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ABSTRACT 

Over the past two decades, non-native species within grassland communities have 

quickly developed due to human migration and commerce. Invasive species like Smooth 

Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously 

threaten conservation of native grasslands. This study aims to discriminate between 

native grasslands and planted hayfields and conservation areas dominated by introduced 

grasses using hyperspectral imagery. 

Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late 

spring and late summer on 2009 and 2010. Field spectra for widely distributed species as 

well as smooth brome grass and Kentucky blue grass were collected from the study sites 

throughout the growing season. Imagery was processed with an unmixing algorithm to 

estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is 

significantly different through growing season, spectral libraries for the most common 

species are then built for both the early growing season and late growing season. After 

testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral 

matching analysis between the imagery and spectral libraries. Due in part to spectral 

similarity among key species, the results of spectral matching analysis were not definitive. 

Additional indexes, “Level of Dominance” and “Band variance”, were calculated to 

measure the predominance of spectral signatures in any area. A Texture co-occurrence 

analysis was also performed on both “Level of Dominance” and “Band variance” indexes 
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to extract spatial characteristics. The results suggest that compared with disturbed area, 

native prairie tend to have generally lower “Level of Dominance” and “Band variance” as 

well as lower spatial dissimilarity. 

A final decision tree model was created to predict presence of native or introduced 

grassland. The model was more effective for identification of Mixed Native Grassland 

than for grassland dominated by a single species. The discrimination of native and 

introduced grassland was limited by the similarity of spectral signatures between forb-

dominated native grasslands and brome-grass stands. However, saline native grasslands 

were distinguishable from brome grass. 
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CHAPTER I 

INTRODUCTION 

The Central Plains of North America is a large area that was once covered by 

grassland and savanna. The Great Plains stretches from Alberta south through southern 

Texas and Mexico, and approximately 1,000 miles from western Indiana westward to the 

Rocky Mountains (Conner et al., 2002). Eighteen U.S. states have land management 

responsibilities within the Great Plains, and the Great Plains accounts for approximately 

29% of that land area of the U.S. Mexico contains the least amount (4%) of the Great 

Plains, restricted to 5% of the country’s land area. About 16% of the area of the Great 

Plains lies in Canada and this represents about 5% of the landmass of Canada (Gauthier 

et al. 1998). Four major grassland regions are generally identified with the Physical 

Provinces of the Central Plains (Conner et al., 2002): 

1) short-grass prairies of the Great Plains;  

2) mixed-grass prairies of the Great Plains;  

3) tall-grass prairies of the Central Lowlands and Coastal Plains; 

4) the savannas of the Central Lowlands and Coastal Plains. 

North Dakota (ND), at the center of the North America, approximately covers the 

whole Great Plains physiographic provinces (Fenneman 1931). From west to east in ND, 

annual precipitation gradually increases, and grassland ecosystems correspondingly shift 

from Wheatgrass-Needle grass, to Wheatgrass-Bluestem-Needle grass, and, finally, 
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Bluestem Prairie (Kuchler, 1964). 

Native grasslands directly support the livestock industry. Take school trust land as 

example, there are about 288,945.548 ha in North Dakota and managed by ND State 

Land Department. Most of that grassland is semi-natural and leased for grazing (Brand et 

al. 1988).Over 86% of the breeding sheep in the U.S. are located west of the Mississippi 

River along with numerous domestic goats and horses whose main feed source is derived 

from grasslands. In South Dakota, as of 1997, approximately 9.7 million ha of non-

federal lands were in native rangeland or introduced pasture grasses (grazing lands). But, 

in the 15 years prior to 1997, South Dakota lost about 0.5 million ha of its non-federal 

native rangeland (~5.3%), only about 3% of which was transferred to federal ownership. 

Of that native rangeland loss, about 68% was a conversion to cropland, 46% (255.842 ha) 

being under cultivation by 1997. 

In North Dakota, grassland habitat loss is extensive. The remaining blocks of habitat 

are highly fragmented by agricultural lands and a relatively dense network of roads. Only 

a little intact habitat remains in the Northern Tall Grasslands (Ricketts et al. 1999). For 

example, the Sheyenne Delta Grasslands Reserve, in southeastern North Dakota, 

stabilized in an area of sand dunes of about 465 km
2
. The Sheyenne Delta has been 

protected (about 70 percent public owned) but heavily grazed. Agricultural conversion 

continues to threaten habitats, which include: potato farming in the Sheyenne Delta, 

mining in the Lake Agassiz beach ridges and dunes, and drainage of moist prairie 

wetlands throughout (Ricketts et al. 1999). 

However, over the past two decades, the number of non-native species within 

grassland communities increased rapidly due to human migration and commerce 
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(Hodkinsonet al. 1997; Kowarik 2003; Mack et al. 2000; Mooney et al. 1986; Vitousek 

1997).Some introduced species, like Smooth Brome grass (Bromus inermis) and 

Kentucky Blue Grass (Poa pratensis), seriously threatens native grass and forbs 

(Whitman & Barker 1994). Relatively undisturbed and pure stands of native grasses are 

rare now, but it is still important for biodiversity. Invasive species, on the other hand, 

threaten native species restoration in many ways. For example, due to aggressive rhizome 

of smooth brome grass, other species are depressed (Sedivec et al. 2011). Besides, 

invasive plants, like Bromus spp, can also modify attributes of soil. For example, invasive 

modification of soil micro biota can facilitate plant invasive species, and moreover has 

potential to impede restoration of native communities after removal of an invasive 

species (Jordan et al. 2008). 

There is a need to document the presence of native grasses and the extent to which 

they are invaded by or replaced by exotic introduced grasses. This is particularly 

important for the areas that originally supported tall grass prairie, as this is the most 

converted and threatened of the major prairie grassland associations. In addition, there is 

a need to know the relative composition of grasslands on a continuum from pristine 

native stands to completely exotic hayfields and volunteer stands. This is important since 

insect and bird biodiversity may depend upon the extent to which native prairie species 

important for pollination and nectar are excluded (Isaacs et al., 2008). Remote sensing 

may provide a means to develop indicators of relative naturalness using the full spectral 

coverage available from hyperspectral sensors (He et al. 2011). Hyperspectral imagery 

further provides a wealth of spectral information which is related biophysical information 

of plants (Mutanga & Skidmore, 2004; Darvishzadeh & Skidmore, 2008). Based on the 
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assumption that various biophysical structures of species represent different spectrum 

characteristics, there is a possibility that the hyperspectral imagery is capable to identify 

certain species or species combination. This study will focus on discriminating between 

pure native grasslands and planted hayfields and conservation areas dominated by 

introduced grasses using hyperspectral imagery acquired at two times during the growing 

season, and calibrated with spectral libraries acquired in the field. 

Thesis Overview: Outline of Thesis Structure and Chapters 

The general flow of the research undertaken is demonstrated at Figure 1 as well as 

the relationship between chapters. 

 
Figure 1 Flow diagram of thesis chapters and relationship to main contents 

Chapter 2 provides a review of current remote sensing applications in grasslands 

with particular focus on the use of hyperspectral imagery. It outlines the ability of 

hyperspectral imagery for estimation of vegetation properties, explores the current 

methodology and provides some examples of recent case studies.  

Chapter 3 describes the processing of images from the Hyperion hyperspectral 

sensor on the EO-1 satellite. A detailed process flow is provides to explain how radiance 

 

Ch 2: Literature Review 

Ch 3: Image Analysis 

Ch 4: Field Spectra 

Ch 5: Spectrum 

Matching 

Ch 6: Naturalness Model 

Ch 7: Discussion & Conclusions 
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data are converted to land surface reflectance. It also describes the linear unmixing 

procedure used assess proportion of green vegetation, dry litter and bare soil within each 

pixel which aims to explore different proportion change patterns from native and 

disturbed area. 

Chapter 4 describes the characteristics of the field spectroradiometer and the 

collection of field measurements for further application. In addition, observations of 

changes in grassland, spectral signature and fractional cover are presented for a  range of 

grassland patches and types. 

Chapter 5 explores the relationship between field measured spectra and remote 

sensing reflectance extracted from Chapter 3. Due to the change in spectral signatures of 

species as the growing season progressed, two spectral libraries were built: one for early 

in the season and one for late in the season. In addition, eight methods of spectral 

matching are compared and discussed, and the best method is selected. The development 

of additional measures of spectral variance and dominance and spatial hetero- and 

homogeneity are also described. 

Chapter 6 explores different models for discrimination of native and introduced 

grasslands at the two study sites, and for early and late growing season. The models from 

the early and late growing periods are then combined. A final model is tested at an 

independent conservation area in the Township of Mekinock where a naturalness 

assessment of the grassland (including photography) had been carried out. 

Finally, in Chapter 7, the overall results are discussed and some conclusions are 

presented.  
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CHAPTER II 

LITERATURE REVIEW 

Prairie Grassland Characteristics 

Grassland not only contributes to agricultural production, but also significantly 

impacts on environmental and societal functions. Increasingly, scientific evidence 

supports important functions of grassland, especially native grasses, such as conservation 

of biodiversity, in the regulation of physical and chemical fluxes in ecosystems, and the 

mitigation of pollution (Gibon, 2005). 

Grassland structure also affects biodiversity. Rahmig (2008) examined bird diversity 

in the Flint Hills of Kansas, and found that bird diversity was higher in native prairie, 

hayfields and grazed pastures than in CRP fields that were dominated by Spiza 

americana. The U.S. grasslands probably have the most altered biodiversity from human 

impacts compared to the other terrestrial ecosystems. The ecological status of many 

existing grassland systems are heavily influenced at the local level by combinations of 

habitat fragmentation, undesirable habitat changes due to fire exclusion, declining range 

conditions due to improper grazing management, and loss of habitat values due to the 

spread of invasive and non-native plants. Further complications come from demographic 

trends related to changes in land ownership. As a result, many species that live in 

grassland habitats have declined substantially in the recent past (Conner et al. 2002). The 
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grasslands of North Dakota are important areas for breeding populations of several 

endemic grassland birds, like Ammodramus bairdii (Conner et al. 2002). This species 

seems to depend upon large expanses of native prairie with minimal shrub cover 

(Dechant et al. 2001). During the period from 1966 to 1999, Breeding Bird Survey 

records indicate that Baird’s sparrow experienced one of the most drastic declines of any 

endemic grassland bird in the U.S.; decreasing at an average rate of 3.4% per year 

(Conner et al. 2002). 

Grasslands provide valuable ecological services such as carbon sequestration from 

the atmosphere as well as nutrient cycling. For example, Biondini (1998) found that 

heavy grazing leads to declines in standing dead biomass and biomass nitrogen content. 

However, he concluded that ecological function can be better sustained under moderate to 

light grazing. Grassland soils probably lost up to 50% of their original carbon within the 

first half of the 20th Century as a result of cultivation (Conner et al. 2002). Grasslands are 

also key components in an efficient hydrologic cycle. The quality and quantity of water 

runoff and infiltration is dependent upon the quality of ground cover. Converting 

grasslands to other uses, like cropping, will lead to more serious soil erosion and 

decreased water quality (Conner et al. 2002). 

Biological diversity is an important indicator of the effectiveness of ecosystem in 

rural areas (Schwab, 2002). However, most grassland has been converted because of 

human activities, especially in the early 20th Century. The remaining habitat is also 

highly fragmented. During recent decades, semi-natural grasslands have been more and 

more protected, and the loss of biodiversity on agricultural land has been an increasing 

concern (Franzén, 2008). Agricultural intensification, encouraged by market and policy 
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incentives may lead to biodiversity decline (Questad, 2011). For example market or 

policy incentives for bioenergy may cause significant conversion from native and semi-

natural ecosystems to production fields (Questad, 2011). Soil quality and plant diversity 

have already been steadily decreasing along with loss of scale-dependent community 

patch structure due to historical cultivation (Questad, 2011). 

Key Features of Grasslands That Could Be Spectrally Discriminatory 

Remote sensing provides the capability to rapidly and synoptically monitor large 

areas. Previous studies have successfully used spectro-radiometer and remotely sensed 

data to estimate and assess heterogeneous grasslands (e.g., Price et al. 2002, Zhang et al. 

2007, Guo et al. 2003, Foster et al. 2009, Guo et al. 2004, Hurst 2006, Chen et al. 2010, 

Peterson et al. 2002, Zhang et al. 2006, Douglas et al. 2004). 

The reflectance spectrum (Figure 2) of vegetation is well-known. Key features in the 

visible spectrum are the green (550nm) peak and strong chlorophyll absorption at about 

700 nm (Figure 3).  The sharp rise in reflectance between red and near infrared (NIR) 

wavelengths is commonly known as the "red edge". Leaf water absorption features occur 

on the NIR plateau at about 1000 nm and 1200 nm. Then two valleys appear at short-

wave infrared (SWIR) because of water absorption. The two peaks in SWIR decrease 

with wavelength. Based on these reflectance features, numerous indexes have been 

developed such as the Photochemical Reflectance Index (PRI; Gamon, et al. 1992) and 

Cellulose Absorption Index (CAI; Daughtry, et al. 1996) to infer physiological conditions 

of leaves and canopies. 



9 
 

 
Figure 2 General Spectrum of Vegetation. The reflectance is calculated as average of 

various species field measurements in Oakville area. 

Multispectral Remote Sensing of Grassland and Spectral indices  

Normalized Difference Vegetation Index (NDVI) (Deering 1978) is defined as (NIR-

RED)/ (NIR+RED). It is widely used in vegetation remote sensing, because it amplifies 

differences between red and NIR channels, which appears as the “red edge” in vegetation 

spectrum (Figure 3). Besides, NDVI is also correlated with leaf area index (LAI), 

biomass and other parameters. In addition, due to the normalization of the ratio between 

red and NIR, NDVI can reduce part of the influence from cloud, shadow, and sun 

elevation. However, because NDVI represents a non-linear data transform, it is relatively 

insensitive to low and high vegetation coverage.  

The PRI (Gamon, et al. 1992) is defined as normalization between reflectance at 531 

nanometer and 570 nanometers. ((R531-R570)/ (R531+R570)), which is sensitive to 

change in xanthophyll pigments. The xanthophyII, on the other hand, is important in the 

process of photosynthesis. Hence, it can be used to indicate vegetation health and light-

use efficiency (Sabrina et al., 2005). 

The Normalized Difference Water Index (NDWI) (Gao, 1996) is defined as (NIR-
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SWIR)/(NIR+SWIR). SWIR reflectance is sensitive to changes in vegetation water 

content, while the NIR reflectance is affected by leaf internal structure. The combination 

of the NIR with the SWIR removes variations induced by leaf internal structure, 

improving the accuracy in retrieving the vegetation water content (Ceccato et al. 2001). 

The CAI, describes the depth of the lignocellulose absorption feature in the 

shortwave infrared region: 0.5*(R2000+R2200)-R2100, where R2000, R2100, and 

R2200 are reflectance 2000–2050, 2080–2130, and 2190–2240 nm, respectively (Pamela, 

et al. 2003). This index is helpful in discriminating plant litter from soil (Daughtry, et al. 

1996). Pamelar (2003) suggests that the CAI of litter was significantly greater than the 

CAI of soils. Besides, the decay of plant litter over time has a significant effect on 

reflectance (Pamela, et al. 2003). This index has been used in combination with the NDVI 

to unmix fractional cover of photosynthetic (PV) and non-photosynthetic vegetation 

(NPV) and bare soil (BS) in Australian savannas (Guerschmann et al., 2008). Differences 

in proportion of photosynthetic, non-photosynthetic vegetation and bare soil could be 

indicators or differences between native and disturbed grasslands in North Dakota, 

particularly if introduced species had different green-up and senescence characteristics 

with native species.  

Since the vegetation spectral response changes with the seasons, including the effect 

of soil background, there may be temporal variation in discrimination. For example, Price 

(2002) compared Landsat Thematic Mapper (TM) bands as well as vegetation indices for 

discrimination of six grassland types in eastern Kansas between May and September. The 

research area included both C4 grasses (Big Bluestem – Andropogon gerardii; Little 

Bluestem – Schizachyrium scoparium; Indian grass – Sorghrastrum nutans; and Switch 
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grass – Panicum virgatum) and C3 grasses (Smooth Bromegrass ; Tall Fescue – Festuca 

arundinacea; Kentucky Bluegrass; and Orchard Grass- Dactylis glomerata). All grasses 

were then combined into six types:  

1) cool season grasslands being managed under the USDA Conservation 

Reserve Program (CRP) 

2) cool season grazed 

3) cool season hayed 

4) warm season CRP 

5) warm season grazed 

6) Warm season hayed.  

Price (2002) concluded that in May, reflectance at TM4, 5, 7 (NIR and two SWIR 

bands) are most distinct among grassland types, while the near infrared band (TM4) is 

more distinctive in July and September.  The author also concluded that compared with 

raw TM bands, vegetation indices were more helpful during the growing season (May 

and especially July), but little advantage in time series model. The Green Vegetation 

Index (GVI) was the most effective index over all seasons (Price 2002).  

A large number of studies have been done on the application of broad bands imagery 

to retrieval of vegetation properties. Various vegetation indexes, that retrieve different 

properties of plant, have been developed. Some of these indexes provide a guide for 

potential application of hyperspectral imagery. This study will also test some indexes in 

order to extract differences between smooth brome grass and various native grasses. 
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Hyperspectral Remote Sensing of Grassland 

Multispectral sensors such as Landsat TM have only 7 bands and provide limited 

discrimination between grassland types. Hyperspectral imagery, on the other hand, 

provides a wealth of spectral information which is related biophysical information of 

plants. There have been numerous studies on the utility of hyperspectral imagery for 

discrimination of vegetation types and characteristics (e.g. Schaepman et al., 2009).   

However, less attention has been paid to grasslands than forested systems. Nonetheless, 

there are many examples of grassland applications, for example, Asner (2002) compared 

the ability of unmixing vegetation, soil and dry carbon cover in arid regions by using 

hyperspectral observations and multispectral observations. The wavelength peaks of 

different grass species was also extracted from derivative spectroscopy of hyperspectral 

reflectance of grassland vegetation (Yamano, 2003). 

Ecosystem Parameters 

Since smooth brome grass dominated area is usually lack of biodiversity such as 

richness and heterogeneity, an estimation of those ecosystem factors would be also 

helpful. Some studies have explored the potential capability of hyperspectral imagery for 

estimating the status of ecosystems using metrics that relate to biodiversity. For instance, 

spectral radiance, reflectance and band ratios from hyperspectral imagery were evaluated 

as potential indicators of vascular plant species richness in a mesic grassland in Konza 

Prairie Biological Station in northeastern Kansas (Carter, 2005). The results suggested 

that the 856 nm and 780 nm reflectance ratio produced highest adjusted coefficients (R
2
 

approximately equal to 0.4) with richness when both bison-grazed and ungrazed areas 

were included (Carter, 2005). The author also suggested that the relationship between 



13 
 

species richness and species spectral features is affected by soil exposure (Carter, 2005). 

In 2007, Zhang investigated the northern Mixed Native Grassland biological 

heterogeneity at Grasslands National Park (GNP), Canada, using ground level 

hyperspectral imagery, biological data like leaf area index, biomass, and vegetation 

cover) and environmental data including soil moisture, organic content, and bulk 

density(Zhang, C. 2007). The result showed that indices extracted from ground level 

remote sensing data is capable to explain about 40% to 60% of biological variation 

(Zhang, C. 2007). 

Lucas (2008) used the HyMap airborne imaging spectrometer to examine plant 

species richness for several habitat-types on Horn Island, Mississippi, northern Gulf of 

Mexico. The HyMap image system contains 126 bands, which cover the 450-2500nm 

spectrum (Lucas, 2008). The author suggested that no index extracted from HyMap 

imagery could be related to species richness when all habitat-types were considered, 

however a number of indices showed significant relationships and reflectance for 

individual habitat types (Lucas, 2008). For example, the result showed that the 

reflectance ratio between 1056 nm and 966 nm and the ratio between 920 nm and 834nm 

were negatively related with species richness in meadows and transition zones. This 

indicated that richness of habitat declined when soil exposure increased. In marsh habitat, 

species richness was positive related with reflectance ratio between 618 nm and 2475 nm 

and the ratio between 514 nm and 2459 nm, mainly due to increasing broadleaved 

vegetation patches (Lucas, 2008). 
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Biophysical Grassland Parameters 

In this section, a hyperspectral remote sensing application on biophysical grassland 

parameters like nitrogen content, leaf area index (LAI) is reviewed. Since brome grass 

grows early than most of native species, brome grass dominated area may show different 

biophysical properties from native grassland in the early of growing season. Since the 

shape of a plant spectrum contains information on the biophysical properties of plants, a 

growing number of studies focus on spectral inversion. Mutanga and Skidmore (2004) 

used high spectral resolution reflectance to discriminate differences in nitrogen 

concentration in an African savanna rangeland. The continuum removal was first used to 

extract absorption features and reduce dimensionality in the data (Mutanga& Skidmore, 

2004). Then a neural network algorithm was used for nitrogen concentration mapping 

(Mutanga& Skidmore, 2004). This approach explained 60% of the nitrogen concentration 

variation in savanna grassland, which was better than standard multiple linear regression 

techniques (Mutanga& Skidmore, 2004). 

Rahman and Gamon (2004) examined the utility of hyperspectral remote sensing to 

map vegetation types, including identifying riparian forests, burnt grasslands and 

resurgence zones, crops and several types of savannah and pastures in southern 

California. They found that, compared with the previously commonly used NDVI, the 

water band index (WBI), was a better indicator of important biophysical properties, like 

fresh and dry biomass and water content, in semi-arid ecosystem, especially after 

regeneration (Rahman&Gamon, 2004). 

Gianelle and Guastella (2007) applied hyperspectral, multi-angular approaches as 

well as broad bands (Landsat bands) in order to estimate biophysical grassland 
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parameters such as biomass, total and percent nitrogen content, phytomass (leaf) and its 

total and percent nitrogen content. Although they found no significant difference between 

off-nadir and nadir data in predicting biophysical variables, but both measurements were 

better than broad bands indices (Gianelle&Guastella2007). 

Darvishzadeh and Skidmore (2008) successfully mapped to LAI, leaf chlorophyll 

content (LCC) and canopy chlorophyll content (CCC) in a heterogeneous Mediterranean 

grassland based on radioactive transfer model of canopy spectral reflectance 

measurements (Darvishzadeh & Skidmore, 2008). Darvishzadeh and Skidmore (2008) 

concluded that, compared with univariate methods such as vegetation indices, 

multivariate techniques such as partial least squares regression is more helpful in the 

process of mapping. 

Cho and Skidmore (2009) simulated commonly used vegetation indexes such as 

NDVI, the modified soil adjusted vegetation index (MSAVI), the soil adjusted and 

atmospherically resistant vegetation index (SARVI) and the NDWI from HyMap 

imagery. The simulated results were then used to retrieve grass/herb biomass production 

on a yearly basis in the Majella National Park, Italy (Cho& Skidmore, 2009). Based on 

the linear regression analysis, authors found that indexes like MSAVI, SARVI and NDWI 

are more stable along year’s prediction compared with NDVI. 

Chen and Gu (2009) examined the utility of the spectral features on estimating 

aboveground green biomass by using partial least squares (PLS) regression between 

above ground green biomass and original reflectance, first-order derivative reflectance 

(FDR), as well as band-depth indices. The NIR region bands and red-edge bands were 
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effective in estimating high-cover meadow biomass and the band-depth indices improved 

the estimation accuracy (RMSE = 40.2 g m
-2

) (Chen &Gu, 2009). 

A variety of vegetation indexes had been successfully migrated from broad band 

remotre sensing and diversified for hyperspectral imagery. A number of techniques have 

been developed, like first-order derivative reflectance and band-depth measurements 

from continuum removal in order to utilize spectral absorption features in image spectra. 

These techniques have enables retrieval of different biophysical information from 

grassland.  These approaches may help to  indicate differences between introduced and 

native grassland. Thus a range of these vegetation indexes and a range of techniques will 

be applied in this study. 

Species Discrimination - Case Studies 

Since there are distinct biophysical differences among species, hyperspectral 

imagery also has the potential to discriminate between individual species. For example, 

Underwood et al. (2003) were able to discriminate between ice plant (Carpobrotus 

edulis) and jubata grass (Cortaderia jubata) in California’s coastal habitat. Three 

methods, including minimum noise fraction (MNF), continuum removal, and band ratio 

indices, were used in order to reduce data dimension and then a maximum likelihood 

supervised classification was performed  (Underwood et al., 2003). Based on field 

validation, author found that all methods showed high accuracy (about 97%) for 

determine presence or absence of iceplant (Underwood et al., 2003). However, when 

classes were divided into pristine area, and areas with iceplant coverage between 51%-

75%, 76%-90% and 91%-100%, only the MNF showed relatively high estimating 

accuracy (55%) (Underwood et al., 2003). In later work (Underwood et al., 2007); the 
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author detected three invasive species: iceplant, jubata grass, and blue gum (Eucalyptus 

globulus) at Vandenberg Air Force Base, California, using AVIRIS imagery (174 

wavebands, 4m spatial resolution). The authors first divided the research area into six 

vegetation classes: intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded 

chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact 

chaparral. A maximum likelihood supervised classification was performed based on field 

survey and the result showed a 75% overall accuracy across all classes. Imagery spatially 

degraded to Hyperion resolution (174 bands, 30m) was also subjected to the same 

classification procedure. In this case accuracy was reduced to 58%. The limitation of the 

two projects, as authors suggested, mainly came from a mismatch between field-

measured training data and image registration (Underwood et al., 2007). On the other 

hand, this research also suggested that a spatially degraded image has lower capability to  

detect invasive species as more species variation may be contained in one pixel in the 

lower spatial resolution image (Underwood et al., 2007). 

Andrew and Ustin (2008) applied a series of approaches including: aggregated 

classification, spectral physiological indexes, regression tree models and mixture tuned 

matched filtering (MTMF) to detect invasive Lepidium latifolium (perennial pepperweed) 

at California's San Francisco Bay. Three sites were tested in the research: least diverse 

site, several co-occurring species with enough spectral variability; least spectral 

variability site (Andrew & Ustin, 2008). The authors found that the identification 

accuracy was significantly affected by site complexity (Andrew & Ustin, 2008). For 

example the detecting accuracy is about 90% at first two sites, but failed at the last one 

(Andrew & Ustin, 2008). As the author suggested, the identification accuracy is limited 
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by site complexity represented by species, structural, and landscape diversity, and the 

consequent spectral variability (Andrew & Ustin, 2008). This is because with the 

increasing to site complexity, the certain invasive species is more and more spectrally 

distinctive from others and others’ combination (Andrew & Ustin, 2008). 

The invasive weed yellow star thistle (Centaurea solstitialis) at the western edge of 

California’s Central Valley grassland was detected from Compact Airborne 

Spectrographic Imager 2 (CASI - 2) hyperspectral imagery by using linear spectral 

mixture models (LSMM)(Miao et al., 2006). The research area was first divided into six 

endmembers:  live yellow star thistle; dead star thistle; riparian vegetation; Oak; burn 

scar and background (Miao et al., 2006). Four LSMMs, from unconstrained to fully 

constrained, were then performed. The author concluded that all models, except 

unconstrained LSMMs, showed consistent results (Miao et al., 2006). 

Yang et al. (2009) mapped Ashe juniper distribution from mixed woody, herbaceous 

species and other land cover types like bare soil and water in airborne hyperspectral 

imagery. Four supervised classification methods: minimum distance, Mahalanobis 

distance, maximum likelihood and spectral angle mapper (SAM) was applied on the first 

10 and 20 MNF bands (Yang et al. 2009). Based on the authors’ analysis, classification 

accuracy varied around 90% and the first 10 MNF bands were sufficient of 

discrimination. 

 This section reviews previous studies of using hyperspectral imagery to identify 

invasive species. Plenty of approaches had been developed, such as SAM and LSMM, 

and those approaches will also be test in this study. However, previous work suggest that 

the spatial resolution and low SNR of Hyperion imagery may have reduced identification 
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accuracy  for grassland types compared with analysis undertaken with airborne 

hyperspectral data. Therefore, it may be important to develop additional measures of 

spectral variability and spatial variability to assist direct spectral matching techniques. 

Spectral Identification Techniques 

Over many years of research with airborne and space borne hyperspectral sensors, a 

wide range of techniques have been developed for processing hyperspectral data to 

distinguish between species, including linear regression, MNF and various supervised 

classification methods. 

The MNF transformation is a commonly used method for reducing the 

dimensionality of hyperspectral data, especially in species discrimination. The MNF 

transformation is essentially a two phase principal components analysis that rescales 

noise and reduces data dimensionality for subsequent analyses. Rotated or transformed 

data, such as MNF or PCA, is characterized by high data variance in the first few bands 

then decrease in later bands, and the last bands are usually dominated by noise (Mundt et 

al., 2005). So it is also commonly used to smooth spectrum by removing the last of the 

noise-dominated bands and re-process MNF inversion to create a clean data stack with 

reduced dimensions. For example, Mundt (2005) used MNF to smooth hyperspectral data 

first, and then the SAM (Spectral Angle Mapper) algorithm was used to discriminate 

hoary cress. Addinck et al. (2007) also used a MNF product as input to estimate biomass 

and leaf area index (LAI). 

Linear Spectral Unmixing, such as Singular Value Decomposition (SVD), is a group 

of classical techniques, which assumes that the reflectance spectrum of pixel is a linear 
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combination of the spectra of all objects inside the pixel where the coefficients are the 

area proportion of objects. In order to solve the linear equations for the unknown pixel 

fractions, objects must be less than the number of spectral bands. 

Various supervised classification methods have been used in species detection. For 

example the SAM (Yuhas et al., 1992) computes a spectral angle between each pixel 

spectrum and each target spectrum. The spectral angle shows similarity between pixel 

and targets, the smaller the angle, the greater the similarity. This spectral angle can ignore 

influence of pixel illumination caused by system error, because increasing or decreasing 

illumination only affects its magnitude instead of its direction. Supervised classification 

is limited by its efficiency (Underwood et al., 2007), but classification algorithms may be 

helpful in this study and will be tested in the process of spectrum discrimination. 

On the basis of the case studies examined above, the accuracy of species 

discrimination largely depends upon the spectral complexity of the research area (Andrew 

&Ustin, 2008) as well as spectral and spatial resolution of the sensor (Underwood et al., 

2007). Based on the Hyperion spatial resolution of 30 m, and the variety of species 

combinations occurring especially on the native grassland, it is likely that additional 

surface characteristics will be needed in order to assess the naturalness of these 

grasslands. Thus, it will be necessary to utilize spectral processing methods to identify 

spectral features that are sensitive to biophysical properties. Techniques like continuum 

removal may be used to estimate biophysical properties of grassland, and various narrow 

band vegetation indexes may also be used to capture spectral features. Continuum 

removal standardizes reflectance spectra to allow for comparison of absorption features 

(Underwood et al., 2003). Continuum removal of the water absorption bands is assumed 
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to be particularly sensitive to the fleshy succulent leaves (Underwood et al., 2003). The 

process involves spectrally subsetting images to known spectral regions with key 

absorption bands. In this research, the absorption bands defined by Thulin (2009) were 

used: 408-518nm, 588-750nm, 1116-1284nm, 1652-1770nm, 2006-2196nm and 2222-

2378nm. Water absorption can be estimated using area or depth of absorption regions. 

Other Potentially Important Grassland Properties  

Beside techniques for species discrimination, other factors like patch structure, soil 

effects on species composition, and the spatial structure of the landscape may also be 

helpful in characterizing the grassland. For example, smooth brome grass is less 

compatible with other species because of its rhizomatous crown structure and aggressive 

spread and (Sedivec et al. 2009). Therefore, it might be expected that a disturbed area 

dominated by smooth brome grass, would exhibit less spectral variance and more spatial 

homogeneity than more diverse natural areas. Another potential discriminatory 

characteristic of smooth brome grass as a cool season grass is the tendency to initiate 

growth earlier than most of native grasses. However, later in the growing season, most 

smooth brome grass may have a mixture of seed heads and green leaves, while many cool 

season native grasses are predominantly covered in seed heads. These phenological 

differences in growth and flowering behavior between native grasses and smooth brome 

grass may be very critical for discrimination between grassland types both early and late 

in the growing season. 

Summary 

The review of research methods shows that there are a number of approaches that 

may be used ranging from empirical to analytical. However, the likelihood of there being 
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one single method that is better performing in all circumstances is low, which provides a 

solid and positive platform to combine different methods for research into using 

hyperspectral data to estimate naturalness of grassland.  Therefore, the following 

analytical process was adopted (Figure 3). 

First Hyperion images were acquired from 2009 to 2010. As mentioned above, 

sampling in both early and later growing season periods was considered to be very 

important. Field spectra for relatively abundant grasses and forbs as well as smooth 

brome grass and Kentucky blue grass at were then collected throughout the growing 

seasons in in 2010 and 2011. Field measurements were collected each month from early 

May to late August in order to capture spectrum changes of species in the whole growing 

season.  

Level 1R Hyperion images were processed and corrected. Field spectra were also 

corrected and imported into spectral libraries. Independent spectral libraries were created 

for early and late growing season data. 

In order to capture any differences in the overall proportions of photosynthetic and 

non-photosynthetic surfaces between native and introduced grasslands, fractional cover 

of non-photosynthetic vegetation (NPV; litter), photosynthetic vegetation (PV) and 

bare soil (BS) was estimated using published methods. Differences in fractional cover 

may also indicate disturbance. The fractional cover is estimated by using NDVI and CAI 

(Guerschman et al., 2009). 

In order to detect individual species, and mixtures of species at sub pixel level, 

spectral matching techniques were examined, and a total of eight target detecting 
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algorithms were tested. Based on assessment of matching results in relation to the field 

survey of patch distribution and their structure, the Adaptive Coherence Estimator 

(ACE) was finally selected.  

In order to capture any spatial characteristics that could help in grassland 

discrimination, Texture co-occurrence analysis was applied to the match images from 

the ACE analysis. Textural differences were hypothesized to be potential source of 

discrimination between native grassland, with various species and patches, and areas 

dominated by smooth brome grasses. 

Finally, a number of multi-criteria naturalness models were developed in the 

Multi-Criteria Analysis Shell for Spatial decision support (MCAS-S). These were 

assessed for effectiveness and then combined to form a final model. This model was 

tested at an independent location. Three types of data were used in the final modeling: 

fractional cover maps; spectral matching results and measures of variance and dominance 

of spectral match; and textural measures of spatial patterns. Since texture analysis was 

applied to the spectral matching maps, the final result of the modeling was still highly 

dependent on the quality of the spectral match. 
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Figure 3 Flow diagram of the analytical process 
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CHAPTER III 

IMAGE PROCESSING 

Introduction 

In this chapter, firstly, the study areas including Oakville, Woodworth and Mekinock 

are described. Secondly, the characteristics of the Hyperion Sensor and the companion 

ALI imager are described. Thirdly, the steps involved in processing the Hyperion images 

are documented. As this research focuses only on the grassland, other land cover types 

are then identified, classified and masked from subsequent image analysis. Finally, this 

chapter also describes the calculation of fractional cover of PV, NPV and BS 

(Guerschman et al., 2009). 

Sites 

This research was concentrated on three sites: Oakville Prairie near Emerado and, 

Mekinock Water Fowl Production Area near Grand Forks Airbase (both in Grand Forks 

County), and Woodworth Waterfowl Production Area near Carrington in Stutsman 

County (Figure4).  

Oakville Prairie is located 19km west of Grand Forks, North Dakota (97
o
 19'W, 47

o
 

55'N) in Oakville township (Redmann, 1972). Mekinock is (97.363W, 48.013N) close to 

Oakville Prairie, and they both are located in the Red River Valley. The Red River Valley 

in North Dakota is a broad plain which slopes gradually to the northeast (Redmann, 
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1972). The beach ridges which were formed on the western shore of Glacial Lake Agassiz 

are the most prominent topographic features in the Oakville Prairie area (Redmann,1972). 

The flat topography with poor surface and internal drainage results in a high water table 

(Redmann, 1972). At Oakville Prairie (Figure 5) the most saline areas are the "alkali- or 

salt-flats" which have a high and fluctuating water table (Redmann,1972). A wide variety 

of prairie grasses and forbs (Table 1) are supported by the soil complex in Oakville 

Prairie and about 236 species have been recorded from the site (Kannowski, 1988). Thus, 

Oakville is a site that represents undisturbed native prairie on saline and wet land; aside 

from Spartinia pectinata, the site is too wet to support the other major tall grasses. 

Mekinock (Figure 6), on the other hand, has some introduced species and many areas are 

dominated by Typha spp. As such it provides a good test of any naturalness model since it 

should indicate both native and introduced components. 

Woodworth (Figure 7) is located in the Missouri Coteau Physiographic region, 

which is a large stagnation moraine, formed of low-permeability glacial till (Mushet, 

2004). The topography is very hummocky with most of the depressions containing 

wetlands (Mushet, 2004). The Woodworth Chase Lake Wildlife Refuge 

(http://www.fws.gov/arrowwood/chaselake_nwr/) established in 1908, is significantly 

more disturbed (non-natural) than the recently restored prairie grassland (National 

Ecological Observatory Network site). Thus Woodworth is used to represent stands of 

well-established smooth brome grass in this research. 

Woodworth contains one of the core sites for the National Ecological Observatory 

Network (NEON).In early June 2009 this site was planted with a 22 species mix. Seven 

native mixed grass prairie species as follows: Western Wheat grass Agropyron smithii, 

http://www.fws.gov/arrowwood/chaselake_nwr/
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Green Needle Stipa viridula, Little Bluestem Schizachyrium scoparious, Blue Grama 

Bouteloua gracilis, Big Bluestem Andropogon gerardii, Sideoats grama Bouteloua 

curtipendula, and Prairie June grass Koeleria macrantha. Fifteen native forbs: Achillea 

millefolium (White Yarrow), Astragalus crassicarpus (Ground Plum milkvetch),  

Coreopsis tincatoria (Plains coreopsis), Echinaca epurpurea (Purple Coneflower), 

Gaillardia aristata (Blanket flower), Helianthus maximiliani (Maximillian Sunflower), 

Liatris pycnostachya (Prairie Blazing Star), Linum lewisii (Blue flax), Oerotherabiennis 

(Evening Primrose), Petalostemum candidum (White Prairie Clover), Petalostemum 

purpureum (Purple Prairie Clover),  Ratibida pinnata (Yellow Coneflower), Rudbeckia 

hirta (Black-eyed Susan), Verbena stricta (Hoary Vervain) and Amorpha canescens 

(Leadplant). 

 
Figure4.Locations of three sites in North Dakota. The background is North Dakota GAP 

analysis map (Strong et al., 2005) 
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Figure 5 Oakville Site. Background is NAIP map; the red box shows the boundary of 

Oakville Prairie and the blue box is School Trust land 

 

 
Figure 6 Mekinock Site within the red boundary 
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Figure 7 Woodworth Site in the red boundary. The yellow boundary suggests the restored 

area. 
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Table 1. Main Species Found At Oakville Prairie 

Name Scientific Name 

June grass Koeleria macrantha 

Maximilian sunflower Helianthus maximilianii 

Goldenrod Solidago virgaurea 

Prairie cord grass Spartinia pectinata 

Wheat grass Agropyron specie 

Canada wildrye Elymus canadiensis 

Hairy aster Aster pilosis 

Prairie dandelion Agoseriscuspidata 

Hairy aster Aster pilosis 

Prairie brome Bromus calmanii 

Bluegrass Poa pratensis L. 

Indiangrass Sorghastrum nutans 

Smooth Brome Bromus inermis Leyss 

Little blue stem Schizachyrium scoparium 

Big blue stem Andropogon gerardii 

Switchgrass Panicum virgatum 

Sweet Clover Melilotus 

SlimstemReedgrass Calamagrostis stricta 
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Hyperion Sensor 

The Hyperion sensor provides hyperspectral imagery with a 30 meter spatial 

resolution in 220 spectral bands (10nm spectral resolution from 0.4 to 2.5 µm). The 

images cover 7.5 km swath width and either full (225 km) or quarter (~ 60 km) swath 

lengths at nadir or near nadir look angles within a Landsat path and row framework.  The 

data provide detailed spectral mapping across from 400 to 2500nm with high radiometric 

accuracy. Because of the recent development in image spectroscopy, hyperion has been 

widely used to extract various terrestrial features (Mutanga et al. 2009). For example, 

Dadon et al. (2011) used hyperion imageries to map stratigraphic and lithologic in the 

Dana Geology National Park, Jordan. A supervised classification was used in the research 

and the overall accuracy was 57% for stratigraphic and 79% for lithologic (Dadon et al. 

2011). Petropoulos et al. (2011) produced land use/cover map by using hyperion image. 

He et al. (2011) compared utility of various hyperspectral data for tracking invasive 

species and concluded that the hyperspectral remote sensing had great potential for 

invasion research. 

Another sensor carried on the same satellite is multispectral Advanced Land Imager 

(ALI). The ALI supports a continuous 15° x 1.625° field of view with 10 bands (Bicknell 

et al., 1999). It provides 7 visible and near infrared (VNIR) band and 3 short wave 

infrared (SWIR) bands (Lencioni et al., 1999). The panchromatic within sensor support 

10 meter resolution and multispectral detector support 30 meters resolution (Bicknell et 

al., 1999). The ALI data is used in this research as geo-registration base map. 

Data Processing 

Hyperion data processing workshop is provided by CSIRO Earth Observation 
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Center (Datt&Jupp, 2004; Datt et al. 2003; Jupp et al. 2002; Apan& Held, 2002). 

Processing steps and their descriptions are listed as follows (Figure 8): 

Bad Pixel Fix: In push-broom sensors such as Hyperion, detectors that failed to 

response signals will leave vertical stripes or ‘streaks’ in an image band. The aim of this 

process is detecting and replacing those vertical stripes or ‘streaks’ with averages of data 

from adjacent pixels. This procedure is provided by ENVI-CSIRO workshop. 

Re-calibration of Hyperion Data: Re-calibration of the Level 1B1 data convert each band 

into a uniform calibration gain for later processing, and also provides better interpretation 

of radiance spectra. Bad bands including 1-7, 58-76, and 225-242 were set to zero. This 

procedure is provided by ENVI-CSIRO workshop. 

De_Smile: The processing aims to correct distortion in the spectral dimension so that 

DN value across the spatial dimension is comparable within each band. This procedure is 

provided by ENVI-CSIRO workshop. 

Column Stats De-streak: The process aims to remove pixel streaks or vertical stripes 

from images. This research only uses Global de-streaking method, which uses the whole 

image mean and standard deviation for each band as the reference values to correct 

columns within the band. This procedure is provided by ENVI-CSIRO workshop. 

Atmosphere Correction: Atmosphere correction aims to convert the DN value of 

remotely sensed imagery into surface reflectance. ACRON MODE 1.5 is used in this 

process. 

Smooth: The MNF transformation is first used to smooth both visible-NIR and short 
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wave infrared (SWIR) data separately. The MNF transformation first rotated and 

decorrelated data. The transformed data associated with eigenvalues which indicated 

amount of information within each layer. Then only first few images with large 

eigenvalues are converted back. The two sets of smoothed data are then combined. At last 

the data set is smoothed again in the workshop, which calculates run 

 

Figure 8 Process Step for Hyperion Data 

 

mean for each pixel in spectral dimension. The last smooth step is performed in 

() 
• Hyperion Image 

• Bad Pixel Fix 

• Re-calibration 

• De-smiling 

• Column Stats De-streak 

• Atmosphere Correction 

• Removal of additional noisy bands 

• MNF 

• Smooth Spectral Bands 

• Geo-Correction 
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ENVI-CSIRO workshop. 

Geo-correction: Finally, Hyperion data is geo-corrected based on ALI geo-corrected 

data, which is radio metrically corrected and resampled for geometric correction and 

registered to a geographic map projection. This procedure is provided by ENVI 

Registration module. 

Figure 9 suggests the processing results on Oakville and Woodworth sites. The 

imagery covers research area from early growing season (May) to later growing season 

(September). Typical vegetation spectrum within each image is also showed. Spectrum 

characteristics are well conserved within visible wavelength, while many SWIR bands 

are removed because of water absorption effects. 

Grassland Classification and Mask 

To focus on grassland, hyperion imageries are further classified based on National 

Land Cover Data (2009) and all other land cover type are masked. 

National Land Cover Data is provided by The U.S. Department of Agriculture, 

Service Center Agencies in terms of 30m resolution and UTM NAD83 projection (Homer 

et al. 2007). The land cover map is generated from multi-season Landsat5 and Landsat 7 

imagery as well as DEM and other ancillary data (Homer et al. 2007).  

Each Hyperion image is classified separately by using support vector machine 

(SVM) method. Most common land cover types (water body, grassland, soybeans, corn, 

spring wheat, etc) within each image were included. Then mask files were created to 

extracte grassland. As results show (Figure 10), most of grasslands were well extracted. 

But some roads were also included in the mask file, especially in early growing season, 
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which is because the road's spectrum is close to bare soil. On the other hand, masks for 

the same region vary in different of time. Part of the reason is that land cover types 

change along growing season. For example, some area might be covered by water at early 

growing season, and then dried out and covered by grasses later. Another reason is that 

grassland spectrum varies a lot and some pixels might be misclassified into bare soil or 

crop land. 
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May 24 2009, Oakville 

 
May 20 2010, Oakville 

 
September 01 2009, 

Oakville 

 
General Vegetation Spectrum 

in 

May 24 Oakville 

 
General Vegetation Spectrum 

in 

May 20 2010, Oakville 

 
General Vegetation 

Spectrum in 

 September 01 2009, 

Oakville 

 
June 04 2010, Woodworth 

 
June 29 2009, Woodworth 

 
September 18 2009, 

Woodworth 

 
General Vegetation Spectrum 

in 

June 04 2010, Woodworth 

 
General Vegetation Spectrum 

in 

June 29 2009, Woodworth 

 
General Vegetation 

Spectrum in 

September 18 2009, 

Woodworth 

Figure 9. Results for Hyperion data  
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May 24 2009, Oakville 

 
May 20 2010, Oakville 

 
September 01 2009, 

Oakville 

 
May 24 2009, Oakville 

 
May 20 2010, Oakville  

September 01 2009, 

Oakville 

 
June 04 2010, Woodworth 

 
June 29 2009, Woodworth 

 
September 18 2009, 

Woodworth 

 
June 04 2010, Woodworth 

 
June 29 2009, Woodworth 

 
September 18 2009, 

Woodworth 

Figure 10 Hyperion image classification map and mask result (the black means remove 

and the white part means grassland and will be maintained) 
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Image Analysis: Fractional Cover 

Linear Unmixing under NDVI and CAI space 

This section will use NDVI and CAI to estimate fractional cover of green 

(photosynthetic vegetation – PV), dry (Non-photosynthetic vegetation – NPV) and bare 

soil (BS) using linear unmixing (Guerschman et al., 2009). 

NDVI is defined as (NIR-RED)/ (NIR+RED). It is widely used in vegetation remote 

sensing, because it amplifies differences between red and NIR channels, which appears as 

the “red edge” in vegetation spectrum (Deering 1978).  

The CAI describes the depth of the lignocellulose absorption feature in the 

shortwave infrared region about 2000 nm. The index is calculated by: 

CAI = 0.5*(R2000+R2200)-R2100                                                                                 (1) 

Where R2000, R2100, and R2200 are reflectance 2000–2050, 2080–2130, and 

2190–2240 nm, respectively (Pamela, et al. 2003). This index could be used to 

discriminate plant litter from bare soil (Daughtry, et al. 1996). 

The method has been used by Daughtry in 2004 and 2006 to assess crop residue 

cover and soil tillage intensity. Guerschman (2009) also uses NDVI and CAI, derived 

from Hyperion and MODIS sensors, to estimating fractional cover of dry grass, green 

grass and bare soil in the Australian tropical savanna region.  

This method will be used in this research to estimate fractional cover in these 

grasslands. As indicated at the end of Chapter 2, it is hypothesized that differences in 

fractional cover of PV and NPV at different times during the growing season could help 
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discriminate between native and introduced grasslands.  

Wavelength ranges of NIR, RED, R2000, R2100 and R2200 are given in the 

following table (Table 2): 

Table 2. Wavelength ranges used in this study 

 Hyperion Wavelength (nm) Bands Number 

RED 681.198 24 

NIR 803.302 36 

R2000 1991.958 117 

R2100 2102.9419 126 

R2200 2203.8279 136 

There are several assumptions are made in this research: 

a) In any canopy, fractions of green vegetation, dry vegetation and bare soil can 

be solved by using the complementary indices NDVI and CAI (Daughtry, et 

al. 2006).  

b) Pure green vegetation, dry vegetation and bare soil pixels can be found in 

imagery.  

Then the proportions of each land cover for single pixel were found by solving 

equations 2: 

{

𝐕𝑯 = ∑[𝒇𝒊𝑽𝒊] = [𝒇𝑮𝑽𝑮 + 𝒇𝑫𝑽𝑫 + 𝒇𝑺𝑽𝑺]

𝐂𝑯 = ∑[𝒇𝒊𝑪𝒊] = [𝒇𝑮𝑪𝑮 + 𝒇𝑫𝑪𝑫 + 𝒇𝑺𝑪𝑺]
∑𝒇𝒊 = [𝒇𝑮 + 𝒇𝑫 + 𝒇𝑺] = 𝟏

                                                          (2) 

Where VH and CH are NDVI and CAI value of single pixel and CG/VG, CD/VD, CS/VS 

are NDVI/CAI values of green grass, dry grass and soil,respectively. fG, fD, fS are 

proportionsof each land covers.  

The NDVI/CAI values of green grass, dry grass and soil are extracted from imagery. 

Based on (Guerschman et al. 2009) the three endmembers forms a triangle in a CAI 
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versus NDVI scatter plot (Figure 11), because green grass has  a high NDVI and 

moderate CAI; dry grass have a high CAI but low NDVI; soil has low values for both 

indexes. Thus scatter plot is first made for wide agriculture and grass land area, and then 

three corners are extracted and assigned into three endmembers. Finally, proportion of 

three land cover types is calculated using “linear spectral unmixing” function in ENVI.   

 
Figure 11 An example of the scatter plot of CAI and NDVI  showing the location  of the 

three endmembers. 

Fractional Cover 

The results (Figure 12) show that Oakville Prairie is mainly covered by dry grass or 

litter at the end of May. The observation is consistent in both 2009 (Figure 12a) and 2010 

(Figure 12b). At early September (Figure 12c), the Oakville Prairie is mostly green grass 

and mixed with some dry grass or litter.  

At Woodworth (Figure 13), much of the land cover is dominated by the PV by early 

June (Figure 13a), although there are some patches with significant fractions of NPV. At 
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mid-September (Figure 13c), the former green grass area is mixed with dry, while the 

former mixed patch turn to mostly green. This change pattern may distinguish between 

different grassland types at Woodworth, and illustrates the importance of fractional cover 

and a discrimatory property of grassland.  

The two sites show distinct patterns within sub-sections. The value ranges for 

fractional cover of some parts of Oakville Prairie and on the replanted area at Woodworth 

are significantly different to the surrounding areas at Woodworth and to other parts of 

Oakville Prairie. This partial distinction and partial similarity indicates that fractional 

cover difference can only provide partial discrimination of elements of grassland 

naturalness. In the next chapter, field spectral libaries of common species, collected 

throughout teh growing season are described and the libraries are formulated to support  

spectral image matching later in the thesis.. 
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(a) May 24 2009, Oakville 

 
(b) May 20 2010, Oakville 

 
(c) September 01 2009, Oakville 

 
(d) August 08 2010, Oakville 

Figure 12. Result of the green vegetation, dry and soil factional cover unmixing based on 

the NDVI and CAI for the Oakville Prairie 
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(a). June 04, 2010, Woodworth 

 
(b). June 292009, Woodworth 

 
(c). September 18 2009, Woodworth 

Figure 13. Result of the green vegetation, dry and soil factional cover unmixing based on 

the NDVI and CAI for the Woodworth and masked to grassland areas only. 
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CHAPTER IV 

FIELD SPECTRA 

In this section the collection of spectral libraries with the Analytical Spectral 

Devices (ASD) spectroradiometer is described. As discussed in the previous chapter, 

grassland may exhibit great spatial variation at the same point in time (Thulin, 2009), and 

these spatial patterns may then vary with time during the growing season due to 

differences in phenology. Variation may also occur from year to year due to changes in 

dominance resulting from different spring moisture and temperature conditions. As a 

result, spectral signatures were collected in the field over a wide range of times. Two 

separate spectral libraries were constructed to represent early and late season grassland 

characteristics. 

The Spectroradiometer 

The ASD measures radiance in a continuous spectrum between 350 and 2500 

nanometers. There are three separate detectors covering different spectral ranges. The 

Visible/Near Infrared (VNIR) portion of the spectrum, the 350 - 1050 nanometer 

wavelength domain, is most commonly measured by a 512-channel silicon photodiode 

array overlaid with an order separation filter.  Each channel measures wavelength within 

a narrow (1.4 nm) bandwidth. The full width half maximum (FWHM) of VNIR 

spectrometer, known as spectral resolution, is approximately 3 nm measured at around 
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700 nm (FieldSpec Pro 2002). 

The Short-Wave Infrared (SWIR), also called the Near Infrared (NIR), portion of the 

spectrum is acquired with two scanning spectrometers.  Different with the array used in 

the VNIR, which measures wavelengths sequentially, The SWIR measures light 

simultaneously.  The first spectrometer (SWIR1) covers the region from about 900 

to1850 nm; the second (SWIR2) measures light from about 1700 to 2500 nm.  The 

controlling software automatically accounts for the overlap in wavelength intervals by 

using a preset wavelength within the common subset at which to place a “splice”.  The 

sampling interval for each SWIR region is about 2 nm, and the spectral resolution varies 

between 10 nm and 12 nm, depending on the scan angle at that wavelength. (FieldSpec 

Pro 2002) 

Data Processing 

Figure 14 illustrates overall the field spectra processing and transformation steps. 

The ASD Raw DN mode is used in field measurement. The raw data (raw DN, for 

“digital numbers”) usually contains 16-bit integer numbers corresponding to the intensity 

of light field through a given point in space  measured by VNIR and SWIR detectors, and 

it is a function  both of the characteristics of the light field being measured and of  the 

instrument itself (FieldSpec Pro 2002). Reflectance is calculated from these raw digital 

numbers (FieldSpec Pro 2002). Due to water absorption in atmosphere and electronic 

noise in the instrumentation, ASD suggest that an averaging method is needed to reduce 

noise in the desired spectrum. In field measurements, 10 spectra are collected each time. 

Then, if there is no significant difference between 10 spectra, average will be calculated 

(Figure 15).  
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Reflectance is the fraction of incident light that is reflected from a surface, which 

can be represented as a ratio between measurements from both the unknown material and 

a white reference (Equation 3).  The white reference has approximately 100% reflectance 

through the entire spectrum. Thus reflectance is calibrated by using the ratio between 

measurements of species and white reference (Equation 4,Figure 16). 

 
Figure 14. Overview of the field spectra processing and transformation steps 
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Figure 15. Average of 10 raw measurements in order to reduce noise 

 

 
Figure 16. Reflectance calculated as ratio between measurements from certain species 

and white reference 
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𝐑 (𝐑𝐞𝐟𝐥𝐞𝐜𝐭𝐚𝐧𝐜𝐞) =  
𝐋𝐢𝐠𝐡𝐭 𝐞𝐦𝐢𝐭𝐭𝐞𝐝 𝐟𝐫𝐨𝐦 𝐬𝐚𝐦𝐩𝐥𝐞

𝐥𝐢𝐠𝐡𝐭 𝐞𝐦𝐢𝐭𝐭𝐞𝐝 𝐟𝐫𝐨𝐦 𝐰𝐡𝐢𝐭𝐞 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 (𝐖𝐑)
                                                 (3) 

𝐑 =  
𝐑𝐚𝐰 𝐃𝐍 𝐬𝐩𝐞𝐜𝐭𝐫𝐮𝐦 𝐨𝐟 𝐬𝐚𝐦𝐩𝐥𝐞

𝐑𝐚𝐰 𝐃𝐍 𝐬𝐩𝐞𝐜𝐭𝐫𝐮𝐦 𝐨𝐟 𝐖𝐑
                                                                                            (4) 

There are three detectors in the ASD instrument measuring light continuously. One 

covers the VNIR, the two others the Short-Wave Infrared. However, jumps can often be 

observed between two detectors in the measured spectrum. This can be attributed to 

inadequate optimization/calibration of the detectors or to target homogeneity (Dorigo 

2006). For spectra measured in the field, only the jump between the first two detectors 

can be observed, since the shift between the SWIR1 and SWIR2 is within a wavelength 

range which is governed by water vapor, and thus the jump is overshadowed by noise 

(Dorigo 2006).For the jump correction, one of the three detectors will be considered as a 

reference, and the data from the other detectors is adjusted to that reference (Figure 17). 

Here the second detector is assumed to be the “correct one”. 

The field spectra is greatly perturbed due to the presence of water vapor absorbing 

light in the regions around 1400nm and 1800nm as it passes though the atmosphere. 

These wavelengths are usually considered to have low signal to noise ratio (SNR) and 

therefore were removed during analysis. The removed regions include 1336-1420nm, 

1737-1952nm and region beyond 2333nm. The water vapor bands were then replaced by 

linear interpolation (Figure 18). 
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Figure 17. The First Detector Is Corrected And Adjusted To The Second Detector 

 

 
Figure 18. Water vapour bands are removed and replaced with linear interpolations 
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Field Measurements Result 

Several locations of patches are continuously sampled (Figure 19) since May 2011 

to compare spectral changes (Figure 20; Figure 21) of different species through growing 

season and proportion of land cover is also extracted based on their locations (Figure 22 

to Figure 34). 

All native spectra and land cover proportions from Figure 22 to Figure 33 are 

collected from Oakville Prairie. The brome grass spectra (Figure 34) are collected from 

both Oakville and Woodworth. The land cover proportion of brome grass (Figure 34c), 

however, is extracted from Woodworth, due to the lack of big patch at Oakville Prairie.  

In some cases, temporal changes in the magnitude and shape of the spectra do not 

exhibit consistent patterns. For example, the red edge effect might usually be expected to 

increase from early in the growing season to later in the growing season as in Figure 29, 

where the green cover clearly increases (Figure 29 a-c). The disagreements may come 

from many factors, for example, atmosphere condition, wind, health of plants. However, 

temporal variability in strength and shape of spectral signatures may introduce unwanted 

variation and spectral confusion into the spectral analysis at the next chapter. 
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Figure 19.Field Measurements Locations At Oakville Site. The Overview Image Shows 

Oakville North Section Region. 
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Figure 20.The Overall Variation In Vegetation Spectra at Oakville (Aug 06 2009; May 16 

2011; Jun 28 2011; Jul 07 2011; Aug 25 2011) 

 

 
Figure 21. The Overall Variation In Spectra at Woodworth (Aug 09 2011) 
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(a). May-16-2011   (b). July-07-2011 (c).August-25-2011 

 
(d).Time series Spectrum                    (e).Fraction Cover 

Figure 22. Photos of Golden Rod; Wheat Grass Patch at three dates a-c); and d) patch 

spectra collected at four times in 2001; and e) fractional cover of green, dry and bare soil 

for the image pixel corresponding to this location. 

 

   
(a). May-16-2011                     (b).July-07-2011                      (c). August-25-2011 

 
(d).Time series Spectrum                       (e).Fraction Cover 

Figure 23. Photo of Triglochin Patch at three dates a-c); and d) patch spectra collected at 

four times in 2001; and e) fractional cover of green, dry and bare soil for the image pixel 

corresponding to this location.  
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(a). May-16-2011                    (b).July-07-2011                      (c).August-25-2011 

 
(d).Time series Spectrum              (e).Fraction Cover 

Figure 24. Photo of Wheat Grass Patch Spectra of Wheat Grass Patch at three dates a-c); 

and d) patch spectra collected at four times in 2001; and e) fractional cover of green, dry 

and bare soil for the image pixel corresponding to this location. 

 

   
(a). May-16-2011                    (b).July-07-2011                      (c).August-25-2011 

 
(d).Time series Spectrum             (e).Fraction Cover 

Figure 25.  Photo of Cord Grass; Hairy Aster Patch at three dates a-c); and d) patch 

spectra collected at four times in 2001; and e) fractional cover of green, dry and bare soil 

for the image pixel corresponding to this location. 
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(a). May-16-2011                    (b). July-07-2011                     (c).August-25-2011 

 
(d).Time series Spectrum                   (e).Fraction Cover 

Figure 26. Photo of an area dominated by wild rye (Elymus spp) at three dates a-c); and 

d) patch spectra collected at four times in 2001; and e) fractional cover of green, dry and 

bare soil for the image pixel corresponding to this location. 

 

   
(a).May-16-2011                     (b).July-07-2011                      (c).August-25-2011 

 
(d).Time series Spectrum           (e).Fraction Cover 

Figure 27.Photo of Wheat Grass Patch at three dates a-c); and d) patch spectra collected 

at four times in 2001; and e) fractional cover of green, dry and bare soil for the image 

pixel corresponding to this location. 
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(a). May-16-2011                    (b). July-07-2011                     (c).August-25-2011 

 
(d).Time series Spectrum        (e).Fraction Cover 

Figure 28. Photo of Golden Rod; Poacaea Patch at three dates a-c); and d) patch spectra 

collected at four times in 2001; and e) fractional cover of green, dry and bare soil for the 

image pixel corresponding to this location. 

 

   
(a). May-16-2011                    (b).July-07-2011                     (c).August-25-2011 

 
(d).Time series Spectrum            (e).Fraction Cover 

Figure 29.Photo of Cord Grass Patch at three dates a-c); and d) patch spectra collected at 

four times in 2001; and e) fractional cover of green, dry and bare soil for the image pixel 

corresponding to this location. 
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(a). May-16-2011                    (b).July-07-2011                      (c).August-25-2011 

 
(d).Time series Spectrum         (e).Fraction Cover 

Figure 30.Photo of Wheat Grass Patch at three dates a-c); and d) patch spectra collected 

at four times in 2001; and e) fractional cover of green, dry and bare soil for the image 

pixel corresponding to this location. 

 

   
(a). May-16-2011                    (b). July-07-2011                     (c).August-25-2011 

 
(d).Time series Spectrum       (e).Fraction Cover 

Figure 31.Photo of Patch at three dates a-c); and d) patch spectra collected at four times 

in 2001; and e) fractional cover of green, dry and bare soil for the image pixel 

corresponding to this location. 
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(a). July-07-2011                     (b). August-25-2011 

 
(c).Time series Spectrum    (d).Fraction Cover 

Figure 32.Photo of Patch at three dates a-b); and c) patch spectra collected at four times 

in 2001; and d) fractional cover of green, dry and bare soil for the image pixel 

corresponding to this location. 

 

   
(a). May-16-2011                    (b).July-07-2011                     (c).August-25-2011 

 
(d).Time series Spectrum        (e).Fraction Cover 

Figure 33. Photo of Snow BerryPatch at three dates a-c); and d) patch spectra collected at 

four times in 2001; and e) fractional cover of green, dry and bare soil for the image pixel 

corresponding to this location. 
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(a). June 16 2010                                           (b). August 092011 

 
(c).Time series Spectrum                 (d).Fraction Cover 

Figure 34.Photo of Brome Grass Patch at three dates a-b); and c) patch spectra collected 

at four times in 2001; and d) fractional cover of green, dry and bare soil for the image 

pixel corresponding to this location. 

 

The fractional cover estimates show that fraction of bare soil is low at Oakville most 

of the time because of the thick cover of litter on the prairie area. The greenness of native 

grasses is comparatively low in May, and increases as the growing season progresses. The 

relative fraction of green cover and dry cover in patches of cord grass and wheat grass 

reaches a plateau around August. The greenness of forbs (Figure 33) is high at May but 

decreases later growing season which may be caused by flowering. The dry fraction, 

however, usually declines with increasing greenness. The smooth brome grass at 

Woodworth, on the other hand, is distinctive. Soil proportion is always high at 
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Woodworth which may mainly represent the different background from Oakville Prairie. 

Some smooth brome grass sample sites were close to road compared with 30 meters 

image resolution so this may have contaminated these sites. However, in general, the 

Woodworth smooth brome grass stands may accumulate substantial litter loads since they 

are not grazed or mown in order to protect breeding habitat for birds. The trend of 

greenness, however, is distinctive. It starts with a high proportion in early June then 

decreases as the growing season progresses, but then rises again late in the growing 

season. The dry proportion keeps increasing compared with Oakville Prairie.  

Based on the above analysis, it can be assumed that:  

1. Smooth brome grass tends to have high greenness in the early growing season; 

2. Some grasses, especially smooth brome grass, tend to become less green later 

growing season due to flowering behavior. 

Thus the fractional cover proportions are also important since signal changes of 

green grass can indicate differences between species. 

However, the fractional cover proportions show the combination of green 

vegetation, dry grass and soil at 30 by 30 meters scale. Therefore, the results do not 

represent the exact sample sites, which could result in some disagreement with spectral 

analysis. 

Discussion 

The processes applied to the field measurement of this research were carefully 

documented. Ideally pre-processing and correction of spectra should be done with great 

care to ensure possibility of use of spectra for other applications and to further the 
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collective knowledge of the whole hyperspectral community dealing with 

ecological/vegetation applications (Pfitzner et al. 2006). 

The results show substantial variation in spectral profiles over time. Early in the 

growing season, this variation is mainly caused by changes from litter and senescent 

vegetation or bare soil to green vegetation. Thus, spectral curves generally represent more 

vegetation features, like the green peak and red edge, by June and July. The spectral 

profiles continue to change, but these changes show no consistency among locations. The 

variation is made up of complex information related both to structural changes among the 

species present, phenological changes associated with flowering, and growth of new 

species, especially forbs and herbs, which grow out in the patches. 

The collection of field spectra involves a multitude of challenges. In this study, 

weather and light conditions and personnel schedules meant that it was not possible to 

sample as frequently as was desirable in order to fully capture temporal variation. In 

addition, the decision was made to take field-of-view spectra rather than pure green leaf 

spectra due to the logistics involved in such pure measurements. With relatively large 

pixels and relatively modest SNR for Hyperion images, it was considered to be more 

important to capture spectra representative of patches rather than spectra of pure green 

leaves. 

The fractional cover results show some consistent change patterns among site 

locations at Oakville. For example, most native grasses trend to higher greenness along 

growing season because of increasing green leaves; but there are exceptions to this trend 

such as June grass. There was a distinct spectral response pattern, for ASD sites at 
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Woodworth, since smooth brome grass flowered earlier than most native grasses, and 

therefore showed less greenness later in the growing season. 

Given that the pixel resolution of Hyperion imagery results in mostly mixed pixels 

(mixtures of species and cover types) in these grasslands, the next chapter applies spectral 

matching methods using the field measured spectra in order to define specific 

combinations of species and cover fractions that may be indicative of grassland 

naturalness.
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CHAPTER V  

SPECTRUM MATCHING 

Introduction 

This chapter describes three stages of analysis designed to create spatial data layers 

that describe spectral properties of the grassland that could be used to model naturalness 

– the continuum from native to introduced grassland. The stages involve: 

1. Spectral matching involving comparison of a range of methods and selection of 

results from the best of these. 

2. Examination of the relative extent to which the spectral match is dominant by 

generation of two measures – level of dominance and band variance 

3. Examination of the spatial pattern of spectral matches using textural co-

occurrence methods – i.e. determining if there are larger patches and regions 

characterized by difference combinations and levels of spectral matching. 

The analysis is presented in three sections and at the end, a set of data layers that 

could be most discriminatory for distinguishing between native and introduced grassland 

is defined. These layers are used in naturalness modeling in Chapter 6. 

Spectral Library 

The spectral library was first built based on field measurements for both native and 

introduced species. As spatial resolution of Hyperion image is 30m, sparse species 
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distribution is not detectable in sensor response. Thus only the major species that can 

provide enough signal are included in the spectral library for native grassland, such as 

June grass, cord grass, wheat grass, wild rye, and common forbs like Maximilian 

sunflower, thistle, sage, and sage willow. Since the native prairie is usually covered by 

litter, particularly in early spring due to senescence, freezing and shattering of the growth 

from the previous season, the dry grass signal can comprehensively affect the image 

spectrum especially at early growing season. Therefore, the dry grass spectra are an 

essential component of the spectral library. The major introduced species in this analysis 

are smooth brome grass and Kentucky blue grass. Figure 1 shows changes in the 

appearance and phenology of the major species over the growing season. June grass and 

wild rye flower in early July, but by late August June grass inflorescences have dried off 

and wild rye inflorescences have shattered. Smooth brome grass and Kentucky blue grass 

have already started flowering in June. By September, however, Kentucky blue grass has 

completely dried off and smooth brome grass displays mixed dry and green patches. Cord 

grass and wheat grass change little through the middle of growing season. Forbs like 

Maximillian sunflower, sage and sage willow present mainly a leafy appearance early in 

the growing season, but appear less leafy and sparse later on. When Maximilian 

sunflower starts flowering at late August, significant yellow color is evident in the 

grassland. The thistle begins flowering reasonably early,  and the flowers became more 

dense later in the growing season. 

As the vegetation spectrum varies during the entire growing season, from a spectrum 

dominated by dry grasses very early in the season, to a spectrum made up of diverse 

vegetation with flowering later in the season, separate spectrum libraries are created for 
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early (May to middle August, Figure 36) and later growing seasons (middle August to 

later September, Figure 37). Based on visual assessment (Figure 35), separate spectra for 

early and late growing season are used for June grass, wild rye, Maximillian sunflower, 

sage and sage willow. For Cord grass and wheat grass, the same spectra were used in 

early and later growing season (cord grass changes very little, and suitable wheat grass 

spectra were not collected for the early growing season period). Introduced species 

include green smooth brome grass and Kentucky blue grass in early growing season. For 

later growing season, both green and flowering smooth brome grass spectra are used. 

Kentucky blue grass, however, is excluded since it is already dry out and was not 

distinguishable from the non-photosynthetic litter and senescent grass spectra collected. 

In order to simulate Hyperion data, ASD reflectance is resampled to Hyperion bands. 

The function is provided by ENVI which assumes critical sampling and uses a Gaussian 

model with a full width at half maximum (FWHM) spacing. 
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Figure 35. Field Condition of Spectral Library 
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Figure 36 Early Growing Season Spectral Library 
 

 
Figure 37 Late Growing Season Spectra Library 
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As Figure 36 and Figure 37 illustrate, all vegetation spectra are highly correlated, 

and some parts of wavelength regions have weak responses for vegetation. Therefore, the 

data were transformed using continuum removal to decrease dimensionality and increase 

discrimination in critical wavelength regions. As different vegetation types may have 

various physical and biochemical structures, in a spectrum these differences may be 

represented in terms of different absorption features (Figure 38,Figure 39). Five known 

chemical absorption features were selected for this study. The first feature is related to 

chlorophyll absorption  in the visible domain (R550 – 750), which have been found to be 

related to nitrogen concentration and other bio chemicals on fresh standing canopies 

(Mutanga et  al., 2002, Mutanga et  al., 2003). Another chlorophyll absorption feature 

(R470 – 518) is not used because signal in this region in Hyperion image is noisy due to 

atmosphere effects. Short wave absorption features (R1116 – 1284, R1634 – 1786, 

R2006 – 2196 and R2222 – 2378) are also introduced since these have previously been 

related to characteristics of both fresh standing plant and dried ground plant materials.  

Then band normalized areas of the absorption features were calculated and were then 

used in the target detection methods (Figure 40,Figure 41). 



69 
 

 
Figure 38 Early Growing Season Spectral Library Continuum Removal 

 

 
Figure 39 Late Growing Season Spectra Library Continuum Removal 
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Figure 40 Early Growing Season Spectral Library Area of Absorption Features 

 

 
Figure 41 Later Growing Season Spectral Library Area of Absorption Features 
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Methods 

Matching Methods 

A class of techniques called target detecting technologies can be used to measure 

similarity between an unknown pixel and a reference spectral library (Homayouni 2004). 

There are generally two groups of methods for the analysis of hyperspectral data 

(Homayouni 2004). The first group of methods is based on binary hypothesis testing 

(Manolakis, 2002). The other methods, on the contrary, measure the similarity 

(Homayouni 2004). These techniques provide the basis for the spectral matching 

approach that is applied to the image and spectral library data in this study to discriminate 

between native and introduced grassland.  

There are eight methods provided by ENVI target detection module (ENVI Help):  

1. Adaptive Coherence Estimator (ACE) 

2. Constrained Energy Minimization (CEM) 

3. Matched Filtering (MF) 

4. Mixture Tuned Matched Filtering (MTMF)  

5. Orthogonal Subspace Projection (OSP)  

6. Spectral Angle Mapper (SAM)  

7. Target-Constrained Interference-Minimized Filter (TCIMF) 

8. Mixture Tuned Target-Constrained Interference-Minimized Filter 

(MTTCIMF):  
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All eight methods were tested, and the spectral match results were rescaled to 

greater than 0 and summed equal to 1 with the aim of subsequently comparing the 

distributions in the spatial dimension. A description of the ACE method is given in the 

next section as an example of the matching methodology involved. This method was 

eventually selected for the matching analysis. The basis for this selection is discussed in 

the Results section. 

Adaptive Coherence Estimator (ACE) 

According to Manolakis (2002), the ACE is calculated as follows: 

𝐃𝐀𝐂𝐄(𝐱) =
𝐱𝐓𝚪̂−𝟏𝐒(𝐒𝐓𝚪̂−𝟏𝐒)

−𝟏
𝐒𝐓𝚪̂−𝟏𝐱

𝐱𝐓𝚪̂−𝟏𝐱
                                                                                    (5) 

 

Where   is the Hyper-spectral image pixel,  ̂ is the covariance estimation of x,   is 

the species spectrum template (Farrell, et al., 2005). If an adaptive whitening 

transformation is applied  ̃   ̂ /  , where  ̂   ̂ /  ̂ / , the ACE can be expressed as 

(Manolakis, 2002) 

𝐃𝐀𝐂𝐄(𝐱) =
𝐱̃𝐓𝐒̃(𝐒̃𝐓𝐒̃)

−𝟏
𝐒̃𝐓𝐱̃

𝐱̃𝐓𝐱̃
=

𝐱̃𝐓𝐏𝐒̃𝐱̃

𝐱̃𝐓𝐱̃
                                                                                       (6)           

Where  ̃   ̂  /   and  S̃   ̃( ̃  ̃)
  
 ̃  is the projection of estimated species 

spectrum  ̃. Since  S̃
 =  S̃, The ACE can be written as  (Manolakis, 2002) 

𝐃𝐀𝐂𝐄(𝐱) =
‖𝐏𝐒̃𝐱̃‖

𝟐

‖𝐱̃‖𝟐
= 𝐜𝐨𝐬𝟐𝛉                                                                                                           (7) 

Which shows that     ( ) is equal to the square cosine of the angle between the 

hyperion pixel and the species spectrum subspace into the whitened coordinate space 

(Figure 42) (Manolakis, 2002). 
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As dry grass dominant the research area at most of the growing season, abundance 

of vegetation is relatively low and variation among species is also depressed. With the 

purpose of species abundance comparison, conditional probabilities of individual species 

are calculated:  

 
Figure 42 Illustration of ACE detector (Manolakis, 2002) 

 

 

𝐏(𝐒𝐢|¬𝐃) =
𝐏(𝐒𝐢)

𝟏 𝐏(𝐃)
                                                                                                                        (8) 

Dominance Analysis 

The conditional probabilities suggested relative proportion among species. However, 

all species in spectral library are assigned a score which suggests that it is possible for 

every species to appear in each pixel. This is partly because of correlation between 

species spectrum as well as some limitations of the algorithm. As a result, it is valuable to 

estimate if the pixel spectrum is very close to single species spectrum, in other words, if 

there is a dominate species within the pixel area. Therefore, another two parameters were 

derived for measuring dominance. “Level of Dominance” calculates the difference 
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between the highest proportion and the average of the rest of the proportions. “Band 

Variance” is the variance of all proportions within each pixel. A high “level of 

dominance” or a high “band variance” is an indicator of pixels with a more dominant 

spectral identity associated with a single species.   

Texture Co-occurrence Measurements: Spatial Grain 

Once the species combination is estimated within a pixel, additional information 

may be gained from analyzing the spatial relationships of species combinations and 

dominance for the wider region, since this integrates among individual pixels and shows 

more information about grassland structure like the patch distribution. The analysis is 

based on the following assumption: 

1. Native Prairie is more likely to be multispecies mixed, thus “Level of Dominance” 

and “Band variance” are supposed to be low. 

2. Disturbed area is more likely to be dominated by invasive species like smooth 

brome grass, thus “Level of Dominance” and “Band variance” are supposed to be 

high 

 Texture co-occurrence measurements are the important characteristics, which have 

been widely used in identifying objects or regions of interest in an image (Haralick 1973). 

Textural features contain information about the spatial distribution of tonal variations 

within an image (Figure 43) (Haralick 1973). The concept of tone is based on the varying 

shades of gray of resolution cells in an image (Haralick 1973). Four angular (0 degrees, 

45 degrees, 90 degrees, 135 degrees) are most commonly used based on the nearest-

neighbor gray-tone (Figure 44). 
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a) Texture example 1 b) texture example 2 

Figure 43Example of image texture  

 
Figure 44 Illustration of four nearest-neighbor (distance is 1 pixel) directions  

 

It is first assumed that the texture features is specified by the grey-level co-

occurrence matrices (GLCM’s) Pij which counts frequencies of two neighboring cells 

separated by distance d within given window, one with gray-level i and the other with 

gray-level j. Thus the location in GLCM indicates level of differences and the value 

counts times of the differences appeared in distance d. Figure 45 illustrates the gray-tone 

spatial-dependence matrix in all four distance 1. 

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

(a) 

 Grey Tone 

  0 1 2 3 

Grey Tone 0 (0,0) (0,1), (1,0) (0,2),(2,0) (0,3),(3,0) 

1 (0,1), (1,0) (1,1) (1,2),(2,1) (1,3),(3,1) 

2 (0,2),(2,0) (1,2),(2,1) (2,2) (2,3),(3,2) 

3 (0,3),(3,0) (1,3),(3,1) (2,3),(3,2) (3,3) 

 

(b) 

135 90 

0 

45 

0 

90 135 45 
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𝑃𝐻 = (

4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2

)

(𝑐)

𝑃𝑉 = (

6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0

)

(𝑑)

𝑃𝐿𝐷 = (

2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0

)

(𝑒)

𝑃𝑅𝐷 = (

4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 0

)

(𝑓)

 

Figure 45 (a)4 by 4 image with four gray-tone values 0-3; (b) General form of any gray-

tone spatial-dependence matrix for image with gray-tone values 0-3; (c)-(f) Calculation 

of all four distance 1 gray-tone spatial-dependence matrices. 

 

Then seven common grey-level texture features (Table 3) are tested in this study. 

These statistics extract two fundamental characteristics from the spatial-dependence 

matrix (Clausi et al., 1998): the degree of smoothness of the image in certain directions, 

such as dissimilarity, contrast and homogeneity; the uniformity of the image, such as 

second moment and entropy. 

Scale determination is the first task for spatial exploring. In this case, since section is 

the fundamental unit of land management, three sub section scales are tested: 90X90m 

(3X3 pixels, about 1/18X1/18 miles); 270X270m (9X9 pixels, about 1/6X1/6 miles); 

810X810m (27X27 pixels, about 1/2X1/2 miles – this is approximately a quarter section). 

Only late growing season images are tested because of more abundant patches 

information at this period and just zero degree directional factors are processed at this 

stage. 
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Table 3 Texture Statistics defined i, j are row and column 

Mean 

𝝁𝒊 = ∑ 𝒊(𝑷𝒊,𝒋)

𝑵 𝟏

𝒊,𝒋=𝟎

𝝁𝒋 = ∑ 𝒋(𝑷𝒊,𝒋)

𝑵 𝟏

𝒊,𝒋=𝟎

 

Variance 

𝜎𝑖
 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)

 

𝑁  

𝑖,𝑗=0

𝜎𝑖
 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)

 

𝑁  

𝑖,𝑗=0

 

Homogeneity 

∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗) 

𝑁  

𝑖,𝑗=0

 

Contrast 

∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)
 

𝑁  

𝑖,𝑗=0

 

Dissimilarity 

∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁  

𝑖,𝑗=0

 

Entropy 

∑ 𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁  

𝑖,𝑗=0

 

Second Moment 

∑(𝑃𝑖,𝑗)
 

𝑁  

𝑖,𝑗=0

 

 

Results 

Matching 

The first criteria of method selection is based on the assumption that in the early 

growing season, most  green grass has not grown in May and prairie is mainly covered by 

dry grass.  Among the methods, OSP, however, provides a high score for June grass, as 

do TCIMF and MTTCIMF for sage for May 20 2010 (Figure 46). The TCIMF and 

MTTCIMF methods failed to detect dry grass as highest score (Figure 47). The CEM, 

MF and MTMF methods, on the other hand, detect little difference in species distribution 

information for May 24 2009 (Figure 47). Many species are growing vigorously in 

August and some patches become very distinct at this stage of growing season. The ACE, 

CEM, MF, MTMF and SAM methods all identify similar patch information, with 
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especially ACE and MTMF detecting more variation (Figure 48). Early in the growing 

season, the most fractional cover component in the grassland at Woodworth is supposed 

to be dry grass. Only the ACE, CEM, MF and MTMF methods provided reasonable 

results (Figure 49; Figure 50). From the early growing season analysis, two methods, 

ACE and MTMF, gave the best discrimination.  

When comparing matching approaches later in the growing season, a method with 

higher sensitivity to individual species spectra is required. The ACE method identified 

more variation within a single match image, and more variation among species maps 

(Figure 51;Figure 52). Conversely, the CEM, SAM, TCIMF, MTTCIMF and MF showed 

little variation among species possibility for Maximilian Sunflower, cord grass, and 

wheat grass, for example (Figure 51,Figure 52). This suggested that CEM and MF were 

not effective at detecting any patches containing these species. Although the MTMF 

method identifies variation within each possibility map, the pattern of this variation is 

very similar between species maps (Figure 51,Figure 52). Hence, MTMF method is 

barely distinguishing species from each other. The OSP method in both Oakville and 

Woodworth (Figure 51,Figure 52), and the TCIMF and MTTCIMF methods at 

Woodworth (Figure 52) predict a wide distribution of certain native species like June 

grass or sage willow, which is not agreement with field observation. As a result, it was 

clear that the ACE method was the most sensitive method available, and the results of the 

ACE analysis were used in the subsequent work. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

B) 

Figure 46 A) Methods test of Oakville May 20 2010. For each method, 11 endmembers 

are included. B) Legend for data layers. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 47 A) Methods test of Oakville May 24 2009. For each method, 11 endmembers 

are included. B) Legend for data layers. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 48 A) Methods test of Oakville August 08 2010. For each method, 11 endmembers 

are included. B) Legend for data layers. 
 

  

June Grass Maximilian Sunflower Cord Grass Wheat Grass 

Wild rye Brome Grass Kentucky Blue Grass Sage 

Sage Willow Thistle Dry Grass 
 



82 
 

A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 49 A) Methods test of Woodworth June 04 2010. For each method, 11 

endmembers are included. B) Legend for data layers. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 50 A) Methods test of Woodworth June 29 2009. For each method, 11 

endmembers are included. B) Legend for data layers. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 51 A) Methods test of Oakville September 01 2009. For each method, 12 

endmembers are included. B) Legend for data layers. 
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A) 

 
a ACE                                               b CEM                                               c MF 

 

 

 
d MTMF                                              e OSP                                              f SAM 

 

 

 
g TCIMF                                      h MTTCIMF 

 

 

 

 

B) 

Figure 52 A)  Methods test of Woodworth September 18 2009. For each method, 12 

endmembers are included. B) Legend for data layers. 
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Level of Dominance and Band Variance 

Early in the growing season, both “Level of Dominance” and “Band Variance” show 

little difference across Oakville Prairie and the surrounding area (Figure 57, Figure 58). 

However, by August and September, the saline grassland areas of Oakville Prairie 

showed noticeably lower “level of dominance” than the other areas (Figure 57, Figure 58). 

A high score of “level of Dominance” was obtained for the School Trust Land area at 

Oakville (Figure 57, Figure 58). At the Woodworth site, including the restored area, the 

“Level of Dominance” showed highly score throughout the whole growing season 

(Figure 57). The indicator “Band Variance” was somewhat less sensitive than “Level of 

Dominance”.  However, ‘Band Variance” did show less spatial variation of score in the 

restored area compared with other places of Woodworth (Figure 58). 

Scatter plots of “Level of Dominance” versus “Band Variance”(Figure 59) show some 

degree of correlation, but also a high degree of scatter at higher values, and a curvilinear 

trend that reveals a very high level of variation in “Band Variance” for a given “Level of 

Dominance” value.. “Band Variance” has lower value range, but shows more detailed 

information on high dominant area and less information on less dominant area compared 

with “Level of Dominance”. 
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Figure 53 Mean Possibility of Species in Oakville September 01 2009. (X axis from 1 to 

11 are June grass; Maximilian Sunflower; Cord grass; Wheat grass; Wild rye; Brome 

grass green; Brome grass flowering; Sage; Sage Willow; Thistle green; Thistle flowering) 

 
Figure 54 Mean Possibility of Species in Woodworth September 18 2009. (X axis from 1 

to 11 are June grass; Maximilian Sunflower; Cord grass; Wheat grass; Wild rye; Brome 

grass green; Brome grass  
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Figure 55 Possibility Standard Deviation of Species in Oakville September 01 2009. (X 

axis from 1 to 11 are June grass; Maximilian Sunflower; Cord grass; Wheat grass; Wild 

rye; Brome grass green; Brome grass flowering; Sage; Sage Willow; Thistle green; 

Thistle flowering) 

 
Figure 56 Possibility Standard Deviation of Species in Woodworth September 18 2009. 

(X axis from 1 to 11 are June grass; Maximilian Sunflower; Cord grass; Wheat grass; 

Wild rye; Brome grass green; Brome grass flowering; Sage; Sage Willow; Thistle green; 

Thistle flowering)  
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Dominance 

 
a Oakville                                                              b Woodworth 

Figure 57 Level of Dominance 
 

 
a Oakville                                                                  b Woodworth 

Figure 58 Band Variance 

 

 
Oakville (September 01 2009)                                    Woodworth (September 18 2009) 

Figure 59 Scatter Plot of Band Variance and Level of Dominance in Oakville and 

Woodworth 
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Texture Co-Occurrence 

 

The texture co-occurrence analysis shows (Figure 60) that the images from the 

90x90m scale analysis contain many small patches and do not provide sufficient 

generalization of spatial patterns and barely any variation in other factors. The textural 

analysis at 810x810m scale, however, removes all patch information. The 270x270m 

scale, by contrast, extracted spatial patterns with reasonable detail in the “Mean” statistics 

and also revealed variation in other factors (e.g., variance, contrast and dissimilarity). 

Therefore, the texture layers at 270x270m scale were selected for further analysis. Based 

on a further comparison among texture features at the 270x270m scale, four properties 

(Mean, Variance, Dissimilarity, and Contrast) were selected based on value range and 

patches sensitivity. 

 
a. Image results from a 90X90m kernel                                     b. Image results from a 270X270m kernel 

 
c. Image results from a 810X810m kernel.  

Figure 60 Texture Co-occurrence measurements of level dominance in Oakville 

September 01 2009 (Upper from left to right: mean, variance, homogeneity, contrast; 

Bottom from left to right: dissimilarity, entropy, second moment)  
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a 0 degree versus 90 degree texture features                 b 45 degree versus 90 degree texture features 

 

c 45 degree versus 135 degree texture features                d 135 degree versus 90 degree texture features 

Figure 61 Scatter plot of Texture co-occurrence measurements in multi directions for 

level dominance in Oakville for September 1, 2009. 

 

As mentioned above, texture co-occurrence can estimate spatial relationships in 

different directions. In this case, four main directions were tested and plotted in order to 

examine if there were any significant differences due to directional features. 

The texture co-occurrence measurements were linearly distributed in three directions 

(0, 90, 135; Figure 61, Figure 62). This means that all those three direction show similar 

spatial patterns, but there are some disagreements for the 45 degree direction. Based on 
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a 0 degree versus 90 degree texture features                 b 45 degree versus 90 degree texture features 

 
c 135 degree versus 90 degree texture features              d 45 degree versus 135 degree texture features.         

 
e  Texture Co-occurrence measurements at 45 degrees.  

Figure 62. Scatter plot of texture co-occurrence measurements in multi directions for 

level dominance in Woodworth September 18 2009. The cyan area suggests 

disagreements between 45 degree and 135 degree measurements. 
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the classification result (Figure 62 e), the disagreement mainly comes from ‘contrast’ and 

‘dissimilarity’ measurements which show an overall low value in 45 degree direction in 

both Oakville and Woodworth. This disagreement may come from landscape differences, 

and thus is treated as background information and not be considered in the subsequent 

analysis. In order to minimize the background effect, the 135 degree texture features were 

used in the following analysis.  

Discussion 

Eight spectral matching methods were tested. The matching results were relatively 

poor for most of the methods. The high correlation between species spectra (Andrew & 

Ustin, 2008) the relatively low spatial resolution (Underwood et al., 2007), and modest 

SNR of the Hyperion sensor all contribute to the poor matching results. Based on a visual 

examination of the sensitivity of the methods, in terms of both discrimination within a 

matching image for a single species, and discrimination between species images, the 

ACE method was selected as the best method for detecting differences in grassland 

composition. 

The ACE method estimates the possibility of occurrence of each species from the 

spectral library in each pixel in the image. The classification of species match images 

provided very different class signatures for possibility values within a pixel between 

native grassland (Oakville Prairie) and introduced grassland (Woodworth). At Oakville, 

there is high complexity since there are a lot of different multispecies combinations due 

to the small, but pure patch structure relative to the pixel resolution (e.g. Andrew & 

Ustin, 2008). As a result, the algorithm failed to identify high possibilities for idnividual 

species and instead assigned similar scores to all species. At Woodworth, most of the area 
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is dominated by one or a few species.  Therefore, the site complexity is relatively low, 

and the ACE method assigned significantly higher possibility scores to single species. 

Using the classification results, the two parameters, “Level of Dominance” and 

“Band Variance”, were calculated to provide a spectrally derived metric to indicate if the 

pixel is dominated by a single species. Although the resulting images hardly show any 

distinctive signatures early in the growing season at both Oakville Prairie and 

Woodworth, the dominance measures are more useful later in the growing season. At 

Oakville, in September, a low dominance score is observed on the grass-dominated area 

where there are many small pure patches of native grasses widely distributed. By contrast, 

for the southern part of the Oakville Prairie site, there is a large area where the 

dominance score is much higher. At Woodworth, the whole area, excluding the replanted 

area, shows generally high dominance score, but with some significant spatial variation. 

The spatial texture co-occurrence analysis showed generally low score of “Mean” 

and “Dissimilarity” at Oakville Prairie, which indicated the grassland is mixture of 

various grasses at 270 meter scale and none single species dominance. The forb 

dominated area at south of Oakville Prairie, in contrast, showed high score of “Mean”, 

which indicate that the grassland is highly dominated by single species. Similar analysis 

were also performed and presented at the next chapter in order to extract the brome grass 

dominated area.  
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CHAPTER VI 

NATURALNESS MODELING 

In the preceding chapters, image processing, and spectral analysis and matching, 

have identified a number of image layers that capture various characteristics of the 

grassland sites. In Chapter 3, fractional cover of green vegetation (NPV), dead or dry 

vegetation (NPV) and bare soil (BS) were estimated using the methods of (Guerschman 

et al., 2009). In Chapter 5, field spectral libraries and Hyperion images were used for 

spectral matching to extract a series of data layers that represent the likelihood of a 

spectral match for each major species. In addition, data layers were derived that describe 

the spectral variance and level of dominance of spectral matches. Then finally, data 

layers describing spatial properties of these spectral match data layers were derived using 

texture co-occurrence measures.  

In this chapter the potential of using these spectral and spatial measures for 

estimating disturbance of native grassland by introduced species, a measure of grassland 

naturalness is examined using a spatially-explicit Multi-Criteria Analysis Shell (MCAS-

S).The modeling is based on the assumption that Oakville Prairie is completely native i.e. 

a naturalness level of 100% and that Woodworth is mainly dominated by introduced 

smooth brome grass i.e. a naturalness level of 0-10%. However, one section of the 

Woodworth property had been recently replanted with a prairie grassland mixture 

dominated by native grasses and forbs.  
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MCAS-S - Multi-Criteria Analysis Shell for Spatial Decision Support 

The multi-criteria analysis measures and aggregates a variety of property layers of 

research area for estimating complex effects in spatial dimension (Lesslie et al., 2008). A 

multi-criteria analysis provided by MCAS-S is performed in this research. The MCAS-S 

integrates actual map and cognitive mapping into one workspace window with live 

update when primary layers are changed (Hill et al., 2005). The MCAS-S provides a 

histogram based classification which supports up to 10 classes with equal interval, equal 

area or custom criteria (Hill et al., 2005). There are three functions available for map 

aggregating: “Composite”, “Two-way”, “Multi-way” (Hill et al., 2005). The Composite 

function combines layers of interest with different weights. Two-way analysis allows 

users to explore the association of two classified maps and highlight particular value 

combinations of the two maps (Hill et al., 2005). The multi-way function rescales input 

layers into the range of 0 and 1 before combination. Then a grey scale map is created to 

represent “distance” from a target envelope of values in the input layers (Hill et al., 

2005). The MCAS-S is flexible and easy-to-use for land management decision making 

(Lesslie et al., 2008). For example, MCAS-S has been used to assess development 

pressures on greenbelts in two North American cities (Hill et al., 2009). 

Summary of Potential Input Data Layers for Modeling 

A list of previous results is first presented (Figure 63 to Figure 66) and analyzed in 

order to select the best layers to use in MCAS-S modeling. Several models are then 

developed based on different concepts. Based on a qualitative assessment, a final 

modeling approach is chosen.  The ability of this model to provide some assessment of 

grassland naturalness is then tested at an independent field site (Mekinock). 



97 
 

Figure 63 to Figure 66 summarize the spatial data layers  (factors) derived from the 

previous analysis that are available for modeling at Oakville and Woodworth for both 

early and late in the growing season. Since the data layers usually have different data 

ranges, each image is first rescaled to 0 to 1 and then stretched to ensure that low values 

are displayed. Thus, the figures are designed to illustrate variation within images only. 

Figure 63 shows the factors derived for Oakville for May 20, 2010. Level of 

dominance and band variance factors indicate that the area is not dominated by any single 

species. The majority of layers show little if any patch structure early in the growing 

season. This is because few species are actively growing at this stage of the year, and the 

density of green cover is low. The fractional cover of dry grass is very high, while soil 

fraction is generally low. The green vegetation fraction indicates that part of the area has 

started to grow. The area of Oakville Prairie is hard to distinguish at this time, while the 

texture layers show low overall values on northern part of Oakville Prairie, and adjacent 

school trust land. The low texture values suggest a lack of dominance and high spatial 

similarity in spectral properties. 

Figure 64 shows factors derived for Oakville for September 01, 2009. The level of 

dominance and band variance factors indicate that there is a relatively high level of 

spectral diversity on Oakville Prairie and it is not dominated by any single species. There 

is a spectrally distinct patch located between the Oakville Prairie and School trust land to 

the south, which is mostly dominated by forbs – it shows a strong match with 

Maximillian sunflower. The fractional cover layers show high proportions of both dry 

and green fractions at this latestage of the growing season. Both the ACE spectral 

matching results and the texture analysis layers show distinct areas of grass-dominated 
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native prairie, an area dominated by forbs and herbs, and the area of School Trust land to 

the south. Low values in the texture analysis layers for the native prairie area suggest 

evenly mixed grass and no single species dominates the whole prairie compared with the 

area apparently dominated by forbs.  

Figure 65 shows the factors derived for Woodworth   for June 4 2010. Level of 

dominance and band variance strongly indicate that the area is not dominated by any 

single species, and the replanted area shows little difference with other areas in 

Woodworth. The ACE spectral matching results show that the replanted area has more 

sunflower and wheatgrass and less dry litter, which agrees with the fractional cover 

analysis: high fraction of green vegetation cover and low fractional cover of dry grass. 

The texture layers, including contrast and dissimilarity, show little variation within the 

Woodworth area. 

Figure 66 shows the factors derived for Woodworth for September 18, 2010. Level 

of dominance and band variance show that there is no dominant spectral signature and the 

replanted area is hardly distinguishable from other parts of Woodworth. The ACE 

spectral matching results identify a significant match with sunflowers which is consistent 

with the early growing season ACE result (Figure 65). Unlike the result early in the 

growing season, the match results for wheatgrass do not highlight the restored area 

(Figure 66). However, similar to the early season (Figure 65), green fractional cover is 

high and dry fractional cover is low on the replanted area. The texture layers show low 

values on the replanted area compared with other area of Woodworth.  
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Figure 63 a) Legend for data layers b) Data layers derived for Oakville site May 20 2010 

(Early Growing Season). 
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Figure 64 a) Legend for data layers; b) Data layers derived for Oakville site September 

01 2009 (Later Growing Season). 
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Figure 65 a) Legend for data layers. b) Data layers derived for Woodworth site June 04 

2010(Early Growing Season). 
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Figure 66. a) Legend for data layers; b) Data layers derived for Woodworth site 

September 18 2009 (Later Growing Season).  
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Based on above analysis, a range of factors and layers representing indicator species 

for native or introduced grassland are selected (Table 4) to identify disturbance and 

naturalness. Three models are then tested based on the parameters in MCAS. The 

software automatically rescales input layer to 0 and 1 and all models are based on 

rescaled results.  

Table 4: Factors response at early growing season and later growing season 
Parameters Early Growing Season Later Growing Season 

Wheat Grass High as indicator Species of 

Native Grassland 

High as indicator Species of 

Native Grassland 

Wildrye High as indicator Species of 

Native Grassland 

High as indicator Species of 

Native Grassland 

Cord Grass High as indicator Species of 

Native Grassland 

High as indicator Species of 

Native Grassland 

June Grass High as indicator Species of 

Native Grassland 

High as indicator Species of 

Native Grassland 

Sunflower Indicator Species of Forbs Indicator Species of Forbs 

Thistle Indicator Species of Forbs NA 

Thistle Green NA Indicator Species of Forbs 

Thistle Flowering NA Indicator Species of Forbs 

Sage Willow Indicator Species of Forbs  

Brome Grass Low as introduced Species NA 

Brome Green NA Low as introduced Species 

Brome Flowering NA Low as introduced Species 

Kentucky Blue Grass Low as introduced Species NA 

Dry Grass High due to Litter at Native 

Grassland 

High due to Litter and dry out 

grasses 

Dry (Proportion) High due to Litter at Native 

Grassland 

High due to Litter and dry out 

grasses 

Vegetation (Proportion) Low based on C3 grass 

signature  

High at forb domain area but 

low at native grassland because 

of haying off 

Band Variance Low indicate low dominance Low indicate low dominance 

Level of Dominant Low indicate low dominance Low indicate low dominance 

Mean of Band Variance Low indicate generally low 

dominance 

Low indicate generally low 

dominance 

Dissimilarity of Band Variance The score suggests variation of 

spatial dominant. Low score 

means similar level of 

dominance in spatial dimension 

The score suggests variation of 

spatial dominant. Low score 

means similar level of 

dominance in spatial dimension 
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Model 1: Introduced Grass Model 

The Introduced Grass Model is based on the following assumptions: 

1. Introduced grass like Kentucky blue grass, smooth brome grass should be present 

and at high density 

2. Greenness should be higher than for native prairie, because smooth brome grass 

starts growing earlier than most native species. 

3. Native species like Wheat grass, Wild rye and Cord grass and June grass should 

be less likely to be present. 

4. As a disturbed area is more likely to be dominated by introduced grasses, Band 

Variance, Level of Dominance, Mean of Band Variance (BvMean) and 

Dissimilarity of Band Variance (Bvdis) should be high. 

In addition, some other signatures such as Thistle are also used (Figure 67) to 

indicate disturbed areas. The Introduced Grass Model was applied to analysis of Oakville 

and Woodworth for early and late growing season data.  

Introduced Grass Model applied to Oakville Prairie 

For Oakville Prairie, the native prairie areas and school trust lands are barely 

distinguishable from other land early in the growing season (Figure 68), because most of 

the land is mainly covered by dry grasses, while vegetation has just started growing. 

Similarly in the histogram (Figure 71), the scores at this period are close to a normal 

distribution indicating that the model is any better than chance or random.  

 

  



105 
 

 
Figure 67. Introduced Grass Detection Model. The character “i” before parameters means 

inverse, which inverted maximum value to 0 and minimum to 1. 

 

For the later growing season data at Oakville Prairie, (Figure 69), the Introduced 

Grass Model gives a high score in part of Oakville Prairie and part of the School Trust 

land, which would suggest significant presence of smooth brome grass. The histogram of 

pixel values from the final model prediction layer shows score on the native prairie area 

of Oakville Prairie between 0.5 and 0.8 (Figure 71). The high values for the model in this 

area gives a false result because spectral matching assigned high likelihood of smooth 

brome grass (“brome flower”) and Thistle (“thistle green”, “thistle flower”) presence in 

the native prairie. A time series model is then created by using both early growing season 

and later growing season results. As a result, the combined time series model also failed 

to identify native grassland from others (Figure 70). 
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Figure 68 Oakville Early Growing Season Model. Color from blue to red indicates value 

or model score from low to high 

 

 
Figure 69 Oakville Later Growing Season Model. Color from blue to red indicates value 

or model score from low to high 
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Figure 70 Combined Time Series Model of Oakville Prairie Grass. Color from blue to red 

indicates value or model score from low to high 
 

 
Figure 71 Histogram of Oakville Prairie. Color from blue to red indicates value or model 

score from low to high 
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Figure 72 Woodworth Early Growing Season Model. Color from blue to red indicates 

value or model score from low to high 

 

Introduced Grass Model applied to Woodworth 

When the Introduced Grass Model was applied to the Woodworth site (Figure 72 

and 67) most of the area shows a higher score compared with the replanted area, which is 

known to contain mostly native vegetation, for both the early (Figure 66) and late season 

(Figure 67) data sets. The combined model using the early and late season model result 

(Figure 74) clearly defines the the Woodworth property   and provides an eaven clearer 

distinction between the replanted area and the rest.  

The Introduced Grass Model appears to work well at the Woodworth site. However 

at the Oakville site, the model failed to exclude native prairie areas and provided 

confused results. The main reason, as observed from Figure 69, is that the ACE spectral 

matching analysis failed to distinguish between estimate brome grass and thistle on the 

one hand and  native grassland on the other at the Oakville site. As shown in Chapter 5, 
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vegetation spectra for introduced and native grasses were highly correlated with each 

other, and showed substantial overlap in magnitude and pattern. Thus some of the native 

species’ spectra, alone or in combination, may also resemble spectra of absent species 

like smooth brome grass, which causes the model to give confused results. Another factor 

is that early growing season is not helpful in discrimination because most of land is 

mainly covered by dry grasses and vegetation has only just started growing at that time. 

 
Figure 73 Woodworth Later Growing Season Model. Color from blue to red indicate 

value or model score from low to high 

 

 
Figure 74 Combined Time Series Model of Woodworth Grass. Color from blue to red 

indicate value or model score from low to high 
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Figure 75 Histogram of disturbed area at Woodworth. Color from blue to red indicate 

value or model score from low to high 

Model 2: Native Grass Model 

The Native Grass Model is based on the following assumption (Figure 76): 

1. Due to the thick litter background, native prairie has high dry grass signature 

compared with a disturbed area with introduced species 

2. Fractional cover of green vegetation should be lower on native grassland than on 

disturbed areas with introduced grasses, because native grasses are slower to start 

growing than smooth brome grass. 

3. Indicator species like wheat grass, wild rye and cord grass (at later growing 

season) are likely to be present. 

4. As native prairie is usually made up of numerous several species, Band Variance, 

Level of Dominance, Mean of Band Variance and Dissimilarity of Band Variance 

should be lower on native areas. 
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In the application of the Native Grass Model (Figure 70), it was necessary to make a 

specific adjustment to account for a big patch of forbs at Oakville Prairie, which may be 

mis-identified as non-native grasses due to the similarity of spectra between indicator 

plants such as Maximilian sunflower and smooth brome grass. Therefore, these pure forb 

areas were excluded from the model by using an index of forbs presence (based on a high 

match for Maximilian sunflower), and the assumption that the leaf density of forbs is 

higher than brome grass later in the growing season. 

 
Figure 76 Native Grass Detection Model. The character “i” before parameters means 

inverse, which inverted maximum value to 0 and minimum to 1. 

 

Native Grass Model Applied To Oakville Prairie 

When the Native Grass Model was applied to the early growing season data at 

Oakville Prairie, (Figure 77) high scores were obtained on many parts of the area and on 

the School Trust Land. As most of land was mainly covered by dry grasses early in the 

growing season, the model did not distinguish between native prairie and other land 

(Figure 80). When the Native Grass Model was applied to the late growing season data 
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(Figure 78), high scores were obtained for native grass areas. In addition, the sunflower 

match data identified the forb area. When the distribution of scores was examined in a 

histogram (Figure 80), the native grass model showed a broad peak for high scores, 

matching the native grassland, and a sharp peak for low scores, corresponding to a model 

prediction of native grassland in the forb-dominated area. When the model results from 

early and late growing season were combined, including the model that identified forb 

areas, the native grassland (corresponding to the mid-to-late season period was 

highlighted (Figure 79).  

 
Figure 77 Oakville Early Growing Season Model. Color from blue to red indicates value 

or model score from low to high 
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Figure 78 Oakville Later Growing Season Model. Color from blue to red indicates value 

or model score from low to high 

 
Figure 79 Combined Time Series Model of Oakville Prairie Grass. Color from blue to red 

indicates value or model score from low to high 
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Figure 80 Histogram of left half section above school trust land including Oakville 

Prairie and part of forb area. Color from blue to red indicates value or model score from 

low to high 

 

Native Grass Model Applied on Woodworth 

Figure 81 shows the native grass model applied at the Woodworth site for the early 

growing season period. The result shows that the replanted area gets a low score, and the 

remainder of the property gets a relatively high score (Figure 81). This means that the 

native grass model is identifying the smooth bromegrass areas on Woodworth, and not 

detecting the replanted area. Later in the growing season (Figure 82), the replanted area 

gets a moderate score in the model, while the rest of the property gets a low score. This 

means that the model is doing a better job, not getting confused between native grassland 

and smooth brome grass. At this time of the year, the replanted area had a high density of 

forbs, such as sunflower and other broadleaf species. This results in a spectral signature 

that is closer to smooth brome grass and less like native grasses, which explains why the 
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model score is only moderate. When the model results for early and late growing season 

are combined, the model (Figure 77) result is poorer since the early season response 

counteracts the better result from the late growing season model.  

The native grass model does not work very well at the replanted area in Woodworth 

because the species structure is different with Oakville Prairie. For example, indicator 

species like wheat grass and wild rye are not common in replanted area, which contains 

some tall grasses, but is more dominated by a lot of forbs like Maximilian sunflower. In 

addition, due to the high density of forbs, the replanted area shows more greenness and 

higher dominance than disturbed area early in the growing season. 

Based on above analysis, we can conclude that the early growing season is less 

helpful for modeling, because vegetation signatures are not strong at this stage, and 

different combinations of species can cause misleading results. In addition, the ACE 

spectral matching results are less useful for discriminating species directly, because of the 

relatively unstable and equivocal match scores. 
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Figure 81 Woodworth Early Growing Season Model. Color from blue to red indicates 

value or model score from low to high 

 
Figure 82 Woodworth Later Growing Season Model. Color from blue to red indicates 

value or model score from low to high 
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Figure 83 Combined Time Series Model of Woodworth Grass. Color from blue to red 

indicates value or model score from low to high 

 

 
Figure 84 Histogram of Woodworth disturbed area. The replanted area has been removed 

from statistic. Color from blue to red indicates value or model score from low to high 
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Model 3: Decision Tree (Based on later growing Season) 

The spectral matching analysis based on the ACE method may be not very effective 

when grassland is made up of well mixed combinations of many species, since the 

combined spectra of indicator native species may be similar too and overlapping with the 

spectra of introduced species. However, it is reasonable to assume that the combined 

spectrum of indicator native species is still highly indicative of the native species present 

in the target field and in some mixtures, but does not exactly match the spectra of the 

introduced species from which they should be distinguished. As a result, the ACE 

analysis may assign similar likelihoods to species actually present and species that are 

actually absent. Since none of species are supposed to have very high scores in ACE 

result when the grassland is a mixture of many species, the spatial factors, “BV_Mean” 

and “BV_Dissimilarity”, should be low. On the other hand, if the grassland is dominated 

by single species, the ACE analysis values for indicator species should be much higher 

than for the rest of the possible species. When a patch is dominated by a single species, 

the ACE analysis provides more trustworthy results. Therefore, the score obtained for 

matches with smooth brome grass can be used to identify if the patch is highly dominated 

by smooth brome grass. Based on above analysis, grassland is first defined as following 

types: 

1. Mixed Area (Several types of grasses are evenly mixed) 

2. Pure Area (Dominated by single type of grass) 

1) Native 

2) Forbs 
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3) Brome Grass 

Figure 85 shows processing flow to identify grassland conditions. For the test area, 

grassland is first divided into Mixed Native Grassland and single-species-dominant 

grassland by using “BV_Mean” and “BV_Dissimilarity” maps. For the single-species-

dominant grassland, smooth brome grass is further discriminated from other plants by 

using the ACE possibility of “Brome Green” and “Brome Flowering” layers.  

 
Figure 85 Decision tree to identify brome grass patches from native grassland.  

Condition 1: BV_Mean and BV_Dissimilarity 

Mixed Native Grassland 

Test Area 

Pure Patch 

Native or Forbs Brome Grass 

Condition 2: Brome Green and Brome 

Flowering 

Low 

High Low 

High 
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The Figure 86 shows implementation of the Decision Tree Model for Oakville 

Prairie. The native grassland areas on Oakville Prairie are well detected, as these areas 

are mostly made up of native grasses mixed at 30 meters pixel scale. Most of the School 

Trust Land as well as part of forb-dominated area are identified as “Mixed Forbs and 

Grasses”, while some of the forb-dominated area is misclassified as brome grass-

dominated patches. 

The Figure 87 shows the implementation of the Decision Tree Model for 

Woodworth.  The replanted area is correctly identified, as the area is mostly forbs and 

grasses mixed at 30 by 30 meters pixel scale. Most of the Woodworth grassland is 

identified as “Pure Brome Grass Patch”, while some fragments of the area are 

misclassified as “Native or Forb” patches. 

The native and replanted areas are well identified in the decision tree model. Thus 

the model is then selected as the final approach. But the model is only sensitive to teh 

presence of non-native grassland if smooth brome grass is the dominant species with high 

abundance. The “Pure Patch” area, however, is still hard to definitively classify as 

smooth brome grass and may be confused as either native or introduced grasses.  
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Figure 86. Decision tree applied on Oakville site. Color from blue to red indicate 

value or model score from low to high 
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Figure 87. Decision Tree applied on Woodworth site. Color from blue to red indicate 

value or model score from low to high 
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Final Model Assessment at an Independent Field Site 

In order to determine if the final model is site specific, or can be utilized at other 

locations, the model is tested on the Mekinock Prairie Chicken Wildlife Management 

Area under the jurisdiction of the North Dakota Game and Fish Department (Figure 

88).  This area is a relatively pristine native prairie (Chapter 3) but has been partly 

disturbed, and contains substantial patches of Typha spp, and smooth brome grass at 

low plant density except in isolated locations.. The area was randomly surveyed 

(Figure 88) to determine the predominant grassland types present. Figure 89 shows 

the grassland at each point location mapped in Figure 88. Based on a general 

assessment of in situ observations and the photographs, the sites were grouped into 

three broad grassland categories: Mixed Native Grassland; Mixed Forbs and Grasses; 

and Pure Brome Grass Patches. These points were then used to assess the 

effectiveness of the final naturalness model applied to an independent study site. 

Figure 90 suggests that most of the western part of Mekinock is native grassland, 

while the eastern part has been partly disturbed. The model results at sample locations 

are then extracted and compared with survey data (Table 5). 

The accuracy of the model predictions for Mekinock is described in Table 5 and 

Figure 91.  The model made correct predictions of grassland type at 10 Mixed Native 

Grassland locations.  Three “Mixed Native Grassland” samples were misclassified 

into “Pure Brome Grassland” and two were misclassified into “Mixed Forbs and 

Grasses”. The only Brome grass patch was classified as “Mixed Native Grassland”. 

One “Pure Native or Forb” point was classified into “Mixed Native Grassland” and 

five were classified as “Pure Brome Grassland”. Only three “Pure Native or Forb” 

samples were correctly classified.   
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Figure 88 Mekinock Survey at August 26 2010  
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1 Pure Brome Grass 

Patches 

 
2 Mixed Native Grassland 

 
3 Pure Native or Forb 

 
4 Mixed Native Grassland 

 
5 Mixed Native Grassland 

 
6 Mixed Native Grassland 

 
7 Pure Native or Forb  

 
8 Mixed Native Grassland 

 
9 Mixed Native Grassland 

 
10 Mixed Native Grassland 

 
11 Mixed Native Grassland 

 
12 Pure Native or Forb  

 
13 Mixed Native Grassland 

 
14 Mixed Native Grassland 

 
15 Pure Native or Forb  

Figure 89 Grassland combinations of 27 sample points. All points are classified into 

three groups: Mixed Native Grassland, Pure Native or Forb and Pure Brome Grass 

Patch 
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Figure 89 Cont. 

 
16 Pure Native or Forb  

 

 
17 Mixed Native Grassland 

 

 
18 Mixed Native Grassland 

 
19 Mixed Native Grassland 

 
20 Pure Native or Forb  

 
21 Mixed Native Grassland 

 
22 Pure Native or Forb  

 
23 Mixed Native Grassland 

 
24 Pure Native or Forb  

 
25 Mixed Native Grassland 

 
26 Mixed Native Grassland 

 
27 Pure Native or Forb  
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 “Mixed Native Grassland” was most successfully classified (Table 5; Figure 85). 

But the accuracy of “Pure Brome Grassland” and “Mixed Forbs and Grasses” is 

relatively low. This is partly because of highly correlation between species spectrum 

(Andrew & Ustin, 2008) as well as limitation of ACE method. On the other hand, the 

sample size for some grassland types, such as pure smooth brome grass, is too small; 

only one smooth brome grass patch was identified in the test area. However, 

Mekinock does represent an intermediate case between pure native grassland and an 

introduced grass field, so some mixed results might be expected. 

Table 5 Confusion Matrix of Decision Tree Model 

 Point Category Point Category (Percentage) 

Mixed 

Native 

Grass 

land 

Pure 

Brome 

Grass 

land 

Mixed 

Forbs and 

Grasses 

Mixed 

Native 

Grass 

land 

Pure 

Brome 

Grass 

land 

Mixed 

Forbs and 

Grasses 

M
o
d

el
 R

es
u

lt
 

Mixed 

Native 

Grassland 

10 1 1 83.33% 8.33% 8.33% 

Pure 

Brome 

Grassland 

3 0 5 37.5% 0.00% 62.5% 

Mixed 

Forbs and 

Grasses 

2 0 3 40.00% 0.00% 60.00% 

 

Table 6 Grassland Condition Distribution of Three Sites: Oakville Prairie in a half 

section; Woodworth without the replanted area and Mekinock 

 Oakville Prairie Woodworth Mekinock 

Mixed Native Grassland (Number of Pixel) 626 2859 1243 

Pure Native or Forb (Number of Pixel) 427 3615 531 

Pure Brome Grass (Number of Pixel) 398 5043 677 

Total 1451 11517 2451 

Mix Grassland (%) 43.14% 24.82% 50.71% 

Pure Native or Forb (%) 29.43% 31.39% 21.66% 

Pure Brome Grass (%) 27.43% 43.79% 27.62% 
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Figure 90. Decision Tree applied on Mekinock site. Color from blue to red indicate 

value or model score from low to high 
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Figure 91 Decision Tree Model results distribution based on Field Survey Points 

 

 
Figure 92 Land Cover Proportion of Three Sites: Oakville Prairie in a half section; 

Woodworth without the replanted area and Mekinock 

 

Table 6 and Figure 92 suggest the proportion of three types of land cover in all 

sites.  Oakville Prairie and Mekinock are mostly “Mixed Native Grassland”. 

Woodworth, however, is dominated by Brome Grass.  

Discussion and Conclusion 

Based on the analysis carried out in the previous chapters, some key spectral and 

other data layers required for modeling can be defined: 
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1. Indicator species that distinct native grassland or replanted area like wheat 

grass, wild rye, cord grass, June grass and forbs like Maximilian sunflower, 

Thistle and sage willow. 

2. Introduced species like smooth brome grass and Kentucky blue grass 

3. Fractional cover including dry litters and vegetation 

4. Dominance indicators: “level of Dominance” and “band variance” 

5. Spatial structures: “Mean of Band Variance” and “Dissimilarity of Band 

Variance” 

Three models were created. The Introduced Grass Model successfully identified 

smooth brome grass at the Woodworth site, but failed when mapping native prairie at 

Oakville site. One of the reasons is that ACE algorithm is not robust enough to clearly 

distinguish species that are highly correlated. Another reason is that early growing 

season is not suitable for species discrimination as there are not enough distinct 

signatures developed at this stage of growing season.  

The Native Grass Model failed to identify the replanted area at the Woodworth 

site mainly because of the major differences in species mixtures between that site and 

Oakville grassland. For example, Woodworth replanted area is more dominated by 

forbs like Maximilian sunflower, thus lack of native grass indicator species like wheat 

grass and wild rye leads to some poor prediction. 

The Decision Tree Model first focused on spatial structure of grassland, 

represented by the textural analysis of the spectral variation and spectral dominance 

measures later in the growing season. Though native grassland has patch structures, it 

still is detected as evenly mixed. This may because those patches are mixed within 

themselves or pure native patches are not big enough at 30m scale. On the other hand, 
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as smooth brome grass is aggressively competitive with other species (Sedivec et al. 

2009), and therefore it is more likely to form highly dominant patches. Therefore, 

from this analysis native grassland is generally well mixed (low “BV_Mean” and low 

“BV_Dissimilarity”), while disturbed area contain more grasslands with higher 

dominance measures (high “BV_Mean” and high “BV_Dissimilarity”). However, 

forb-dominated area has similar dominance characteristics to the smooth brome grass 

areas, thus ACE possibility of smooth brome grass is used to separate forbs and 

brome grasses. The final model well identified native grassland, however, it is still 

confusion at brome grass and forb dominated area. The area based statistic (Figure 92), 

instead, is more reasonable and shows more agreement with site conditions. 
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CHAPTER VII 

CONCLUSION, LIMITATION AND FUTURE WORK FOR THE 

STUDY 

Conclusion and Discussion 

This thesis sought to assess grassland naturalness by mapping grassland 

composition based on spectral signatures and, in particular, by identifying areas 

occupied by smooth brome grass (Bromus inermis), an introduced hay crop. Smooth 

brome grass is an effective weed, and therefore can compete with native grasses and 

forbs when natural grassland is disturbed (Whitman & Barker 1994). As a result, 

biodiversity of natural grassland could be decreased. Plant diversity in prairie 

grasslands supports a wide range of pollinating insects (Franzén & Nilsson, 2008), is 

strongly related to ecosystem productivity (Bullock et al., 2007), and makes the 

ecosystem potentially more resilient under environmental disturbance (Hooper & 

Vitousek, 1997).  

This study has a number of major findings. 

1. Spectral matching analysis plus assessment of spatial patterns and spectral 

variation could distinguish between smooth brome grass and pure native 

grasslands.   

2. However, there was a high correlation and similarity of absorption features 

between smooth brome grass dominant stands and natural grassland 

dominated by forbs which limited discrimination between these stands.  
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3. There was a strong effect of background litter and dry grass spectral responses 

at Oakville Prairie, and it was necessary to compensate for this strong 

signature in spectral matching analysis.  

4. There were major differences in fractional cover of PV and NPV between 

native grassland and smooth brome grass areas at different times during the 

growing season; however this was not always definitive.  

5. There was significant variation in field spectral signatures across the growing 

season, which made selective of definitive signatures for matching difficult.   

6. The high variability in spectral signatures within image pixels and moderate 

SNR and low spatial resolution (30 m) of Hyperion data placed limitation on 

discrimination between grassland types. Especially in view of the small 

differences in spectral signatures and high correlation of spectral patterns.  

7. Since spectral differences were not definitive to grassland types, relatively 

simple decision tree models utilizing the most discriminatory spectral and 

spatial layers ultimately proved to be the best approach for assessing 

naturalness.  

The Oakville Prairie, representing undisturbed native grassland, contains variety 

of native grasses as well as thick dry grass litter accumulated historically. The 

Woodworth site, on the other hand, is largely sown grassland dominated and managed 

as a breeding environment for water birds. The site is mostly dominated by brome 

grass with less litter background compared with Oakville Prairie. 

The imagery data used in this research was acquired from the Hyperion imager 

on the EO-1 satellite. The Hyperion LIR data was pre-processed to remove bad pixels, 

de-striping, bad bands removing, atmosphere correction, spectrum smoothing and 

geo-correction. However, the moderate SNR of Hyperion sensor (around 160:1 in the 
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visible and NIR, and 40:1 in the short wave infrared), relatively large differences in 

spectral signatures may be needed for distinguishing between cover types. Any noise 

effect adds to the uncertainties when identifying invasive species, particularly for 

analysis involving mostly mixed image pixels. 

Some researchers have  mapped invasive species by using common techniques 

like supervised classification (Underwood et al., 2003; Underwood et al., 2007; Yang 

et al. 2009) or statistical unmixing approaches (Andrew & Ustin, 2008; Miao et al., 

2006).  Generally, mapping accuracy decreases when site complexity increases 

(Andrew & Ustin, 2008). In other words, the mapping accuracy depends on species 

spectrum complexity within a pixel: higher correlation between species spectra leads 

to lower mapping accuracy. In addition, higher spectral and spatial resolution 

generates higher accuracy in unmixing results (Underwood et al., 2007). This is 

because high spectral resolution enables extraction of more detailed biophysical 

information about the vegetation (Gianelle & Guastella 2007), which increases the 

possibility of discriminating species. High spatial resolution decreases the likelihood 

of species complexity within pixels and increases the likelihood of having pure  

(single species) pixels. Given the complex species mixtures in the native grasslands of 

Oakville Prairie (including diverse broadleaf forbs), and the highly correlated spectra 

among species, and sample sites in the study area, simple spectral unmixing 

techniques proved to be insufficient to provide  discrimination on their own. 

Field spectra were collected during growing season and pre-processed (chapter 4) 

for the later use of species detection. As the overall spectra charts show (Figure 36, 

Figure 37), most species spectra are highly correlated and the smooth brome grass 

spectrum is not distinctive when compared with many of the other spectra. In addition, 

the reflectance at certain wavelengths shows relatively low variation and is of little 
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use for distinguishing between photosynthetically active herbaceous plants and 

vegetation swards. Therefore, in order to reduce dimensionality of the data, and 

concentrate analysis on wavelengths with high variation among species spectra, 

absorption features were extracted (Thulin, 2009). Although this magnified some of 

the differences among species, absorption feature curves were still similar and highly 

correlated (Figure 40, Figure 41). 

The spectrum matching approach (ACE; chapter 5), applied to estimate the 

proportional presence in the grassland of each species in the spectral library initially 

highlighted the domination of a dry grass signature at all sites early in the growing 

season. Later in the growing season, a mosaic of patches of grassland dominated by 

green leaves and stems developed, and more diversity in spectral responses was 

evident. However, the ACE spectral matching analysis showed some false detection 

results, in particular, a relatively high likelihood of smooth brome grass presence at 

Oakville Prairie. This seemed to occur because of non-unique spectral signatures for 

smooth brome grass and native grasses, complex species combinations within a single 

pixel, and a generally high correlation among spectra of many species. This problem 

has been reported in other studies. For example, Andrew and Ustin (2008), found that 

the accuracy of identification of invasive species decreased with increasing site 

complexity. In addition, it is clear that the 30m pixel resolution limited the 

identification accuracy (e.g., Underwood et al. 2007), since a single 30 x 30 m pixel 

almost always contained multiple patches of grassland with different dominant 

species. 

Nevertheless, the combination species likelihoods within pixels were 

significantly different between Oakville Prairie and Woodworth. Although the 

Oakville Prairie is a complex mosaic of species and patches, and the ACE result was 
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not definitive, the likelihoods for species presence tend to be evenly distributed 

among all tested species. At Woodworth, on the other hand, the results clearly showed 

a high likelihood of presence for one species (smooth brome grass) and a low 

likelihood for native grasses. Since Oakville Prairie is a mixture of various species at 

the 30m pixel scale; the combined spectrum also tends be the average spectrum of all 

of the native species, and tends to fall in the middle of the spectral range. At 

Woodworth, the spectrum from a 30 m pixel is more likely to be dominated by a 

single species, and the pixel spectrum tends to correspond more closely to that of one 

dominant species such as smooth brome grass. The two indexes that were developed 

to capture this level of spectral variability within a pixel, “Level of Dominance” and 

“Band variance”, indicate the extent to which any area is dominated by a single 

species. Differences in dominance mainly occur later in the growing season. Both 

“Level of Dominance” and “Band variance” show relatively low scores at Oakville 

Prairie and a high score with wide spatial variation at Woodworth.  

Texture co-occurrence analysis suggests that native prairie has generally low 

“Level of Dominance” and “Band variance” (“Mean”) as well as low spatial 

dissimilarity (“Dissimilarity”). The two factors clearly identified native prairie and the 

restored area in Woodworth. This may be because the native species have evolved in 

a diverse and compatible association, and tend to mix with each other at the 30m 

spatial scale. On the other hand, smooth brome grass is not very compatible with other 

species (Sedivec et al. 2009) and it is more likely to dominate sown and disturbed 

areas, and to aggressively spread where established as a weed. 

In general, smooth brome grass begins growing earlier than most native grasses. 

Based on this, it was hypothesized that the proportion of green vegetation on the 

brome grass dominant area should be higher than that for the native grassland early in 
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the growing season. In order to capture test this, proportions of green vegetation, dry 

vegetation and soil were calculated in chapter 3, using the triangle distribution in 

NDVI and CAI (Guerschman et al. 2009). Time series of fractional cover were 

calculated from Hyperion imagery, and extracted from the fractional cover data layers 

for each of the field measurement locations. In general, the results showed that native 

grasses tended to exhibit an increase in green fraction with decrease dry fraction from 

May to early September, while smooth brome grass exhibited a high proportion of 

green fraction by early June, and then a variable green and dry cover fraction o from 

June to September. The dry cover fraction of brome grass increased from June to 

September which is a significantly different trend to that of native grasses. However, 

forbs which had significant ;levels of abundance on both parts of Oakville Prairie and 

Woodworth, however, showed similar dry proportion changing patterns with brome 

grass. As a the fractional cover data provided useful additional information for areas 

dominated by grasses, but was less helpful overall in this study because of the 

significant presence of forbs.  

Since the forbs generally exhibit higher levels of greenness than grasses, the 

fractional cover analysis did not provide useful information in the identification of 

brome grass dominant areas when the grassland was also mixed with forbs. In this 

study, forbs like Maximilian sunflower are widely spread in grassland, making 

differences in fractional cover proportions unreliable for discrimination between 

grassland types early in the growing season.  

Later growing season, Oakville Prairie e exhibits a higher dry grass proportion 

with less green vegetation because of a combination of early senescence of some 

flowering native grasses and continued dry grass and litter effects. The vegetation 

composition pattern on the more saline drainage line area is distinctive from the rest 



138 

 

of the area at Oakville. At Woodworth, dry grass proportion is lower and green 

vegetation proportion is higher late in the growing season.  . However, the replanted 

native prairie area with a very high abundance of forbs shows similar fractional cover 

proportions to the smooth brome grass areas. Thus fractional cover analysis was less 

helpful to assessment of grassland naturalness than was originally hoped. 

The lack of a definitive spectral approach to discriminating between levels of 

grassland naturalness led to the exploration of a different approach using some simple 

combinational models and decision tree models (chapter 6).  Models based on data 

from early in the growing season did not work very well because the green vegetation 

signature was not strong enough at this stage to cause significant difference in 

Hyperion imagery.  A decision tree model based on the data from later in the growing 

season was finally selected which divided area into “Mixed Native Grassland”, 

“Mixed Forbs and Grasses” and “Pure Brome Grass Patches”.  

This decision tree model successfully identified “Mixed Native Grassland” 

including Oakville Prairie and the replanted Woodworth area. This is because the 

Oakville Prairie and the replanted native prairie area at Woodworth area had highly 

mixed vegetation and corresponding spectral signatures at 30 m pixel scale. As a 

result, “Level of Dominance” was at Oakville Prairie, and on the replanted area at 

Woodworth. By contrast, the “Level of Dominance” index was high for large patches 

of the remainder of Woodworth, indicating that spatial variation in spectral signatures 

occurred at much greater spatial scale than for the native grassland.. However, the 

method may not perform very well, when native grassland is invaded by smooth 

brome grass as a weed, since the “Level of Dominance” would most likely be that 

same as for pure native stands. Even for those areas that have more pure grassland 

types, the accuracy of ACE spectral matching method was still limited by the spectral 
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variability inherent in grassland. Thus even areas that are dominated by native plants 

or smooth brome grass can be falsely classified at times.  The results of the study 

suggest that for more definitive discrimination of grassland naturalness, hyperspectral 

data with both higher SNR and higher spatial resolution would be more effective by 

decreasing the combination and complexity of spectral signatures within pixels (e.g., 

Underwood et al. 2007).  

The final model was tested at Mekinock, an independent site used for prairie 

chicken breeding and having a mix of native grasses with some smooth brome grass at 

low abundance. Twenty five sample sites were randomly selected and compared with 

the model output. The test results suggested highest accuracy at “Mixed Native 

Grassland” (83%) and then “Mixed Forbs and Grasses” (60%). The “Pure Brome 

Grass Patches” was failed to be correctly detected because there was only one pure 

smooth brome grass site and the patch was small relative to the pixel resolution. The 

result confirmed the assertion above that intermingling of smooth brome grass at low 

density with native grassland would not be detectable and would be classified as 

native grassland. However, although the small sample size limited this test of the 

model, the spatial data output showed a variable likelihood of native, mixed and 

smooth brome grass categories. . When an area based statistic was also calculated this 

placed Mekinock in an intermediate state between Oakville Prairie and Woodworth. 

The result of this area-based statistic for Oakville Prairie indicated that it is mostly 

“Mixed Native Grassland”, while the result for Woodworth identified that it is 

broadly dominated by smooth brome grass. The results from the broad area-based 

statistics are more reasonable and are in better agreement with site conditions. 

Limitations of the Study and Future Work 

The naturalness estimates based on the models are limited by various factors. 
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The first limitation is based on the 30m by 30m spatial resolution of Hyperion 

imagery, combined with a relatively modest SNR. This combination restricts species 

detection accuracy. Image noise may make it difficult to detect fine differences in 

spectra between species, and also make the spectral signature unstable for species 

detection.  

Weather had a significant impact on this study in many respects. Firstly, cloudy 

days restricted field sample frequency to about once a month. However, results 

showed that rapid changes can occur in spectral signatures for different species as a 

result of rapid drying or flowering behavior.  In addition, weather conditions, 

especially the rainfall and snowmelt runoff early in the growing season, also affect 

patch structure and species dominance in the grassland, which creates more variation 

in species dominance and complexity of composition. 

As explained in Chapter 4 and Chapter 5, most field spectra were collected from 

grassland patches dominated by, but not 1000% covered by, single species. Rarely 

was it possible to collect spectra from absolutely pure single species patches. These 

slightly mixed signatures may have introduced more variation into species signatures 

and cause more similarity among species signatures. For the whole spectral library, 

this limitation can leads to higher correlations among species. In order to avoid this 

problem, spectra should be collected from more pure patches for at least most 

dominant species, and/or spectra should be measured for pure samples of each species 

in the laboratory. Since seasonal changes in spectra were widely observed, and these 

varied between 2010 and 2011, more frequent measurements through whole growing 

season are also necessary.  

The final validation survey at Mekinock was based on a very limited sample size. 
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In addition, all Hyperion images were acquired one or two years earlier than the final 

field survey – it should be noted that these grasslands are not grazed or modified at all, 

and hence remain relatively stable from year to year.. Considering the effect of 

phenological variation between species and between years, species combination 

within each pixel may also disagree with survey result due to changes in dominance 

from year to year. It is clear that the study would have benefitted from both a wider 

range of grassland sites for spectral collection, and a much more detailed field survey 

for validation of the model.  

The results also suggest that new hyperspectral sensors with better SNR, and 

better spatial and temporal coverage could greatly improve detection capability over 

grasslands. The Hyperspectral Infrared Imager (HysPIRI), planned to launch in 2020, 

measures the spectrum from 380nm to 2500nm with 10nm spectral resolution. The 

repeat cycle is 19 days. The proposed instrument would capture the signal from 

150km (compared with Hyperion 7.5km) ground swath at 60m spatial resolution 

(Zhang et al., 2011). This swath coverage would allow the collection and comparison 

of grassland signatures over a much wider ground range. Another hyperspectral 

sensor, Environmental Mapping and Analysis Program (EnMAP) is planned to lunch 

in 2015, which captures 30km wide ground strips with 30m spatial resolution. The 

sensor covers the wavelength range from 420 to 2450nm (20nm spectral sampling) 

(Stuffler et al., 2007).  The repeat cycle is 23 days; however, the 30
o
 across track 

pointing capability allows revisit within 4 days. Both hyperspectral sensors would 

provide global survey with repeat cycle less than one month, which would be helpful 

to detect changes in grasslands through growing season. These sensors could be used 

to develop the kind of area-based statistics described here for assessment of grassland 

properties over wider areas of the fragile and threatened global grassland biome.
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