    ! Young's Modulus 

MP,PRXY,1,0.33    ! Poisson's Ratio 

MP,DENS,1,2710    ! Density 

R,1,B,B,B,B,0,0,    ! Thickness 

 

! Geometry: 

!---------- 

N,1,0,0,0 

N,25,L,0,0 

FILL 

NGEN,16,25,1,25,1,,H/16 

EN,1,1,2,27,26 

EGEN,24,1,1 

EGEN,15,25,1,25 

 

! BC and master nodes: 
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!--------------------- 

D,1,ALL,,,376,25 ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

M,ALL,UZ, , , ! Define Master DOFs 

NSEL,ALL ! Reselect all nodes 

FINISH 

 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,REDUC 

MXPAND,6,,,YES 

NSEL,ALL 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,6,ON                ! USE FIRST 6 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

! 

F,200,FZ,MYFORCE 

! 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

! 

PLNSOL,U,Z !Displays results as continuous contours. 

PRNSOL,U,Z !Prints the nodal solution results. 

! 

FINISH 

 

/SOLUTION 
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ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP               ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLoadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

! 

NSOL,2,110,U,Z 

! 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 
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APPENDIX F 

MATLAB CODE FOR PLATE 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=500; 

Wy = fopen('FRFResult.txt','r'); 

%junk1=fscanf(Wy,'%s',2651); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:155 % 303 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',29); 

end 

% extract frequency 

for i=1:LoadStep 
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    Freq(i)=RawData(154,4,i); 

end 

% Extract UZ with column per load  

for j=1:LoadStep 

    RawDataV1=RawData(1:154,:,j)'; 

    RawDataV(:,j)=RawDataV1(:); 

end 

% Extract UZ  per load  

for j=1:LoadStep 

    k=0; 

    for i=1:2:768 

        k=k+1; 

        UzReal=RawDataV(i,j); 

        UzIm=RawDataV(i+1,j); 

        Uz(:,k,j)=[UzReal;UzIm]; 

    end 

end 

% Check 

for j=1:LoadStep 

    Uplot(:,j)=Uz(:,200,j); % at node 200 

    UplotMag(j)=sqrt(Uplot(1,j)^2+Uplot(2,j)^2); 

end 

% Create U of magnitude 
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for j=1:500 

    for i=1:384 

        Um(1,i,j)=sqrt(Uz(1,i,j)^2+Uz(2,i,j)^2); 

    end 

end 

% Place Um in Plate Coordinates 

Umt=zeros(16,24,500); %16 by 24 nodes, subtracted left end due to constraints 

j=16;k=24; 

 while j>=1 

       ii=1:500; 

       Umt(j,:,ii)=Um(:,k-23:k,ii); 

       k=k+24; 

       j=j-1; 

 end 

  

save DispData Uz Umt Freq UplotMag 

plot(Freq,UplotMag) 

title('FRF Plot of Plate') 

legend('Plate Displacement') 

xlabel('Frequency (Hz)') 

ylabel('Displacement (db/1mm)') 

 

DisplDerivative_02.m Matlab Code 
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close all 

clear all 

clc 

 % 

load DispData 

N=size(Umt); 

L=24*2.54/100; 

dx=L/24; 

x=0:dx:L;  

H=15*2.54/100; 

dy=H/15; 

y=0:dy:H; 

% 2nd Derivatives 

NewD=zeros(16,25,500); 

NewD(:,2:end,:)=Umt(:,:,:); % add constrained end of plate 

for j=1:N(3) 

[X,Y]=gradient(NewD(:,:,j)); 

[XX,Junk1]=gradient(X/dx); 

[Junk2,YY]=gradient(Y/dy); 

end 

save DisplDerivative XX YY NewD Freq UplotMag N X Y dx dy 
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PLATEreadcoord_02.m Matlab Code 

close all 

clear all 

clc 

 

% 

% Data 

NumberOfPoint=400;%From ANSYS file *DO LOOP ON  

%PARAMETER= ICOUNT FROM  0.0000     TO  400.00 

%Tf=20; %Must be bigger than the final time from ANSYS file 

Np=0; 

k=0; 

kk=1; 

jj=1; 

%  

Wy = fopen('NLIST.lis','r'); 

junk1=fscanf(Wy,'%s',16); 

while Np < NumberOfPoint  

    for j=1:20 

        if Np < NumberOfPoint  

            k=k+1; 

            CoTmp=fscanf(Wy,'%g',[1 4]); 

            Coord(k,:,kk)=CoTmp; 
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            Np=Coord(k,1); 

        end 

    end 

    junk2=fscanf(Wy,'%s',4);  

end 

fclose(Wy); 

% For Dxx 

NewCoordx=zeros(16,25); 

j=16;k=25; 

 while j>=1 

       NewCoordx(j,:)=Coord(k-24:k,2); 

       k=k+25; 

       j=j-1; 

 end 

% For Dyy  

NewCoordy=zeros(16,25); 

 j=1;k=25; 

 while j<=16 

       NewCoordy(j,:)=Coord(k-24:k,3); 

       k=k+25; 

       j=j+1; 

 end 

save PLATECoord NewCoordx NewCoordy Coord 
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Film_Shape_03.m Matlab Code 

close all 

clear all 

clc 

% 

load PLATECoord 

load DisplDerivative 

  

%Calculate Film Shape Outline 

hb=3/16*2.54/100; 

hs=50e-6; 

e31=9.65; 

L=24*2.54/100; 

b=15*2.54/100/2; 

k=-b/(2*e31*(hb+hs)); 

dx=L/24; 

x=0:dx:L; 

F=k*(x.^2-L*x); 

plot(x,F,x,-F) 

%title('Shaped Film for Plate') 

%xlabel('Length (m)') 

%ylabel('Width (m)') 
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%Create Film on Plate 

y=b:-b/7.5:-b; 

for i=1:25 

    Y(:,i)=y; 

end 

W=ones(16,25); 

for j=1:25 

    for k=1:16 

        if F(1,j)' < Y(k,j) 

            W(k,j)=0; 

        end 

        if -F(1,j)' > Y(k,j) 

            W(k,j)=0; 

        end 

    end 

end 

save FilmShape e31 hb hs F y Y W 

 % 

Fones=ones(25,1); 

F1=Fones*b; 

 % 

plot(x,F1,x,-F1) 

title('Generic Film Shape for Plate') 
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xlabel('Length (m)') 

ylabel('Width (m)') 

axis equal 

axis([0 L -b b]) 

 

SensorOutput_Generic_04 

close all 

clear all 

clc 

% 

load PLATECoord 

load DispData 

load DisplDerivative 

load FilmShape 

L=24*2.54/100; 

dx=L/24; 

x=0:dx:L;  

H=15*2.54/100; 

dy=H/15; 

y=0:H/24:H; % needs to be <1x24> to match dx 

% 

N=size(NewD); 

Xt=X'; Yt=Y; % Use with trapz 



152 

 

X=Xt(:,1); Y=Yt(1,:); % Use with trapz 

Fnew=ones(16,25); 

%Fnew or NewCoordy or else? 

for i=1:500 

    [X1,Y1]=gradient(NewD(:,:,i)); 

    [XX,Junk1]=gradient(X1/dx); 

    [Junk2,YY]=gradient(Y1/dy); 

    [Yn,Xn]=meshgrid(Y,X); 

    Itmp=-e31*(hs+hb)*Fnew'*(XX+YY); % XX = d^2F/dx^2 and YY = d^2F/dy^2 

    %Y2=[0 .005 .01 .015 .02 .025 .03 .035 .04 .045 .05 .055 .06 .065 .07 .075 .08 .085 .09 

.095 .1]; 

    X2=[0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2]; 

    %q(i)=trapz(Y2,trapz(X',Itmp.').'); % Y2 needs to be [1 x 21] vector 

    q(i)=trapz(y,trapz(NewCoordx(1,:),Itmp).'); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(3*q/1e-3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Plate vs. Generic Sensor Output Charge') 
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xlabel('Frequency (Hz)') 

legend('Plate Frequency Response','Sensor Output Charge') 

 

SensorOutput_Shaped_05.m Matlab Code 

close all 

clear all 

clc 

% 

load PLATECoord 

load DispData 

load DisplDerivative 

load FilmShape 

L=24*2.54/100; 

H=15*2.54/100/2; 

dx=L/24; 

x=0:dx:L;  

dy=H/24; 

y=0:dy:H; 

% 

for i=1:500 

    [X1,Y1]=gradient(NewD(:,:,i)); 

    [XX,Junk1]=gradient(X1/dx); 

    [Junk2,YY]=gradient(Y1/dy); 
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    [Yn,Xn]=meshgrid(Y,X); 

    Itmp=-e31*(hs+hb)*W'*(XX+YY); % XX = d^2F/dx^2 and YY = d^2F/dy^2 

    q(i)=trapz(y,trapz(x,Itmp).'); 

end 

% 

[ax,h1,h2]=plotyy(Freq,20*log10(UplotMag/1e-3),Freq,20*log10(1e1*q/1e-

3),'plot','plot'); 

set(h1,'color','red'); 

set(h2,'color','blue','linestyle','+'); 

set(get(ax(1), 'Ylabel'), 'String', 'Displacement (dB/1mm)'); 

set(get(ax(2), 'Ylabel'), 'String', 'Voltage (dBV)'); 

grid 

title('Frequency Response of Plate vs. Shaped Sensor Output Charge') 

xlabel('Frequency (Hz)') 

legend('Plate Frequency Response','Sensor Output Charge') 
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APPENDIX G 

ANSYS INPUT LOG FILE FOR SIMULATION OF CYLINDER 

FINISH 

/CLEAR,ALL 

/CONFIG, NRES, 15000 ! Maximum number of results sets(subsets) allowed on the 

results file. 

/CWD,'f:\ShellPSD Verify2' 

/TITLE, Dynamic Analysis 

/PREP7 

 

! Define variables for problem: 

!------------------------------ 

! INCHES TO METERS 

*set,R,1.715/2*2.54/100 

*set,Z,12*2.54/100 

*set,B,0.035*2.54/100 

*set,MYFRQ,1600 

*set,MyLoadStep,250 

*set,MYFORCE,-200 

*set,NODES,861 

 

! Define elements and material properties: 

!----------------------------------------- 

ET,1,SHELL63   ! Element Type 

MP,EX,1,68.9E9    ! Young's Modulus 

MP,PRXY,1,0.33    ! Poisson's Ratio 

MP,DENS,1,2700    ! Density 

R,1,B,B,B,B,0,0,    ! Thickness 

 

! Geometry: 

!---------- 

CSYS,1 ! Cylindrical Coordinates 

N,1,R,0,0 

N,21,R,0,Z 

FILL 

NGEN,41,21,1,21,1,,90/10 

EN,1,1,2,23,22 

EGEN,20,1,1 

EGEN,40,21,1,21 
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! Boundary Conditions: 

!--------------------- 

D,1,ALL,,,841,21 ! Constrain left end 

NSEL,S,,,1,NODES, ! select nodes 1 - LAST 

NSEL,ALL ! Reselect all nodes 

 

NUMMRG,NODE 

FINISH 

 

/SOLU 

ANTYPE,MODAL                 ! DEFINE ANALYSIS TYPE AS MODAL VIBRATION 

MODOPT,LANB,1500,0,MYFRQ, ,OFF 

EQSLV,SPAR 

MXPAND,6,,,0 

LUMPM,0  

PSTRES,0 

!OUTRES,NSOL,ALL 

!MODOPT,LANB,6,0,750, ,OFF 

SOLVE    

FINISH   

 

/POST1   

SET,LIST  !List mode frequencies  

!rsys,1 

 

/SOLU 

ANTYPE,SPECTR                 ! DEFINE ANALYSIS TYPE 

SPOPT,PSD,6,ON               ! USE FIRST 6 MODES, CALC ELEM. STRESSES 

PSDUNIT,1,FORCE               ! DEFINE TYPE OF PSD AS A FORCE SPECTRUM  

DMPRAT,0.02        ! DMPRAT, RATIO 

F,231,FY,MYFORCE 

PSDFRQ,1,1,1.0,MYFRQ 

PSDVAL,1,1.0,1.0              ! IN N**2/HZ 

LVSCALE,1                     ! USE AND SCALE THE LOAD VECTOR GENERATED 

AT MODAL ANALYSIS 

PFACT,1,NODE        ! Calculates participation factors 

PSDRES,DISP,REL 

PSDCOM 

SOLVE 

FINISH 

 

/POST1 

SET,3,1                       ! ONE SIGMA DISPLACEMENT SOLUTION RESULTS 

/VIEW,1,2,3,4 

!rsys,1 

! 
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!PLNSOL,U,X !Displays results as continuous contours. 

!PRNSOL,U,X !Prints the nodal solution results. 

! 

PLNSOL,U,Y !Displays results as continuous contours. 

PRNSOL,U,Y !Prints the nodal solution results. 

! 

!PLNSOL,U,Z !Displays results as continuous contours. 

!PRNSOL,U,Z !Prints the nodal solution results. 

! 

FINISH 

 

/SOLUTION 

ANTYPE,HARMIC       ! REDEFINE ANALYSIS TYPE AND SOLVE AGAIN  

HROPT,MSUP              ! USING MODE SUPERPOSITION HARMONIC ANALYSIS 

HROUT,ON,OFF           ! PRINT AMPLITUDE & PHASE, CLUSTER FREQUENCIES 

KBC,1 

HARFRQ,1,MYFRQ 

DMPRAT,0.02 

NSUBST,MyLoadStep 

SOLVE 

FINISH 

 

/POST26 

FILE,,rfrq 

PRCPLX,0 !Defines the output form for complex variables 

! 

NSOL,2,410,U,Y !!!!!!!!!!!!!!!!!!X or Y, node number, 

! 

PSDDAT,6,1,1.0,MYFRQ,1.0 

PSDTYP,2 

PSDCAL,7,2 

PSDPRT 

PRVAR,2,7 

*GET,P,VARI,7,EXTREM,VMAX 

*STATUS,PARM 

/AXLAB,Y,PSD  (M^2/HZ) 

PLVAR,7 

/GROPT,VIEW,ON 
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APPENDIX H 

MATLAB CODE FOR CYLINDER 

FRFProc_01.m Matlab Code 

clc 

clear all 

close all 

%  

% Data 

LoadStep=250; 

NumberOfPoints=441; %Actually 861 nodes,  

                    %21 overlap @ 0 and 360 degrees 

Wy = fopen('FRFResult.txt','r'); 

for j=1:LoadStep;%LoadStep % Total displrecord 

    for i=1:2018 % 303 line per record 

        WyTmp=fscanf(Wy,'%g',[1 5]); 

        Junk2=fscanf(Wy,'%s',2); 

        RawData(i,:,j)=WyTmp; 

    end 

    Junk3=fscanf(Wy,'%s',8); 

end 

% Extract Frequency


