UND

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

12-1-1983

Annular Flow in a Low - Pressure Steam - Water System

Arnfinn Borch Lund

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Lund, Arnfinn Borch, "Annular Flow in a Low - Pressure Steam - Water System" (1983). *Theses and Dissertations*. 1210. https://commons.und.edu/theses/1210

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

Annular Flow in a Low - pressure Steam - water System

by Arnfinn Borch Lund

Sivilingeniør in Chemical Engineering Norwegian Institute of Technology, December 1978

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December 1983 Annular Flow in a Low - pressure, Steam - water System

Arnfinn Borch Lund

The University of North Dakota, 1983 Faculty Advisor: Dr. Abu R. Hasan

Two-phase annular flow is an important aspect of twophase flow. Three different models - Ghosal, Wallis, and Levy - were used to calculate the pressure drop in annular two-phase flow. The calculated pressure drop was compared with a set of experimental data. The pressure range of the data was 350 to 850 kPa. Steam quality varied from 4.0 to 52.7 percent, while the total mass flux varied from 245.4 to 2303.7 kg/m²,s.

The predictions of the Wallis model were found to agree best with the data. This model appears to be well developed with respect to the hydrodynamic conditions of annular gasliquid flow. However, it generally underestimates the pressure drop by 17.15 percent on the average. A simple modification was made to the Wallis model to account for this underestimation. The estimates of this modified model had a standard deviation of only 6.7 kPa, and it underpredicted the pressure drop by an average of 1.00 percent.

ENG. T1983 L971

This thesis submitted by Arnfinn Borch Lund in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.

A. Hasan.

Thoma C. Quens Donald Electric

497773

This thesis meets the standards for appearance and conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

Title Annular Flow in a Low - pressure Steam - water System

Department Chemical Engineering

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Signature Annihmi B. Struck Date October 31, 1983

CONTENTS

FIGURES	3	vi
TABLES		lii
ACKNOWL	LEDGEMENTS	ix
ABSTRAC	T	x
Chapter	<u>p</u>	age
I.	INTRODUCTION	1
II.	LITERATURE SURVEY	4
	Flow pattern	4
	General models	8
	Models specific to existing flowpatterns .	10
III.	COMPUTATIONAL METHODS	18
	Procedures common to all models	18
	The main program	19
	The subroutines	21
	The accelerational pressure gradient .	22
	Subroutines for the different models	22
	Ghosal model	22
	Wallis model	24
	Levy model	26
IV.	RESULTS	29
	Models tested	29
	Modified Wallis model	31
v.	DISCUSSION	37

- iv -

VI. CONCLUSIONS AND RECOMMENDATIONS. 41 Conclusions. 41 Recommendations. 42 Appendix page A RAW DATA AND INPUT CONDITIONS. 43 B LISTING OF COMPUTER PROGRAMS 43 C OPTIMIZATION PROCEDURE 43 D RESULTS FROM THE PREDICTIONS 43 F PLOTS OF THE PREDICTIONS 43 G SYMBOLES USED. 108 REFERENCES 113		
VI. CONCLUSIONS AND RECOMMENDATIONS		
Conclusions. 41 Recommendations. 42 Appendix page A RAW DATA AND INPUT CONDITIONS. 43 B LISTING OF COMPUTER PROGRAMS 43 C OPTIMIZATION PROCEDURE 43 D RESULTS FROM THE PREDICTIONS 60 D RESULTS FROM CURVE FITTING 71 F PLOTS OF THE PREDICTIONS 77 G SYMBOLES USED. 108 REFERENCES 113	VI.	CONCLUSIONS AND RECOMMENDATIONS 41
Appendix page A RAW DATA AND INPUT CONDITIONS. 43 B LISTING OF COMPUTER PROGRAMS 43 C OPTIMIZATION PROCEDURE 60 D RESULTS FROM THE PREDICTIONS 71 F PLOTS OF THE PREDICTIONS 77 G SYMBOLES USED 108 REFERENCES 113		Conclusions 41
Appendix page A RAW DATA AND INPUT CONDITIONS. 43 B LISTING OF COMPUTER PROGRAMS 43 C OPTIMIZATION PROCEDURE 43 D RESULTS FROM THE PREDICTIONS 43 F PLOTS OF THE PREDICTIONS 43 G SYMBOLES USED 108 REFERENCES 113		Recommendations
A RAW DATA AND INPUT CONDITIONS.	Appendi	x page
B LISTING OF COMPUTER PROGRAMS . <td< td=""><td>A</td><td>RAW DATA AND INPUT CONDITIONS 43</td></td<>	A	RAW DATA AND INPUT CONDITIONS 43
C OPTIMIZATION PROCEDURE . <td>В</td> <td>LISTING OF COMPUTER PROGRAMS</td>	В	LISTING OF COMPUTER PROGRAMS
D RESULTS FROM THE PREDICTIONS . <td< td=""><td>С</td><td>OPTIMIZATION PROCEDURE 60</td></td<>	С	OPTIMIZATION PROCEDURE 60
E RESULTS FROM CURVE FITTING .	D	RESULTS FROM THE PREDICTIONS 62
F PLOTS OF THE PREDICTIONS . </td <td>E</td> <td>RESULTS FROM CURVE FITTING</td>	E	RESULTS FROM CURVE FITTING
G SYMBOLES USED	F	PLOTS OF THE PREDICTIONS
REFERENCES	G	SYMBOLES USED
	REFEREN	CES

FIGURES

Figure								page
1. H	Flow pattern map for horizontal f	low	(<u>6</u>)					6
2. 1	Idealized annular flow						•	12
3. I	Levy model of annular flow							17
4. 0	Ghosal model: Estimated vs. experimental pressure drop							33
5. V	Wallis model: Estimated vs. experimental pressure drop							34
6. I	Levy model: Estimated vs. experimental pressure drop	•••						35
7. M	Modified Wallis model: Estimated experimental pressure drop	vs.		•		•		36
	GHOSAL MODEL							
8. Av	verage error vs. dimensionless va	por	velc	oci	ty	•		78
9. Av	verage error vs. steam quality .	• •			•			79
10. Av	verage error vs. total mass flux				•			80
11. Av	verage error vs. flow pattern coor	rdin	ate	F	•	•		81
12. Av Lo	verage error vs. ockhart-Martinelli parameter X .							82
13. Av	verage error vs. pressure					•	•	83
14. Av	verage error vs. Reynolds number		•••	•		•		84

WALLIS MODEL

15.	Average	error	vs.	dimens	sionless	Va	apo	or	Ve	elc	ci	ty	1.	•	85
16.	Average	error	vs.	steam	quality										86

- vi -

17.	Average error vs. total mass flux	•	•	·	87
18.	Average error vs. flow pattern coordinate F	•	•		88
19.	Average error vs. Lockhart-Martinelli parameter X				89
20.	Average error vs. pressure	•	•		90
21.	Average error vs. Reynolds number				91

LEVY MODEL

22.	Average e	error	vs.	dimens	sionle	ess	vaj	por	Ve	210	oci	ty	•	•	92
23.	Average e	error	vs.	steam	qual	ity	•		•		•				93
24.	Average e	error	vs.	total	mass	flu	IX				•		•		94
25.	Average e	error	vs.	flow p	atte	rn c	2001	rdi	nat	e	F		•		95
26.	Average e Lockhart-	error -Marti	vs. nell	i para	meter	rХ									96.
27.	Average e	error	vs.	pressu	ire.		•		•	•	•	•	•		97
28.	Average e	error	vs.	dimens	ionle	ess	der	nsit	-y	fu	nc	ti	on		98
29.	Average e	error	vs.	predic	ted e	entr	air	nmer	nt			•	•	•	99
30.	Predicted	d entr nless	ainm vapo	ent vs r velo	city										100

MODIFIED WALLIS MODEL

31.	Average	error	vs.	dimens	sionle	SS	va	po	rv	rel	oci	ity		•	101
32.	Average	error	vs.	steam	quali	ty							•	•	102
33.	Average	error	vs.	total	mass	flu	x	•					•		103
34.	Average	error	vs.	flow p	atter	n c	00	rd	ina	te	F	•	•	•	104
35.	Average Lockhart	error -Marti	vs. inell	li para	meter	x									105
36.	Average	error	vs.	pressu	ire			•				•			106
37.	Average	error	vs.	Reynol	ds nu	mbe	r								107

- vii -

TABLES

Ta	b]	Le

		page
1.	Main results of the models	30
2.	Results for modified Wallis model	32
3.	Raw data	44
4.	Calculated input conditions	46
5.	Wallis model with three correction factors	61
6.	Results from Ghosal model	63
7.	Results from Wallis model	65
8.	Results from Levy model	67
9.	Results from modified Wallis model	69
10.	Curve fitting for Ghosal model	73
11.	Curve fitting for Wallis model	74
12.	Curve fitting for Levy model	75
13.	Curve fitting for modified Wallis model	76

ACKNOWLEDGEMENTS

I would like to express gratitude to my committee, Dr. Abu R. Hasan (advisor), Dr. Thomas Owens, and Dr. Donald E. Porter, for their much appreciated help and inspiration on this project.

Special thanks must also go to the Rotary Foundation for monetary aid to enable me to study in the USA.

I would also like to thank a group of people who helped me during my research. This group includes Lorraine Fortin for her help on the Script language used to type this report, and on the SAS programs used for the regression analysis and the graphs included in this thesis. In the programming, I received a lot of help from Mustafizur Rahman.

Finally, I want to give my loving wife Sølvi special thanks for bearing with and supporting me in my studies.

- ix -

ABSTRACT

Two-phase annular flow is an important aspect of twophase flow. Three different models, Ghosal, Wallis, and Levy models, were used to calculate the pressure drop in annular two-phase flow. The calculated pressure drop was compared with a set of experimental data. The pressure range of the data was 350 to 850 kPa. Steam quality varied from 4.0 to 52.7 percent, while the total mass flux varied from 245.4 to 2303.7 kg/m²,s.

The predictions of the Wallis model were found to agree best with the data. This model appears to be well developed with respect to the hydrodynamic conditions of annular gasliquid flow. However, it generally underestimates the pressure drop by 17.15 percent on the average. A simple modification was made to the Wallis model to account for this underestimation. The estimates of this modified model had a standard deviation of only 6.7 kPa, and it underpredicted the pressure drop by an average of 1.00 percent.

- x -

Chapter I

INTRODUCTION

Applications of two-phase flow are numerous, and they have economical, as well as technical importance. Some of the most important applications are boilers, evaporators, condensers and flow of oil-gas mixtures in pipelines.

For flow of a single phase in a pipe, such as a gas or a liquid, the pressure drop can be calculated quite accurately. This is not the case with a mixture of gas and liquid. There are a number of variables that may influence the pressure drop for this type of flow, which include: total mass flux, vapor fraction, pressure, compressibility of the phases, pipe roughness, pipe diameter, inclination of the pipe and a number of other variables of secondary importance. With different combinations of these variables, several different flow patterns can be observed. Different methods must be used to calculate frictional pressure drop depending on the flow pattern. For boilers, condensers and flows that are not adiabatic, the flow pattern will often change along the pipe. This is mainly because the vapor fraction will change, and the vapor fraction is one of the most important variables influencing the flow pattern. The flow pattern may also change for adiabatic flow if the pressure drop is

- 1 -

large enough to influence the vapor fraction, and the corresponding void fraction.

The objective of this study was to evaluate available models based on an annular flow pattern. This flow pattern is one of the most important in two-phase flow. In a tube evaporator, for example, as much as 90 percent of the tube length may be in annular flow. Annular flow is also somewhat easier to handle analytically than other flow patterns because of its relatively simple geometric structure.

The amount of experimental work that has been done in the low pressure region is small compared to what has been done in the high pressure region. Hasan $(\underline{1})^1$ has studied pressure drop for two-phase, steam-water flow in a horizontal test section in the pressure range of 350 to 850kPa. His data for adiabatic conditions which are listed in Appendix A were used for this work. Flow patterns at the experimental conditions were determined, and only the data that belonged to the annular flow pattern were used to evaluate the models. The steam quality for the data varied from 4.0 to 52.7 percent, while the total mass flux was varied from 245.4 to 2303.7 kg/m²,s. The test section had pressure taps at intervals of 0.44 m along the pipe.

¹ Numbers in parentheses that are underlined refer to items on the List of References at the end of the paper.

The predicted pressure drop from the models was compared with the experimental data. Then, based on the accuracy of the predictions and how complicated it would be to modify the models, one of the models was modified to more closely fit the experimental data.

Chapter II LITERATURE SURVEY

2.1 FLOW PATTERN

The importance of flow patterns in two-phase flow is widely recognized. When two phases flow together in a transparent pipe, one can visually observe the various patterns of flow that exist. For example in some cases bubbles flow past the liquid, forming what is known as bubbly flow, or slugs of gas may flow past the liquid, forming slug flow. In some cases the gas may form a core in the pipe. In this case the liquid flows along the wall forming the annular flow region. Each type of flow is a result of various hydrodynamic conditions, and must be treated in a different manner. For horizontal flow, Alves ($\underline{2}$) has noted the following flow patterns: (1) Bubbly flow, (2) Plug flow, (3) Stratified flow, (4) Wavy flow, (5) Slug flow and (6) Annular flow.

A visual identification by itself may be subjective. In addition, for most industrial purposes, a visual identification is not possible because most pipes are made of opaque material. In order to overcome this problem, several flow pattern maps have been constructed for horizontal flow.

- 4 -

Baker $(\underline{3})$ constructed a map that is widely used in the petroleum industry. This map was later simplified by Bell $(\underline{4})$. Mandhane $(\underline{5})$ also devised a map based on a large number of experimental data for air-water flow. The general trends of this map were confirmed by a map constructed by Taitel and Dukler $(\underline{6})$, having a better theoretical foundation.

By using a flow pattern map, the type of flow can be identified by the input data such as mass flux, vapor fraction, density, pressure, viscosity and pipe diameter. Since the available flow pattern maps are not quite identical, the determination of a flow pattern is still somewhat subjective, but it is still a valuable tool.

The map constructed by Taitel and Dukler appears to be quite similar to that of Mandhane. In addition the Taitel and Dukler map takes the pipe diameter into account. It is also the more recent of the two maps. Therefore, it has been used to evaluate the flow pattern for the present work. The map shown in Figure 1 uses as the abcissa the function F which is defined by the following equation:

$$F = \left(\frac{\rho_g}{\rho_f - \rho_g}\right)^{0.5} \frac{j_g}{(D g \cos \theta)^{0.5}}$$
(1)

Figure 1: Flow pattern map for horizontal flow $(\underline{6})$.

The ordinate is the Lockhart-Martinelli parameter X, defined by the equation:

$$X = \left(\frac{dp}{dz} F \right)_{f} \left(\frac{dp}{dz} F \right)_{g}$$
(2)

The flow pattern map also uses two other parameters for ordinates. For annular flow, however, the only parameters needed are F and X. The transition from annular flow to bubbly flow or plug/slug flow occurs at a constant at value of 1.6 for X. For the transition from annular flow to wavy flow, the flow pattern map must be used with coordinates F and X. The parameter X can also be closely approximated by Equation 3 for turbulent flow.

$$X = \left(\frac{1 - x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_f}\right)^{0.5} \left(\frac{\mu_f}{\mu_g}\right)^{0.1}$$
(3)

Equations 1 and 3 were used in the determination for the flow pattern coordinates of the experimental data. With an established flow pattern for each set of data, a comparison between the experimental and predicted pressure drop can be made. Pressure drop can be predicted using several different methods including both general models and models specific to the annular flow pattern.

2.2 GENERAL MODELS

The total pressure gradient during two-phase flow is composed of the frictional, accelerational, and gravitational terms and can be written down as (7):

$$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}F\right) + \left(\frac{dp}{dz}A\right) + \left(\frac{dp}{dz}Z\right)$$
(4)

Because this study deals with horizontal flow only, the gravitational term can be neglected, and Equation 4 can be simplified to:

$$\left(\frac{dp}{dz}\right) = \left(\frac{dp}{dz}F\right) + \left(\frac{dp}{dz}A\right)$$
(5)

The acceleration component can be expressed by the equation:

$$\left(\frac{\mathrm{d}p}{\mathrm{d}z} \mathbf{A}\right) = \frac{1}{\mathbf{A}} \frac{\mathrm{d}}{\mathrm{d}z} \left(\begin{array}{c} W_{g}u_{g} + W_{f}u_{f} \end{array} \right)$$
$$= G^{2} \frac{\mathrm{d}}{\mathrm{d}z} \left[\begin{array}{c} \frac{x^{2}v_{g}}{\mathbf{\Omega}} + \frac{(1-x)^{2}v_{f}}{1-\mathbf{\Omega}} \right] \quad (6)$$

Equation 6 reflects the increase or decrease of the volume of the two-phase mixture because of evaporation or condensation.

There are several ways to estimate the frictional component which, for adiabatic conditions, is the more important of the two components. One way to predict the frictional

component is to assume that the gas and the liquid flowing together form a homogenous mixture with average physical properties $(\underline{8}, \underline{9}, \underline{10})$. The average specific volume can be written as:

$$\mathbf{v} = \mathbf{x} \mathbf{v}_{q} + (1 - \mathbf{x}) \mathbf{v}_{f} \tag{7}$$

From these properties, the friction factor and the frictional pressure gradient can be calculated.

$$-\left(\frac{dp}{dz}F\right) = \frac{2 f_{TP} G^2 \overline{v}}{D}$$
(8)

The frictional pressure gradient can also be calculated using the separate flow model which assumes that the flow is artificially segregated into two streams, gas and liquid. In this model the two-phase frictional gradient is usually expressed as the pressure gradient for the single phase, (usually the liquid phase) multiplied by a two-phase friction multiplier ϕ_f^2 . Thus:

$$-\left(\frac{dp}{dz}F\right) = \frac{2 f_{f} G^{2} (1-x)^{2} v_{f}}{D} \phi_{f}^{2}$$
(9)

In order to make an estimate of ϕ_f^2 the Lockhart-Martinelli parameter X, defined by Equation 2, is used. The data gathered for ϕ_f^2 by Lockhart-Martinelli were presented in graphical form (<u>11</u>). Wallis (<u>12</u>) has expressed these data by the following equation:

$$\phi_{\rm f}^2 = 1 + \frac{C}{x} + \frac{1}{x^2} \tag{10}$$

The value of C depends on the nature of the flow. For turbulent flow of both the liquid and the gas phase, the value of C is 20.

In most cases, the separated flow model gives a better estimate of the pressure drop than does the homogenous model. As in the homogenous model, knowledge of the flow pattern is not required. However, the error involved in predictions by this, as well as by the homogenous model is usually quite high. Johannessen (<u>13</u>) indicates a standard deviation between the predicted and actual data of about 40 percent. The model does not satisfactorily account for the effect of some of the variables, particularly mass flow rate (<u>14</u>). Several attempts have been made to overcome this source of error (<u>15</u>, <u>16</u>, <u>17</u>, <u>18</u>). Using models specific to the existing flowpatterns usually avoid this problem and allow more accurate predictions of the pressure drop.

2.3 MODELS SPECIFIC TO EXISTING FLOW PATTERNS

Models that are specific to a flow pattern may be almost entirely empirical although most often they have a strong theoretical base. Because these models are often based on particular hydrodynamic features of the flow, they tend to be more accurate. For bubbly flow, the assumption of a ho-

mogenous mixture between the gas and the liquid is good, and the homogenous model works out quite well in this case $(\underline{19})$. Usually a factor for slip between the phases is included in the model. This factor indicates the extent to which the gas bubbles are moving faster than the liquid ($\underline{20}$). Slug flow is more difficult than bubbly flow to model theoretically. In this flow regime the inclination of the pipe also has a great influence on the theoretical approach of modeling the pressure drop ($\underline{21}$). But here also, as in other flow regimes, several models are available ($\underline{22}$).

This study, however, is concerned with a detailed look the annular flow regime. In the idealized case, the entire liquid mass flow rate is contained as a symmetrical film on the pipe wall with a smooth interface between the liquid film and the gas core. This, along with the shear stress distribution for horizontal annular flow is illustrated in Figure 2.

The real hydrodynamic behavior is somewhat more complicated. In the general case, a fraction (e) of the liquid will be entrained in the vapor core, and the interface between the gas and the liquid will be highly disturbed. The pressure gradients for the gas phase and the liquid phase have to be equal. This means that the equations for the pressure drop of the gas phase and the liquid phase can be balanced against each other.

$$-\left(\frac{dp}{dz}F\right) = \frac{4\mathcal{T}_{W}}{D}$$
(11)

$$-\left(\frac{dp}{dz}F\right) = \frac{4 \tau_i}{D - 2\delta}$$
(12)

From Equation 11 which is the pressure drop calculated from the liquid phase, an equation for the liquid phase frictional multiplier ϕ_t^2 is derived. Similarly, from Equation 12 which is the pressure drop calculated from the gas phase, an equation for the gas phase frictional multiplier ϕ_g^2 is obtained. Several investigators have attempted to develop realistic models for annular flow. For horizontal annular flow, several measurements have been made to determine the gas flow distribution (23,24). A number of methods have also been developed to determine the interfacial roughness (25,26,27,28). Ghosal (29) studied annular two-phase cocurrent horizontal flow. Constant wall shear stress in the liquid flow was assumed. The resulting equation for the two-phase frictional multiplier ϕ_f^2 is thus:

$$\phi_{f}^{2} = \frac{3}{4(1-3Q+2Q^{1.5})}$$
(13)

The two-phase multiplier based on flow of gas alone, can normally be expressed as:

$$\phi_{g}^{2} = \frac{1}{\alpha^{2.5}} \frac{f_{i}}{f_{g}}$$
(14)

If the interface between the liquid and gas is smooth, then (f_i/f_g) is close to unity. This, however, is normally not the case. With a wavy interface, the ratio of the interfacial friction factor f_i to the gas-phase friction factor f_g can be expressed by (<u>30</u>):

$$\frac{f_i}{f_g} = (1 + 75 (1 - C))$$
(15)

The resulting relationshipship between ${\tt Q}$ and $\phi_{\tt g}^{\tt 2}$ is then:

$$\phi_g^2 = \frac{1+75(1-a)}{a^{2.5}}$$
(16)

From Equation 14 and 16, the Lockhart-Martinelli parameter, X, can be expressed as:

$$x^{2} = \frac{4 (1 + 75(1-\alpha)) (1 - 3\alpha + 2\alpha^{1.5})}{3\alpha^{2.5}}$$
(17)

14

Equation 17 relates the void fraction Q to the Lockhart-Martinelli parameter X. The value of X is calculated from Equation 2, and the void fraction can then be calculated by an iterative procedure from Equation 17. Equation 13 is then utilized to estimate the two-phase friction multiplier and hence (dp/dz F). This model does not take entrainment of liquid into the gas core into account. It also assumes a constant mean velocity within the liquid layer.

Wallis model $(\underline{31})$, however, is more developed and takes entrainment into consideration. He starts with the relationship between ϕ_f^2 and the void fraction α :

$$\phi_{\rm f}^2 = \frac{1}{(1-0.)^2} \tag{18}$$

The entrainment of liquid into the gas core makes the average density of the gas core higher. The average density with entrainment can be expressed as:

$$\rho_{\rm c} = \left[\frac{W_{\rm g} + e W_{\rm f}}{W_{\rm g}} \right] \rho_{\rm g} \tag{19}$$

This model assumes that the interface velocity of the liquid is twice the mean film velocity. The resulting equation for then is:

$$\phi_{g}^{2} = \left[\frac{1+75(1-\alpha)}{\alpha^{2.5}}\right] \left[\frac{W_{g} + eW_{f}}{W_{g}}\right]$$

$$\left[1-2\left(\frac{\alpha}{1-\alpha}\right)\left(\frac{\rho_{g}}{\rho_{f}}\right)\left(\frac{W_{f}(1-e)}{W_{g}}\right)\right]^{2} (20)$$

Wallis (32) has found a relationship between the entrainment e and dimensionless vapor velocity π defined as:

$$\pi = \frac{G x}{\sigma} \mu_g (v_g v_f)^{0.5}$$
(21)

The graphical representation of entrainment vs. dimensionless vapor velocity is not suitable for numerical manipulation. Therefore the curve was approximated by the following equations with a standard deviation of 0.0000 for ten data points.

e =
$$0.02271 - 596.6509 (\pi) + 3223134.0 (\pi)^2$$
 (22)
for $1.5 < \pi < 4.2$

$$e = -0.4943 + 1049.79 (TT) - 330532.9 (TT)^2$$
(23)

for 4.2 < T < 14.0

There are other ways to calculate entrained liquid fraction $(\underline{33})$, but this is possibly the easiest for use for numerical manipulation. Calculating the frictional pressure gradient requires an iterative procedure and the void fraction is the critical value because both $\phi_{\rm f}^2$ and $\phi_{\rm g}^2$ have (1 as a parame-

ter. The iteration continues until one value of α gives the same frictional pressure gradient for both the gas phase and the liquid phase.

Levy $(\underline{34})$ used a different approach to calculate the frictional pressure gradient. Instead of using the assumption of one liquid and one gas phase, he divided the flow into three layers.

- 1. A liquid film of thickness ${\rm Y}_{\rm f}$ having a uniform density $\rho_{\rm f}$.
- 2. A transition layer that extends from the edge of the film to the edge of the gas core. The density in the transition layer is assumed to decrease exponentially from the liquid density, $\rho_{\rm f}$ to the gas core density, $\rho_{\rm c}$.
- 3. A central gas core, extending from the edge of the transition layer to the center of the pipe that has a constant density at $\rho_{\rm c}$.

The physical description of this model is illustrated in Figure 3. The dimensionless velocity depends on the radius of the pipe and the distance from the pipe wall. Shear stress is calculated from the dimensionless velocity and pressure drop can be calculated using Equation 24.

$$-\left(\frac{\mathrm{d}p}{\mathrm{d}z}F\right) = \frac{2 \mathcal{T}_{W}}{R}$$
(24)

Figure 3: Levy model of annular flow.

Chapter III

COMPUTATIONAL METHODS

A major part of this thesis was to use various models to predict pressure drop for two-phase annular flow. This chapter provides some explanation of the computational procedures and the computer programs used for the calculations.

3.1 PROCEDURES COMMON TO ALL MODELS

The raw data fed into the computer were: Gas load, liquid load, gas enthalpy, liquid enthalpy, inlet pressure and pressure drop for four consecutive pipe sections. The programs to estimate pressure drop using the different models are divided into two parts:

- The first is the main program which reads the raw data, integrates the calculated pressure gradients into pressure drop, calculates the errror between the estimated and the experimental pressure drops and prints the result.
- 2. The second is a subroutine that calculates the physical properties of the steam and the water at the existing pressure and temperature. From these properties, the flow pattern map coordinates in Equations 1 and 3 are calculated. The frictional and accelera-

- 18 -

tional pressure gradients are then calculated. This may require calculations that involve additional subroutines for the determination of certain parameters.

3.1.1 The Main Program

The main program begins by reading the raw data. Then it calls up the subroutine PPSSAW in order to get an estimate of the pressure gradient and the flow pattern map coordinates for the inlet conditions. By checking the program output with the flow pattern map, the flow pattern can be quickly identified. The integration of the pressure gradients is then performed using the four point Runge-Kutta method. This method calculates an average pressure gradient for a predetermined pipelength. The length of this pipe section is set equal to the length of the pipe for each pressure drop measurement. For each of these sections, four different pressure gradients are calculated. The pressure gradient is calculated at the beginning and the mid point of the section. With a new and improved estimation of the pressure at the mid point of the section, the pressure gradient is calculated at this point a second time. Then the pressure gradient is calculated at the end of the section. These four pressure gradients are then used to calculate the average pressure gradient for the section.

 $\left(\frac{\overline{dp}}{dz}F\right) = \left(\frac{dp}{dz}F\right)_{1} + 2\left(\frac{dp}{dz}F\right)_{2}$

+ 2
$$\left(\frac{\mathrm{d}p}{\mathrm{d}z} \mathbf{F}\right)_{3}$$
 + $\left(\frac{\mathrm{d}p}{\mathrm{d}z} \mathbf{F}\right)_{4}$ (25)

For the calculations of deviation from the experimental data, the following Equations are used:

1. The deviation \in_i is defined relative to the experimental pressure drop by the Equation:

$$\epsilon_{i} = \frac{\Delta P_{i,exp} - \Delta P_{i,calc}}{\Delta P_{i,exp}} (100)$$
(26)

A negative value of \in_i indicates that the model overestimates the pressure drop while a positive value indicates that the model underestimates the pressure drop. The average deviation for the four estimated pressure drops in one set of data is then:

$$\overline{\epsilon} = \sum_{i} \epsilon_{i} / 4$$
(27)

 The absolute average deviation is defined by the Equation:

$$\overline{\epsilon}_{A} = \sum_{i} |\epsilon_{i}| / 4$$
(28)

This gives the average deviation with no concern whether the model overestimates or underestimates the pressure drop.

The criterion for improving a model is to make the total sum of squares of errors as small as possible. For one experimental run, the sum of squares of errors is calculated from the Equation:

$$ss = \sum_{i} (\epsilon_i \Delta P_{i,exp})^2$$
(29)

From the total sum of squares of errors a standard deviation may also be calculated.

3.1.2 The Subroutines

As mentioned earlier in this chapter, the subroutine calculates the physical properties for steam and water at the existing pressure. The Equations for the properties can be found in the listing of the subroutines in appendix B. These Equations are only valid in the pressure region of 100 to 1000 kPa. In addition to these Equations, an Equation to calculate surface tension was needed. Tabulated data for the surface tension (<u>35</u>) was fitted to the data and gave the following Equation with a standard deviation of 0.0000 for ten data points.

 $\sigma = 0.076702 - 1.665 10 (T_{sat}) - 1.386 (T_{sat})^2$ (30)

The steam quality can not be estimated from the vapor and the liquid load alone because equilibrium conditions may not exist. It has to be calculated from the inlet enthalpy i_{in} and the enthalpy of saturated liquid i_{sat} thus:

$$i_{jn} = -\frac{(G_f i_f + G_g i_g)}{(G_f + G_g)}$$
 (31)

then:

$$x = \frac{(i_{in} - i_{sat})}{i_{fg}}$$
(32)

3.1.3 The accelerational pressure gradient

The accelerational pressure gradient is determinded by calculating the expression within the brackets in Equation 6 for each point on the pipe. The differential is then calculated by dividing the increment of the expression by the distance between each point.

3.2 SUBROUTINES FOR THE DIFFERENT MODELS

3.2.1 Ghosal Model

The calculation procedure that is particular for the Ghosal model is as follows:

1. Calculate the Reynolds numbers.

 $Re_f = G(1 - x) D / \mu_f$

(33)

$$Re_{g} = G \times D / \mu_{g}$$
(34)

 Calculate the friction factors using the Blasius Equation.

$$f_f = 0.079 (Re_f)^{-0.25}$$
(35)

$$f_{g} = 0.079 (Re_{g})^{-0.25}$$
(36)

3. Calculate the Lockhart - Martinelli parameter X from the ratio between $(dp/dz F)_f$ and $(dp/dz F)_q$.

$$\left(\frac{dz}{dp}F\right)_{f} = \frac{2 f_{f} G^{2} (1-x)^{2} v_{f}}{D}$$
(37)

$$\left(\frac{\mathrm{d}p}{\mathrm{d}z}\mathbf{F}\right)_{g} = \frac{2 \mathrm{fg} \mathrm{G}^{2} \mathrm{x}^{2} \mathrm{v}_{g}}{\mathrm{D}}$$
(38)

4. The program then calls up the subroutine NEWRAP to calculate the void fraction from Equation 16 using the Newton-Raphson method. The method requires an initial guess for Q that is relatively close to the final solution. The empirical correlation between and X developed by Wallis (<u>36</u>) was used for the initial guess of Q.

$$(1 = (1 + X^{0.8})^{-0.378}$$
(39)

5. Then ϕ_f^2 is calculated using Equation 13 and the total frictional pressure gradient is obtained using Equation 9.

3.2.2 Wallis Model

The calculation procedure that is particular for Wallis model is as follows:

 Make an initial estimate of the frictional pressure gradient.

a. Calculate Re and Re using the Equations 33 and34.

b. Calculate the Lockhart-Martinelli parameter as in the Ghosal model using Equations 37, 38 and 2.

c. Calculate ϕ_f^2 using Equation 10.

d. Estimate the total frictional gradient using
 Equation 9.

a. Calculate the entrainment using Equations 21 and
 22 or 23.

b. Calculate Reynolds number for the liquid film when entrainment is accounted for.

 $\operatorname{Re}_{fF} = \operatorname{Re}_{f} (1 - e) \tag{40}$

c. Calculate friction factor for the liquid film when entrainment is accounted for.

 $f_{fF} = 0.079 (Re_{fF})$ (41)
d. Calculate frictional pressure gradient assuming total flow to be liquid and entrainment taken into consideration.

$$\left(\frac{dp}{dz}F\right)_{fF} = \frac{2 f_{fF} G_{fF} v_{f}}{D}$$
(42)

3. Then an estimate for the liquid frictional multiplier will be:

$$\phi_{fF}^{2} = \left(\frac{dp}{dz} F\right) / \left(\frac{dp}{dz} F\right)_{fF}$$
(43)

The value of the void fraction *Q* is then calculated using the following equation:

$$a = 1 - \frac{1}{(\phi_{fF}^2)^{0.5}}$$
(44)

4. With the value of C, calculate ϕ_g^2 from Equation 20. Calculate then the frictional pressure gradient from the Equation:

$$(dp/dz F) = (dp/dz F)_g \phi_g^2$$
 (45)

- Go back to step 3 with these values for (dp/dz F) and iterate until a constant value for C is obtained.
- When the required accuracy is obtained, calculate the total pressure gradient using Equation 9.

3.2.3 Levy model

The calculation procedure for the Levy model also involves an iterative procedure. This procedure establishes a value for the liquid film thickness, Y_f . From this value, the friction factor and shear stress are calculated and then the frictional pressure gradient can be calculated.

1. Calculate the density exponent β . This parameter is calculated using the subroutine BETAS, and makes use of the Equation:

$$\beta = 1 + \left[\left(\rho_{f} / \rho_{g} \right)^{1/\beta} - 1 \right] \frac{\sigma}{0.4} \frac{\rho_{f}}{R G_{g}^{2}}$$
(46)

- 2. Make an initial estimate of the liquid film thickness Y_{f} .
- 3. Calculate the corresponding interface friction factor f_i by the Equation:

$$f_i = 0.005 (1 + 150 Y_f / R)$$
 (47)

4. Calculate the corresponding wall shear stress \mathcal{T}_W .

$$T_{\rm w} = \rho_{\rm g} f_{\rm i} \ 0.5 \ (G_{\rm g} \ / \ \rho_{\rm q})^2 \tag{48}$$

5. Calculate the dimensionless film thickness Y⁺ by Equation:

$$Y_{f}^{+} = \frac{Y_{f} \sqrt{\tau_{w} / \rho_{f}}}{\mu_{f}} \qquad (49)$$

6. Check the value of Y_f^+ . If $Y_f^+ < 30,$ then calculate a new value for β .

$$\beta' = 1 + \sqrt{2} (\beta - 1)$$
 (50)

7. Calculate the dimensionless pipe radius.

$$R^{+} = \frac{R \sqrt{T_{w} / \rho_{f}}}{\mu_{f}} \qquad (51)$$

8. The dimensionless velocity of the liquid interface is calculated by the subroutine KYRS. The value is calculated from Equations 52, 53 or 54 depending on the value of Y_f^+ .

$$K(Y_{f}^{+}, R^{+}) = 0.5(R^{+})(Y_{f}^{+}) - 0.333(Y_{f}^{+})$$
 (52)
for $Y_{f}^{+} < 5$.

$$K(Y_{f}^{+}, R^{+}) = 12.51(R^{+}) - 10.45 - 8.05(R^{+})(Y_{f}^{+})$$

$$+ 2.775(Y^{+}) + 5(R^{+})(Y^{+}) \ln(Y^{+})$$

$$- 2.5(Y_{f}^{+}) \ln(Y_{f}^{+})$$
(53)

for $5 < Y_{f}^{+} < 30$

$$K(Y_{f}^{+}, R^{+}) = 3(R^{+})(Y_{f}^{+}) - 63.9(R^{+}) - 2.125(Y_{f}^{+})$$
$$- 1.25(Y_{f}^{+}) \ln(Y_{f}^{+}) + 2.5(R^{+})(Y_{f}^{+}) \ln(Y_{f}^{+})$$
$$+ 573.21$$
(54)

)

for $Y_f^+ > 30$

9. Calculate the liquid film flowrate per unit pipe area $G_{\sf fF}$.

$$G_{fF} = \frac{2 \kappa(Y_{f}^{+}, R^{+}) \sqrt{\tau_{w} / \rho_{f}} \rho_{f}}{(R^{+})^{2}}$$
(55)

10. Calculate the amount of entrained liquid ${\tt G}_{e}$.

$$G_e = G_f \left(\beta\right)^{-0.5} \tag{56}$$

- 11. Compare the values of G_f and the sum of G_e and G_{fF} . If they are close enough, stop the calculation; if not, a new estimate of Y_f is required, and the calculations are repeated.
- Calculate the frictional pressure gradient from Equation 24.

Chapter IV

RESULTS

4.1 MODELS TESTED

The three models under consideration were used to predict pressure drop under experimental conditions. Then the predictions were compared with the actual pressure drops. The main results from this comparison are shown Table 1. First, the average deviation in percent for each model is listed. The corresponding standard deviation refers to the spread in percent average deviation. Second, the absolute average deviation and its standard deviation, also in percent, is listed. Third, the total sum of squares of errors for each model is listed. The corresponding standard deviation is in kPa. Plots are made for each model, showing the estimated vs. experimental pressure drop in Figures 4 to 7.

Tables 6 through 9 in appendix D show the results in detail. In Figures 8 through 37, the average deviation of the estimates is plotted against various parameters to show possible trends.

From Table 1, it can be seen that the Ghosal model overestimates the pressure drop by more than 50 percent on the average. The accuracy of the predictions of the model also var-

- 29 -

TABLE 1

MAIN RESULTS OF THE MODELS

	Ghosal model	Wallis model	Levy model
Average Error			
(percent)	-50.14	17.15	8.77
(percent)	23.15	8.87	21.50
Absolute Average			
Deviation (percent)	50.14	17.28	18.43
(percent)	23.15	8.50	13.89
Total Sum of Squares of Errors (kPa)2 Standard	65544.38	5553.71	6992.50
Deviation (kPa)	45.257	13.174	14.782

ies widely. The inaccuracy of this model is also reflected in the total sum of squares of errors.

Wallis model, on the other hand, consistently underestimates the pressure drop. On the average, the model underestimates the pressure drop by 17.15 percent with a standard deviation of the error of 8.87 percent. This model has also the lowest total sum of squares of errors.

The Levy model has the lowest average deviation, but it also has a wide spread in deviation. The model both overestimates and underestimates the pressure drop under different physical conditions. Therefore, the absolute average deviation of the error is also much higher, 18.43 percent. The total sum of squares of errors is, however, not too much above that of Wallis model.

4.2 MODIFIED WALLIS MODEL

The Wallis model appeared to be the best of the three models tried. The model had the lowest total sum of squares of errors, and the errors showed no trend with any of the parameters involved in the calculations. As mentioned, however, the model in general underestimates the pressure drop by about 17 percent.

The Wallis model was modified with a simple correction factor applied as a multiplier to the frictional pressure gradient from the term in the model. The correction factor was obtained by minimizing the total sum of squares of errors. Because of inherent experimental errors the optimization procedure was not carried out to great length. The details are shown in appendix C. The resulting correction factor of 1.18 gives a total sum of squares of errors of only 1432.80 as shown in Table 2. The equation for the frictional pressure gradient is thus:

$$-\left(\frac{dp}{dz}F\right) = 1.18 \frac{2 f_{fF} G^2 (1-x)^2 (1-e)^2 v_f}{D} \phi_{fF}^2 (57)$$

TABLE 2

RESULTS FOR MODIFIED WALLIS MODEL

1.00 10.81
8.96
1432.80 6.6914

Note that the average deviation at the optimal point is different from zero.

Figure 4: Estimated vs. experimental pressure drop.

WALLIS MODEL

Figure 5: Estimated vs. experimental pressure drop.

Figure 6: Estimated vs. experimental pressure drop.

Figure 7: Estimated vs. experimental pressure drop.

Chapter V

The Ghosal model is the simplest of the three models. Neither entrainment of liquid into the gas core, nor velocity gradients within the liquid film are taken into account. This may account for the large deviation from the experimental data that the model predicts. There also does not appear to be any trend in the errors when plotted against any of the parameters. It is therefore difficult to see how the model can be modified on the basis of these data. A modification of this model should be based on a more realistic representation of the hydraulic features of annular flow.

Wallis model, on the other hand, is more highly developed and better represents the real behavior of annular flow. Both entrainment and velocity gradients within the liquid film, as well as a wavy interface between the gas and the liquid are taken into account. Therefore, it is not surpriseing that the model's predictions are close to the experimental data. The model also takes care of all the important variables. This is clearly indicated by the random scatter of the error when the error is plotted against various variables. Figures 12 through 15 in appendix F show that the model can not be improved much by including any of

- 37 -

the variables, such as mass flux, steam quality, pressure, etc.

The model underestimates the pressure drop by 17.15 percent on the average. The scatter in the errors are largest at low steam qualities. This may be mainly due to the difficulty in estimating steam quality. Steam quality is measured from the mass flowrates and the enthalpies of steam and water. A small error in these variables can translate into a large error. It is also possible at low steam qualities for the data to be in the transition zone between annular and bubbly flow rather than entirely in the annular flow region. This is probably true for two or three of the data points.

On the whole, however, the predictions of Wallis model are excellent. A simple correction factor can take care of the underestimation of the pressure drop. This correction factor may be needed because the friction factor for this work was calculated using the Blasius equation. Hasan (37)has compared this friction factor with the experimental friction factor obtained for single phase water flow through the equipment. He indicates that at high Reynolds mumbers, the observed friction factor is higher than that estimated from Blasius equation by as much as 15 percent. Most of the data used in this work were at low or moderate Reynolds numbers. The error between the Blasius and experimentaly ob-

tained friction factor is in the neighborhood of 5 to 10 percent.Therefore, the friction factor alone is probably not the entire reason for the underestimation. This argument is reinforced by Figure 21 which shows no trend when the error is plotted against Reynolds number for the liquid film. It seems, however, that modification of the friction factor would improve the predictions based on the Wallis model.

The other assumptions in the model could account for the deviations as well. It is quite likely that the entrainment is not predicted accurately. It is also possible that the model does not take proper account for the wavy nature of the liquid film. The assumption that the liquid film at the interface travels with exactly two times the average film velocity may also be wrong. In addition, the model does not include any effect of gravity on the liquid film. For horizontal flow, the effect of gravity could be significant because it causes the annular film at the bottom of the tube to be thicker than the film at the top. This effect should increase at lower mass velocities, and probably at higher steam qualities. The random nature of the errors when plotted against mass flux and steam quality indicate, however, that the effect of gravity alone will not explain the deviation.

The Levy model is a rather sophisticated development, and would seem to represent the real hydraulic features of annu-

lar flow quite well. Therefore, it was surprising that the model's prediction is not the best of the three. However, the total sum of squares of errors is not much larger than that of the Wallis model. The Levy model was developed for vertical flow, and the data used for this work is from a horizontal pipe. This may explain some of the errors in the predictions of the model. A more sophisticated version of the model where gravity effects are taken into account, has also been developed by Levy (38). The model, however, is even more complicated mathematically and was not considered in this study. It is doubtful, however, that the effects of gravity alone would account for much of the errors in the predictions. Figures 22 through 29 show the trend of errors when plotted against different parameters. Distinct patterns in some of these plots indicate that the model does not properly consider these parameters. This is especially true for steam quality and the density exponent as indicated in Figures 23 and 28, respectively. The Levy model could be modified by including a function of the density exponent or the steam quality in the model. However, there does not seem to be be much physical justification for doing so.

Of the three models, the Wallis model not only performs the best, but also appears to be most suitable for modification. The model is also well developed with respect to the particular hydrodynamic features of annular flow, and the modification can be accomplished using a simple correction factor.

Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

- The Wallis model without any modification appears to be the best among the three models. The standard deviation in the estimation of the pressure drop is 13.174 kPa, and the model underestimates the pressure drop by an average of 17.15 percent. The error appeared to be completely random.
- 2. The Wallis model was modified by adding the correction factor of 1.18 which gave an improved estimate of the pressure gradient. The standard deviation in the estimated pressure drop was 6.691 kPa. and the model underestimated the pressure drop by an average of 1.00 percent. The error appeared to be completely random.
- 3. The standard deviation in the estimation of the pressure drop was 14.782 kPa for the Levy model, and the model underestimated the pressure drop by an average of 8.77 percent. The model did not seem to properly account for steam quality.
- 4. For the Ghosal model, the standard deviation in the estimated of the pressure drop was 45.257 kPa. The

- 41 -

model overestimated the pressure drop by an average of 50.14 percent. The error appeared to be almost random.

6.2 RECOMMENDATIONS

1. The Wallis model should be used with the equation developed by Hasan (<u>37</u>) for the prediction of the friction factor. The equation for the friction factor is:

 $f = 0.00205 + 0.1058 (Re)^{-0.316}$ (58)

- 2. The assumption of the interface velocity between the gas and liquid being twice the mean liquid velocity may not be correct. Therefore, values other than 2 should be used in the optimization procedure.
- 3. Using the Ghosal correlation for ϕ_f^2 in the Wallis model may yield interesting results.
- 4. The Levy model should be tried taking the gravitational effects into account.
- 5. The Wallis model should be evaluated against the data of Hasan $(\underline{1})$ where the conditions are not adiabatic.

Appendices

Appendix A

RAW DATA AND INPUT CONDITIONS

TA	BI	.E	3
T T T	1		0

RAW DATA

Run no	Liquid load	Vapor load	Liquid enthalpy	Gas enthalpy	Р	ΔP	Δ P ₂	∆ P ₃	∆ P ₄
	kg/m²,s	kg/m ² ,s	kJ/kg	kJ/kg	kPa	kPa	kPa	kPa	kPa
1	178.51	66.843	549.0	2739 8	408 14	5 24	10 40	15 44	
2	161.32	98.600	549.8	2739.8	397 78	9.00	16.00	15.44	20.96
11	308.56	76.871	535.1	2743.5	425 38	7 7 7 7 7 7	16.00	24.27	32.82
18	311.80	167.096	440.5	2752.22	473.68	14 89	20.33	24.27	33.65
20	538.63	98.596	486.7	2742.75	411.58	10 48	29.23	39.99	54.88
21	579.12	50.126	557.4	2739.12	432.26	5.24	11 31	16 55	41.37
28	736.32	50.126	561.6	2738.43	404.68	5.52	11 86	19 20	22.34
29	695.84	93.564	476.8	2738.43	397.78	9.38	20 13	28 68	20.10
36	2179.83	100.265	513.6	2742.8	418.43	2.48	6.07	8 83	12 12
37	2236.88	66.844	533.0	2742.8	437.20	2.34	4.96	7 45	9 93
38	1811.48	98.961	508.1	2744.83	432.22	4.69	11.03	16.82	23 72
39	1896.68	66.844	539.6	2744.83	411.54	2.76	6.89	11.58	16 82
48	159.697	132.354	566.6	2757.85	611.49	6.89	14.34	22.34	30 34
49	223.352	66.844	598.3	2757.85	611.49	3.31	6.62	10.20	13 79
66	520.323	100.265	602.9	2758.35	632.17	8.83	17.65	26.48	35.30
67	459.658	164.630	562.1	2762.00	628.71	12.13	24.55	37.23	49.92
80	587.715	197.217	504.6	2757.38	618.38	16.82	35.85	53.78	72.81
81	645.515	132.354	557.6	2757.38	590.81	10.48	22.39	35.58	49.92
82	700.823	68.513	607.4	2757.38	604.59	5.52	11.31	17.37	23.72
88	1226.88	164.630	530.6	2761.62	625.28	12.69	26.48	39.44	56.81
89	1225.01	132.354	544.0	2761.62	611.49	9.38	20.96	33.37	46.88
90	1211.56	69.347	639.3	2761.62	604.59	8.00	15.72	23.99	31.99
91	1222.52	100.265	562.1	2761.62	611.49	9.10	19.31	29.51	40.82
92	1695.50	197.217	490.2	2760.62	604.59	9.65	20.68	33.09	46.88
93	1/06.22	164.618	535.1	2762.62	645.96	12.13	25.10	38.06	51 57

TABLE 3 continued

Run no	Liquid load	Vapor load	Liquid enthalpy	Gas enthalpy	Р	ΔP	ΔP2	∆ P 3	∆ P ₄
	kg/m²,s	kg/m⊂,s	kJ/kg	kJ/kg	kPa	kPa	kPa	kPa	kPa
94 95	1751.93 1791.9 2282.25	132.354 66.844	562.1 562.1	2760.62 2760.62	602.083 604.59	11.03 4.96	22.61 12.13	34.47 20.13	46.88 28.96
97 98	2282.35 2244.35 2171.61	132.54 164.618	606.0 575.6 548.5	2757.38 2761.62 2760.62	618.38 632.17 611.49	3.03 5.24 8.00	7.17 14.07 17.37	12.13 22.34 28.41	17.65
99 100 101	2137.10 2142.96 2210.72	197.217 164.618	580.2 611.9	2771.08 2768.50	783.85	12.13	25.65	39.44 37.23	56.26
102 103	2175.72	132.354	639.3 593.8	2771.7 2771.7 2773.8	825.22 818.33 818.33	8.83 9.93 16.82	19.31 23.44 34.47	31.16 35.85 52.95	42.75 49.64 73.36
104 105 106	1708.71 1737.48 1039.65	164.618 132.354 213.548	611.9 632.5 584.8	2771.30 2771.3 2773.09	797.64 818.33 797.68	14.34 12.69 20.13	30.89 27.85 38.33	45.78 41.92	63.43 57.36
107 108 121	1112.4 1189.13 532.531	132.354 100.265 262.59	662.1 657.6	2774.38 2772.10	845.98	14.62	28.41 26.48	44.13 39.99	58.47 53.23
122	621.722 668.934	164.63 100.265	639.3	2772.4 2770.80	825.28 80.458 832.18	22.61 14.07 9.93	45.78 28.41 19.58	68.95 43.30 29.51	93.22 58.47 37.51
130 131 138	305.567 454.925 214.756	262.603 164.618 262.603	620.8 653.3 607 4	2773.65 2771.05 2773.09	818.38 804.58	15.72	31.72	47.71 31.99	64.26 45.78
139 140 149	305.193 366.107 335.837	164.618 100.265 132.354	643.8 657.9 634.7	2771.70 2771.08 2774.3	811.43 818.33 811.41	8.83 6.07 7.45	26.48 17.93 13.79	40.27 27.30 20.96	54.88 36.40 27.86
150	215.255	262.603	584.8	2774.3	818.33	14.34	28.68	42.47	56.81

TABLE 4

CALCULATED INPUT CONDITIONS

Run no.	Steam quality	Х	F	Flow pattern	Dimensionless vapor velocity
1	0.2524	0.1706	4.43	AF	2.994
2	0.3636	0.1050	6.84	AF	4.614
11	0.1699	0.2730	4.59	AF	3.116
18	0.2910	0.1532	9.33	AF	6.382
20	0.1063	0.4378	4.83	AF	3.266
21	0.0537	0.9709	2.36	AF	1.601
28	0.0440	1.022	2.48	AF	1.677
29	0.0660	0.6885	3.77	AF	2.545
36	-	-	-	*)	_
37	-	_	_	*)	-
38	-	-	-	*)	-
39	_	-	-	*)	_
48	0.4250	0.1015	7.43	AF	5,195
19	0 2024	0.2657	3.52	AF	2,458
66	0.1305	0.4328	4.78	AF	3.353
67	0.2229	0.2412	8.23	AF	5.767
80	0 1895	0.2875	8.86	AF	6.204
81	0 1263	0.4339	5.97	AF	4,162
82	0.0609	0.9034	2.82	AF	1,967
88	0.0561	0.9911	4.63	AF	3,244
89	0.0414	0 1308	3 37	AF	2.353
90	0.0393	1 363	3 04	AF	2,121
91	**)	1 993	2.09	BF	_
92	**)	2.187	2.69	BF	_
93	**)	2 317	2.51	BF	_
91	**)	2 683	2 15	BF	_
95	,	2.005	2.15	*)	
96			_	*)	_
97	**)	5 682	1,19	RF	_
98	**)	3.425	2.04	BF	_
99	**)	2.500	2.93	RF	_
100	**)	2.564	2 82	BF	_
101	**)	5.633	1,20	BF	· _
102	**)	3 273	2 17	BF	_

TABLE	4	continued	
-------	---	-----------	--

Run no.	Steam quality	Х	F	Flow pattern	Dimensionless vapor velocity
102	0.0477	1 207	4 7 2	7.5	2 415
103	0.0477	1.307	4.73	AF	2 845
105	**)	2.108	2.83	BF	2.045
106	0.1157	0.5458	7.73	AF	5.562
107	0.0763	0.8503	4.93	AF	3.570
108	0.0477	1.309	3.25	AF	2.343
121	0.2874	0.2015	11.9	AF	2.343
122	0.1776	0.3491	7.42	AF	5.342
123	0.1060	0.6083	4.27	AF	3.087
130	0.4355	0.1119	13.04	AF	9.411
131	0.2412	0.2466	7.93	AF	5.715
138	0.5265	0.0796	13.39	AF	9.633
139	0.3255	0.1702	8.08	AF	5.829
140	0.1894	0.3282	4.65	AF	3.357
149	0.2521	0.2349	6.24	AF	4.502
150	0.5197	0.08254	13.08	AF	9.445

AF - Annular Flow

BF - Bubbly Flow

- *) The vapor quality is lower than 0.5 percent and no data are calculated.
- **) The vapor quality is too low for the program to integrate the pressure drop along the pipe.

Appendix B

LISTING OF COMPUTER PROGRAMS

DOCUMENTATION OF ABBREVIATIONS USED

0010	*	KK	RUN NO. FOR HASAN'S DATA(1)
0020	*	G	TOTAL MASS FLUX
0030	*	GF	GAS PHASE MASS FLUX
0040	*	GG	LIQUID PHASE MASS FLUX
0050	*	H	DISTANCE BETWEEN EACH PRESSURE TAP
0060	*	DIST	DIST. BETWEEN EACH PRESS. GRAD. CALCULATED
0070	*	DI	INSIDE PIPE DIAMETER
0080	*	ENF	ENTHALPY OF LIQUID
0090	*	ENG	ENTHALPY OF GAS
0100	*	ENI	INLET ENTHALPY OF TWO-PHASE MIXTURE
0110	*	ENFG	ENTHALPY OF EVAPORATION
0120	*	EPD(I)	EXPERIMENTAL PRESSURE DROP
0130	*	PPD(I)	PREDICTED PRESSURE DROP
0140	*	P	INLET PRESSURE
0150	*	LMP	LOCKHART-MARTINELLI PARAMETER
0160	*	FAC	FLOW PATTERN COORDINATE F
0170	*	Х	STEAM QUALITY
0180	*	BE	DIMENSIONLESS DENSITY PARAMETER BETA
0190	*	YFPL	DIMENSIONLESS DISTANCE FROM PIPE
0200	*	YF	DISTANCE FROP PIPE WALL
0210	*	DVV	DIMENSIONLESS VAPOR VELOCITY
0220	*	Al	LOCAL NAME FOR DISTANCE ALONG THE PIPE
0230	*	A2	LOCAL NAME FOR PRESSURE ALONG THE PIPE
0240	*	т	SATURATION TEMPERATURE FOR WATER
0250	*	DPDZ	FRICTIONAL PRESSURE GRADIENT
0260	*	DPDZF	(DP/DZ F) - ONLY LIQUID FLOW
0270	*	DPDZG	(DP/DZ F) ONLY GAL FLOW
0280	*	DADZ	ACCELERATIONAL PRESSURE GRADIENT / G**2
0285	*	A	ACCELERATIONAL PRESSURE GRADIENT
0290	*	RE	REYNOLDS NO.
0300	*	REF	REYNOLDS NO. FOR LIQUID
0310	*	REG	REYNOLDS NO. FOR GAS
0320	*	REFF	REYNOLDS NO. FOR LIQUID WITH ENTRAINMENT
0330	*	FF	FRICTION FACTOR FOR LIQUID
0340	*	FG	FRICTION FACTOR FOR GAS
0350	*	FFF	FRICTION FACTOR FOR LIQUID WITH ENTRAINMENT
0360	*	CAPX	SQUARE ROOT OF (DPDZF/DPDZG)
0370	*	SIGMA	SURFACE TENSION
0380	*	VMEWG	VISCOSITY OF THE GAS
0390	*	VMEWF	VISCOSITY OF THE LIQUID
0400	*	VF	SPECIFIC VOLUME OF THE LIQUID
0410	*	VG	SPECIFIC VOLUME OF THE GAS
0420	*	EN	ENTRAINMENT
0430	*	FIG2	TWO-PHASE GAS FRICTION MULTIPLIER

50

LISTING OF THE MAIN PROGRAM

0010	*	
0020	*	
0030	*	PROGRAM FOR THE CALCULATION OF PRESSURE DROP
0040	*	IN ANNULAR TWO-PHASE FLOW.
0050		REAL LMP
0060		COMMON C CE CC DI 7 I II H DICT
0000		COMMON BUE ENG ENI ENEC
0070		COMMON ENF, ENG, ENI, ENFG
0080		DIMENSION $AK(4)$, $EPD(4)$, $PPD(4)$, $DEV(4)$
0090		H = 0.44
0092	*	
0094	*	READING AND WRITING OF IMPUT PARAMETERS
0096	*	
0100		WRITE(6,100)
0110		READ*.KK.GF.GG.ENF.ENG.P.EPD(1).EPD(2).
0110		EDD(3) EDD(4)
0120		EDF(3), EDF(4)
0120		WRITE(6,400)KK
0130		WRITE(6,401)GF,ENF,P
0140		WRITE(6,402)GG,ENG
0150		G = GF + GG
0160		DI = 10.11E - 03
0170		ENI = (ENG*GG+ENF*GF)/G
0180		DIST = 0.0
0182	*	
0184	*	CALL SUBROUTINE POSSAW TO CALCULATE INDUT
0186	*	CONDITIONS AND FLOW DATTERN COODDINATES
0100	*	CONDITIONS AND FLOW FAITERN COORDINATES
0100		CALL DECOMON D DEDEE DEDE E VIND ENG MENT
0190		CALL PPSSAW(F, P, DPDZF, DPDZ, T, X, LMP, FAC, ALPHA,
		EN, DVF, BE, YF, YFPL, DELTA)
0200		WRITE(6,510)LMP,FAC
0210		WRITE(6,520)BE,YFPL,DVV
0220		WRITE(6,530)YF, DELTA
0230		WRITE(6,200)
0240		WRITE(6,500)
0242	*	
0244	*	THE RUNGE-KUTTA ITERATION PROCEDURE STARTS
0246	*	HERE AN AVERAGE DRESSURE CRADIENT IS CALCULATED
0248	*	FOR FACE SECTION OF THE DIDE
0240	*	FOR EACH SECTION OF THE PIPE
0249		
0250		DO 140 $II = 1,4$
0260		TP = P
0270		DO 107 I = 1,4
0272	*	
0274	*	FOR EACH OF THE POINTS, 101, 102, 103, 104
0276	*	AN AVERAGE PRESSURE GRADIENT IS CALCULATED
0278	*	
0280		GO TO (101,102,103,104),T
0290	101	A1 = Z
0300		$A_2 = P$
0310		DIST = 0.0
0320		$C_{0} = 0.0$
0320		GO TO 105

0330	102	Al = Z + H/2
0340		A2 = P + AK(I - 1)/2
0350		DIST = H / 2.0
0360		GO TO 105
0370	103	$A_1 = 7 + H/2$
0320	105	$A_{1} = D_{+} A_{1} (T_{-} 1) / 2$
0380		AZ = P + AK(1-1)/2
0390		DIST = 0.0
0400		GO 'I'O 105
0410	104	A1 = Z+H
0420		A2 = P + AK(I-1)
0430		DIST = H / 2.0
0440	105	CALL PPSSAW(F,A2,DPDZF,DPDZ,T,X,LMP,FAC,
		ALPHA, EN, DVV, BE, YF, YFPL, DELTA)
0450		IF(X.LE.0.005)GO TO 600
0470		AK(I) = H*F
0480	107	CONTINUE
0490		Z = Z + H
0500		$P = P + (\Delta K(1) + \Delta K(2) * 2 + \Delta K(3) * 2 + \Delta K(4)) / 6$
0510		$DELD = TD_D$
0520		DDT = T = T
0520		PPD(1) = DDDP
0530		PPD(2) = PPD(1) + DELP
0540		PPD(3) = PPD(2) + DELP
0550		PPD(4) = PPD(3) + DELP
0552	*	
0554	*	CALCULATION OF DEVIATION BETWEEN THE
0556	*	EXPERIMENTAL AND THE PREDICTED PRESSURE DROP
0558	*	
0560		DEV(II) = (EPD(II) - PPD(II)) / EPD(II)
0570		ADEV = ADEV + DEV(II)/4.0
0580		AADEV = AADEV + ABS(DEV(II))/4.0
0590		SDEV = SDEV + (DEV(II) * EPD(II)) * 2
0600		PGRAD = F * (-1, 0E+05)
0602	*	
0604	*	OUTPUT OF THE PREDICTIONS OF PRESSURE DROPS
0606	*	AND DEVIATIONS
0608	*	AND DEVIATIONS.
0610		
0010		WRITE(0, $500/2$, PGRAD, PPD(II), EPD(II),
0000	140	DEV(II), T, X, ALPHA, EN
0620	140	CONTINUE
0630		WRITE(6,1300)ADEV,AADEV,SDEV
0640	100	FORMAT(15X, 'GIVE THE DATA: RUN #, GF, GG,
		ENF, ENG, P, EPD(1), EPD(2), EPD(3), EPD(4)')
0650	200	FORMAT(//,1X,'L',5X,'P.GRAD',5X,'PRE.PD.',
		3X, 'DEVI-', 4X, 'STEAM', 5X, 'VOID', 7X, 'E
0660	300	FORMAT(1X,F5.3,3X,F6.4,4X,F6.4,4X,F6.4,
		4X, F6.4, 5X, F6.4, 5X, E10.3)
0670	400	FORMAT(/,15X,'DATA SET #',13,' OF DR. HASAN')
0680	401	FORMAT(/, 'INPUT DATA: ', 3X, 'LIO, LOAD =', F7, 2.'
		$I_{1}IO_{1}ENTH_{1} = '_{1}F7_{1}2_{1}J/K_{1}J'_{1}3X_{1}P= '_{1}F6_{1}J'_{1}3X_{1}$
0680	402	FORMAT(14X, 'GAS=', F7, 2, 'KG/M2, S', 3X, 'FNTH =
		'.F7.2.'J/KG')
0690	500	FORMAT(1X 'M' 5X 'N/M M2' 6Y 'DAD' 7Y
5050	500	$\Delta \pi T \cap N^{\dagger} A = A = A = A = A = A = A = A = A = A $
0700	510	FORMATI / IN LED COOPDINATES IN
0700	510	FORMAT(/, IX, FP-COORDINATES: L-M

		PARAMETER=',E10.5,5X,'F=',F5.2)
		=',F6.3,8X,'YF-PLUS=',F7.2,5X,'V=',E11.4)
0720		FORMAT(/, ' LIQUID FILM: ', 11X, 'DELTA =
0725		MYF = ,'Ell.4,'M')
0730		IF(X.GE.0.005)GO TO 1200
0740	600	WRITE(6,900)
0750	700	WRITE(6,1000)
0760	800	WRITE(6,1100)X, ENI, ENF, ENFG
0770	900	FORMAT(//5X, 'STEAM QUALITY IS LESS THAN 0.5
		 PRESSURE DROP IS NOT CALCULATED.')
0780	1000	FORMAT(5X, 'STEAM QUALITY', 5X, 'SAT.
		ENTHALPY', 5X, 'EVAP.ENTHALPY')
0790	1100	FORMAT(5X,F10.5,8X,F13.2,5X,F13.2,5X,F13.2)
0800	1300	FORMAT(//1X, 'AVER.DEV. = ', E10.4, 5X, 'AAD
		= ',E10.4,5X,'SS = ',E10.4,'BAR2')
0810	1200	CONTINUE
0820		STOP
0830		END

SUBROUTINE FOR THE GHOSAL MODEL

```
1100
            SUBROUTINE PPSSAW(F, P, DPDZF, DPDZ, T,
1105
            X, LMP, FAC, ALPHA, CAPX)
1110
            REAL LMP, FA, JGC, ALFA, JG
1120
            COMMON G, GF, GG, DI, Z, I, II, H, DIST
1130
            COMMON ENF, ENG, ENI, ENFG
1132 *
1134 *
          CALCULATION OF PHYSICAL PROPERITES
1136 *
1140
            G = GF + GG
1150
            VF=0.99453E-03+48.7443E-06*P**0.43503
1160
            VG=1.69767*P**(-0.91215)-4.02401E-03
1170
            VFG=VG-VF
            VMEWF=231.712E-06*P**(-0.38423)+52.7757E-06
1180
1190
            VMEWG = 5.12377E - 06 + 6.92654E - 06*P**(-0.15461)
1200
            ROG=1.0/VG
1210
            ROF=1.0/VF
1220
            ENF=545.254*P**0.21265-127.422
1230
            ENFG=2474.56-217.561*P**0.32378
1240
            X = (ENI - ENF) / ENFG
1250
            IF(X.LE.0.005)GO TO 268
1260 *
          FAC = (ROG/(ROF-ROG)) * *0.5 * 3.175 * VG * G * X
1270
1280
          LMP = ((1.0-X)/X) * 0.9 * (ROG/ROF) * *
1285
                0.5*(VMEWF/VMEWG)**0.1
1290 *
            CALCULATION OF PHYSICAL PROPERTIES OF
1300 *
            SATURATED STEAM AND WATER
1310
            GG = X * G
1320
            GF = (1.0 - X) * G
            T=143.7725*P**0.19246-44.0965
1330
1340
            REN=G*DI/VMEWF
1350
            RENF=G*(1-X)*DI/VMEWF
1360
            FF=0.079*RENF**(-.25)
1370
            DPDZF=2*FF*G**2*(1-X)**2*VF/DI
1380
            RENG=G*X*DI/VMEWG
1390
            FG=0.079*RENG**(-.25)
            DPDZG=2*FG*G**2*X**2*VG/DI
1400
1410
            CAPX = (DPDZF/DPDZG) * *0.5
1412 *
1414 *
         CALL SUBROUTINE NEWRAP TO CALCULATE
1416 *
         THE VOID FRACTION FROM LOCKHART-MARTINELLI
1418 *
         PARAMETER X.
1419 *
1420
            CALL NEWRAP(CAPX, ALPHA)
1430
            A2=VG*X**2/ALPHA+(1.0-X)**2 * VF/(1-ALPHA)
1440
            IF(DIST.EQ.0.0) GO TO 110
1442 *
1444 *
         CALCULATE THE ACCELERATIONAL PRESSURE GRAD.
1446 *
```

1450		DADZ = (A2 - A1) / DIST
1460	110	A1 = A2
1470		A=DADZ*G**2
1480		FIFSQ=0.75/(1.0-3.0*ALPHA+2.0*ALPHA**1.5)
1490		FP = FIFSQ * DPDZF
1492	*	
1494	* CA	ALCULATE THE TOTAL PRESSURE GRAD.
1496	*	
1500		F = (FP + A) * (-1.0E - 05)
1510	268	RETURN
1520		END
1530	*	
1540	*	
1550	*	The second s
1560		SUBROUTINE NEWRAP(X,Z)
1570		$Z = (1.0 + X^{*}0.8) ** (-0.378)$
1580	108	F1=(304.0/3.0)*Z**(-2.5)-404.0*Z**(-1.5)
1590		+(608.0/3.0)*Z**(-1.0)
1600		$F2 = 300.0 * Z^{**}(-0.5) - 200.0 - X^{**}2$
1700		F = F1 + F2
1710		FD1=(-760.0/3.0)*Z**(-3.5)+606.0*Z**(-2.5)
1720		FD2=-(608.0/3.0)*Z**(-2.0)-150.0*Z**(-1.5)
1730		FD = FD1 + FD2
1740		ZI = Z - F / FD
1750		IF(ABS(Z - ZI).LE.1.0E-04) GO TO 109
1760		Z = ZI
1770		GO TO 108
1780	109	Z = ZI
1790		RETURN
1800		END

SUBROUTINE FOR THE WALLIS MODEL

1100 SUBROUTINE PPSSAW(F, P, DPDZF, DPDZ, T, 1110 X, LMP, FAC, ALPHA, EN) REAL LMP, FA, JGC, ALFA, JG 1120 1130 COMMON G, GF, GG, DI, Z, I, II, H, DIST 1140 COMMON ENF, ENG, ENI, ENFG 1142 * 1144 * CALCULATION OF PHYSICAL PROPERTIES 1146 * 1150 G = GF + GG1160 VF=0.99453E-03+48.7443E-06*P**0.43503 1170 VG=1.69767*P**(-0.91215)-4.02401E-03 1180 VFG = VG - VFVMEWF=231.712E-06*P**(-0.38423)+52.7757E-06 1190 1200 VMEWG=5.12377E-06+6.92654E-06*P**(-0.15461) 1210 ROG=1.0/VG1220 ROF=1.0/VF 1230 ENF=545.254*P**0.21265-127.422 1240 ENFG=2474.56-217.561*P**0.32378 1250 X = (ENI - ENF) / ENFG1260 IF(X.LE.0.005)GO TO 268 1270 * 1280 FAC = (ROG/(ROF-ROG))**0.5*3.175*VG*G*XLMP = ((1.0-X)/X) * 0.9*(ROG/ROF) * *1290 1295 0.5*(VMEWF/VMEWG)**0.1 1320 GG = X * G1330 GF = (1.0 - X) * G1340 T=143.7725*P**0.19246-44.0965 1350 SIGMA=7.67021E-02-1.66555E-04* 1360 T-1.385948E-07*T**2 1360 REN=G*DI/VMEWF 1370 RENF=G*(1-X)*DI/VMEWF 1380 FF=0.079 * RENF * * (-.25)1390 DPDZF=2*FF*G**2*(1-X)**2*VF/DI 1400 RENG=G*X*DI/VMEWG FG=0.079*RENG**(-.25) 1410 1420 DPDZG=2*FG*G**2*X**2*VG/DI 1430 CAPX = (DPDZF/DPDZG) * *0.51440 FIG2=1.0+20.0*CAPX+CAPX**2 1450 DPDZ=FIG2*DPDZG 1452 * 1454 * CALCULATION OF DIMENSIONLESS VAPOR VELOCITY 1456 * AND ENTRAINED LIQUID FRACTION IN THE VAPOR CORE. 1458 * 1460 JG = GG * VGY=JG*VMEWG/SIGMA*(VF/VG)**0.5 1470 1480 IF(Y.LE.0.00042) GO TO 10 1490 IF(Y.GE.0.0014) GO TO 20 1500 EN=-0.0494295+1049.794 * Y-330532.9 * Y**2

1510 GO TO 30 EN = 0.02270985 - 596.6509 *Y + 3223134.0 *Y**2 1520 10 1530 GO TO 30 1540 20 EN = 0.81550 30 CONTINUE 1560 REFF=RENF*(1.0-EN) 1570 FFF=0.079*(REFF)**(-0.25) DPDZFF=2.0*FFF*(G*(1.0-X)*(1.0-EN))**2*VF/DI 1580 1582 * 1584 * THE ITERATION PROCEDURE STARTS HERE. 1586 * 1590 101 FIFF2=DPDZ/DPDZFF 1600 ALPHA=1.0-FIFF2**(-0.5) DELTA=(1.0-ALPHA)*DI/4.0 1610 1620 Cl=1.0+75.0*(1-ALPHA)/ALPHA**2.5 1630 C2=(GG+E*GF)/GGBl=GF*((1.0-EN)/GG)*VF/VG1640 1650 B2=ALPHA/(1.0-ALPHA)*B1 C3=(1.0-2.0*B2)**2 1660 1670 CFIG2=C1*C2*C3 1680 IF(ABS(CFIG2-FIG2)-50.0) 103,102,102 1682 * 1684 * ESTIMATION OF A NEW VALUE FOR THE 1686 * TWO-PHASE FRICTIONAL MULTIPLIER FOR GAS 1688 * 1690 102 FIG2=(CFIG2+FIG2)/2.0 1700 DPDZ=DPDZG*FIG2 1710 GO TO 101 1720 103 FIG2=(CFIG2+FIG2)/2.0 1730 DPDZ=DPDZG*FIG2 1732 * 1734 * CALCULATE THE ACCELERATIONAL PRESSURE GRAD. 1736 * 1740 A2=VG*X**2/ALPHA+(1.0-X)**2 * VF/(1-ALPHA) 1750 IF(DIST.EQ.0.0) GO TO 110 1760 DADZ=(A2-A1)/H 1770 110 A1=A2 1780 A=DADZ*G**2 1782 * 1784 * CALCULATION OF THE TOTAL PRESSURE GRAD. 1786 * 1790 F = (DPDZ + A) * (-1.0E - 05)1800 268 RETURN 1810 END

SUBROUTINE FOR THE LEVY MODEL

```
0840
             SUBROUTINE PPSSAW(F,P,DPDZF,DPDZ,T,X,LMP,F,
             ALPHA, EN, DVV, BE, YF, YFPL, DELTA)
0850
             REAL LMP, FA, JGC, ALPHA, JG, KYR
0860
             COMMON G, GF, GG, DI, Z, I, II, H, DIST
0870
             COMMON ENF, ENG, ENI, ENFG
0880
             RI = DI / 2.0
0882 *
0884 *
          CALCULATION OF THE PHYSICAL PROPERTIES
0886 *
0890
             G = GF + GG
0900
             VF = 0.99453E - 03 + 48.7443E - 06*P**0.43503
             VG = 1.69767*P**(-0.91215)-4.02401E-03
0910
0920
             VFG = VG - VF
             VMEWF = 231.712E - 06*P**(-0.38423) + 52.7757E - 06
0930
0940
             VMEWG = 5.12377E - 06 + 6.92654E - 06*P**(-0.15461)
0950
             ROG = 1.0/VG
             ROF = 1.0/VF
0960
             ENF = 545.254*P**0.21265-127.422
0970
             ENFG = 2474.56-217.561*P**0.32378
0980
0990
             X = (ENI-ENF)/ENFG
1000
             IF(X.LE.0.005)GO TO 268
1010 *
             CALCULATION OF COORDINATES FOR FLOWPATTERN-MAP
             AFTER TAITEL AND DUKLER
1020 *
1030
           FAC
                    (ROG/(ROF-ROG))**0.5*3.175*VG*G*X
                -----
1040
                   ((1.0-X)/X)**0.9*(ROG/ROF)**0.5
           LMP
                ----
                *(VMEWF/MVEWG)**0.1
1070
             GG = X * G
1080
             GF = (1.0 - X) * G
1090
             ALPHA = (1.0 + LMP * 0.8) * (-0.387)
             DELTA = RI * (1.0 - ALPHA**0.5)
1100
1110
             T = 143.7725 * P * * 0.19246 - 44.0965
1120
             SIGMA = 7.67021E - 02 - 1.66555E - 04 * T
             - 1.385948E-07*T**2
1130
             JG = GG * VG
             DVV = JG*VMEWG/SIGMA*(VF/VG)**0.5
1140
1142 *
1144 *
         CALL UP THE SUBROUTINE BETAS TO CALCULATE THE
1146 *
          THE DIMENSIONLESS DENSITY FUNCTION BETA.
1148 *
1150
             CALL BETAS(ROF, ROG, SIGMA, RI, BE)
1160
             YF = DELTA
1170
             J = 0
1180
      201
             YFR = YF / RI
1190
             FIS = 0.005 * (1.0 + 150.0 * YFR)
             TAUW = 0.5 * ROG * FIS * (GG/ROG) * 2
1200
1210
             TAUWF = ((TAUW * ROF) * * 0.5) / VMEWF
1220
             YFPL = YF * TAUWF
```

1230 RPL = RI * TAUWFIF(YFPL.GT.30.0)GO TO 202 1240 IF(J.GE.1)GO TO 202 1250 1260 BE = 1.0 + 1.4142136 * (BE - 1.0)1270 J = J + 11280 202 CONTINUE 1290 GE = GF * (1.0/BE) * * 0.51292 * 1294 * CALL UP THE SUBROUTINE KYRS TO CALCULATE THE 1296 * DIMENSIONLESS VELOCITY K(YF,R) 1298 * 1300 CALL KYRS(YFPL, RPL, KYR) 1310 GFF = 2.0 * KYR * ((TAUW * ROF) * * 0.5) / (RPL * * 2)GFFT = GF - GE1320 1330 DGFFT = GFF - GFFT1340 IF(ABS(DGFFT) - 10.0)204,203,2031342 * 1344 * MAKE A NEW ESTIMATE OF YF 1346 * 1350 203 YFN = YF * (GFFT/GFF)1360 YF = (YFN + YF) / 2.01370 GO TO 201 1380 204 CONTINUE 1390 EN = GE / GF1400 YT = YF * (ROF/ROG) ** (1.0/BE)1402 * 1404 * CALCULATE THE FRICTIONAL PRESSURE GRADIENT. 1406 * 1410 DPDZ = 2.0 * TAUW / RI1412 * 1414 * CALCULATE THE ACCELERATIONAL PRESSURE GRAD. 1416 * 1420 A2 = VG*X**2/ALPHA+(1.0-X)**2*VF/(1-ALPHA)1430 IF(DIST.EO.0.0) GO TO 110 1440 DADZ = (A2-A1)/DIST1450 110 A1 = A21460 A = DADZ*G**21470 F = (DPDZ+A)*(-1.0E-05)1480 268 RETURN 1490 END 1500 * 1510 SUBROUTINE BETAS (ROF, ROG, SIGMA, RI, BE) 1520 COMMON G, GF, GG, DI, Z, I, II, H, DIST 1530 COMMON ENF, ENG, ENI, ENFG 1540 REAL KF, BE, BEPR, BEN, BE1, BE2, BEND 1550 REAL KYR 1550 KF = 0.41570 BE = 4.01580 301 BE1 = (ROF/ROG) * * (1.0/BE) - 1.0BE2 = SIGMA * ROF / (KF * RI * GG**2) 1590 BEN = 1.0 + (BE1 * BE2) ** 0.5 1600 1610 IF(ABS(BE-BEN) - 0.01)303,302,3021620 302 BE = (BE + BEN) / 2.01630 GO TO 301

1640 1650 1660 1670	303 *	BE = BEN RETURN END
1680		SUBROUTINE KYRS(YFPL, RPL, KYR)
1690		COMMON G, GF, GG, DI, Z, I, II, H, DIST
1700		COMMON ENF, ENG, ENI, ENFG
1710		REAL KYR
1720		YFPLN = ALOG(YFPL)
1730		IF(YFPL.GE.30.0) GO TO 502
1740		IF(YFPL.GE. 5.0) GO TO 501
1750		KYR =0.5 *RPL *YFPL**2 - (YFPL**3) / 3.0
1760		GO TO 503
1770	501	KYR = 12.51*RPL-10.45-8.05*RPL*YFPL+2.775 *YFPL**2+5.0*RPL*YFPL*YFPLN-2.5*YFPL*YFPLN
1780		GO TO 503
1790	502	<pre>KYR=3.0*RPL*YFPL-63.9*RPL-2.125*(YFPL**2) -1.25*(YFPL**2)*YFPLN+2.5*RPL*YFPL*YFPLN+573.21</pre>
1800	503	RETURN
1810		END
Appendix C

OPTIMIZATION PRECEDURE

The correction factor for The Wallis model was obtained by using three different correction factors as reference points. Using the resulting total sum of squares of errors for these three factors, the correction factor that gave the lowest sum of squares of errors was found by curve fitting. The results from the three correction factors are listed in Table 5.

TABLE 5

WALLIS MODEL WITH THREE CORRECTION FACTORS

Correction factor	1.148	1.1715	1.950
Average Deviation (percent)	4.14	2.05	0.00
Totas Sum of Squares of Errors (kPa) ²	1684.97	1566.34	1588.28

From these numbers, the parameters in the fitted curve estimated a correction factor of 1.180 to give the minimum total sum of squares of errors. Appendix D

RESULTS FROM THE PREDICTIONS

TABLE 6

RESULTS FROM GHOSAL MODEL

Run no	∆ P _I	∆ [₽] 2	ΔP ₃	Δ P ₄	Average Deviation	Absolute Average	Sum of Squares	Reynolds number
	kPa	kPa	kPa	kPa	00	Deviation %	of Errors (kPa) ²	Re f
1	5.70	11.53	17.52	23.74	-11.39	11.39	13 37	0077
2	9.15	18.61	28.42	38.58	-16.35	16.35	58 57	9011
11	8.32	17.03	26.03	35.48	-5.83	5.83	7 04	17426
18	19.64	41.11	64.31	90.19	-49.42	49.42	2002.0	19045
20	12.98	27.15	42.59	59.63	-32.42	32.42	495.8	30737
21	6.20	12.75	19.66	26.99	-17.65	17.65	34.33	32579
28	7.90	16.52	25.90	36.18	-42.22	42.22	209.5	40390
29	12.04	25.43	40.32	57.10	-35.38	35.38	492.6	39421
48	9.62	19.52	29.26	39.75	-34.42	34.42	170.6	9775
49	4.//	9.60	14.52	19.54	-43.28	43.28	62.77	13901
66	11.62	23.80	36.49	49.84	-36.34	36.34	357.2	32693
67	20.09	41.63	64.47	89.18	-71.75	71.75	2639.0	29351
80	26.17	54.96	86.80	122.67	-59.69	59.69	4029.0	38322
81	17.60	36.63	57.19	79.56	-62.91	62.91	1599.0	40449
82	8.22	16.89	25.99	35.59	-49.50	49.50	253.7	43262
88	21.83	47.04	76.18	110.40	-84.28	84.28	4728.0	79350
89	15.78	33.72	54.03	77.28	-63.97	63.97	1555.0	78148
90	13.63	28.93	46.03	65.29	-87.59	87.59	1800.0	73687
103	27.59	59.99	97.92	143.14	-79.53	79.53	7658.0	115666
104	23.44	50.86	82.78	120.50	-74.71	74.71	5107.0	115771
107	10 01	67.05	106.75	152.00	-78.94	78.94	9015.0	71311
107	19.91	41.55	64.97	90.56	-46.15	46.15	1665.0	75101

TABLE 6 continued

no	ΔP	ΔP2	Δ P ₃	∆ P ₄	Average Deviation	Absolute Average	Sum of Squares	Reynolds number
	kPa	kPa	kPa	kPa	00	eviation &	of Errors (kPa)2	Ref
108	13.88	28.91	45.12	62.68	-11 14	11 14	121 0	
121	33.14	68.95	108.20	151.02	-54 03	54 03	5520 0	79438
122	20.69	42.65	65.86	90.65	-51 07	51 07	1701 0	36777
123	11.72	23.93	36.60	49.81	-24 25	24 25	1/91.0	41706
130	26.23	54.60	83,90	115.52	-73 65	72 65	223.7	44/30
131	18.19	37.17	57.08	77 96	-70.52	73.05	45/1.0	20774
138	22.39	46.54	71 09	98 01	-70.52	70.52	1944.0	30317
139	14.60	29 73	15 22	50.01	-75.90	75.90	3301.0	14545
140	8.59	17 39	26.20	01.45	-66.52	66.52	1125.0	20480
149	11 11	22 24	20.38	35.54	-30.25	30.25	107.6	24485
150	22 10	23.24	35.38	4/.71	-54.64	54.64	538.7	22631
100	22.10	44.92	68.82	93.16	-59.19	59.19	2340.0	14866

TABLE 7

RESULTS FROM WALLIS MODEL

Run no	ΔP_{I}	ΔP2	∆ P ₃	∆ P ₄	Average Error	Absolute Average	Sum of Squares	Reynolds number	Predicted Entrainment
	kPa	kPa	kPa	kPa	00	Error %	of Errors (kPa)2	RefF	е
1	4.03	8.14	12.32	16.58	21.61	21.61	35 87	8563	0 122
2	5.78	11.71	17.78	24.00	27.05	27.05	143 2	5620	0.133
11	5.62	11.40	17.33	23.43	29.31	29.31	183.4	14817	0.365
18	11.08	22.66	34.71	47.30	18.78	18.78	143.1	9790	0.190
20	8.31	17.05	26.23	35.88	17.83	17.83	81.89	25461	0.172
21	4.02	8.21	12.57	17.12	24.55	24.55	54.23	32260	0.010
28	5.05	10.43	16.14	22.24	10.84	10.84	14.71	39853	0.013
29	7.77	16.11	25.05	34.64	15.33	15.33	52.36	36282	0.080
48	5.78	11.66	17.62	23.68	19.49	19.49	75.14	5799	0.407
49	3.24	6.53	9.85	13.21	2.75	2.75	0.47	12917	0.071
66	7.02	14.24	21.65	29.26	18.78	18.78	74.62	26645	0.185
0/	11.05	22.51	34.37	46.66	7.85	7.85	24.10	16259	0.446
80	13.95	28.62	43.98	60.14	18.22	18.22	317.2	20133	0.475
81	9.89	20.25	31.08	42.39	10.74	10.74	81.97	26991	0.333
82	4.93	10.05	15.35	20.83	11.40	11.40	14.36	41962	0.030
00	11.92	24.86	38.80	53.87	4.75	4.75	12.30	65992	0.168
09	8.72	18.17	28.36	39.38	12.82	12.82	89.53	73399	0.061
102	1.59	15.75	24.50	33.91	-0.79	3.38	4.13	70654	0.041
103	13.74	28.78	45.02	62.69	16.08	16.08	218.5	93129	0.195
104	15 00	24.56	38.45	53.58	17.56	17.56	197.6	102591	0.114
107	10.92	32.82	50.67	69.60	14.10	14.10	147.3	40490	0.432
101	10.38	21.25	32.57	44.38	26.12	26.12	401.6	58542	0.220

TABLE 7 continued

Run no	ΔP	∆ P ₂	ΔP ₃	∆ P ₄	Average Error	Absolute Average	Sum of Squares	Reynolds number	Predicted Entrainment
	kPa	kPa	kPa	kPa	0/0	£1101 §	or Errors (kPa) ²	Re fF	е
108	7.27	14.91	22.90	31.28	43.18	43.18	943_4	74684	0.060
121	16.27	33.20	50.72	68.92	27.01	27.01	1122.0	14265	0.000
122	10.97	22.30	33.97	46.02	21.61	21.61	289.2	24312	0 417
123	6.63	13.44	20.40	27.53	30.52	30.52	231.3	38214	0.146
130	13.19	26.79	40.73	55.06	15.14	15.14	164.0	7358	0.646
131	9.80	19.86	30.15	40.70	9.50	9.50	35.58	16900	0.443
138	11.62	23.55	35.75	48.25	11.18	11.18	74.82	5016	0.655
139	8.08	16.31	24.69	33.21	8.97	8.97	20.18	11260	0.450
140	5.17	10.42	15.74	21.13	22.06	22.06	84.66	19940	0.186
149	6.52	13.15	19.88	26.72	12.72	12.72	27.09	14570	0.356
130	11.34	22.97	34.85	47.00	19.01	19.01	195.9	5244	0.647

TABLE 8

RESULTS FROM LEVY MODEL

Run no	ΔP_l	Δ P ₂	∆ P 3	∆ P ₄	Average Error	Absolute Average	Sum of Squares	Dim.less Density	Predicted Entrainment
	kPa	kPa	kPa	kPa	00	Error %	of Errors (kPa) 2	exponent eta	e
1	3.94	7.96	12.05	16.23	23.37	23.37	41.89	4 845	0.454
2	6.90	14.05	21.43	29.08	12.26	12.26	27.03	4 015	0.454
11	5.31	10.80	16.44	22.27	33.01	33.01	229.6	4 701	0.499
18	14.12	29.27	45.40	62.75	-5.70	8.29	91.73	3 347	0.401
20	7.75	15.99	24.71	34.00	22.73	22.73	137.5	4 643	0.540
21	3.15	6.41	9.78	13.27	41.18	41.18	156.4	6 474	0.405
28	3.88	7.99	12.30	16.85	31.89	31.89	120.6	6 448	0.394
29	6.55	13.59	21.11	29.18	28.62	28.62	207.6	5.275	0.393
48	7.45	15.09	22.89	30.87	-4.38	4.38	1.45	3.409	0.437
49	3.10	6.24	9.42	12.63	7.03	7.03	2.16	4 743	0.159
66	7.00	14.25	21.71	29.43	18.66	18.66	72.17	4 077	0.459
67	13.54	27.85	42.85	58.70	-14.45	14.45	121.6	3 244	0.490
80	17.28	35.92	55.90	77.54	-3.34	3.34	27.12	3 164	0.555
81	10.70	22.04	33.97	46.60	2.66	3.72	13.75	3 773	0.505
82	4.23	8.60	13.11	17.77	24.22	24.22	62.49	5 295	0.010
88	11.25	23.61	37.10	51.92	9.18	9.18	39.66	4 151	0.435
89	7.52	15.67	24.44	33.91	24.86	24.86	279.5	4 842	0.495
90	6.41	13.29	20.62	28.48	15.11	15.11	32.12	5 104	0.457
103	13.27	27.94	44.01	61.74	18.19	18.19	270.2	3 773	0.445
104	10.80	22.70	35.52	49.62	23.85	23.85	375.7	4 1 2 2	0.0105
	18.50	38.55	60.15	83.61	-1.53	5.58	52.91	3 090	0.495
107	10.67	21.96	33.84	46.38	23.42	23.42	309.4	3.668	0.509

TABLE 8 continued

Run no	ΔP	∆ ^P 2	∆ P 3	∆ P ₄	Average Error	Absolute Average	Sum of Squares	Dim.less Density	Predicted Entrainment
	kPa	kPa	kPa	kPa	00	error %	of Errors (kPa)2	exponent β	е
108	6.65	13 63	20 94	29 60	10.00				
121	22.99	47 61	72 70	20.00	48.06	48.06	1178.0	4.477	0.474
122	13 18	26 96	11 22	101.80	-5.49	5.49	101.4	2.604	0.619
123	6 66	12 50	41.52	56.33	4.92	4.92	11.39	3.142	0.564
130	20.07	13.50	20.53	27.74	30.12	30.12	223.7	3.926	0.505
121	20.27	41.70	64.16	87.88	-32.90	32.90	948.8	2.534	0.628
131	12.22	24.91	38.01	51.59	-13.81	13.81	79.45	3.063	0 571
138	18.31	37.58	57.66	78.73	-42.46	42.46	1023.0	2.528	0 628
140	10.34	20.97	31.87	43.06	-17.27	17.27	76.75	3 033	0.028
140	5.40	10.90	16.48	22.15	18.44	18.44	61.40	3 7 9 9	0.574
149	7.66	15.50	23.48	31.64	-2.96	2.96	2 18	2 262	0.513
150	17.74	36.34	55.68	75.91	-28.78	28.78	609.5	2.531	0.545

TABLE 9

RESULTS FROM MODIFIED WALLIS MODEL

Run no	ΔP	ΔP2	ΔP_3	∆ P ₄	Average Error	Absolute Average	Sum of Squares
k	kPa	a kPa	kPà	kPa	00	Error %	of Errors (kPa) ²
1	4.77	9.64	14.61	19.68	7.14	7.14	3 26
2	6.83	13.88	21.13	28.59	13.41	13.41	33 60
11	6.65	13.52	20.60	27.92	16.10	16.10	56 61
18	13.12	26.96	41.47	56.80	3.11	6.72	14 17
20	9.97	20.63	31.99	44.13	0.13	4.34	8.93
21	4.75	9.74	14.99	20.50	10.22	10.22	8.53
28	5.98	12.42	19.36	26.84	-6.58	6.58	4.88
29	9.21	19.23	30.10	41.95	-1.46	4.58	10.64
48	6.83	13.80	20.88	28.11	4.64	4.64	7.41
49	3.83	1.72	11.66	15.65	-15.03	15.03	7.06
67	8.30	16.88	25.73	34.87	3.59	3.59	1.61
20	16.52	26.74	40.97	55.83	-9.66	9.66	54.63
81	10.53	34.08	52.64	72.38	2.35	2.35	4.70
82	5 04	24.10	37.12	50.87	-6.45	6.45	7.74
88	14 15	11.93	18.27	24.89	-5.32	5.32	2.66
80	10 25	29.77	46.83	65.59	-14.53	14.53	144.6
90	9 99	21.73	34.18	47.85	-4.63	4.63	3.13
103	16 34	24 54	29.47	41.10	-20.85	20.85	123.5
104	13 94	29 11	24.54	/6./1	-1.24	2.65	13.99
106	18.88	39 16	40.02	05.44	0.68	3.06	6.82
107	12.30	25 28	39 01	52.07	-2.83	5.94	63.04
	12.00	23.20	30.91	53.25	11.92	11.92	69.73

TABLE	9	cont	inu	ed
-------	---	------	-----	----

Run no	ΔP_{I}	ΔP2	ΔP3	∆ P ₄	Average Error	Absolute Average	Sum of Squares
	kPa	kPa	kPa	kPa	00	Error %	of Errors (kPa)2
108	8.61	17.74	27.36	37.55	32.25	32 25	E02 2
121	19.27	39.48	60.54	82.61	13.03	13 03	224 2
122	12.97	26.46	40.43	54.95	6.83	6.83	254.2
123	7.84	15.92	24.22	32.76	17.57	17.57	68 26
130	15.62	31.81	48.48	65.73	-0.88	1.21	2 7 9
131	11.59	23.54	35.82	48.47	-7.41	7.41	24.73
138	13.75	27.95	42.52	57.53	-5.51	5.51	14 83
139	9.55	19.31	29.28	39.46	-7.87	7.87	15 71
140	6.11	12.33	18.64	25.06	7.76	8.11	15 38
149	1.77	15.56	23.56	31.72	-3.36	3.36	2.57
150	13.42	27.25	41.43	56.01	3.83	3.83	4.64

Appendix E

RESULTS FROM CURVE FITTING

The plots of error against various variables in Figures 8 to 40 were fitted to two curves by the method of least squares. The equations for the two curves were:

$$\mathbf{\epsilon} = \mathbf{a} + \mathbf{b}\chi\tag{59}$$

for the two-parameter curve and

$$\varepsilon = a + b\chi + c\chi^2$$
 (60)

for the three-parameter curve.

For each curve, the parameters and the regression coefficient R were calculated. The values of the parameters and the regression coefficient are shown in Tables 10 to 13. A small value of the regression coefficient indicates that the error is almost randomly distributed with respect to the given parameter. Hence, the model apparently accounts for the effect of this parameter properly. In Figures 8 to 37 the three parameter curve (Equation 60) is drawn to indicate any trend. To avoid crowding these figures, the straight line (Equation 59) is not plotted.

TABLE	1	0
-------	---	---

CURVE FITTING FOR GHOSAL MODEL

Variable parameter	No. of parameter	a	b	с	R
Π	2	-33.3040	-3.8132	0.1214	0.143
x	2	-48.5044 -59.5627	-8.69083 131.8881	-278.8843	0.003
G G	2 3	-30.1021 -24.0147	-0.0256 -0.0413	0.0000	0.229
F	2 3	-33.511	-2.6651 -2.9253	0.0169	0.132
X X P.*)	3	-46.3395 -57.4856 -7.1666	-7.4367 47.1236 -6.5337	-37.9856	0.088
P*) Ref	3	177.7752	-69.9705	5.0672	0.384
Ref	3	-36.5584	-0.0003	-0.0000	0.171

*) - The pressure has to be given in Bar.

TABLE 11

CURVE FITTING FOR WALLIS MODEL

Variable parameter	No. of parameters	a	b	С	R
Π	2	17.5526	-0.0903	-	0.001
Π	3	16.9237	0.1966	-0.0260	0.001
x	2	17.2022	-0.2567	-	0.000
x	3	16.1554	13.0500	-26.3982	0.004
G	2	17.8645	-0.0009	-	0.002
G	3	18.2951	-0.0020	0.0000	0.002
F	2	17.5603	-0.0652	-	0.001
F	3	17.1030	0.0828	-0.0096	0.001
X	2	15.9863	0.3280	-	0.000
X	3	16.5423	2.5023	01.5132	0.001
P *)	2	14.6823	0.3757	-	0.005
P*)	3	103.9756	-30.2500	2.4465	0.278
Rear	2	17.1913	-0.0000	-	0.000
RefF	3	17.5361	-0.0000	0.0000	0.000

*) - The pressure has to be given in Bar.

TABLE 12

CURVE FITTING FOR LEVY MODEL

Variable parameter	No. of parameter	a	b	С	R
π	2	45.9232	-8.4172		0.806
17	3	54.1943	-12.1912	0.3413	0.814
x	2	31.7310	-121.7511	-	0.658
х	3	31.6199	-120.3392	-2.8008	0.658
G	2	-3.9235	0.0162	-	0.106
G	3	-6.5071	0.0229	-0.0000	0.107
F	2	46.8340	-6.1022	-	0.805
F	3	54.3385	-8.5309	0.1574	0.811
Х	2	-6.8447	29.7806	-	0.355
X	3	-19.4582	93.4858	-44.3362	0.464
P*)	2	43.2968	-5.2521	-	0.159
P*)	3	115.6972	-30.0861	1.9837	0.190
ß	2	-57.8584	16.7560	-	0.651
Ň	3	-155.6128	65.0792	-5.6023	0.767
e	2	157.0601	-288.4916	-	0.749
e	3	-62.9807	574.8856	-834.1401	0.781

The Levy model yielded also a correlation for entrainment vs. dimensionless vapor velocity. A curve fitting for this relationship gave the following coefficients and regression coefficients.

2	0.3977	0.0263	-	0.879
3	0.3363	0.0544	-0.0025	0.925

It has to be noted that this is not an experimental result, but rather calculated data for the experimental conditions.

*) - The pressure has to be given in Bar.

TABLE	1	3
-------	---	---

CURVE FITTING FOR MODIFIED WALLIS MODEL

Variable parameter	No. of parameter	a s	b	С	R
Π	2	2.1921	-0.2698	_	0.003
TT	3	-0.4992	0.9582	-0.1111	0.006
x	2	1.1662	-0.8770	-	0.000
x	3	-0.7243	23.1556	-47.6766	0.009
G	2	2.4452	-0.0018	-	0.005
G	3	3.2444	-0.0039	0.0000	0.006
F	2	2.2102	-0.1938	-	0.003
F	3	-0.3634	0.6391	-0.0540	0.006
Х	2	0.9462	0.1667	-	0.000
X	3	-0.0219	4.8471	-3.2991	0.002
P *)	2	-1.4188	0.3678	-	0.003
P*)	3	102.3113	-35.2125	2.8421	0.251
Refr	2	1.3054	-0.0000	-	0.000
RefF	3	1.3805	-0.0000	0.0000	0.001

*) - The pressure has to be given in Bar.

Appendix F

PLOTS OF THE PREDICTIONS

Figure 12: Average error vs. Lockhart-Martinelli parameter X.

Figure 14: Average error vs. Reynolds number.

Figure 16: Average error vs. steam quality.

Figure 17: Average error vs. total mass flux.

Figure 19: Average error vs. Lockhart-Martinelli parameter X.

Figure 20: Average error vs. pressure.

Figure 21: Average error vs. Reynolds number.

Figure 23: Average error vs. steam quality.

Figure 24: Average error vs. total mass flux.

Figure 25: Average error vs. flow pattern coordinate F.

Figure 27: Average error vs. pressure.

Figure 29: Average error vs. predicted entrainment.

Figure 30: Predicted entrainment vs. dimensionless vapor velocity.

100

Figure 31: Average error vs. dimensionless vapor velocity.

Figure 32: Average error vs. steam quality.

40-30-20-AVERAGE ERROR 10-0-PERCENT * -10--20--30-0.2 1.0 C. O 0.4 0.6 0.8 1.2 1.4 1.6 LOCKHART-MARTINELLI PARAMETER X

Figure 35: Average error vs. Lockhart-Martinelli parameter X.

105

MODIFIED WALLIS MODEL

Figure 36: Average error vs. pressure.

Figure 37: Average error vs. Reynolds number.

Appendix G

SYMBOLS USED

A	Cross sectional area for fluid flow	m
a	Parameter used in Equation 60 and 61	-
b	Parameter used in Equation 60 and 61	-
С	Parameter used in Equation 10	-
С	Parameter used in Equation 61	-
D	Tube diameter	m
е	Fraction of liquid entrained in the vapor	-
F	Flow pattern coordinate defined by Equation 3	1 -
f _{TP}	Two-phase friction factor	-
ff	Friction factor for liquid phase flowing alor	ne -
ffF	Friction factor for liquid phase flowing alor with entrainment taken into consideration	ne -
fg	Friction factor for gas phase flowing alone	-
fi	Interfacial friction factor	-
G	Total mass flux	kg/m ² ,s
Gf	Liquid mass flux	kg/m ² ,s
Gg	Gas mass flux k	kg/m ² ,s
g	Acceleration due to gravity	m/s ²
ig	Enthalpy of the gas	J/kg
i _f g	Heat of evaporation	J/kg
if	Enthalpy of liquid	J/kg
iin	Enthalpy of gas and liquid at inlet condition	J/kg
isat	Saturation enthalpy of liquid	J/kg
jg	Superficial velocity of gas phase	m/s
L	Tube length	m
Ρ	Pressure at inlet conditions	kPa
A P:	Pressure drop at pressure tap no i	kD-

R	Pipe radius	m		
R+	Dimensionless pipe radius	-		
Re	Reynolds number	-		
Re f	Reynolds number for the liquid phase	-		
RefF	Reynolds number for the liquid phase with entrainment taken into consideration	_		
Reg	Reynolds number for the gas phase	-		
SS	Sum of squares of errors	(kPa) ²		
Tsat	Saturation temperature	°C		
uf	Actual velocity of liquid phase	m/s		
ug	Actual velocity of gas phase	m/s		
$\overline{\mathbf{v}}$	Average specific volume of gas and liquid	m/kg		
v _f	Specific volume of liquid	m ³ /kg		
vg	Specific volume of gas	m ³ /kg		
Wf	Mass flow rate of liquid phase	kg/s		
Wg	Mass flow rate fo gas phase	kg/s		
х	Lockhart-Martinelli parameter defined by Equation 2	-		
x	Mass fraction of gas / steam quality	-		
Υf	Thickness of liquid film	m		
¥f+	Dimensionless film thickness			
V.	Thickness of the liquid film and transition	1		

Greek symbols

a	Void fraction	-			
β	Dimensionless density function defined by Equation 45	-			
S	Liquid film thickness used in Equation 11 and 12				
\in_{i}	Percent error in prediction of pressure drop as defined by Equation 26	-			
Pc	Density of the gas core	kg/m ³			
$\rho_{\rm f}$	Density of the liquid	kg/m ³			
ρ_{g}	Density of the gas	kg/m ³			
μ_{f}	Viscosity of the liquid	Ns/m ²			
μ_{g}	Viscosity of the gas	Ns/m ²			
$\phi_{\rm f}^2$	Two-phase frictional multiplier based on pressure gradient for liquid flow alone				
$\phi^2_{\rm fF}$	Two-phase frictional multiplier based on pressure gradient for liquid flow alone and entrainment taken into consideration	-			
ϕ_g^2	Two-phase frictional multiplier based on pressure gradient for gas flow alone	-			
σ	Surface tension	N/m			
τ_w	Shear stress at the pipe wall	N/m^2			
τ_{i}	Shear stress at the gas-liquid interface				
θ	Inclination of the pipe				
χ	Variable in Equation 61 and 62	-			
Diff	erentials				
(dp/dz)	Pressure gradient	kPa/m			
(dp/dz	A) Accelerational pressure gradient	kPa/m			
(dp/dz	F) Frictional pressure gradient	kPa/m			
(dp/dz	F) _f Frictional pressure gradient assuming total flow to be liquid	kPa/m			

(dp/dz	F) _{fF}	Frictional pressure gradient assuming total flow to be liquid and with entrainment taken into consideration	kPa/m
(dp/dz	F)g	Frictional pressure gradient assuming total flow to be gas	kPa/m
(dp/dz	Z)	Pressure gradient due to static head	kPa/m

REFERENCES

- Hasan A.T.M.R. Low Pressure Boiling in Straight Tubes and a Bend. Ph.D. Dissertation, University of Waterloo, Ontario, Canada, 1979, 242 pp
- 2. Alves, G.E. Cocurrent Liquid-gas Flow in a Pipeline Contactor. Chem. Eng. Progr., <u>4</u> (8) 449-456 (1954)
- 3. Baker, O. Design of Pipelines for Simultaneous Flow of Oil and Gas. Oil and Gas Journal, <u>26</u>, July (1954)
- Bell, K.J., J. Tabordek, and F. Fenoglio. Interpretation of Horizontal Intube Condensation Heat Transfer Correlations with a Two-phase Flow Regime Map. Chem. Engng. Prog. Symp. Series, <u>66</u>,No 102, 1970, pp 150-163
- 5. Mandhane, J.M., G.A. Gregory, and K. Aziz. A Flow Pattern Map for Gas-liquid Flow in Horizontal Pipes. Int. J. Multiphase Flow, <u>1</u> 537-553 (1974)
- Taitel, Y. and A.E. Dukler. A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-liquid Flow. AIChE Journal, <u>22</u> 45-47 (1976)
- 7. Collier, J.G. Convective Boiling and Condensation. McGraw-Hill, New York, N.Y., 2nd Ed. 1981 435 pp
- McAdams, W.H. Vaporization Inside Horizontal Tubes -II - BenzeneOil Mixtures. Trans, ASME, 64 193 (1942)
- Cicchitti, A. Two-phase Cooling Experiments Pressure Drop, Heat Transfer and Burnout Measurements. Energia Nucleare, 7 (6) 407-425 (1960)
- 10. Dukler, A.E. Pressure Drop and Hold-up in Two-phase flow Part A - A Comparison of Existing Correlations and Part B - An Approach Through Similarity Analysis. AIChE Journal, <u>10</u> (1) 38-51 (1964)
- 11. Lockhart, R.W. and Martinelli, R.C. Proposed Correlation of Data for Isothermal Two-phase Twocomponent Flow in Pipes. Chem.Eng.Prog., (45) 39 (1949)

- 113 -

- 12. Wallis, G.B. One-dimensional Two-phase Flow. McGraw-Hill, New York, N.Y., 1969 p 51
- 13. Johannessen, T. A Theoretical Solution to the Lockhart and Martinelli Flow Model for Calculating Two-phase Flow Pressure Drop and Hold Up. Int. J. Heat Mass Transfer, 15 1443-1449 (1972)
- 14. Friedel, L. Momentum Exchange and Pressure Drop in Two-phase Flow. Advanced Studies in Two-phase Flow, NATO Seminar, Istanbul, Turkey, 1977 p 263
- 15. Chisholm, D. The Influence of Mass Velocity on Friction Pressure Gradients During Steam-water Flow. Paper 35 presented at 1968 Thermodynamics and Fluid Mechanics Convention, Institute of Mechanical Engineers, Bristol, March 1968
- 16. Hasan, A.T.M.R. and E. Rhodes. Effect of Mass Flux and System Pressure on Two-phase Friction Multiplier. Chem. Eng. Comm. In press.
- 17. Shubri, M., R.J. Yandis and E. Rhodes. Effect of Heat Flux on Pressure Drop in Low-pressure Flow Boiling in a Horizontal Tube. The Can. J. of Chem. Engng., <u>59</u> April 149-154 (1981)
- Baroczy, C.J. A Systematic Correlation for Two-phase Pressure Drop. AIChE reprint 37 represented at 8th National Heat Transfer Conference, Los Angeles, August 1965
- 19. Wallis, G.B. One-dimensional Two-phase Flow. McGraw-Hill, New York, N.Y., 1969, p 262
- 20. Marchaterre, J.F. and B.W. Hoglund. Correlation for Two-phase Flow. Nucleonics, August 142 (1962)
- Collier, J.G. Convective Boiling and Condensation, McGraw-Hill, New York, N.Y., 2nd Ed. 1981, p 77
- 22. Wallis, G.B. One-dimensional Two-phase Flow. McGraw-Hill, New York, N.Y., 1969, pp 282-314
- 23. Ellis, S.R.M. and B. Gay The Parallel Flow of Two Fluid Streams - Interfacial Shear and Fluid - Fluid Interaction. Trans. Inst. Chem. Eng. (37) 206 (1959)
- 24. Krasiakova,L.Y. Some Characteristics of Movements of Two-phase Mixtures in a Horizontal Pipe. AERE-lib / Trans., 695 (1957)

- 25. Hewitt,G.F. and P.M.C.Lacey. The breakdown of the Liquid Film in Annular Flow. Int. J. Heat Mass Transfer, (8) 781-791 (1965)
- 26. Wallis, G.B. Vertical Annular Flow: I, A Simple Theory. II, Additional Effects. Papers presented at the annual meeting of the AIChE, Tampa, Florida, May 1968
- 27. Shearer, C.J. and R.M. Nedderman. Pressure Gradient and Liquid Film Thickness in Co-current Upwards Flow of Gas-liquid Mixtures: Application to Film-cooler Design. Chem. Eng. Sci., <u>20</u> 671-683 (1965)
- Levy, S. Prediction of Two-phase Critical Flowrate. J. Heat Trans., Series C, (87) 53 (1965)
- 29. Ghosal, S.K. and N. Sen. Prediction of Frictional Pressure Drop in Gas-liquid Annular Two-phase Flow. IE(I) Journal-CH (India), <u>61</u>, 44-47 Feb. (1981)
- 30. Wallis, G.B. One-dimensional Two-phase Flow. McGraw-Hill, New York, N.Y., 1969, pp 320-321
- 31. Wallis, G.B. One-dimensional Two-phase Flow. McGraw-Hill, New York, N.Y., 1969, p 326
- 32. Wallis, G.B. Discussion of Ref. 44. Intern. J. Heat Mass Transfer, (11) 783-785 (1968)
- 33. Steen, D.A. and G.B. Wallis. AEC Report NYO-3114-2, 1964
- 34. Levy, S. and J.M. Healzer. Application of Mixing Length Theory to Wavy Turbulent Liquid-gas Interface. Journal of Heat Transfer Transactions of the ASME, <u>103</u> Aug. 492-500 (1981)
- 35. U.K. Steam Tables in S.I. Units Edward Arnold Ltd. London, 1970
- 36. Wallis, G.B. One-dimensional Two-phase Flow.New York, N.Y., 1969 pp 49-55
- 37. Hasan, A.T.M.R. Low Pressure Boiling in Straight Tubes and a Bend. Ph.D. Dissertation, University of Waterloo, Ontario, Canada, 1979, p 86
- 38. Levy, S. and J.M. Healzer. Prediction of Annular Liquid-gas Flow with Entrainment. NP-1581, EPRI Research Project 1380-1, 1979