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Two-phase annular flow is an important aspect of two- 
phase flow. Three different models - Ghosal, Wallis, and 
Levy - were used to calculate the pressure drop in annular 
two-phase flow. The calculated pressure drop was compared 
with a set of experimental data. The pressure range of the 
data was 350 to 850 kPa. Steam quality varied from 4.0 to
52.7 percent, while the total mass flux varied from 245.4 to
2303.7 kg/m2,s.

The predictions of the Wallis model were found to agree 
best with the data. This model appears to be well developed 
with respect to the hydrodynamic conditions of annular gas- 
liquid flow. However, it generally underestimates the 
pressure drop by 17.15 percent on the average. A simple 
modification was made to the Wallis model to account for 
this underestimation. The estimates of this modified model 
had a standard deviation of only 6.7 kPa, and it 
underpredicted the pressure drop by an average of 1.00
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ABSTRACT

Two-phase annular flow is an important aspect of two- 
phase flow. Three different models, Ghosal, Wallis, and 
Levy models, were used to calculate the pressure drop in an­
nular two-phase flow. The calculated pressure drop was com­
pared with a set of experimental data. The pressure range 
of the data was 350 to 850 kPa. Steam quality varied from
4.0 to 52.7 percent, while the total mass flux varied from 
245.4 to 2303.7 kg/m^,s.

The predictions of the Wallis model were found to agree 
best with the data. This model appears to be well developed 
with respect to the hydrodynamic conditions of annular gas- 
liquid flow. However, it generally underestimates the pres­
sure drop by 17.15 percent on the average. A simple modifi­
cation was made to the Wallis model to account for this 
underestimation. The estimates of this modified model had a 
standard deviation of only 6.7 kPa, and it underpredicted 
the pressure drop by an average of 1.00 percent.
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Chapter I 
INTRODUCTION

Applications of two-phase flow are numerous, and they 
have economical, as well as technical importance. Some of 
the most important applications are boilers, evaporators, 
condensers and flow of oil-gas mixtures in pipelines.

For flow of a single phase in a pipe, such as a gas or a 
liquid, the pressure drop can be calculated quite accurate­
ly. This is not the case with a mixture of gas and liquid. 
There are a number of variables that may influence the pres­
sure drop for this type of flow, which include: total mass 
flux, vapor fraction, pressure, compressibility of the phas­
es, pipe roughness, pipe diameter, inclination of the pipe 
and a number of other variables of secondary importance. 
With different combinations of these variables, several dif­
ferent flow patterns can be observed. Different methods 
must be used to calculate frictional pressure drop depending 
on the flow pattern. For boilers, condensers and flows that 
are not adiabatic, the flow pattern will often change along 
the pipe. This is mainly because the vapor fraction will 
change, and the vapor fraction is one of the most important 
variables influencing the flow pattern. The flow pattern 
may also change for adiabatic flow if the pressure drop is

1
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large enough to influence the vapor fraction, and the corre­
sponding void fraction.

The objective of this study was to evaluate available 
models based on an annular flow pattern. This flow pattern 
is one of the most important in two-phase flow. In a tube 
evaporator, for example, as much as 90 percent of the tube 
length may be in annular flow. Annular flow is also some­
what easier to handle analytically than other flow patterns 
because of its relatively simple geometric structure.

The amount of experimental work that has been done in the 
low pressure region is small compared to what has been done 
in the high pressure region. Hasan (jj1 has studied pres­
sure drop for two-phase, steam-water flow in a horizontal 
test section in the pressure range of 350 to 850kPa. His 
data for adiabatic conditions which are listed in Appendix A 
were used for this work. Flow patterns at the experimental 
conditions were determined, and only the data that belonged 
to the annular flow pattern were used to evaluate the mod­
els. The steam quality for the data varied from 4.0 to 52.7 
percent, while the total mass flux was varied from 245.4 to
2303.7 kg/m2 ,s. The test section had pressure taps at in­
tervals of 0.44 m along the pipe.

Numbers in parentheses that are underlined refer to items 
on the List of References at the end of the paper.
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The predicted pressure drop from the models was compared 

with the experimental data. Then, based on the accuracy of 
the predictions and how complicated it would be to modify 
the models, one of the models was modified to more closely 
fit the experimental data.



Chapter II
LITERATURE SURVEY

%

2.1 FLOW PATTERN

The importance of flow patterns in two-phase flow is 
widely recognized. When two phases flow together in a 
transparent pipe, one can visually observe the various pat­
terns of flow that exist. For example in some cases bubbles 
flow past the liquid, forming what is known as bubbly flow, 
or slugs of gas may flow past the liquid, forming slug flow. 
In some cases the gas may form a core in the pipe. In this 
case the liquid flows along the wall forming the annular 
flow region. Each type of flow is a result of various hy­
drodynamic conditions, and must be treated in a different 
manner. For horizontal flow, Alves (2) has noted the fol­
lowing flow patterns: (1) Bubbly flow, (2) Plug flow, (3)
Stratified flow, (4) Wavy flow, (5) Slug flow and (6) Annu­
lar flow.

A visual identification by itself may be subjective. In 
addition, for most industrial purposes, a visual identifica­
tion is not possible because most pipes are made of opaque 
material. In order to overcome this problem, several flow 
pattern maps have been constructed for horizontal flow.

4



5
Baker (_3) constructed a map that is widely used in the pe­
troleum industry. This map was later simplified by Bell 
(4) . Mandhane (.5) also devised a map based on a large num­
ber of experimental data for air-water flow. The general 
trends of this map were confirmed by a map constructed by 
Taitel and Dukler (j3) , having a better theoretical founda- 
t ion.

By using a flow pattern map, the type of flow can be 
identified by the input data such as mass flux, vapor frac­
tion, density, pressure, viscosity and pipe diameter. Since 
the available flow pattern maps are not quite identical, the 
determination of a flow pattern is still somewhat subjec­
tive, but it is still a valuable tool.

The map constructed by Taitel and Dukler appears to be 
quite similar to that of Mandhane. In addition the Taitel 
and Dukler map takes the pipe diameter into account.lt is 
also the more recent of the two maps. Therefore, it has been 
used to evaluate the flow pattern for the present work. The 
map shown in Figure 1 uses as the abcissa the function F 
which is defined by the following equation:

F
( D g cos 9 )0'5 ( 1 )



Curve (a)-t-(b) (c)
Co-ordinate F  v s X  K ^ X

(d)
T vs X

Figure Is Flow pattern map for horizontal flow (6).
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The ordinate is the Lockhart-Martinelli parameter X, defined 
by the equation:

The flow pattern map also uses two other parameters for or­
dinates. For annular flow, however, the only parameters 
needed are F and X. The transition from annular flow to 
bubbly flow or plug/slug flow occurs at a constant at value 
of 1.6 for X. For the transition from annular flow to wavy 
flow, the flow pattern map must be used with coordinates F 
and X. The parameter X can also be closely approximated by 
Equation 3 for turbulent flow.

X
\0.5 \0.1

(3)

Equations 1 and 3 were used in the determination for the 
flow pattern coordinates of the experimental data. With an 
established flow pattern for each set of data, a comparison 
between the experimental and predicted pressure drop can be 
made. Pressure drop can be predicted using several differ­
ent methods including both general models and models specif­
ic to the annular flow pattern.
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2.2 GENERAL MODELS

The total pressure gradient during two-phase flow is com­
posed of the frictional, accelerational, and gravitational 
terms and can be written down as (7.) :

dp
(----)dz

dp
= (---- F) +

dz
dp

(---- A)
dz

+
dp

(---- Z)
dz

(4)

Because this study deals with horizontal flow only, the gra­
vitational term can be neglected, and Equation 4 can be sim­
plified to:

dp
( ------- )
dz

dp
(---- F) +
dz

dp
(---- A)
dz

(5)

The acceleration component can be expressed by the equation:

dp
(---- A)
dz

= G

1 d
— WgUg

A dz

2 d X2Vg
dz a

(1-x)2 vf
i - a

( 6 )

Equation 6 reflects the increase or decrease of the volume 
of the two-phase mixture because of evaporation or condensa­
tion .

There are several ways to estimate the frictional compo­
nent which, for adiabatic conditions, is the more important 
of the two components. One way to predict the frictional
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component is to assume that the gas and the liquid flowing 
together form a homogenous mixture with average physical 
properties (8,£,10). The average specific volume can be 
written as:

v = x Vg + (1-x) vf (7)

From these properties, the friction factor and the friction­
al pressure gradient can be calculated.

dp
- (---- F)

dz
2 £Tp G 2 v

( 8 )

The frictional pressure gradient can also be calculated 
using the separate flow model which assumes that the flow is 
artificially segregated into two streams, gas and liquid. 
In this model the two-phase frictional gradient is usually 
expressed as the pressure gradient for the single phase, 
(usually the liquid phase) multiplied by a two-phase fric­
tion multiplier c£>f2; Thus:

dp
- (---- F)

dz
2 ff G2 (1-x)2 vf 

D
(9)

In order to make an estimate of f̂)2 the Lockhart-Martinelli 
parameter X, defined by Equation 2, is used. The data gath­
ered for <£>2 by Lockhart-Martinelli were presented in graphi­
cal form (£1). Wallis (1_2) has expressed these data by the 
following equation:
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c 1

1 + + ( 1 0 )
X

The value of C depends on the nature of the flow. For tur­
bulent flow of both the liquid and the gas phase, the value 
of C is 20. 1

In most cases, the separated flow model gives a better 
estimate of the pressure drop than does the homogenous mod­
el. As in the homogenous model, knowledge of the flow pat­
tern is not required. However, the error involved in pre­
dictions by this, as well as by the homogenous model is 
usually quite high. Johannessen (13.) indicates a standard 
deviation between the predicted and actual data of about 40 
percent. The model does not satisfactorily account for the 
effect of some of the variables, particularly mass flow rate 
(14.). Several attempts have been made to overcome this 
source of error (1J5,1_6,17,18.) . Using models specific to the 
existing flowpatterns usually avoid this problem and allow 
more accurate predictions of the pressure drop.

2.3 MODELS SPECIFIC TO EXISTING FLOW PATTERNS

Models that are specific to a flow pattern may be almost 
entirely empirical although most often they have a strong 
theoretical base. Because these models are often based on 
particular hydrodynamic features of the flow, they tend to 
be more accurate. For bubbly flow, the assumption of a ho­
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mogenous mixture between the gas and the liquid is good, and 
the homogenous model works out quite well in this case (19). 
Usually a factor for slip between the phases is included in 
the model. This factor indicates the extent to which the 
gas bubbles are moving faster than the liquid (2C)). Slug 
flow is more difficult than bubbly flow to model theoreti­
cally. In this flow regime the inclination of the pipe also 
has a great influence on the theoretical approach of model­
ing the pressure drop (_21). But here also, as in other flow 
regimes, several models are available (22).

This study, however, is concerned with a detailed look 
the annular flow regime. In the idealized case, the entire 
liquid mass flow rate is contained as a symmetrical film on 
the pipe wall with a smooth interface between the liquid 
film and the gas core. This, along with the shear stress 
distribution for horizontal annular flow is illustrated in 
Figure 2.

The real hydrodynamic behavior is somewhat more compli­
cated. In the general case, a fraction (e) of the liquid 
will be entrained in the vapor core, and the interface be­
tween the gas and the liquid will be highly disturbed. The 
pressure gradients for the gas phase and the liquid phase 
have to be equal. This means that the equations for the 
pressure drop of the gas phase and the liquid phase can be 
balanced against each other.
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dp 4 Tj
- (---- F) = -------- (12)

dz D - 2 Q

From Equation 11 which is the pressure drop calculated from 
the liquid phase, an equation for the liquid phase friction­
al multiplier (p^ is derived. Similarly, from Equation 12 
which is the pressure drop calculated from the gas phase, an 
equation for the gas phase frictional multiplier p)g is ob­
tained. Several investigators have attempted to develop re­
alistic models for annular flow. For horizontal annular 
flow, several measurements have been made to determine the 
gas flow distribution ( 23,24.) . A number of methods have 
also been developed to determine the interfacial roughness
(25,26,27,28).
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Ghosal (29) studied annular two-phase cocurrent horizon­

tal flow. Constant wall shear stress in the liquid flow was 
assumed. The resulting equation for the two-phase friction­
al multiplier <̂)2 is thus:

3
--------------------- (13)
4 ( i - 3 a  + 2  a l tJ )

The two-phase multiplier based on flow of gas alone, can 
normally be expressed as:

1 f i 
a 25 fg (14)

If the interface between the liquid and gas is smooth, then 
( fj/ fg) is close to unity. This, however, is normally not 
the case. With a wavy interface, the ratio of the interfa­
cial friction factor fj to the gas-phase friction factor fg 
can be expressed by (30):

*i--  = ( 1 + 75 ( 1 - a  )) (15)
fg

The resulting relationshipship between 0. and (£>2 is then:

1 + 75 ( 1 a )
(16)

From Equation 14 and 16, the Lockhart-Martinelli parameter, 
X, can be expressed as:
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X2 _ 4 (1 + 75(1-0.)) (1 - 3 0. + 2a1'5)
3 a*2.5

(17)

Equation 17 relates the void fraction QL to the Lockhart- 
Martinelli parameter X. The value of X is calculated from 
Equation 2, and the void fraction can then be calculated by 
an iterative procedure from Equation 17. Equation 13 is 
then utilized to estimate the two-phase friction multiplier 
and hence (dp/dz F). This model does not take entrainment 
of liquid into the gas core into account. It also assumes a 
constant mean velocity within the liquid layer.

Wallis model (3 1 ) , however, is more developed and takes 
entrainment into consideration. He starts with the rela­
tionship between and the void fraction 01 :

</>? ■ ( i - a y
(18)

The entrainment of liquid into the gas core makes the aver­
age density of the gas core higher. The average density 
with entrainment can be expressed as:

Pc
Wg + e Wf 

Wg Ai (19)

This model assumes that the interface velocity of the liquid 
is twice the mean film velocity. The resulting equation for
then is:
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i 2 -
'  i  +  7 5  ( i  -  a ) Wg + e Wf

a2 5 Wg

a A ' Wf (1 - e)
i - a P , l Wg

(20)

Wallis (32) has found a relationship between the entrainment 
e and dimensionless vapor velocity 77 defined as:

7T
G x

M g ( vg vf
0̂.5 ( 21 )

The graphical representation of entrainment vs. dimension­
less vapor velocity is not suitable for numerical manipula­
tion. Therefore the curve was approximated by the following 
equations with a standard deviation of 0.0000 for ten data 
points.

e = 0.02271 - 596.6509 (T7) + 3223134.0 (77)2 (22)

for 1.5 < 77 <4.2

e = -0.4 9 4 3 + 104 9.79 ( 77) - 3 3 0 5 3 2.9 ( 77 )2 ( 23)

for 4.2 < 77 < 14.0

There are other ways to calculate entrained liquid fraction 
(3_3), but this is possibly the easiest for use for numerical 
manipulation. Calculating the frictional pressure gradient 
requires an iterative procedure and the void fraction is the 
critical value because both (̂)2 and ^  have CL as a parame-
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ter. The iteration continues until one value of Q. gives 
the same frictional pressure gradient for both the gas phase 
and the liquid phase.

Levy (34) used a different approach to calculate the 
frictional pressure gradient. Instead of using the assump­
tion of one liquid and one gas phase, he divided the flow 
into three layers.

1. A liquid film of thickness Yf having a uniform densi­
ty a -

2. A transition layer that extends from the edge of the 
film to the edge of the gas core. The density in the 
transition layer is assumed to decrease exponentially 
from the liquid density, p  ̂ to the gas core density,
Pc .

3. A central gas core, extending from the edge of the 
transition layer to the center of the pipe that has a 
constant density at P c .

The physical description of this model is illustrated in 
Figure 3. The dimensionless velocity depends on the radius 
of the pipe and the distance from the pipe wall. Shear 
stress is calculated from the dimensionless velocity and 
pressure drop can be calculated using Equation 24.

dp 
(---

2 T w

dz
F)

R
(24)



Figure 3: Levy model of annular flow.



Chapter III 
COMPUTATIONAL METHODS

A major part of this thesis was to use various models to 
predict pressure drop for two-phase annular flow. This 
chapter provides some explanation of the computational pro­
cedures and the computer programs used for the calculations.

3.1 PROCEDURES COMMON TO ALL MODELS

The raw data fed into the computer were: Gas load, liq­
uid load, gas enthalpy, liquid enthalpy, inlet pressure and 
pressure drop for four consecutive pipe sections. The pro­
grams to estimate pressure drop using the different models 
are divided into two parts:

1. The first is the main program which reads the raw 
data, integrates the calculated pressure gradients 
into pressure drop, calculates the errror between the 
estimated and the experimental pressure drops and 
prints the result.

2. The second is a subroutine that calculates the physi­
cal properties of the steam and the water at the ex­
isting pressure and temperature. From these proper­
ties, the flow pattern map coordinates in Equations 1 
and 3 are calculated. The frictional and accelera-

18
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tional pressure gradients are then calculated. This 
may require calculations that involve additional sub­
routines for the determination of certain parameters.

3.1.1 The Main Program

The main program begins by reading the raw data. Then it 
calls up the subroutine PPSSAW in order to get an estimate 
of the pressure gradient and the flow pattern map coordi­
nates for the inlet conditions. By checking the program 
output with the flow pattern map, the flow pattern can be 
quickly identified. The integration of the pressure gradi­
ents is then performed using the four point Runge-Kutta 
method. This method calculates an average pressure gradient 
for a predetermined pipelength. The length of this pipe 
section is set equal to the length of the pipe for each 
pressure drop measurement. For each of these sections, four 
different pressure gradients are calculated. The pressure 
gradient is calculated at the beginning and the mid point of 
the section. With a new and improved estimation of the 
pressure at the mid point of the section, the pressure gra­
dient is calculated at this point a second time. Then the 
pressure gradient is calculated at the end of the section. 
These four pressure gradients are then used to calculate the 
average pressure gradient for the section.

cfp
( ------

dp
F), 2 (■

dp
F ) <dz

F)
dz dz
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dp dp
+ 2 (---- F)3 + (---- F)4 (25)

dz dz

For the calculations of deviation from the experimental 
data, the following Equations are used:

1. The deviation £ j is defined relative to the experi­
mental pressure drop by the Equation:

A Pj.exp -  A Pj,calc
£ i  = ---------------------------------------- ( 100 ) ( 2 6 )

A P j , exp

A negative value of indicates that the model over­
estimates the pressure drop while a positive value 
indicates that the model underestimates the pressure 
drop. The average deviation for the four estimated 
pressure drops in one set of data is then:

e  = £  6i / 4 (2 7 )
i

2. The absolute average deviation is defined by the 
Equation:

e A - S  l€ji/ 4i
(28)
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This gives the average deviation with no concern 
whether the model overestimates or underestimates the 
pressure drop.

The criterion for improving a model is to make the 
total sum of squares of errors as small as possible. 
For one experimental run, the sum of squares of er­
rors is calculated from the Equation:

SS = 2  ( APj.exp ( 2 9 )
i

From the total sum of squares of errors a standard 
deviation may also be calculated.

3.1.2 The Subroutines

As mentioned earlier in this chapter, the subroutine cal­
culates the physical properties for steam and water at the 
existing pressure. The Equations for the properties can be 
found in the listing of the subroutines in appendix B. 
These Equations are only valid in the pressure region of 100 
to 1000 kPa. In addition to these Equations, an Equation to 
calculate surface tension was needed. Tabulated data for 
the surface tension (35J was fitted to the data and gave the 
following Equation with a standard deviation of 0.0000 for 
ten data points.

CT = 0.076702 - 1.665 10 (Tsat ) - 1.386 (Tsat )2 (30)
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The steam quality can not be estimated from the vapor and 
the liquid load alone because equlibrium conditions may not 
exist. It has to be calculated from the inlet enthalpy ijn 
and the enthalpy of saturated liquid isat thus:

i n

then:

x =

(Gf i( + Gg ig )
(Gf + Gg)

(iin - isat )

ifg

(31)

(32)

3.1.3 The accelerational pressure gradient

The accelerational pressure gradient is determinded by 
calculating the expression within the brackets in Equation 6 
for each point on the pipe. The differential is then calcu­
lated by dividing the increment of the expression by the 
distance between each point.

3.2 SUBROUTINES FOR THE DIFFERENT MODELS 
3.2.1 Ghosal Model
The calculation procedure that is particular for the Ghosal 
model is as follows:

1. Calculate the Reynolds numbers.

Ref = G (1 - x) D / filf (33)
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Reg = G x D / (34)

2. Calculate the friction factors using the Blasius 
Equation.

ff = 0.079 (Ref)"0-25 (35)

fg = 0.079 (Reg)“0-25 (36)

3. Calculate the Lockhart - Martinelli parameter X from 
the ratio between (dp/dz F)f and (dp/dz F)g .

dz 2 ff G 2 (1 - x)2 Vf
(---- F)f = ---------------------
dp D

(3 7 )

dp 2 fg G^ x2 vq
(---- F)g = --------------------  (3 8 )
dz D

4. The program then calls up the subroutine NEWRAP to 
calculate the void fraction from Equation 16 using 
the Newton-Raphson method. The method requires an 
initial guess for CL that is relatively close to the 
final solution. The empirical correlation between 
and X developed by Wallis (36) was used for the ini­
tial guess of Q  .

a  =  (1 + X0'8 )_a378 (39)

5. Then (pf is calculated using Equation 13 and the to­
tal frictional pressure gradient is obtained using 
Equation 9.
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3.2.2 Wallis Model

The calculation procedure that is particular for Wallis 
model is as follows:

1. Make an initial estimate of the frictional pressure 
gradient.

a. Calculate Re and Re using the Equations 33 and 
34.

b. Calculate the Lockhart-Martinelli parameter as in 
the Ghosal model using Equations 37, 38 and 2.

c. Calculate C u s i n g  Equation 10.

d. Estimate the total frictional gradient using 
Equation 9.

2. a. Calculate the entrainment using Equations 21 and 
22 or 23.

b. Calculate Reynolds number for the liquid film 
when entrainment is accounted for.

Re^p = Re f (1 — e ) (40)

c. Calculate friction factor for the liquid film 
when entrainment is accounted for.

ffF = 0.079 (RefF ) (41)
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d. Calculate frictional pressure gradient assuming 
total flow to be liquid and entrainment taken into 
consideration.

dp 2 ffF GfF vf
(---- F)fp = -------------
dz D

(42)

3. Then an estimate for the liquid frictional multiplier 
will be:

dp
(---- F)
dz

dp
(---dz

(43)

The value of the void fraction CL is then calculated 
using the following equation:

1

4. With the value of 0. , calculate (jfĉ from Equation 20. 
Calculate then the frictional pressure gradient from 
the Equation:

(dp/dz F) = (dp/dz F )g (45)

5. Go back to step 3 with these values for (dp/dz F) and 
iterate until a constant value for CL is obtained.

6. When the required accuracy is obtained, calculate the 
total pressure gradient using Equation 9.
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3.2.3 Levy model

The calculation procedure for the Levy model also in­
volves an iterative procedure. This procedure establishes a 
value for the liquid film thickness, Yf . From this value, 
the friction factor and shear stress are calculated and then 
the frictional pressure gradient can be calculated.

1. Calculate the density exponent p  . This parameter 
is calculated using the subroutine BETAS, and makes 
use of the Equation:

2. Make an initial estimate of the liquid film thickness 
Yf •

3. Calculate the corresponding interface friction factor 
fjby the Equation:

fj = 0.005 (1 + 150 Y f / R) (47)

4. Calculate the corresponding wall shear stress Tw .

Tw = Pq fj 0.5 ( Gg / /Qg )2 3 4 5 (48)

5. Calculate the dimensionless film thickness Y f  by 
Equation:

Y +f
Y« V T „ / p ,  ft

f t f
(49)
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6. Check the value of Yf+ . If Yf"*" < 30, then calculate a 

new value for p  .

P '  = 1 + J  2 ( ft -  1 ) (50)

7. Calculate the dimensionless pipe radius.

R V  T w / p. aR4" = -- ^ Q -----  (51)
H -i

8. The dimensionless velocity of the liquid interface
is calculated by the subroutine KYRS. The value is 
calculated from Equations 52, 53 or 54 depending on
the value of Yf+.

K(Yf+,R+) = 0.5(R+)(Yf+) - 0.333 (Yf+) (52)
for Yf+< 5 .

K(Yf+,R' ) = 12.51(R+) - 10.45 - 8.05 (R+) (Yf+)

+ 2.775 (Y + ) + 5(R+)(Y+) ln(Y+)

- 2.5 (Yf+) In (Yf+) (53)

for 5 < Yf+ <30
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K(Yf+,R+) = 3(R + )(Yf4) - 63.9 (R 4) - 2.125(Yf+)

- 1.25(Yf4) In(Yf+) + 2.5(R4) (Yf4) ln(Yf4)

+ 573.21 (54)

for Yf+ >30
9. Calculate the liquid film flowrate per unit pipe area 

GfF •

GfF
2 K(Yf+,R + ) J t „ /  pf p f

(R+)2
(55)

10. Calculate the amount of entrained liquid Ge .

Ge = G f (p)~05 (56)
11. Compare the values of Gf and the sum of Ge and Gfp . 

If they are close enough, stop the calculation; if 
not, a new estimate of Yf is required, and the calcu­
lations are repeated.

12. Calculate the frictional pressure gradient from Equa­
tion 24.



Chapter IV 
RESULTS

4.1 MODELS TESTED

The three models under consideration were used to predict 
pressure drop under experimental conditions. Then the pre­
dictions were compared with the actual pressure drops. The 
main results from this comparison are shown Table 1. First, 
the average deviation in percent for each model is listed. 
The corresponding standard deviation refers to the spread in 
percent average deviation. Second, the absolute average de­
viation and its standard deviation, also in percent, is 
listed. Third, the total sum of squares of errors for each 
model is listed. The corresponding standard deviation is in 
kPa. Plots are made for each model, showing the estimated 
vs. experimental pressure drop in Figures 4 to 7.

Tables 6 through 9 in appendix D show the results in de­
tail. In Figures 8 through 37, the average deviation of the 
estimates is plotted against various parameters to show pos­
sible trends.
From Table 1, it can be seen that the Ghosal model overesti­
mates the pressure drop by more than 50 percent on the aver­
age. The accuracy of the predictions of the model also var-

29
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MAIN RESULTS OF THE MODELS
TABLE 1

Ghosal Wallis Levy
model model model

Average Error 
(percent)
Standard Deviation

-50.14 17.15 8.77
(percent) 23.15 8.87 21.50
Absolute Average 
Deviation (percent) 50.14 17.28 18.43
Standard Deviation 
(percent) 23.15 8.50 13.89
Total Sum of Squares 
of Errors (kPa)2 65544.38 5553.71 6992.50
Standard 
Deviation (kPa) 45.257 13.174 14.782

ies widely. The inaccuracy of this model is also reflected 
in the total sum of squares of errors.

Wallis model, on the other hand, consistently underesti­
mates the pressure drop. On the average, the model underes­
timates the pressure drop by 17.15 percent with a standard 
deviation of the error of 8.87 percent. This model has also 
the lowest total sum of squares of errors.

The Levy model has the lowest average deviation, but it 
also has a wide spread in deviation. The model both overes­
timates and underestimates the pressure drop under different
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physical conditions. Therefore, the absolute average devia­
tion of the error is also much higher, 18.43 percent. The 
total sum of squares of errors is, however, not too much 
above that of Wallis model.

4.2 MODIFIED WALLIS MODEL
The Wallis model appeared to be the best of the three 

models tried. The model had the lowest total sum of squares 
of errors, and the errors showed no trend with any of the 
parameters involved in the calculations. As mentioned, how­
ever, the model in general underestimates the pressure drop 
by about 17 percent.

The Wallis model was modified with a simple correction 
factor applied as a multiplier to the frictional pressure 
gradient from the term in the model. The correction factor 
was obtained by minimizing the total sum of squares of er­
rors. Because of inherent experimental errors the optimiza­
tion procedure was not carried out to great length. The de­
tails are shown in appendix C. The resulting correction 
factor of 1.18 gives a total sum of squares of errors of 
only 1432.80 as shown in Table 2. The equation for the 
frictional pressure gradient is thus:

dp 2 ffFG 2 (1-x)2 (1-e)2 vf
(57)F) 1.18

dz D
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TABLE 2

RESULTS FOR MODIFIED WALLIS MODEL

Average Deviation (percent) 1.00
Standard Deviation (percent) 10.81
Average Absolute Deviation (percent) 8.96
Standard Deviation (percent) 6.25
Total Sum of Squares of Errors (kPa)^ 1432.80
Standard Deviation (kPa) 6.6914

Note that the average deviation at the optimal point is dif­
ferent from zero.
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Figure 4: Estimated vs. experimental pressure drop
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Figure 5: Estimated vs. experimental pressure drop
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MODIFIED WALLIS MODEL

Figure 7: Estimated vs. experimental pressure drop



Chapter V 
DISCUSSION

The Ghosal model is the simplest of the three models. 
Neither entrainment of liquid into the gas core, nor veloci­
ty gradients within the liquid film are taken into account. 
This may account for the large deviation from the experimen­
tal data that the model predicts. There also does not ap­
pear to be any trend in the errors when plotted against any 
of the parameters. It is therefore difficult to see how the 
model can be modified on the basis of these data. A modifi­
cation of this model should be based on a more realistic 
representation of the hydraulic features of annular flow.

Wallis model, on the other hand, is more highly developed 
and better represents the real behavior of annular flow. 
Both entrainment and velocity gradients within the liquid 
film, as well as a wavy interface between the gas and the 
liquid are taken into account. Therefore, it is not sur- 
priseing that the model's predictions are close to the ex­
perimental data. The model also takes care of all the im­
portant variables. This is clearly indicated by the random 
scatter of the error when the error is plotted against vari­
ous variables. Figures 12 through 15 in appendix F show 
that the model can not be improved much by including any of

37
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the variables, such as mass flux, steam quality, pressure, 
etc.

The model underestimates the pressure drop by 17.15 per­
cent on the average. The scatter in the errors are largest 
at low steam qualities. This may be mainly due to the dif­
ficulty in estimating steam quality. Steam quality is meas­
ured from the mass flowrates and the enthalpies of steam and 
water. A small error in these variables can translate into 
a large error. It is also possible at low steam qualities 
for the data to be in the transition zone between annular 
and bubbly flow rather than entirely in the annular flow re­
gion. This is probably true for two or three of the data 
points.

On the whole, however, the predictions of Wallis model 
are excellent. A simple correction factor can take care of 
the underestimation of the pressure drop. This correction 
factor may be needed because the friction factor for this 
work was calculated using the Blasius equation. Hasan (37) 
has compared this friction factor with the experimental 
friction factor obtained for single phase water flow through 
the equipment. He indicates that at high Reynolds mumbers, 
the observed friction factor is higher than that estimated 
from Blasius equation by as much as 15 percent. Most of the 
data used in this work were at low or moderate Reynolds num­
bers. The error between the Blasius and experimentaly ob­
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tained friction factor is in the neighborhood of 5 to 10 
percent.Therefore, the friction factor alone is probably not 
the entire reason for the underestimation. This argument is 
reinforced by Figure 21 which shows no trend when the error 
is plotted against Reynolds number for the liquid film. It 
seems, however, that modification of the friction factor 
would improve the predictions based on the Wallis model.

The other assumptions in the model could account for the 
deviations as well. It is quite likely that the entrainment 
is not predicted accurately. It is also possible that the 
model does not take proper account for the wavy nature of 
the liquid film. The assumption that the liquid film at the 
interface travels with exactly two times the average film 
velocity may also be wrong. In addition, the model does not 
include any effect of gravity on the liquid film. For hori­
zontal flow, the effect of gravity could be significant be­
cause it causes the annular film at the bottom of the tube 
to be thicker than the film at the top. This effect should 
increase at lower mass velocities, and probably at higher 
steam qualities. The random nature of the errors when plot­
ted against mass flux and steam quality indicate, however, 
that the effect of gravity alone will not explain the devia- 
t ion.

The Levy model is a rather sophisticated development, and 
would seem to represent the real hydraulic features of annu­
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lar flow quite well. Therefore, it was surprising that the 
model's prediction is not the best of the three. However, 
the total sum of squares of errors is not much larger than 
that of the Wallis model. The Levy model was developed for 
vertical flow, and the data used for this work is from a 
horizontal pipe. This may explain some of the errors in the 
predictions of the model. A more sophisticated version of 
the model where gravity effects are taken into account, has 
also been developed by Levy (.38). The model, however, is 
even more complicated mathematically and was not considered 
in this study. It is doubtful, however, that the effects of 
gravity alone would account for much of the errors in the 
predictions. Figures 22 through 29 show the trend of er­
rors when plotted against different parameters. Distinct 
patterns in some of these plots indicate that the model does 
not properly consider these parameters. This is especially 
true for steam quality and the density exponent as indicated 
in Figures 23 and 28, respectively. The Levy model could be 
modified by including a function of the density exponent or 
the steam quality in the model. However, there does not 
seem to be be much physical justification for doing so.

Of the three models, the Wallis model not only performs 
the best, but also appears to be most suitable for modifica­
tion. The model is also well developed with respect to the 
particular hydrodynamic features of annular flow, and the 
modification can be accomplished using a simple correction
factor.



Chapter VI
CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS
1. The Wallis model without any modification appears to 

be the best among the three models. The standard de­
viation in the estimation of the pressure drop is 
13.174 kPa, and the model underestimates the pressure 
drop by an average of 17.15 percent. The error ap­
peared to be completely random.

2. The Wallis model was modified by adding the correc­
tion factor of 1.18 which gave an improved estimate 
of the pressure gradient. The standard deviation in 
the estimated pressure drop was 6.691 kPa. and the 
model underestimated the pressure drop by an average 
of 1.00 percent. The error appeared to be completely 
random.

3. The standard deviation in the estimation of the pres­
sure drop was 14.782 kPa for the Levy model, and the 
model underestimated the pressure drop by an average 
of 8.77 percent. The model did not seem to properly 
account for steam quality.

4. For the Ghosal model, the standard deviation in the 
estimated of the pressure drop was 45.257 kPa. The

41
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model overestimated the pressure drop by an average 
of 50.14 percent. The error appeared to be almost 
random.

6.2 RECOMMENDATIONS
1. The Wallis model should be used with the equation de­

veloped by Hasan (3_7) for the prediction of the fric­
tion factor. The equation for the friction factor 
is :

f = 0.00205 + 0.1058 (Re)-0'316 (58)
2. The assumption of the interface velocity between the 

gas and liquid being twice the mean liquid velocity 
may not be correct. Therefore, values other than 2 
should be used in the optimization procedure.

3. Using the Ghosal correlation for c j in the Wallis 
model may yield interesting results.

4. The Levy model should be tried taking the gravita­
tional effects into account.

5. The Wallis model should be evaluated against the data 
of Hasan (1) where the conditions are not adiabatic.
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RAW DATA AND INPUT CONDITIONS
A p p endix A



TABLE 3
RAW DATA

Run Liquid Vapor Liquid Gasno load load enthalpy enthalp-*kg/m^,s kg/m2,s k j/kg k j/kg

1 178.51 66.843 549.0 2739.82 161.32 98.600 549.3 2739.811 308.56 76.871 535.1 2743.518 311.80 167.096 440.5 2752.2220 538.63 98.596 486.7 2742.7521 579.12 50.126 557.4 2739.1228 736.32 50.126 561.6 2738.4329 695.84 93.564 476.8 2738.4336 2179.83 100.265 513.6 2742.837 2236.88 66.844 533.0 2742.838 1811.48 98.961 508.1 2744.8339 1896.68 66.844 539.6 2744.8348 159.697 132.354 566.6 2757.8549 223.352 66.844 598.3 2757.8566 520.323 100.265 602.9 2758.3567 459.658 164.630 562.1 2762.0080 587.715 197.217 504.6 2757.3881 645.515 132.354 557.6 2757.3882 700.823 68.513 607.4 2757.3888 1226.88 164.630 530.6 2761.6289 1225.01 132.354 544.0 2761.6290 1211.56 69.347 639.3 2761.6291 1222.52 100.265 562.1 2761.6292 1695.50 197.217 490.2 2760.6293 1706.22 164.618 535.1 2762.62

P AP, A P? * P3 a p 4
kPa kPa kPa kPa kPa

408.14
397.78
425.38
473.68
411.58 
432.26
404.68
397.78 
418.43 
437.20 
432.22 
411.54
611.49
611.49 
632.17 
628.71
618.38 
590.81
604.59 
625.28
611.49
604.59
611.49
604.59 
645.96

5.24
8.00
7.72
14.89
10.48
5.24
5.52
9.38
2.48
2.34 
4.69 
2.76
6.89
3.31 
8.83

12.13 
16.82
10.48
5.52 

12.69
9.38
8.00
9.10
9.65

12.13

10.48 
16.00
16.55 
29.23 
21.51
11.31
1 1 . 8 6
20.13
6.07
4.96
11.03
6.89
14.34
6.62
17.65
24.55 
35.85 
22.39
11.31
26.48 
20.96 
15.72
19.31 
20.68 
25.10

15.44
24.27
24.27
39.99
31.44
16.55 
18.20 
28.68
8.83
7.45

16.82
11.58
22.34
1 0 . 2 0
26.48 
37.23 
53.78
35.58
17.37
39.44
33.37
23.99 
29.51 
33.09 
38.06

20.96
32.82 
33.65
54.88 
41.37
22.34 
25.10 £ 
39.16 
12.13
9.93

23.72
16.82
30.34 
13.79 
35.30
49.92
72.81
49.92
23.72
56.81
46.88 
31.99
40.82
46.88 
51.57



TABLE 3 continued

Run Liquid Vapor Liquidno load load enthalpykg/m2,s kg/m2 ,s k j/kg

94 1751.93 132.354 562.195 1791.9 66.844 562.196 2282.35 64.340 606.097 2244.35 132.54 575.698 2171.61 164.618 548.599 2137.10 197.217 580.2100 2142.96 164.618 611.9101 2210.72 100.265 655.0102 2175.72 132.354 639.3103 1678.06 197.217 593.8104 1708.71 164.618 611.9105 1737.48 132.354 632.5106 1039.65 213.548 584.8107 1112.4 132.354 662.1108 1189.13 100.265 657.6121 532.531 262.59 593.5122 621.722 164.63 639.3123 668.934 100.265 671.2130 305.567 262.603 620.8131 454.925 164.618 653.3138 214.756 262.603 607.4139 305.193 164.618 643.8140 366.107 100.265 657.9149 335.837 132.354 634.7150 215.255 262.603 584.8

Gas
enthalpy 

k j/kg

2760.62
2760.62
2757.38
2761.62
2760.62 
2771.08 
2768.50
2771.70
2771.7
2773.8 
2771.30
2771.3
2773.09
2774.38
2772.10
2775.3
2772.4 
2770.80
2773.65
2771.05 
2773.09
2771.70 
2771.08
2774.3
2774.3

P AP, a p 2 * P3 a p 4
kPa kPa kPa kPa kPa

602.083 11.03
604.59 4.96
618.38 3.03
632.17 5.24
611.49 8.00
783.85 12.13
790.75 10.48
825.22 8.83
818.33 9.93
818.33 16.82
797.64 14.34
818.33 12.69
797.68 20.13
845.98 14.62
814.98 13.24
825.28 22.61
80.458 14.07

832.18 9.93
818.38 15.72
804.58 11.03
797.64 12.96
811 .43 8.83
818.33 6.07
811.41 7.45
818.33 14.34

22.61
12.13
7.17

14.07
17.37
25.65
22.89 
19.31 
23.44
34.47
30.89 
27.85 
38.33
28.41
26.48
45.78
28.41 
19.58 
31.72 
22.06
26.48 
17.93
13.79 
15.17 
28.68

34.47 46.88
20.13 28.96
12.13 17.65
22.34 31.99
28.41 40.8239.44 56.26
37.23 52.40
31.16 42.75
35.85 49.64
52.95 73.36
45.78 63.43
41.92 57.36
57.09 77.22
44.13 58.47
39.99 53.23
68.95 93.22
43.30 58.47
29.51 37.51
47.71 64.26
31.99 45.78
40.27 54.88
27.30 36.40
20.96 27.86
22.89 30.34
42.47 56.81



Run
no.

1
2
11
18
20
21
28
29
36
37
38
39
48
49
66
67
80
81
82
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

46

CALCULATED INPUT CONDITIONS
TABLE 4

Steam
quality

X F

0.2524 0.1706 4.43
0.3636 0.1050 6.84
0.1699 0.2730 4.59
0.2910 0.1532 9.33
0.1063 0.4378 4.83
0.0537 0.9709 2.36
0.0440 1.022 2.48
0.0660 0.6885 3.77

0.4250 0.1015 7.43
0.2024 0.2657 3.52
0.1305 0.4328 4.78
0.2229 0.2412 8.23
0.1895 0.2875 8.86
0.1263 0.4339 5.97
0.0609 0.9034 2.82
0.0561 0.9911 4.63
0.0414 0.1308 3.37
0.0393 1.363 3.04* *) 1.993 2.09**) 2.187 2.69* *) 2.317 2.51**) 2.683 2.15

**) 5.682 1.19**) 3.425 2.04* *) 2.500 2.93**) 2.564 2.82* *) 5.633 1.20* *) 3.273 2.17

Flow Dimensionless
pattern vapor velocity

AF 2.994
AF 4.614
AF 3.116
AF 6.382
AF 3.266
AF 1.601
AF 1.677
AF 2.545
*) —
*) _
*) —
*) —
AF 5.195
AF 2.458
AF 3.353
AF 5.767
AF 6.204
AF 4.162
AF 1.967
AF 3.244
AF 2.353
AF 2.121
BF -

BF -

BF -
BF -

*) —
*) —
BF -

BF -
BF -

BF -

BF -
BF -
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TABLE 4 continued

Run 
no.

Steam
quality

X F Flow
pattern

Dimensionless 
vapor velocity

103 0.0477 1.307 4.73 AF 3.415
104 0.0396 1.544 3.95 AF 2.845
105 **) 2.108 2.83 BF -

106 0.1157 0.5458 7.73 AF 5.562
107 0.0763 0.8503 4.93 AF 3.570
108 0.0477 1.309 3.25 AF 2.343
121 0.2874 0.2015 11.9 AF 2.343
122 0.1776 0.3491 7.42 AF 5.342
123 0.1060 0.6083 4.27 AF 3.087
130 0.4355 0.1119 13.04 AF 9.411
131 0.2412 0.2466 7.93 AF 5.715
138 0.5265 0.0796 13.39 AF 9.633
139 0.3255 0.1702 8.08 AF 5.829
140 0.1894 0.3282 4.65 AF 3.357
149 0.2521 0.2349 6.24 AF 4.502
150 0.5197 0.08254 13.08 AF 9.445

AF - Annular Flow 
BF - Bubbly Flow
*) - The vapor quality is lower than 0.5 percent 

and no data are calculated. **)
**) - The vapor quality is too low for the program to 

integrate the pressure drop along the pipe.



LISTING OF COMPUTER PROGRAMS
A p p e n d i x  B
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DOCUMENTATION OF ABBREVIATIONS USED

0010 * KK RUN NO. FOR HASAN'S DATA(1)
0020 * G TOTAL MASS FLUX
0030 ★ GF GAS PHASE MASS FLUX
0040 ★ GG LIQUID PHASE MASS FLUX
0050 * H DISTANCE BETWEEN EACH PRESSURE TAP
0060 ★ DIST DIST. BETWEEN EACH PRESS. GRAD. CALCULATED
0070 ★ DI INSIDE PIPE DIAMETER
0080 ★ ENF ENTHALPY OF LIQUID
0090 ★ ENG ENTHALPY OF GAS
0100 * ENI INLET ENTHALPY OF TWO-PHASE MIXTURE
0110 * ENFG ENTHALPY OF EVAPORATION
0120 * EPD(I) EXPERIMENTAL PRESSURE DROP
0130 * PPD(I ) PREDICTED PRESSURE DROP
0140 * P INLET PRESSURE
0150 * LMP LOCKHART-MARTINELLI PARAMETER
0160 * FAC FLOW PATTERN COORDINATE F
0170 ★ X STEAM QUALITY
0180 ★ BE DIMENSIONLESS DENSITY PARAMETER BETA
0190 ★ YFPL DIMENSIONLESS DISTANCE FROM PIPE
0200 ★ YF DISTANCE FROP PIPE WALL
0210 * D W DIMENSIONLESS VAPOR VELOCITY
0220 * A1 LOCAL NAME FOR DISTANCE ALONG THE PIPE
0230 * A2 LOCAL NAME FOR PRESSURE ALONG THE PIPE
0240 * T SATURATION TEMPERATURE FOR WATER
0250 •k DPDZ FRICTIONAL PRESSURE GRADIENT
0260 * DPDZF (DP/DZ F) - ONLY LIQUID FLOW
0270 ★ DPDZG (DP/DZ F) ONLY GAL FLOW
0280 ★ DADZ ACCELERATIONAL PRESSURE GRADIENT / G**2
0285 ★ A ACCELERATIONAL PRESSURE GRADIENT
0290 * RE REYNOLDS NO.
0300 * REF REYNOLDS NO. FOR LIQUID
0310 * REG REYNOLDS NO. FOR GAS
0320 * REFF REYNOLDS NO. FOR LIQUID WITH ENTRAINMENT0330 ★ FF FRICTION FACTOR FOR LIQUID
0340 ★ FG FRICTION FACTOR FOR GAS
0350 * FFF FRICTION FACTOR FOR LIQUID WITH ENTRAINMENT0360 * CAPX SQUARE ROOT OF (DPDZF/DPDZG)
0370 * SIGMA SURFACE TENSION
0380 * VMEWG VISCOSITY OF THE GAS
0390 * VMEWF VISCOSITY OF THE LIQUID
0400 * VF SPECIFIC VOLUME OF THE LIQUID
0410 * VG SPECIFIC VOLUME OF THE GAS0420 * EN ENTRAINMENT
0430 * FIG2 TWO-PHASE GAS FRICTION MULTIPLIER
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LISTING OF THE MAIN PROGRAM

0010  *  

0020  *  

0030 * 
0040 * 
0050 
0060 
0070 
0080 
0090 
0092 * 
0094 * 
0096 * 
0100 
0110

0120 
0130 
0140 
0150 
0160 
0170 
0180 
0182 * 
0184 * 
0186 * 
0188 * 
0190
0200  
0210 
0220 
0230 
0240 
0242 * 
0244 * 
0246 *
0248 *
0249 *
0250 
0260 
0270 
0272 * 
0274 * 
0276 * 
0278 * 
0280
0290 101
0300 
0310 
0320

PROGRAM FOR THE CALCULATION OF PRESSURE DROP 
IN ANNULAR TWO-PHASE FLOW.
REAL LMP
COMMON G ,GF,GG,DI,Z,I,II,H,DIST
COMMON ENF,ENG,ENI,ENFG
DIMENSION AK(4),EPD(4),PPD(4),DEV(4)
H = 0.44

READING AND WRITING OF IMPUT PARAMETERS 
WRITE(6,100)
READ*,KK,GF,GG,ENF,ENG,P ,EPD(1),EPD(2),
EDP(3),EDP(4)
WRITE(6,400)KK
WRITE(6,401)GF,ENF,P
WRITE(6,402)GG,ENG
G = GF+GG
DI = 10.11E-03
ENI = (ENG *GG+ENF*GF)/G
DIST = 0.0

CALL SUBROUTINE PPSSAW TO CALCULATE INPUT 
CONDITIONS AND FLOW PATTERN COORDINATES

CALL PPSSAW(F ,P ,DPDZF,DPDZ, T , X , LMP,FAC,ALPHA, 
EN,DVF,BE,YF,YFPL,DELTA)
WRITE(6,510)LMP,FAC 
WRITE ( 6,5 20) BE, YFPL, D W  
WRITE(6,530)YF,DELTA 
WRITE(6,200)
WRITE(6,500)

THE RUNGE-KUTTA ITERATION PROCEDURE STARTS 
HERE. AN AVERAGE PRESSURE GRADIENT IS CALCULATED 
FOR EACH SECTION OF THE PIPE

DO 140 II = 1,4 
TP = P
DO 107 I = 1,4

FOR EACH OF THE POINTS, 101, 102, 103, 104 
AN AVERAGE PRESSURE GRADIENT IS CALCULATED

GO TO (101,102,103,104),I 
A1 = Z 
A2 = P 
DIST = 0.0 
GO TO 105
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0330 102 A1 = Z+H/2
0340 A2 = P+AK(I-1)/2
0350 DIST = H / 2.0
0360 GO TO 105
0370 103 A1 = Z+H/2
0380 A2 = P+AK(1-1)/2
0390 DIST = 0.0
0400 GO TO 105
0410 104 A1 = Z+H
0420 A2 = P+AK(1-1 )
0430 DIST = H / 2.0
0440 105 CALL PPSSAW(F ,A2,DPDZF,DPDZ,T ,X,LMP,FAC, 

ALPHA, EN, D W ,BE,YF, YFPL, DELTA)
0450 IF(X.LE.O.005)GO TO 600
0470 AK(I ) = H*F
0480 107 CONTINUE
0490 Z = Z+H
0500 P = P+(AK(1)+AK(2)* 2+AK(3)* 2+AK(4))/6
0510 DELP = TP-P
0520 PPD(l) = DELP
0530 PPD(2) = PPD(1)+DELP
0540 PPD(3) = PPD(2)+DELP
0550 PPD(4) = PPD(3)+DELP
0552 *
0554 * CALCULATION OF DEVIATION BETWEEN THE
0556 * EXPERIMENTAL AND THE PREDICTED PRESSURE DROP
0558 *
0560 DEV(II) = (EPD(II)-PPD(II))/EPD(II)0570 ADEV = ADEV+DEV(II)/4.0
0580 AADEV = AADEV+ABS(DEV(II))/4.0
0590 SDEV = SDEV+(DEV(11)*EPD(11))* *2
0600 PGRAD = F * (-1.0E+05)
0602 *
0604 * OUTPUT OF THE PREDICTIONS OF PRESSURE DROPS
0606 * AND DEVIATIONS.
0608 ★
0610 WRITE(6,300)Z,PGRAD,PPD(11) , EPD ( 11) , 

DEV(II),T,X,ALPHA,EN
0620 140 CONTINUE
0630 WRITE(6,1300)ADEV,AADEV,SDEV
0640 100 FORMAT(15X,'GIVE THE DATA: RUN #,GF,GG, 

ENF,ENG,P ,EPD(1),EPD(2),EPD(3),EPD(4)')
0650 200 FORMAT(//,IX,'L ‘,5X,'P.GRAD',5X,1PRE.PD.', 

3X,'DEVI-',4X,'STEAM',5X,'VOID',7X,'E
0660 300 FORMAT(IX,F5.3,3X,F6.4,4X,F6.4,4X,F6.4, 

4X,F6.4,5X,F6.4,5X,E10.3)0670 400 FORMAT(/,15X,'DATA SET #',I3,' OF DR. HASAN
0680 401 FORMAT(/,'INPUT DATA:',3X,’LIQ.LOAD =',F7.2 

LIQ.ENTH.=',F7.2,J/KJ',3X,'P=',F6.4',3X, 
FORMAT(14X,'GAS=',F7.2,'KG/M2,S ',3X,'ENTH.= 
',F7.2,'J/KG')

0680 402
0690 500 FORMAT (IX, 'M ' ,5X, 'N/M,M2' ,6X, 'BAR' ,7X, 

'ATION',4X,'C ',3X,’FRAC',3X,'MENT')
0700 510 FORMAT(/,IX,'FP-COORDINATES: L-M
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0720
PARAMETERS,E10.5,5X,'F=',F5.2)
= ' , F 6 . 3 , 8 X , 'Y F - P L U S = 1,F 7 .2 ,5 X , 1V = ’ ,E l 1 .4) 
F O R M A T ( /, 1 L I Q U I D  F I L M : 1 1 X , 'D E L T A  =

0725 MYF = ,'Ell.4,' M ')
0730 IF(X.GE.0.005)GO TO 1200
0740 600 WRITE(6,900)
0750 700 WRITE(6,1000)
0760 800 WRITE(6,1100)X,ENI,ENF,ENFG
0770 900 FORMAT(//5X,'STEAM QUALITY IS LESS THAN 0.5
0780 1000

%. PRESSURE DROP IS NOT CALCULATED.’) 
FORMAT(5X,'STEAM QUALITY',5X,'SAT.

0790 1100
ENTHALPY' ,5X, 'EVAP.ENTHALPY 1 )
FORMAT(5X,F10.5,8X,F13.2,5X,F13.2,5X,F13.2)

0800 1300 FORMAT(//IX,'AVER.DEV. = ',E10.4,5X,1AAD
0810 1200

= ’,E10.4,5X,'SS = ',E10.4,'BAR21) 
CONTINUE

0820 STOP
0830 END



53

SUBROUTINE FOR THE GHOSAL MODEL

1100  
1105 
1110  
1120 
1130 
1132 * 
1134 * 
1136 * 
1140 
1150 
1160 
1170 
1180 
1190 
1200  
1210  
1220 
1230 
1240 
1250 
1260 * 
1270 
1280 
1285 
1290 * 
1300 * 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1412 * 
1414 * 
1416 *
1418 *
1419 *
1420 
1430 
1440 
1442 * 
1444 * 
1446 *

SUBROUTINE PPSSAW(F ,P ,DPDZF,DPDZ,T ,
X ,LMP,FAC,ALPHA,CAPX)
REAL LMP,FA,JGC,ALFA,JG 
COMMON G,GF,GG,DI,Z,I,II,H,DIST 
COMMON ENF,ENG,ENI,ENFG

CALCULATION OF PHYSICAL PROPERITES
G=GF+GG
VF=0.99453E-03+48.7443E-06*P**0.43503 
VG=1.69767*P**(-0.91215)-4.0240IE-03 
VFG=VG-VF
VMEWF=231.712E-06*P**(-0.38423)+52.7757E-06 
VMEWG=5.12377E-06+6.92654E-06*P**(-0.15461) 
ROG = 1.0/ VG 
ROF=l.0/VF
ENF=545.254*P**0.21265-127.422 
ENFG = 2474.56-217.561*P**0.32378 
X =(ENI-ENF)/ENFG 
IF(X•LE.0.005)GO TO 268

FAC = (ROG/(ROF-ROG))**0.5*3.175*VG*G*X 
LMP = ((1.0-X)/X)**0.9*(ROG/ROF)**

0.5*(VMEWF/VMEWG)**0.1 
CALCULATION OF PHYSICAL PROPERTIES OF 
SATURATED STEAM AND WATER 
GG=X*G
GF=(1.0-X)*G
T=143.7725*P**0.19246-44.0965 
REN=G*Dl/VMEWF 
RENF=G *(1-X)*DI/VMEWF 
FF=0.079*RENF**(-.25)
DPDZF=2*FF*G**2*(1-X)**2*VF/DI 
RENG=G*X*DI/VMEWG 
FG=0.079*RENG**(-.25)
D PD ZG = 2 * FG *g **2*X**2* VG / DI 
CAPX= (DPDZF/DPDZG) * *0.5

CALL SUBROUTINE NEWRAP TO CALCULATE
THE VOID FRACTION FROM LOCKHART-MARTINELLI
PARAMETER X.

CALL NEWRAP(CAPX,ALPHA)
A2=VG*X**2/ALPHA+(1.0-X)**2 * VF/(1-ALPHA) 
IF(DIST.EQ.O.O) GO TO 110

CALCULATE THE ACCELERATIONAL PRESSURE GRAD.
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1460
1470
1480
1490
1492
1494
1496
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
17 00
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
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DADZ = ( A2 - A1 ) / DIST 
110 A1 = A2

A=DADZ*G**2
FIFSQ=0.75/(1.0-3.0*ALPHA+2.0*ALPHA**1.5) 
FP = FIFSQ * DPDZF

*

* CALCULATE THE TOTAL PRESSURE GRAD.
*

F = (FP + A) * (-1.0E-05)
268 RETURN 

END★
•k
*

SUBROUTINE NEWRAP(X,Z)
Z = ( 1.0 + X**0.8 ) ** (-0.378)

108 Fl=(304.0/3.0)*Z**(-2.5)-404.0*Z**(-1.5) 
+(608.0/3.0)*Z**(-l.0)
F2 = 300.0 * Z**(-0.5) - 200.0 - X**2 
F = FI + F2
FDl=(-760.0/3.0)*Z**(-3.5)+606.0*Z**(-2.5) 
FD2=-(608.0/3.0)*Z**(-2.0)-150.0*Z**(-l.5) 
FD = FD1 + FD2 
ZI = Z - F / FD
IF(ABS(Z - ZI ).LE.1.0E-04) GO TO 109 
Z = ZI 
GO TO 108

109 Z = ZI 
RETURN 
END
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1100 
1110 
1120 
1130 
1140 
1142 * 
1144 * 
1146 * 
1150 
1160 
1170 
1180 
1190 
1200  
1210  
1220 
1230 
1240 
1250 
1260 
1270 * 
1280 
1290 
1295 
1320 
1330 
1340 
1350 
1360 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1452 * 
1454 * 
1456 * 
1458 * 
1460 
1470 
1480 
1490 
1500

SUBROUTINE FOR THE WALLIS MODEL

SUBROUTINE PPSSAW(F ,P ,DPDZF,DPDZ,T ,
X , LMP , FAC , ALPHA, EN )
REAL LMP,FA,JGC,ALFA,JG 
COMMON G ,GF,GG,DI,Z,I,II,H,DIST 
COMMON ENF,ENG,ENI,ENFG
CALCULATION OF PHYSICAL PROPERTIES
G=GF+GG
VF=0.99453E-03+48.7443E-06*P**0.43503 
VG=1.69767*P**(-0.91215)-4.02401E-03 
VFG=VG-VF
VMEWF=231.712E-06*P**(-0.38423)+52.7757E-06 
VMEWG = 5.12377E-06+6.92654E-06*P* *(-0.15461)
ROG = 1.0/ VG 
ROF=l.0/VF
ENF=545.254*P**0.21265-127.422 
ENFG=2474.56-217.561*P**0.32378 
X =(ENI-ENF)/ENFG 
IF(X.LE.0.005)GO TO 268
FAC = (ROG/(ROF-ROG))**0.5*3.175*VG*G*X 
LMP=((1.0-X)/X)* *0.9*(ROG/ROF)* *

0.5*(VMEWF/VMEWG)**0.1 
GG=X*G
GF=(1.0-X)*G
T=143.7725*P**0.19246-44.0965 
SIGMA=7.6702IE-02-1.66555E-04*

T-l.385948E-07*T**2 
REN=G*Dl/VMEWF 
RENF=G*(1-X)*Dl/VMEWF 
FF=0.079*RENF**(-.25)
DPDZF=2*FF*G**2*(1-X)**2*VF/DI 
RENG =G*X *DI/VMEWG 
FG=0.07 9*RENG **(-.25)
DPDZG = 2*FG*G**2*X**2* VG/DI 
CAPX=(DPDZF/DPDZG)* *0.5 
FIG2=1.0+20.0*CAPX+CAPX**2 
DPDZ=FIG2*DPDZG
CALCULATION OF DIMENSIONLESS VAPOR VELOCITY 
AND ENTRAINED LIQUID FRACTION IN THE VAPOR CORE.
JG=GG*VG
Y=JG*VMEWG/SIGMA*(VF/VG)* *0.5 
IF(Y.LE.0.00042) GO TO 10 
IF(Y.GE.0.0014) GO TO 20
EN=-0.0494295+1049.794 * Y-330532.9 * Y**2



56
1510
1520
1530
1540
1550
1560
1570
1580
1582
1584
1586
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1682
1684
1686
1688
1690
1700
1710
1720
1730
1732
1734
1736
1740
1750
1760
1770
1780
1782
1784
1786
1790
1800
1810

10
GO TO 30
EN = 0.02270985 - 596.6509 *Y + 3223134.0 *Y**2

20
GO TO 30 
EN = 0.8

30 CONTINUE

*

REFF=RENF*(1.0-EN)
FFF=0.079*(REFF)**(-0.25) 
DPDZFF=2.0*FFF*(G*(1.0-X)* (1.0-EN))* *2*VF/DI

* THE ITERATION PROCEDURE STARTS HERE.
*

101 FIFF2=DPDZ/DPDZFF 
ALPHA=1.0-FIFF2**(-0.5)
DELTA=(1.0-ALPHA)*Dl/4.0
Cl=l.0+75.0*(1-ALPHA)/ALPHA**2.5
C2=(GG+E*GF)/GG
B1=GF*((1.0-EN)/GG)*VF/VG
B2=ALPHA/(1.0-ALPHA)*B1
C3=(1.0-2.0*B2)**2
CFIG2=C1*C2*C3
IF(ABS(CFIG2-FIG2)-50.0) 103,102,102

*

* ESTIMATION OF A NEW VALUE FOR THE
* TWO-PHASE FRICTIONAL MULTIPLIER FOR GAS
*

102 FIG2=(CFIG2+FIG2)/2.0 
DPDZ=DPDZG*FIG2
GO TO 101

103 FIG2=(CFIG2+FIG2)/2.0 
DPDZ=DPDZG*FIG2

*

* CALCULATE THE ACCELERATIONAL PRESSURE GRAD.
*

A2=VG*X**2/ALPHA+(1.0-X)**2 * VF/(1-ALPHA) 
IF(DIST.EQ.0.0) GO TO 110 
DADZ=(A2-A1)/H 

110 A1=A2
A=DADZ*G**2*

* CALCULATION OF THE TOTAL PRESSURE GRAD-*
F=(DPDZ+A)*(-1.0E-05)

268 RETURN 
END
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SUBROUTINE FOR THE LEVY MODEL

0850
0860
0870
0880
0882
0884
0886
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010

1020
1030
1040
1070
1080
1090
1100
1110
1120

1130
1140
1142
1144
1146
1148
1150
1160
1170
1180
1190
1200
1210
1220

0840 SUBROUTINE PPSSAW(F ,P ,DPDZF,DPDZ,T ,X,LMP,F , 
ALPHA,EN,D W ,BE,YF,YFPL,DELTA)
REAL LMP,FA,JGC,ALPHA,JG,KYR 
COMMON G ,GF,GG,DI,Z,I,II,H,DIST 
COMMON ENF,ENG,ENI,ENFG 
RI = DI / 2.0t

f CALCULATION OF THE PHYSICAL PROPERTIES
r

G = GF+GG
VF = 0.99453E-03+48.7443E-06*P**0.43503 
VG = 1.69767*P**(-0.91215)-4.02401E-03 
VFG = VG-VF
VMEWF = 231.712E-06*P**(-0.38423)+52.7 757E-06 
VMEWG = 5.12377E-06+6.92654E-06*P**(-0.15461) 
ROG = 1.0/VG 
ROF = 1.0/VF
ENF = 545.254*P**0.21265-127.422 
ENFG = 2474.56-217.561*P**0.32378 
X = (ENI-ENF)/ENFG 
IF(X.LE.0.005)GO TO 268

r CALCULATION OF COORDINATES FOR FLOWPATTERN-MAP
AFTER TAITEL AND DUKLER

FAC = (ROG/(ROF-ROG))**0.5*3.175*VG*G*X 
LMP = ((1.0-X)/X)**0.9*(ROG/ROF)**0.5

*(VMEWF/MVEWG)**0.1 
GG = X*G 
GF = (1.0-X)*G
ALPHA = (1.0 +LMP**0.8) **(-0.387)
DELTA = RI * (1.0 - ALPHA**0.5)
T = 143.7725*P**0.19246-44.0965 
SIGMA = 7.67021E-02-1.66555E-04*T 
- 1.385948E-07*T**2 
JG = GG*VG
D W  = JG*VMEWG/SIGMA* (VF/VG) **0.5

CALL UP THE SUBROUTINE BETAS TO CALCULATE THE 
THE DIMENSIONLESS DENSITY FUNCTION BETA.

CALL BETAS(ROF,ROG,SIGMA,RI,BE)
YF = DELTA
J = 0

201 YFR = YF / RI
FIS = 0.005 * (1.0 + 150.0 * YFR )
TAUW = 0.5 * ROG * FIS * (GG/ROG)**2 
TAUWF = ((TAUW * ROF)**0.5) / VMEWF 
YFPL = YF * TAUWF
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1230 RPL = RI * TAUWF
1240 IF(YFPL.GT.30.0)GO TO 202
1250 IF(J.GE.l)GO TO 202
1260 BE = 1.0 + 1.4142136 * (BE - 1.0)
1270 J = J + 1
1280 202 CONTINUE
1290 GE = GF * (1.0/BE) **0.5
1292 k
1294 * CALL UP THE SUBROUTINE KYRS TO CALCULATE THE
1296 k DIMENSIONLESS VELOCITY K(YF,R)
1298 k
1300 CALL KYRS(YFPL,RPL,KYR)
1310 GFF = 2.0*KYR*((TAUW*ROF)* *0.5)/(RPL**2)
1320 GFFT = GF - GE
1330 DGFFT = GFF - GFFT
1340 IF(ABS(DGFFT) - 10.0)204,203,203
1342 k
1344 * MAKE A NEW ESTIMATE OF YF
1346 ★
1350 203 YFN = YF * (GFFT/GFF)
1360 YF = (YFN + YF) / 2.0
1370 GO TO 201
1380 204 CONTINUE
1390 EN = GE / GF
1400 YT = YF * (ROF/ROG) ** (1.0/BE)
1402 *
1404 * CALCULATE THE FRICTIONAL PRESSURE GRADIENT.
1406 *
1410 DPDZ = 2.0 * TAUW / RI
1412 *
1414 * CALCULATE THE ACCELERATIONAL PRESSURE GRAD.
1416 k
1420 A2 = VG*X**2/ALPHA+(1.0-X)**2*VF/(1-ALPHA)
1430 IF(DIST.EQ.0.0) GO TO 110
1440 DADZ = (A2-A1)/DIST
1450 110 A1 = A2
1460 A = DADZ*G**2
1470 F = (DPDZ+A)*(-1.0E-05)
1480 268 RETURN
1490 END
1500 *
1510 SUBROUTINE BETAS(ROF,ROG,SIGMA,RI,BE)
1520 COMMON G ,GF,GG,DI,Z,I,II,H,DIST
1530 COMMON ENF,ENG,ENI,ENFG
1540 REAL KF,BE,BEPR,BEN,BE1,BE2,BEND
1550 REAL KYR
1550 KF = 0.4
1570 BE = 4.0
1580 301 BE1 = (ROF/ROG)**(1.0/BE) - 1.0
1590 BE2 = SIGMA * ROF / (KF * RI * GG**2)
1600 BEN = 1.0 + ( BE1 * BE2 ) ** 0.5
1610 IF(ABS(BE-BEN) - 0.01)303,302,302
1620 302 BE = (BE + BEN) / 2.0
1630 GO TO 301
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BE = BEN
RETURN
END
SUBROUTINE KYRS(YFPL,RPL,KYR)
COMMON G,GF,GG,DI,Z,I,II,H,DIST 
COMMON ENF,ENG , ENI,ENFG 
REAL KYR
YFPLN = ALOG(YFPL)
IF(YFPL.GE.30.0) GO TO 502
IF(YFPL.GE. 5.0) GO TO 501
KYR =0.5 *RPL *YFPL**2 - (YFPL**3) / 3.0
GO TO 503
KYR = 12.51*RPL-10.45-8.05*RPL*YFPL+2.775 
*YFPL**2+5.0*RPL*YFPL*YFPLN-2.5*YFPL*YFPLN 
GO TO 503
KYR=3.0*RPL*YFPL-63.9*RPL-2.125*(YFPL**2)
-1.25*(YFPL**2)*YFPLN+2.5*RPL*YFPL*YFPLN+573.21
RETURN
END



OPTIMIZATION PRECEDURE
Appendix C
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The correction factor for The Wallis model was obtained 
by using three different correction factors as reference 
points. Using the resulting total sum of squares of errors 
for these three factors, the correction factor that gave the 
lowest sum of squares of errors was found by curve fitting. 
The results from the three correction factors are listed in 
Table 5 .

TABLE 5
WALLIS MODEL WITH THREE CORRECTION FACTORS

Correction
factor 1.148 1.1715 1.950
Average Deviation 
(percent) 4.14 2.05 0.00
Totas Sum of Squares 
of Errors (kPa)2 1684.97 1566.34 1588.28

From these numbers, the parameters in the fitted curve esti­
mated a correction factor of 1.180 to give the minimum total 
sum of squares of errors.
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TABLE 6
RESULTS FROM GHOSAL MODEL

Run
no AP, a p 2 AP3 a p 4

kPa kPa kPa kPa

1 5.70 11.532 9.15 18.6111 8.32 17.0318 19.64 41.1120 12.98 27.1521 6.20 12.7528 7.90 16.5229 12.04 25.4348 9.62 19.5249 4.77 9.6066 11.62 23.8067 20.09 41.6380 26.17 54.9681 17.60 36.6382 8.22 16.8988 21.83 47.0489 15.78 33.7290 13.63 28.93103 27.59 59.99104 23.44 50.86106 31.61 67.05107 19.91 41.55

17.52 23.74
28.42 38.58
26.03 35.48
64.31 90.19
42.59 59.63
19.66 26.99
25.90 36.18
40.32 57.10
29.26 39.75
14.52 19.54
36.49 49.84
64.47 89.18
86.80 122.67
57.19 79.56
25.99 35.59
76.18 110.40
54.03 77.28
46.03 65.29
97.92 143.14
82.78 120.50
106.75 152.00
64.97 90.56

Average
Deviation

%

-11.39
-16.35
-5.83

-49.42
-32.42
-17.65
-42.22
-35.38
-34.42
-43.28
-36.34
-71.75
-59.69
-62.91
-49.50
-84.28
-63.97
-87.59
-79.53
-74.71
-78.94
-46.15

Absolute
Average

Deviation
%

11.39
16.35
5.83

49.42
32.42 
17.65 
42.22 
35.38
34.42
43.28 
36.34 
71.75 
59.69 
62.91 
49.50
84.28 
63.97 
87.59 
79.53 
74.71 
78.94 
46.15

Sum of 
Squares 

of Errors 
(kPa)2

13.37
58.57
7.04

2002.0
495.8
34.33

209.5
492.6
170.6 
62.77

357.2
2639.0
4029.0
1599.0
253.7

4728.0
1555.0
1800.0
7658.0
5107.0
9015.0
1665.0

Reynolds
number

Ref

9877
8844

17426
19045
30737
32579
40390
39421
9775

13901
32693
29351
38322
40449
43262
79350
78148
73687
115666
115771
71311
75101



TABLE 6 continued

Run
no AP,

kPa

a p 2

kPa

108 13.88 28.91121 33.14 68.95122 20.69 42.65123 11.72 23.93130 26.23 54.60131 18.19 37.17138 22.39 46.54139 14.60 29.73140 3.59 17.38149 11.44 23.24150 22.10 44.92

A P3 A P4

kPa kPa

45.12 62.68
108.20 151.02
65.86 90.65
36.60 49.81
83.90 115.52
57.08 77.96
71.09 98.01
45.33 61.45
26.38 35.54
35.38 47.71
68.82 93.16

Average
Deviation

%

Absolute
Average

Deviation
%

Sum of 
Squares 

of Errors (kPa)2

Reynolds
number

Ref

-11.14 11.14
-54.03 54.03-51.07 51.07
-24.25 24.2 5
-73.65 73.65
-70.52 70.52
-75.90 75.90
-66.52 66.52
-30.25 30.25-54.64 54.64
-59.19 59.19

121.9 794385528.0 367771791.0 41706223.7 447304571.0 20774
1944.0 303173301.0 145451125.0 20480107.6 24485538.7 226312340.0 14866



TABLE 7
RESULTS FROM WALLIS MODEL

Run AP, A Pgno
kPa kPa

1 4.03 8.142 5.78 11.7111 5.62 11.4018 11.08 22.6620 8.31 17.0521 4.02 8.2128 5.05 10.4329 7.77 16.1148 5.78 11.6649 3.24 6.5366 7.02 14.2467 11.05 22.5130 13.95 28.6281 9.89 20.2582 4.93 10.0588 11.92 24.8689 8.72 18.1790 7.59 15.75103 13.74 28.78104 11.73 24.56106 15.92 32.82107 10.38 21.25

AP3 a p4 Averag
Error

kPa kPa %

12.32 16.58 21.6117.78 24.00 27.0517.33 23.43 29.3134.71 47.30 18.7826.23 35.88 17.8312.57 17.12 24.5516.14 22.24 10.8425.05 34.64 15.3317.62 23.68 19.499.85 13.21 2.7521.65 29.26 18.7834.37 46.66 7.8543.98 60.14 18.2231.08 42.39 10.7415.35 20.83 11.4038.80 53.87 4.7528.36 39.38 12.8224.50 33.91 -0.7945.02 62.69 16.0838.45 53.58 17.5650.67 69.60 14.1032.57 44.38 26.12

Absolute
Average
Error

Sum of 
Squares 

of Errors
(kPa)2

Reynolds Predicted 
number Entrainment

Re f F e

21.61 35.87
27.05 143.2
29.31 183.4
18.78 143.1
17.83 81.89
24.55 54.23
10.84 14.71
15.33 52.36
19.49 75.14
2.75 0.47

18.78 74.62
7.85 24.10

18.22 317.2
10.74 81.97
11.40 14.36
4.75 12.3012.82 89.53
3.38 4.1316.08 218.5

17.56 197.6
14.10 147.3
26.12 401.6

8563 0.133
5620 0.36514817 0.150
9790 0.486

25461 0.172
32260 0.010
39853 0.013
36282 0.080
5799 0.407

12917 0.071
26645 0.185
16259 0.446
20133 0.475
26991 0.333
41962 0.030
65992 0.16873399 0.061
70654 0.041
93129 0.195

102591 0.114
40490 0.432
58542 0.220

c\



TABLE 7 continued

Run
no A P| A Pg A Pj A P4 Average

Error
kPa kPa kPa kPa

108 7.27
121 16.27
122 10.97
123 6.63130 13.19
131 9.80
138 11.62
139 8.08
140 5.17
149 6.52
150 11.34

14.91 22.90
33.20 50.72
22.30 33.97
13.44 20.40
26.79 40.73
19.86 30.15
23.55 35.75
16.31 24.69
10.42 15.74
13.15 19.88
22.97 34.85

31.28 43.18
68.92 27.01
46.02 21.61
27.53 30.52
55.06 15.14
40.70 9.50
48.25 11.18
33.21 8.97
21.13 22.06
26.72 12.72
47.00 19.01

Absolute Sum of
Average SquaresError of Errors

% (kPa)2

43.18 943.4
27.01 1122.0
21.61 289.230.52 231.3
15.14 164.0
9.50 35.58

11.18 74.82
8.97 20.18

22.06 84.6612.72 27.0919.01 195.9

Reynolds Predicted
number Entrainment

Re f F e

74684 0.060
14265 0.61224312 0.417
38214 0.146
7358 0.646
16900 0.443
5016 0.65511260 0.450

19940 0.18614570 0.3565244 0.647

O'O'



TABLE 8
RESULTS FROM LEVY MODEL

Run
no A pi A P 2 A p3 AP4 Average

Error
kPa kPa kPa kPa %

1 3.94 7.96
2 6.90 14.05
11 5.31 10.80
18 14.12 29.27
20 7.75 15.99
21 3.15 6.41
28 3.88 7.99
29 6.55 13.59
48 7.45 15.09
49 3.10 6.24
66 7.00 14.25
67 13.54 27.85
80 17.28 35.92
81 10.70 22.04
82 4.23 8.60
88 11.25 23.61
89 7.52 15.67
90 6.41 13.29
103 13.27 27.94
104 10.80 22.70

18.50 38.55
10.67 21.96

12.05 16.23 2 3.3721.43 29.08 12.2616.44 22.27 33.0145.40 62.75 -5.7024.71 34.00 22.739.78 13.27 41.1812.30 16.85 31.8921.11 29.18 28.6222.89 30.87 -4.389.42 12.63 7.0321.71 29.43 18.6642.85 58.70 -14.4555.90 77.54 -3.3433.97 46.60 2.6613.11 17.77 24.2237.10 51.92 9.1824.44 33.91 24.8620.62 28.48 15.1144.01 61.74 18.1935.52 49.62 23.8560.15 83.61 -1.5333.84 46.38 23.42107

Absolute
Average
Error

%

Sum of 
Squares 

of Errors(kPa)2

Dim.less 
Density 

exponent
P

Predicted
Entrainment

e

23.37 41.89
12.26 27.03
33.01 229.6
8.29 91.73

22.73 137.5
41.18 156.4
31 .89 120.6
28.62 207.6
4.38 1.45
7.03 2.16
18.66 72.17
14.45 121.6
3.34 27.12
3.72 13.75

24.22 62.49
9.18 39.66

24.86 279.5
15.11 32.12
18.19 270.2
23.85 375.7
5.58 52.91

23.42 309.4

4.845 0.4544.015 0.4994.701 0.4613.347 0.546
4.643 0.4656.474 0.394
6.448 0.395
5.275 0.437
3.409 0.5414.743 0.4594.077 0.4963.244 0.5 55
3.164 0.563
3.773 0.516
5.295 0.435
4.151 0.4934.842 0.457
5.104 0.4453.773 0.518
4.122 0.495
3.099 0.569
3.668 0.523



TABLE 8 continued

Run
no AP, A P2 A p3 A P4 Average

Error
kPa kPa kPa kPa %

108 6.65 13.63121 22.99 47.61122 13.18 26.96123 6.66 13.50130 20.27 41.70131 12.22 24.91138 18.31 37.58140 10.34 20.97140 5.40 10.90149 7.66 15.50150 17.74 36.34

20.94 28.60 48.0673.78 101.86 -5.4941.32 56.33 4.9220.5 3 27.74 30.1264.16 87.88 -32.9038.01 51.59 -13.8157.66 78.73 -42.4631.87 43.06 -17.2716.48 22.15 18.4423.48 31.64 -2.9655.68 75.91 -28.78

Absolute
Average
Error

%

Sum of 
Squares 

of Errors
(kPa )2

Dim.less 
Density- 

exponent
P

Predicted
Entrainment

e

48.06 1178.0
5.49 101.4
4.92 11.39

30.12 223.7
32.90 948.8
13.81 79.45
42.46 1023.0
17.27 76.75
18.44 61.40
2.96 2.18

28.78 609.5

4.477 0.4742.604 0.6193.142 0.5643.926 0.5052.534 0.6283.063 0.571
2.528 0.628
3.033 0.5743.7 98 0.5133.362 0.5452.531 0.628



TABLE 9
RESULTS FROM MODIFIED WALLIS MODEL

Run
no AP, A P2 A p3 A P4

kPa kPa kPa kPa

1 4.77 9.64 14.612 6.83 13.88 21.1311 6.65 13.52 20.6018 13.12 26.96 41.4720 9.97 20.63 31.9921 4.75 9.74 14.9928 5.98 12.42 19.3629 9.21 19.23 30.1048 6.83 13.80 20.8849 3.83 7.72 11.6666 8.30 16.88 25.7367 13.08 26.74 40.9780 16.53 34.08 52.6481 11.73 24.10 37.1282 5.84 11.93 18.2788 14.15 29.77 46.8389 10.35 21.73 34.1890 8.99 18.81 29.47103 16.34 34.54 54.54104 13.94 29.44 46.52106 18.88 39.16 60.81107 12.30 25.28 38.91

19.68
28.59 
27.92 
56.80 
44.13 
20.50
26.84 
41.95 
28.11 
15.65
34.87 
55.83 
72.38
50.87 
24.89
65.59
47.85
41.10 
76.71 
65.44
84.07 
53.25

Average Absolute Sum ofError Average SguaresError of Errors% % (kPa)2

7.14 7.14 3.2613.41 13.41 33.6016.10 16.10 56.613.11 6.72 14.170.13 4.34 8.9310.22 10.22 8.53-6.58 6.58 4.88-1.46 4.58 10.644.64 4.64 7.41-15.03 15.03 7.063.59 3.59 1.61-9.66 9.66 54.632.35 2.35 4.70-6.45 6.45 7.74-5.32 5.32 2.66-14.53 14.53 144.6-4.63 4.63 3.13-20.85 20.85 123.5-1.24 2.65 13.990.68 3.06 6.82-2.83 5.94 63.0411.92 11.92 69.73



TABLE 9 continued

Run
no

108
121
122
123
130
131
138
139
140
149
150

AP, a p 2

kPa kPa

8.61 17.74
19.27 39.4812.97 26.46
7.84 15.92

15.62 31.81
11.59 23.5413.75 27.95
9.55 19.316.11 12.337.77 15.56

13.42 27.25

^ P3 a p4

kPa kPa

27.36 37.55
60.54 82.61
40.43 54.95
24.22 32.76
48.48 65.73
35.82 48.47
42.52 57.53
29.28 39.46
18.64 25.06
23.56 31.72
41.43 56.01

Average
Error

%

Absolute
Average
Error

%

Sum of 
Squares 

of Errors 
(kPa)2

32.25 32.25 503.313.03 13.03 234.26.83 6.83 25.6017.57 17.57 68.26-0.88 1.21 2.79-7.41 7.41 24.43-5.51 5.51 14.83-7.87 7.87 15.717.76 8.11 15.38-3.36 3.36 2.573.83 3.83 4.64



Append i x E
RESULTS FROM CURVE FITTING
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The plots of error against various variables in Fig­

ures 8 to 40 were fitted to two curves by the method of 
least squares. The equations for the two curves were:

6  = a + b X  (59)

for the two-parameter curve and

£  = a + b X  + c X  (60)

for the three-parameter curve.

For each curve, the parameters and the regression coeffi­
cient R were calculated. The values of the parameters and 
the regression coefficient are shown in Tables 10 to 13. A 
small value of the regression coefficient indicates that the 
error is almost randomly distributed with respect to the 
given parameter. Hence, the model apparently accounts for 
the effect of this parameter properly. In Figures 8 to 37 
the three parameter curve (Equation 60) is drawn to indicate 
any trend. To avoid crowding these figures, the straight 
line (Equation 59) is not plotted.
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TABLE 10

CURVE FITTING FOR GHOSAL MODEL

Variable No. of 
parameter paramete

2 
3

x 2
x 3
G 2
G 3
F 2
F 3
X 2
X 3
P *) 2
P *) 3
Ref 2
Ref 3

a b

-33.3040 -3.8132
-30.3608 -5.1562
-48.5044 -8.69083
-59.5627 131.8881
-30.1021 -0.0256
-24.0147 -0.0413
-33.511 -2.6651
-32.7073 -2.9253
-46.3395 -7.4567
-57.4856 47.1236
-7.1666 -6.5337
177.7752 -69.9705
-36.4619 -0.0003
-36.5584 -0.0003

c R

- 0.143
0.1214 0.143- 0.003

-278.8843 0.066
- 0.229

0.0000 0.223
- 0.132

0.0169 0.132- 0.19
-37.9856 0.088

- 0.212
5.0672 0.384- 0.171

-0.0000 0.171

*) The pressure has to be given in Bar.
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TABLE 11

CURVE FILING FOR WALLIS MODEL

Variable
parameter

No. of 
parameters

a b c R

TT 2 17.5526 -0.0903 _ 0.001
TT 3 16.9237 0.1966 -0.0260 0.001
X 2 17.2022 -0.2567 - 0.000
X 3 16.1554 13.0500 -26.3982 0.004
G 2 17.8645 -0.0009 - 0.002
G 3 10.2951 -0.0020 0.0000 0.002
F 2 17.5603 -0.0652 - 0.001
F 3 17.1030 0.0828 -0.0096 0.001
X 2 16.9863 0.3280 - 0.000
X 3 16.5423 2.5023 01.5132 0.001
P *) 2 14.6823 0.3757 - 0.005
P *) 3 103.9756 -30.2500 2.4465 0.278
Ref F 2 17.1913 -0.0000 - 0.000
Ref F 3 17.5361 -0.0000 0.0000 0.000

*) The pressure has to be given in Bar.
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^ABLE 12

CURVE FITTING FOR LEVY MODEL

Variable
parameter

No . o f a 
parameters

b c R

77 2 45.9232 -8.4172 „. 0.806
77 3 54.1943 -12.1912 0.3413 0.814
X 2 31.7310 -121.7511 - 0.658
X 3 31.6199 -120.3392 -2.8008 0.658
G 2 -3.9235 0.0162 - 0.106
G 3 -6.5071 0.0229 -0.0000 0.107
F 2 46.8340 -6.1022 - 0.805
F 3 54.3385 -8.5309 0.1574 0.811
X 2 -6.8447 29.7806 - 0.355
X 3 -19.4582 93.4858 -44.3362 0.464
P *) 2 43.2968 -5.2521 - 0.159
P *) 3 115.6972 -30.0861 1.9837 0.190

P 2 -57.8584 16.7560 - 0.651
P 3 -155.6128 65.0792 -5.6023 0.767
'e 2 157.0601 -288.4916 - 0.749
e 3 -62.9807 574.8856 -834.1401 0.781

The Levy model yielded also a correlation for
entrainment vs. dimensionless vapor velocity.
A curve fitting for this relationship gave the
following coefficients and regression coefficients.

2 0.3977 0.0263 __ 0.879
3 0.3363 0.0544 -0.0025 0.925

It has to be noted that this is not an experimental
result, but rather calculated data for the experimental
conditions.

*) The pressure has to be given in Bar.
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TABLE 13

CURVE FITTING ^OR MODIFIED WALLIS MODEL

Variable
parameter

No. of 
parameters

a b c R

77 2 2.1921 -0.2698 _ 0.003
77 3 -0.4992 0.9582 -0.1111 0.006
X 2 1.1662 -0.8770 - 0 . 0 0 0
X 3 -0.7243 23.1556 -47.6766 0.009
G 2 2.4452 -0.0018 - 0.005
G 3 3.2444 -0.0039 0 . 0 0 0 0 0.006
F 2 2.2102 -0.1938 - 0.003
F 3 -0.3634 0.6391 -0.0540 0.006
X 2 0.9462 0.1667 - 0 . 0 0 0
X 3 -0.0219 4.8471 -3.2991 0.002
p *) 2 -1.4188 0.3678 - 0.003
p *) 3 102.3113 -35.2125 2.8421 0.251
RefF 2 1.3054 - 0 . 0 0 0 0 - 0 . 0 0 0
Ref F 3 1.3805 - 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 1

*) - The pressure has to be given in Bar.
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PLOTS OF THE PREDICTIONS
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Figure 8: Average error vs. dimensionless vapor velocity
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Figure 9: Average error vs. steam quality.
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Figure 10: Average error vs. total mass flux.
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Figure 11: Average error vs. flow pattern coordinate F
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Figure 12: Average error vs.
Lockhart-Martinelli parameter X.



’Z
. m

o
70

 
^

Q
7

D
^

m
 

m
 o

 i
> 

to
 m

 <
 _d

83

Figure 13: Average error vs. pressure
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Figure 14: Average error vs. Reynolds number
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Figure 15: Average error vs. dimensionless vapor velocity.
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Figure 18: Average error vs. flow pattern coordinate F
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Figure 21: Average error vs. Reynolds number
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Figure 24: Average error vs. total mass flux.
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Figure 25: Average error vs. flow pattern coordinate F



—
i z

 m
 o

 
m

 t
j 

^
o

T
o

^
m

 
m

 o
 x

> 
m

 <
: 

_d
96

LEVY MODEL

Figure 26: Average error vs.
Lockhart-Martinelli parameter X.
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Figure 27: Average error vs. pressure
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Figure 28: Average error vs. dimensionless density function.
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Figure 29: Average error vs. predicted entrainment



100

LEVY MODE).

Figure 30: Predicted entrainment vs.
dimensionless vapor velocity.
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Figure 32: Average error vs. steam quality
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Figure 33: Average error vs. total mass flux.
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Figure 34: Average error vs. flow pattern coordinate F
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Figure 35: Average error vs.
Lockhart-Martinelli parameter X
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Figure 36: Average error vs. pressure.
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A Cross sectional area for fluid flow m
a Parameter used in Equation 60 and 61
b Parameter used in Equation 60 and 61 -
C Parameter used in Equation 10
c Parameter used in Equation 61
D Tube diameter m
e Fraction of liquid entrained in the vapor
F Flow pattern coordinate defined by Equation 1
fjp Two-phase friction factor -
ff Friction factor for liquid phase flowing alone
ffP Friction factor for liquid phase flowing alone

with entrainment taken into consideration
fg Friction factor for gas phase flowing alone
fj Interfacial friction factor
G Total mass flux kg/m2,s
Gf Liquid mass flux kg/m2,s
Gg Gas mass flux kg/m2,s
g Acceleration due to gravity m/s^
ig Enthalpy of the gas j/kg
ifg Heat of evaporation j/kg
if Enthalpy of liquid J/kg
ijn Enthalpy of gas and liquid at inlet condition J/kg
isat Saturation enthalpy of liquid j/kg
jg Superficial velocity of gas phase m/s
L Tube length m
P Pressure at inlet conditions kPa
A Pj Pressure drop at pressure tap no. i kPa



1 1 0

R Pipe radius m
R4 Dimensionless pipe radius -
Re Reynolds number -

Re f Reynolds number for the liquid phase -
Re-fF Reynolds number for the liquid phase 

with entrainment taken into consideration -

Reg Reynolds number for the gas phase -
SS Sum of squares of errors (kPa )2
Tsat Saturation temperature °C
u f Actual velocity of liquid ohase m/s
ug Actual velocity of gas phase m/s
V Average specific volume of gas and liquid m/kg
vf Specific volume of liquid m^/kg

v g
Specific volume of gas m3 /kg

wf Mass flow rate of liquid phase kg/s
W g Mass flow rate fo gas phase kg/s
X Lockhart-Martinelli parameter defined 

by Equation 2 -

X Mass fraction of gas / steam quality -

Yf Thickness of liquid film m
V Dimensionless film thickness -

Yi Thickness of the liquid film and transition layer m



Greek symbols
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a Void fraction -

p Dimensionless density function defined 
by Equation 45 -

c? Liquid film thickness used in 
Equation 11 and 12 m

€j Percent error in prediction of pressure 
drop as defined by Equation 26 -

Pc Density of the gas core kg/n?

p, Density of the liquid kg/nf*
Density of the gas kg/n?

Mf Viscosity of the liquid Ns/n£
P'9 Viscosity of the gas Ns /m2

44 Two-phase frictional multiplier based on 
pressure gradient for liquid flow alone -

44, Two-phase frictional multiplier based on 
pressure gradient for liquid flow alone and 
entrainment taken into consideration

<Pf Two-phase frictional multiplier based on 
pressure gradient for gas tlow alone -

cr Surface tension N/m
Tw Shear stress at the pipe wall N/m2
T; Shear stress at the gas-liquid interface N/m2
G Inclination of the pipe deg.
X Variable in Equation 61 and 62 -

Differentials
(dp/dz) Pressure gradient kPa/m
(dp/dz A) Accelerational pressure gradient kPa/m
(dp/dz F) Frictional pressure gradient kPa/m
(dp/dz F)f Frictional pressure gradient assuming 

total flow to be liquid kPa/m
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(dp/dz F )fF Frictional pressure gradient assuming 
total flow to be liquid and with 
entrainment taken into consideration kPa/m

(dp/dz F)g Frictional pressure gradient assuming 
total flow to be gas kPa/m

(dp/dz z) Pressure gradient due to static head kPa/m
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