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ABSTRACT

Sports medicine specialists, researchers, and rehabilitation spe­

cialists are frequently concerned with quantifying muscular activity for 

the purpose of studying muscle function. Two instruments that are cur­

rently used are the Cybex II Isokinetic Unit and integrated electromyo­

graphy (IEMG). The Cybex measures torque and IEMG measures the neuro­

muscular activity associated with a contracting muscle.

When measuring muscle function on the Cybex and IEMG, one would 

not expect a linear relationship to exist between the two values if 

biomechanical, anatomical, and physiological factors are allowed to 

change. One would expect a linear relationship to exist if these fac­

tors were held constant.

The hypotheses were tested in a two part study using thirty female 

subjects. For the first phase, the subject was required to perform a 

maximal static exercise of knee extension for 10 seconds at 90°, 60°, 

30°, and 10° of knee flexion. Simultaneous readings of torque and IEMG 

were recorded for each contraction. There was no linear relationship 

between torque and IEMG at varying joint angles (r = -0.101),

For the second phase, the subject was required to perform a sub- 

maximal static exercise of knee extension for 10 seconds at 20 percent, 

40 percent, 60 percent, and 80 percent of their maximal torque produced 

at 60° of knee flexion in phase one. All measurements were taken with 

the knee at 60° of flexion, A linear relationship was found to exist

viii



between IEMG and torque of an isometric contraction when all biomechan­

ical, anatomical, and physiological factors were constant.

The Cybex II Isokinetic Unit and IEMG have both proven to be use­

ful tools in studies of human skeletal muscle. Under certain restricted 

conditions, the two evaluative tools tell us relatively the same thing 

about muscle activity. Under changing conditions, the two evaluative 

tools cannot be related.
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CHAPTER ONE

THE PROBLEM

Quantification of muscular activity is essential to researchers, 

rehabilitation specialists, and sports medicine specialists. Results 

of muscle testing provide information that: 1) enables the study of 

muscle function in various activities; 2) enables one to assess the 

degree of muscle injury; and 3) enables one to measure the amount of 

progress of an exercise program. Two instruments that are currently 

used are the Cybex II Isokinetic Unit and integrated electron\yography 

(IEMG). The Cybex measures torque (foot-pounds). Torque is defined 

as the force times the length of the arm on which it acts (Brunnstrom 

1972). The IEMG measures the amount of tension (micro-volts) produced 

in a given muscle. The EMG signal is the electrical manifestation of 

the neuromuscular activation associated with a contracting muscle.

A motor unit consists of the anterior horn cell of the spinal 

cord, the nerve fiber (axon) and the muscle fibers it innervates 

(Brunnstrom 1972). Muscles vary in innervation ratios (number of 

muscle fibers innervated by one nerve fiber) from 1:2000 (large limb 

muscles) to 1:6 (extraocular muscles). Muscles which function to 

control fine movements generally have small motor units while muscles 

responsible for gross motor activities have large motor units 

(Basmajian 1978). Motor units function according to the all or none 

law. The nerve fiber transmits a nerve impulse to the group of 

muscle fibers it innervates and the stimulated fibers contract

1
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simultaneously and completely. A stronger stimulus would not cause 

the muscle fibers to contract any further. The all or none law applies 

to the motor unit but not to the muscle as a whole (Mathews and Fox 

1976). The strength of a muscle contraction is graded by the size of 

the active motor units, the firing frequency of each active motor 

unit, and the number of motor units that are active. Basmajian re­

ports that in the normal pattern of recruitment, the small motor units 

are recruited initially followed by large motor units and as the force 

increases further, frequency of firing of all motor units occurs 

(Basmajian 1978).

The EMG signal is dependent on the number of active motor units, 

frequency of firing, and spike shape.

Torque is dependent on this neuromuscular activity plus bio­

mechanical, anatomical, and physiological factors. These factors are 

line of action of the muscle over the joint (this changes as movement 

occurs), angle of insertion, cross section of the muscle, functional 

excursion, relative length of the muscle, and speed of contraction.

When measuring muscle function on the Cybex and integrated 

electromyography, one would not expect a linear relationship to exist 

between the two values if biomechanical, anatomical, and physiological 

factors are allowed to change. One would expect a linear relationship 

to exist if these factors were held constant.

This paper is a report on the study of the relationship between 

integrated electromyography (IEMG) and torque as measured on the Cybex. 

Part one deals with the relationship when biomechanical, anatomical, 

and physiological factors are manipulated. Part two reports on the 

relationship when these factors are constant.



CHAPTER II

REVIEW OF THE LITERATURE

There is a vast amount of literature on electromyography and 

torque. This paper deals only with the study of muscle function dur­

ing isometric contractions at varying joint angles and at varying 

intensities of force. Therefore, the review of the literature will 

be limited to the effect of varying the joint angle on EMG and torque 

and the relationship of muscle tension (force) and EMG. The literature 

cited here were chosen because they were studies done using similar 

equipment or the same exercise (knee extension). Some pieces described 

the methodology of EMG definitively and established what EMG measures. 

Others explained biomechanical, anatomical, and physiological factors 

and how the EMG signal and torque are affected by them,

Effect of Varying the Joint Angle 
on EMG and Torque

Several investigators have concluded that no constant relation 

exists between force and EMG in a muscle when it is allowed to change 

in length. Given a maximal contraction of a muscle in a shortened 

position, the muscle force is small, while the electrical activity is 

high. The opposite is true of a muscle in the stretched position; i.e., 

the force is greater, while the EMG is reduced. Leverage factors 

change the muscle force as the joint angle changes and further compli­

cates the relationship between force and EMG.

3
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Lunnen, et al. examined the relationship between integrated EMG 

activity, torque, and length of human biceps femoris muscle during the 

isometric contraction while the knee joint angle remained constant 

(Lunnen, Yack and LeVeau 1981). Changes in muscle length were produced 

by changes in hip joint angle. Twelve females and four males were in­

volved. Torque measurements were provided by a force dynamometer incor 

porated within the Cybex II System. The EMG activity was processed by 

telemeter EMG equipment designed and constructed at the University of 

North Carolina School of Medicine. Surface electrodes were used to 

pick up the signal. Their results indicated: (1) EMG activity de­

creased as the muscle lengthened and (2) the torque increased as the 

muscle length increased.

Moritz, et al. studied nineteen healthy subjects in an attempt to 

analyze the relative influence of motor unit activity, muscle force 

lever, and muscle length on the torque of the knee extensor muscle 

group at different joint angles (Moritz, Svantesson and Haffajee 1973). 

They report that the relative muscle length of the quadriceps is direct 

ly proportional to the flexion angle. The IEMG, the strain gauge ten­

sion, and the joint angle were recorded simultaneously by a 4-channel 

Mingograph. Measurements were taken at 10°, 30°, 50°, 70°, and 90° of 

knee flexion. In the first part of their study, knee extensor torque 

and EMG were recorded during maximum voluntary isometric contraction. 

They observed peak torque at 50° of flexion, a reduction of 50 percent 

of maximum value at 10° and a scattering of values at 90°. They found 

the curve of the IEMG to show an increase from 10° to 90°. In the 

second part, a measurement of torque was taken at a constant, submaxi- 

mal EMG output. They found that the average torque curve differed
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little from that of maximum voluntary effort. Since the myoelectrical 

output was constant, the shape of the torque curve was attributed to 

variations of the lever and of the muscle length. This group conducted 

the same experiment on sixteen subjects who had the patella removed on 

one side. They found the torque these subjects produced on knee exten­

sion was considerably reduced between 20° and 60°. They concluded that 

the patella has its greatest importance for the lever length of the 

muscle force within this range.

Williams and Stutzman measured the torque curves of ten subjects 

for knee extension at 30° increments. The mean peak torque was at 60° 

followed by 90° (Williams and Stutzman 1959). They concluded that the 

length-tension factor was far more important than muscle lever length 

for the quadriceps.

A group of investigators have studied the relationship between 

muscle tension and EMG in amputees having cineplastic muscle tunnels 

using a strain-gauge dynamometer and integrated electromyography (Inman, 

Ralston, Saunders, Feinstein and Wright 1952). This procedure enabled 

them to observe the length-tension phenomenon of muscle without lever­

age complications. They stated that because the tension developed by a 

muscle varies with the length of the muscle, one should not expect any 

parallelism between EMG and force with varying lengths of muscle. They 

found that the amplitude of EMG decreases and the tension is greater 

when the muscle is stretched. When the muscle is short, the force is 

small and the EMG is maximal. They stated that this lack of a constant 

relationship between tension and EMG in a muscle changing in length is 

due to the existence of the length-tension relationship in muscle and 

to factors not yet explained.
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In 1959, a group of researchers reported on a series of experi­

ments they conducted to test the hypothesis that a major factor in pro­

ducing the lower EMG in the lengthened muscle is the initiation of 

inhibitory afferent impulses from tendon organs of the stretched muscle 

(Libet, Feinstein and Wright 1959). They examined the effect of the 

muscle length on the maximal voluntary EMG in normal subjects before and 

after anesthetizing the tendon below the musculo-tendinous junction.

They also compared the maximum voluntary EMG's of patients with degen­

eration of afferent fibers from the muscle (tabes dorsalis) with the 

EMG's of normal subjects. They found that tendon anesthesia eliminated 

the decrease in EMG that normally occurs in a stretched muscle, there­

fore supporting their hypothesis. The patients with tabes dorsalis 

further supported the role of afferents in inhibiting impulses from a 

stretched muscle. The EMG in the lengthened position was much closer 

to the EMG in the intermediate and short position in these patients.

Relation of Isometric Contraction 
(Tension) and EMG

Several investigators have concluded from their research that the 

electrical output as revealed by IEMG closely parallels the tension in 

a giyen muscle contracting isometrically.

Moritani and deVries examined the relationship between the sur­

face integrated electromyogram (IEMG) and force of isometric contrac­

tion (Moritani and deVries 1978). They were concerned with these four 

problems of previous research using IEMG. (1) lack of standardization 

of experimental methods and procedures, (2) inadequate control of the 

fatigue factor, (3) small movements at the joint allowing for systemat­

ic shortening of the muscle during "isometric" contraction, and (4) co­
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contraction. By controlling these factors and clearly defining the ex­

perimental conditions, they observed a linear relationship between IEMG 

and isometric force. They tested twenty-six young healthy males across 

the entire domain of forces in the elbow flexor group. The force of 

contraction was established by a hydraulic dynamometer. EMG activity 

was monitored using unipolar surface electrodes with an integration 

period of one second.

Inman, et al. observed a parallelism between the integrated EMG 

and tension during isometric contractions of a muscle (Inman, et al. 

1952). They repeatedly observed this phenomenon in the pectoral, tri­

ceps, and forearm muscles of eleven subjects with cineplastic tunnels. 

The muscle had been freed from its insertion and attached to a dynamo­

meter which measured the tension of voluntary isometric contractions. 

They concluded that the integrated EMG may be used as an index of de­

veloped tension when all electrical factors are kept constant and the 

contraction is isometric,

Lippold conducted thirty experiments on different subjects and 

found the relationship between isometric tension of a voluntarily- 

contracting human muscle and its integrated electromyogram to always be 

directly linear (Lippold 1952). He studied the gastrocnemius-soleus 

group. Muscle strength was measured with a dynamometer while simulta­

neous electromyograms were recorded by means of an amplifier and 

cathode-ray oscillograph. Recordings were taken at ten different 

strengths of contractions. Integrated electrical output and the 

strength of contraction of a muscle both increase as the number of 

active motor units increase and as the frequency at which these units 

repetitively contract increases,

t t  & * m .



CHAPTER III

METHODOLOGY

Subjects

Thirty female subjects ranging in age from 18 to 28 with an 

average age of 21.8 years participated in the study. Most of the sub­

jects were involyed in collegiate track, cross-country, or field 

hockey teams. All of them exercised routinely. The mean height of 

the subjects was 65.8 inches with a range of 62 inches to 72.5 inches. 

The mean weight was 127.9 pounds with a range of 106 pounds to 157 

pounds. Anthropometric data for the subjects are included in table 

6 of the Appendix. They had no demonstrable defects in muscle function.

Instrumentation

The torque measurements were provided and recorded using the 

Cybex II Isokinetic Unit. The Cybex II measures dynamic or isometric 

strength at every point in the range of motion by providing an auto­

matic accommodating resistance against a lever moving at a controlled 

velocity (degrees/second). Resistance is equal to the force exerted 

by the subject at every point in the range of motion. A dual channel 

recorder consisting of a dynamometer and electrogoniometer provides 

a continuous printout of the torque (foot-pounds) and the joint angle 

of the limb being tested. The Cybex II was calibrated according to 

manufacturer's instruction (Isolated 1980). Calibration was done 

before testing, after every five subjects, and randomly throughout

8
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the study. Pre-calibrated lead weights were used to calibrate the 

torque scale.

The EMG signal was amplified by a Cyborg J33 biofeedback unit. 

The J33 served as a pre-amplifier for the BL900 Processor. The BL900 

was used to integrate the raw EMG. This process provides a value for 

the total area under the EMG curve and plots this area against time 

(McLeod 1973). The IEMG is a good index to the raw EMG, but it does 

not differentiate between increased frequency and increased amplitude 

(Hall 1970). A meter provided a direct reading of the integrated EMG 

in micro-volts. The shortest integration period on the BL900 is ten 

seconds. The BL900 integrator was calibrated using a ten micro-volt 

peak-to-peak sine wave current. Calibration was done before initial 

testing, after every five subjects, and randomly throughout the study.

Beckman silver-silver chloride ten millimeter surface electrodes 

were used to pick up the electrical changes in the muscle. Bouisset 

and Maton demonstrated that surface electrodes correlate well with 

intramuscular electrodes when measuring muscle tension (Bouisset and 

Maton 1972).

Procedure

A pilot study was done to check if fatigue was a factor in this 

study. Several investigators have found that the relation between EMG 

and isometric tension changes during fatigue (Edwards and Lippold 1956, 

Basmajian 1978). Although it remains linear, the slope of the line in­

creases, Using shorter rest periods in the pilot study than were used 

in the experiment, there was no evidence that fatigue affected the 

results.
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Each subject was introduced to the equipment and the testing 

procedure was explained before subject preparation began. Informed 

consent was obtained. The subjects were dressed in gym shorts and 

shoes were removed. The procedure was standardized by taking all the 

measurements on the subject's right knee. This also eliminated the 

need to move the equipment between subjects, The subject was posi­

tioned on the Cybex according to protocol for knee extension exercises 

(Isolated 1980). The axis of the knee joint was aligned with the dyna­

mometer input shaft and the shin pad was attached above the subject's 

ankle joint. The position angle channel was then synchronized with the 

subject's anatomical position. Pelvic, torso, and thigh stabilization 

straps were applied. The experimental set-up is shown in figure 1.

The motor point of the rectus femoris muscle was located using an 

electrical galvanic stimulator. The skin was prepped using sand paper 

and acetone to decrease skin resistance, Impedance was reduced to less 

than 4,200 ohms in all cases. The surface electrodes were filled with 

redux paste and attached to the skin with electrode adhesive discs 

longitudinally over the muscle belly 2 centimeters apart and equidis­

tant from the motor point. The ground electrode was placed medial to 

them, The electrodes were left in place for the entire procedure. 

Electrode placement is pictured in figure 2.

For the first phase of the experiment, the subject was required 

to perform a maximal static exercise of knee extension for 10 seconds 

at 90°, 60°, 30°, and 10° of knee flexion. The lever arm was adjusted 

to the appropriate knee angle by reading the joint position scale on 

the printout. The speed selector was set at 0° per second to provide 

an immovable resistance to knee extension. The subject was given two
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Fig. 1. The experimental set-up

Fig. 2. Position of recording electrodes on 
the right thigh
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submaximal trials at each angle to familiarize themselves with the 

equipment and procedure. The subject was then instructed to push as 

hard as possible until told to stop. There was a three-minute rest 

between contractions and a ten-minute rest between the two phases of 

the experiment to control the fatigue factor. Simultaneous readings of 

torque and IEMG were taken and recorded for each contraction.

For the second phase, the subject was required to perform a sub- 

maximal static exercise of knee extension for 10 seconds at 20 percent, 

40 percent, 60 percent, and 80 percent of their maximal torque produced 

at 60° of knee flexion in phase one. The equipment set-up remained the 

same. The subject's position was unchanged with the exception that all 

measurements were taken with the knee at 60° of flexion. Previous 

studies have demonstrated that the isometric torque curve peaks at 60° 

of flexion for the quadriceps (Williams and Stutzman 1959 and Mendler 

1967). The percentage of torque for each intensity was calculated.

The subject was instructed to watch the dynamometer and to keep the 

needle deflection at the indicated level until told to relax. The dyna­

mometer dial was marked at 12 foot-pound increments. This created a 

margin of error when the subject was asked to produce a specific force. 

Again, there was a three-minute rest period between contractions. The 

IEMG was read and recorded for each contraction.



CHAPTER IV

RESULTS

The null hypotheses state:

1. There is no linear relationship between IEMG (micro-volts) 

and torque (foot-pounds) of the static contractions of the rectus 

femoris muscle at varying joint angles

2. In the variation of range of intensity of contraction of 

the rectus femoris muscle, there is no linear relationship between 

IEMG and torque

The .05 level of significance was established.

The raw data for each subject are given in tables 7 and 8 of the 

Appendix. Phase one and phase two of the experiment were analyzed 

separately. Descriptive and inferential statistics were computed to 

aid in interpretation of the data (means, standard deviations, Pear­

son's product-moment correlation) (SAS 1982).

The mean torque and IEMG values recorded during phase one from 

the static knee extension exercise at four different knee angles are 

presented in table 1.

13
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TABLE 1--Descriptive Statistics for Torque and IEMG of a Maxi­
mal Static Knee Extension Exercise for Thirty Subjects at 90°, 

60°, 30°, and 10° of Knee Flexion

Angle Foot-Pounds Micro-Volts

X S Range X S Range

90° 100.20 21.37 71-170 148.30 36.03
1

90-218

oo

108.93 17.43 66-144 167.37 48.64 55-255

30° 65.80 13.88 48-117 180.53 53.61 72-310

o o 35.60 9.00 21- 63 186.60 51.65 88-310

The greatest torque was produced at 60° (108.93 ft-lbs) followed 

by 90° (100.20 ft-lbs) and 30° (65.80 ft-lbs) respectively. The lowest 

mean torque was recorded at 10° (35.60 ft-lbs), while the highest mean 

electrical activity was measured at 10° (186.60 yV). The smallest 

amount of electrical activity was produced at 90° (148.30 V) followed 

by 60° (167.37 yV) and 30° (180.53 yV) respectively. A graph of these 

mean values is depicted in figure 3.

A Pearson product-moment correlation was employed for analysis of 

the relationship between the torque and the IEMG at four different 

joint angles and between torque and angle and between IEMG and angle. 

The results of this analysis are presented in tables 2 and 3.
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TABLE 2--Results of the Pearson Product-Moment Statistical Analysis of 
the Torque and IEMG Measurements of the Static Contraction of the Rec­

tus Femoris Muscle at Four Different Knee Angles

All Angles vo o o 60° CJ O o 10°

r -0.10105 0.09521 0.36664 0.19845 0.26012

r2 0.01021 0.00906 0.1344 0.03938 0.06766

P 0.2721 0.6167 0.0463 0.2931 0.1651

Significance NS NS Si g NS NS

TABLE 3--Matrix Demonstrating the Correlation (r) 
Between Angle and Torque, Angle and Micro-Volts, 

and Torque and Micro-Volts

Angle Torque Micro-Volts

Angle 1.0 r = 0.779
p = .0001

r = -0.291
p = .0012

Torque 1.0 r = 0.101 
p = .2721

Micro-Volts 1.0

For the four measured points (90°, 60°, 30°, 10°) through the

range of motion, the r = -0.10105 and the coefficient of determination
o

(r ) was .01021, thus 1.02 percent of the variance in the torque was 

accountable from the variance in the IEMG (p = .2721). The correlation 

between torque and joint angle was calculated to be 0.779 (p = .0001). 

Sixty-one percent of the variance in the torque was accountable from
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the variance in the joint angle. The correlation between IEMG and 

joint angle was calculated to be -0.291 (p = .0012). Thus the null 

hypothesis of no relationship between torque and IEMG of the isometric 

contractions of the rectus femoris muscle at varying knee joint angles 

was accepted.

The correlation between torque and IEMG was calculated for each 

angle separately. At 90° of knee flexion, the r = 0.09521 and r2 =

.90 percent. At 60°, the r = 0.36664 and r2 = 13.44 percent. At 30°, 

the r = 0.19845 and r2 = 3.94 percent. At 10°, the r = .26012 and r2 = 

6.77 percent. Even though the correlation is statistically significant 

at 60° (p = 0.0463), 86.56 percent of the variance is unrelated to 

changes in either variable and for practical purposes a relationship 

between torque and IEMG does not exist at this angle.

The mean torque, IEMG, and percent of maximum IEMG recorded dur­

ing phase two from the rectus femoris muscle while contracting iso- 

metrically at five different intensities of force are presented in 

table 4.
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TABLE 4--Descriptive Statistics for Torque and IEMG at Five Intensi­
ties of Isometric Contractions of the Rectus Femoris Muscle at 60° of

Knee Flexion for Thirty Subjects

% Max Torque* IEMG+ % Max*
Torque (ft-lbs) S Range (vV) S Range IEMG S Range

20% 21.77 3.45 13.20- 42.60 16.80 19.00- 25.69 6.41 11.67-
28.60 79.00 37.62

40% 43.57 6.97 26.40- 63.63 19.95 30-105 38.76 7.32 22.78-
57.60 54.55

60% 65.36 10.46 39.60- 96.37 29.84 42-145 58.51 10.19 36.11-
86.40 77.01

80% 87.15 13.94 52.80- 129.97 37.11 53-185 78.96 11.61 51.11-
115.20 96.88

100% 108.93 17.43 66 - 167.37 48.64 55-255 100.00 0.00 100 -
144 100

Calculated
"hneasured

At 20 percent of maximum torque, the mean percent IEMG was 25.69 

percent. At 40 percent of maximum torque, the mean percent IEMG was 

38.76 percent. At 60 percent of maximum torque, IEMG was 58.51 per­

cent. And at 80 percent of maximum torque, the mean percent IEMG was 

78.96 percent. The 100 percent values were taken from the maximum 

effort at 60° of knee flexion position in phase one of the experiment. 

These values were used to calculate the other percentages. This rela­

tionship is depicted in figure 4,

A Pearson product-moment correlation was employed for analysis of 

the relationship between the torque (independent variable) and the IEMG
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Fig. 4. Relationship of mean percent torque to mean percent 
IEMG at five intensities of static contractions of the rectus femor- 

is muscle at 60° of knee flexion for thirty subjects
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(dependent variable) at five different intensities of isometric con­

traction. The results of this analysis are presented in table 5.

TABLE 5--Results of the Pearson Product-Moment Statistical Analysis of 
the Torque and IEMG Measurements of Five Intensities of Force of the 
Static Contractions of the Rectus Femoris Muscle at 60° of Knee Flexion

For Thirty Subjects

All * 
Ranges

★
20%

*
40%

*
60%

★
80%

*
100%

All + 
Ranges 

(%)

r 0.83037 0.28524 0.30092 0.33595 0.34187 0.36664 0.95440

r2 .6895 .0814 .0906 .1129 .1169 .1344 .9109

P 0.0001 0.1265 0.1061 0.0695 0.0644 0.0463 0.0001

Signi­
ficance Sig NS NS NS NS Sig Sig

*results using raw data
+results using percent torque:percent IEMG

Over the range of intensities of force (20%-100%) for the calcu-
2

lated torque and the measured IEMG, the r = .83037 and r was .6895,

thus 68.95 percent of the variance in the IEMG was accountable from the

variance in the torque (p = .0001). The analysis of the relationship

between percent IEMG and percent torque over the range of force intensi-
2

ties presented an r = .95440 and r = .9109. Therefore, 91.09 percent 

of the variance in the percent IEMG was accountable from the variance 

in the percent torque (p = .0001). The null hypothesis was rejected.

The alternate hypothesis states that: In the variation of the range of 

intensity of contraction of the rectus femoris muscle, there is a
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linear relationship between IEMG and torque, percentages being a 

stronger indicator than raw values.

The correlation between torque and IEMG was calculated for each 

intensity (20%, 40%, 60%, 80%, and 100%) separately. The p values 

demonstrate that there is no significant relationship between IEMG and 

torque at 20, 40, 60, and 80 percent of intensity. The p value of .05 

for 100 percent intensity showed statistical significance, but because 

this value was taken from the measurements done in part one and not 

actually measured in part two of the study, it is inappropriate to 

place significance on this value. Therefore, knowledge of the value of 

one measurement at one intensity is not a good predictor of the other 

value at that intensity.



CHAPTER V

DISCUSSION AND CONCLUSIONS

The torque curve of the knee extensors produced by a maximal iso­

metric contraction at 90°, 60°, 30°, and 10° of knee flexion is typical 

of those found by other investigators (Moritz, et al. 1973 and Williams 

and Stutzman 1959 and Mendler 1967 and Smidt and Rogers 1982). The tor­

que curve peaks at 60° of flexion and is lowest at complete extension. 

Active contractile and passive elements of force production and bio­

mechanical factors account for these results.

In the lengthened position, the actin-myosin relationship is opti­

mal. As a muscle shortens, the myofilaments extent of movement becomes 

limited resulting in relatively less tension in the muscle (Poland,

Hobart and Payton 1981). Shortening the muscle decreases the efficien­

cy of the muscle fibers.

As a muscle is lengthened, the parallel elastic components are 

placed on stretch. As a muscle decreases in length, the passive ten­

sion is decreasing. This property of muscle passively produces increased 

force with stretch.

The force a muscle can generate is equal to the sum of the active 

contractile and passive elements. The length-tension relationship of 

muscle and the elastic component are both affected in a positive direc­

tion for the rectus femoris as the angle of the knee increases. The 

knee joint is unique because of the patellar mechanism. At 60° of

22
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flexion, the patella lifts the tendon of insertion away from the joint 

axis, thereby improving the leverage. This factor takes away from a 

direct linear relationship between joint angle and torque at the knee 

joint. Regardless, the two factors have a fair correlation (r = 0,78).

The maximum IEMG curve of the rectus femoris showed the highest 

electrical record at 10° of knee flexion and the lowest value at 90°.

The contributing factors of these results are the length-tension re­

lationship and innervation from Golgi tendon organs.

As explained earlier, the muscle is less efficient in the short­

ened position. This may have caused increased recruitment and increased 

frequency of firing of the motor units. Even though all the contrac­

tions were maximal, the subjects routinely stated that the 30° and 10° 

positions were "more difficult" than the 60° and 90° positions.

The Golgi tendon organs have an inhibitory effect on muscle ten­

sion in a lengthened muscle. This afferent sensory ending responds to 

the stretch stimulus by causing autogenic inhibition accompanied by ex­

citation of the antagonist (Poland, et al. 1981).

While the passive property of muscle causes increased torque in 

the lengthened position, it has no effect on the electrical record.

Because the factors affecting torque values and IEMG values are 

varied and sometimes opposing, one would not expect the two values to 

be correlated. This study was in agreement with other studies in that 

there was no significant relationship between IEMG and torque at dif­

ferent joint angles (Lunnen, et al, 1981 and Inman, et al. 1952 and 

Moritz, et al. 1973 and Libet, et al. 1959).

The low correlation between IEMG and torque at each angle sug­

gests that one value cannot be used to predict the other value, The
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correlation between angle and IEMG was very low and negative, IEMG is 

not a constant value to be used for direct comparisons between subjects, 

or between muscles, or even of the same muscle on another day if the 

electrodes have been removed. IEMG values are affected by the size of 

the surface electrodes, distance between electrodes, exact placement 

over a large or small motor unit, and skin impedance (Hall 1970 and 

Vredenbregt and Rau 1973). The large standard deviations of the micro­

volt values reflect the variability of this value between subjects who 

are relatively similar in size and strength.

The results indicate that when all the biomechanical and physio­

logical factors of torque are held constant, a linear relationship 

exists between torque and IEMG. Three things happen as the force of 

contraction increases: (1) recruitment of additional motor units, (2) 

increased frequency of firing of motor units, and (3) summation of con­

traction to produce some degree of tetanus (Poland, et al. 1981).

Since the EMG signal is the electrical manifestation of the neuromuscu­

lar activation associated with a contracting muscle, one could expect 

that as the isometric force increases, the EMG would increase at a 

similar rate.

The study showed the greatest increase in IEMG from 0 percent to 

20 percent of maximum torque, the least increase between 20 percent to 

40 percent, and a steady moderate increase from 40 percent to 100 per­

cent. As referred to in the methodology section, there was a margin of 

error (approximately tl-3 ft-lbs) in producing the percentage of maxi­

mum torque by reading the dynamometer dial. This would affect the re­

lationship at the lower end of the scale more than the upper end. It 

has been explained that at low force levels, recruitment proved to be
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the major mechanism of increasing force. Increased frequency proved to 

be responsible for the coarser adjustments that are made at higher 

force levels (Milner-Brown, Stein and Yemm 1973).

If the raw values of both factors at a given intensity of con­

traction were known, the raw values for all other intensities could be 

predicted with reasonable accuracy.

However, knowledge of either the IEMG or torque value at one in­

tensity is not a good predictor of the other value at that intensity. 

Again, this is due to the lack of a constant value for IEMG.

Since the maximum force level is accompanied by less integrated 

EMG activity than at other positions, this raises a clinical question. 

Can the desired training effect be accomplished most efficiently when 

the muscle develops the most torque (lengthened position) or where the 

muscle develops the most EMG activity (shortened position)? Further 

research is indicated to answer this question.

This project studied muscles contracting isometrically. The 

effect of properties of muscle such as isotonic contraction, speed of 

contraction, work, and power on the relationship between IEMG and tor­

que would be of interest to study.

In situations where energy conservation is a factor (neurologi­

cal patients, respiratory patients, industrial workers), modifying 

the task so that the person can produce the greatest torque with the 

least amount of muscular activity would be beneficial. Considering 

the results of this study, some principles for work simplification 

could be established.

The Cybex II Isokinetic Unit and IEMG have both proven to be 

useful tools in studies of human skeletal muscle. Under certain res­
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tricted conditions, the two evaluative tools tell us relatively the 

same thing about muscle activity. Under changing conditions, the two 

evaluative tools cannot be related.



SUMMARY

Torque and IEMG measurements were recorded from the rectus 

femoris muscle on thirty active female subjects. The Cybex II Iso­

kinetic Unit monitored torque while a Cyborg J33 biofeedback unit and 

a BL900 Processor monitored electrical activity of the exercising 

muscle. A maximal static exercise at 90°, 60°, 30°, and 10° of knee 

flexion of the rectus femoris was tested. There was no linear rela­

tionship between torque and IEMG at varying joint angles (r = -0.10105).

The relationship between torque and IEMG was studied with the 

knee in 60° of flexion— keeping all biomechanical, anatomical, and 

physiological factors constant. The IEMG was monitored over the range 

of intensity of contraction (20%, 40%, 60%, 80%, and 100% of maximum 

torque). A linear relationship was found to exist between IEMG and 

torque of an isometric contraction (r = 0.95440).

27
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TABLE 6

ANTHROPOMETRIC DATA OF THE SUBJECTS

SI S2 S3 S4 S5 S6 S7 S8 S9 S10

Age 22 20 18 21 22 23 21 27 24 21

Height
(inches) 64 62.5 65.5 68 70.5 62.5 65.5 65 67 72.5

Weight
(pounds) 112 130 106 137 149 115 125 125 115 157

Sll SI 2 S13 SI 4 SI 5 S16 S17 S18 S19 S20

Age 23 21 22 24 27 28 20 20 20 23

Height
(inches) 68 70.5 62.5 64 66 63 69 67 65.5 65

Weight
(pounds) 130 139 117 115 130 116 130 127 148 130

S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

Age 21 23 21 21 21 21 19 21 21 18

Height
(inches) 68 63 65 65 65 62 68 65 66 64

Weight
(pounds) 125 116 127 135 115 149 135 135 130 119
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TABLE 7

RAW SUBJECT DATA FOR PHASE ONE OF THE EXPERIMENT

Subject

90°

ft-lbs yV

6 O1

ft-lbs

0

yV

30

ft-lbs

0

yV

10°

ft-lbs yV
Impedence
(ohms)

S 1 129 145 117 165 60 240 36 240 730
S 2 129 185 102 240 55 250 36 280 1320
S 3 71 100 92 138 80 160 42 180 1000
S 4 96 138 124 175 67 190 34 190 720
S 5 116 105 120 100 69 140 48 170 800
S 6 88 135 117 180 60 170 27 197 660
S 7 96 115 102 145 58 155 28 155 1400
S 8 77 90 100 87 67 110 36 115 800
S 9 81 90 66 55 48 72 23 88 1250
S10 170 150 144 155 85 150 36 150 2900
Sll 104 155 141 185 117 190 63 175 1200
S12 98 190 129 255 79 260 46 265 2900
SI 3 92 155 102 215 60 285 37 295 1900
S14 102 137 113 143 60 170 30 160 2600
SI 5 92 195 94 200 52 210 21 200 1800
SI 6 99 138 80 110 64 152 40 160 775
S17 100 180 105 210 60 210 30 200 1700
S18 71 145 108 165 70 195 41 190 2400
S19 124 100 110 113 61 120 28 143 4200
S20 80 170 120 215 60 155 38 165 1100
S21 115 170 143 218 90 310 48 310 1200
S22 103 145 95 180 54 185 37 180 3500
S23 122 180 110 185 58 157 27 170 2200
S24 95 190 114 160 66 160 38 195 730
S25 81 175 90 217 55 220 25 195 830
S26 92 96 102 105 62 130 35 135 1200
S27 76 155 115 205 78 165 46 165 650
S28 110 218 113 190 67 215 37 220 1200
S29 117 105 107 110 59 100 31 110 4000
S30 80 197 93 200 53 190 24 200 830



RAW SUBJECT DATA FOR

20% 40%
Subject Torque yV %EMG Torque yV %EMG

S 1 23.4 40 24.24 46.8 69 41.82
S 2 20.4 59 24.58 40.8 105 43.75
S 3 18.4 40 28.99 36.8 56 40.58
S 4 24.8 44 25.14 49.6 77 44.00
S 5 24.0 31 31.00 48.0 45 45.00
S 6 23.4 30 16.67 46.8 59 32.78
S 7 20.4 37 25.52 40.8 60 41.38
S 8 20.0 31 35.63 40.0 46 52.87
S 9 13.2 19 34.55 26.4 30 54.55
S10 28.2 28 18.06 57.6 48 30.97
Sll 28.2 49 26.49 56.4 71 38.38
S12 25.8 65 25.49 51.6 90 35.29
S13 20.4 48 22.33 40.8 70 32.56
S14 22.6 28 19.58 45.2 59 41.26
SI 5 18.8 51 25.50 37.6 70 35.00
S16 16.0 27 24.55 32.0 49 44.55
SI 7 21.0 79 37.62 42.0 105 50,00
S18 21.6 37 22.42 43.2 52 31.52
S19 22.0 32 28.32 44.0 40 35.40
S20 24.0 39 18.14 48.0 62 28.84
S21 28.6 78 35.78 57.2 92 42.20
S22 19.0 21 11.67 38.0 41 22.78
S23 22.0 34 18.38 44.0 58 31.35
S24 22.8 43 26.88 45.6 68 42.50
S25 18.0 47 21.66 36.0 65 29.95
S26 20.4 22 20.95 40.8 36 34.29
S27 23.0 61 29.76 46.0 80 39.02
S28 22.6 61 32,11 45.2 80 42.11
S29 21.4 25 22.73 42.8 37 33.64
S30 18.6 72 36.00 37.2 89 44.50

TABLE 8

PHASE TWO OF THE EXPERIMENT

60% 80% 100%
Torque yV %EMG Torque yV %EMG Torque yV %EMG

70.2 110 66.67 93.6 140 84.84 117 165 100
61.2 135 56.25 81.6 185 77.08 102 240 100
55.2 82 59.42 73.6 97 70.29 92 138 100
74.4 105 60.00 99.2 135 77.14 124 175 100
72.0 70 70.00 96.0 88 88.00 120 100 100
70.2 78 43.33 93.6 99 55.00 117 180 100
61.2 93 64.14 81.6 130 89.66 102 145 100
60.0 67 77.01 80.0 80 92.00 100 87 100
39.6 42 76.36 52.8 53 96.36 66 55 100
86.4 72 46.45 115.2 99 63.87 144 155 100
84.6 115 62.16 112.8 145 78.38 141 185 100
77.4 130 50.98 103.2 185 72.55 129 255 100
61.2 115 53.49 81.6 160 74.42 102 215 100
67.8 86 60.14 90.4 135 94.41 113 143 100
56.4 120 60.00 75.2 175 87.50 94 200 100
48.0 61 55.45 64.0 89 80.91 80 110 100
63.0 142 67,62 84.0 177 84.29 105 210 100
64.8 90 54.55 86.4 137 83.03 108 165 100
66.0 63 55.75 88.0 105 92,92 110 113 100
72.0 88 40.93 96.0 142 66.05 120 215 100
85.8 145 66.51 114.4 185 84.86 143 218 100
57.0 65 36.11 76,0 92 51,11 95 180 100
66.0 87 47.03 88.0 120 64.86 110 185 100
68.4 105 65.63 91.2 155 96.88 114 160 100
54.0 105 48.39 72.0 155 71.43 90 217 100
61.2 59 56,19 81,6 72 68,57 102 105 100
69.0 142 69.27 92,0 160 78.05 115 205 100
67.8 127 66.84 90.4 150 78.95 113 190 100
64.2 55 50.00 85.6 94 85.45 107 110 100
55,8 137 68,50 74.4 160 80.00 93 200 100
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