UND

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

5-1-1993

Optimization of Great Plains Coal Gasification Using Aspen/SP

Bradley C. Carpenter

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Carpenter, Bradley C., "Optimization of Great Plains Coal Gasification Using Aspen/SP" (1993). *Theses and Dissertations*. 1115. https://commons.und.edu/theses/1115

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

OPTIMIZATION OF GREAT PLAINS

COAL GASIFICATION USING ASPEN/SP

by

Bradley C. Carpenter Bachelor of Science University of Minnesota, 1989

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May 1993

This thesis, submitted by Bradley C. Carpenter in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

John Erjavec_____ (Chairperson) Thema C. Queus____ N. S. Grewal

This thesis meets the standards for appearance, conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

Graduate Dean of the 4-23-93

PERMISSION

 Title
 Optimization of Great Plains Coal Gasification Using ASPEN/SP

 Department
 Chemical Engineering

 Degree
 Master of Science

In presenting this thesis in partial fulfillment of the requirement for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work, in his absence, by the chairperson of the department or the dean of Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Signature Bradley Campen Date

iii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS	vi
LIST OF TABLES	/iii
ACKNOWLEDGEMENTS	ix
ABSTRACT	x
CHAPTER	
I. INTRODUCTION	1
Coal as an Energy Alternative	1
Methane Production in North Dakota	3
Producing Electricity From Coal Gasification	4
II. BACKGROUND	6
The Gasification Plant	6
Great Plains ASPEN Model Development	6
GPGP Optimization and ERNIE Tests	7
III. MODEL DESCRIPTION	9
Lurgi Gasifier Configuration	9
Downstream Operations	11
RGAS model	11 12 16

IV.	COMPUTER SIMULATION	25
	ASPEN/SP	25
	Verification of Equilibrium Constants	26
	Input Adjustment	28 29 32 33 34 35 36
V.	MODEL PREDICTIONS	38
	ASPEN/SP Simulation Results Initial Optimization Optimization With Conversion to Wet Basis Predictions With Specific Heat Adjustment	38 38 40 42
	Gasifier Model Equations	44
	Discussion of Results Ultimate Prediction Levels Impacts of Operating Variables RGAS Convergence Scheme	48 48 53 53
VI.	HEAT OF DEVOLATILIZATION	56
	Experimental	56
	Energy Balance	57
	Results	61
	Discussion	64
VII.	CONCLUSIONS AND RECOMMENDATIONS	68
APP	ENDICES A. ASPEN/RGAS Input File B. Hooke Jeeves Searches C. Box-Behnken Simulation Predictions D. Elemental Mole Balance on Volatile Matter E. DSC Results OF REFERENCES	71 140 150 156 165 193

LIST OF ILLUSTRATIONS

FIGURE

1	U.S. Energy Consumption By Source	1
2	Lurgi Pressurized Gasifier	10
3	Process Zones and Temperatures in Lurgi Gasification	17
	Reaction Model Equilibrium Constants:	
4	Steam-Carbon Reaction	28
5	Bouduard Reaction	28
6	Hydrogasification Reaction	28
7	Water-Gas Shift Reaction	28
8	Temperature Profile Predictions in Gasifier Reaction Zone	43
9	ASPEN/RGAS Convergence Scheme	55
10	Linear Temperature Ramp Thermo-Gravimetric Analysis	60
11	Raw Differential Scanning Calorimeter Results	61
12	Adjusted Differential Scanning Calorimeter Results	62
	Differential Scanning Calorimeter Results	
13	Coal Sample 0200B	
	a) Raw DSC Data	169
	b) Adjusted DSC Data	170
	c) Proximate TGA	171

	d)	Modified TGA	172
14		Coal Sample 1000N	
	a)	Raw DSC Data	174
	b)	Adjusted DSC Data	175
	C)	Proximate TGA	176
	d)	Modified TGA	177
15		Coal Sample 1600N	
	a)	Raw DSC Data	179
	b)	Adjusted DSC Data	180
	c)	Proximate TGA	181
	d)	Modified TGA	182
16		Coal Sample 1400G	
	a)	Raw DSC Data	184
	b)	Adjusted DSC Data	185
	c)	Proximate TGA	186
	d)	Modified TGA	187
17		Coal Sample 2200G	
	a)	Raw DSC Data	189
	b)	Adjusted DSC Data	190
	C)	Proximate TGA	191
	d)	Modified TGA	192

LIST OF TABLES

TAB	LE	
1	DENN Kinetic Model	18
2	Mole Balance of Volatile Matter	31
3	Carbon Conversion Design Specification	32
4	Model Predictions With Optimized Rate Constants (06/04/92)	39
5	Model Predictions With Optimized Rate Constants (04/01/93)	40
6	Model Predictions With Optimized Rate Constants (Wet Basis)	41
7	Model Predictions With Optimized Rate Constants (Cp=0.17)	42
8	Kinetic Rate Constants	44
9	Box-Behnken Test Matrix	46
10	Constants and Significant Coefficients of Gasifier Model Equations	47
11	Coal Sample Proximate Analysis	63
12	Differential Scanning Calorimeter Net Enthalpies	63
	Hooke-Jeeves Searches	141
13	Initial Optimization	146
14	Conversion to Wet Basis	157
	Elemental Mole Balance Worksheets	
15	UND Case Average	157
16	UND Case Low	163
17	UND Case High	164

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the Dakota Gasification Company and the Department of Energy for providing resources and financial assistance for this project.

A special thanks is extended to Professor John Erjavec for his aid and guidance throughout this project. The author also wishes to express his gratitude to Professor Tom Owens, Chairman of the Chemical Engineering Department, and Professor Nanak Grewal for reviewing this thesis.

Appreciaction is expressed to Bill Keister from Simulation Sciences who spent much time debugging and discussing model algorithms. Additional thanks goes to Steve Poliet and Terry Towers from the Dakota Gasification Company for providing plant model information.

The author would also like to acknowledge Ron Timpe and laboratory personnel at the Energy and Environmental Research Center for performing Differential Scanning Calorimetry experiments, and Sriram Srinavasen, a fellow graduate student, who performed numerous computer simulations.

ix

ABSTRACT

The Dakota Gasification Company in Beulah, North Dakota operates the only commercial coal-to-synthetic natural gas (SNG) plant in the United States, and continued research on the plant's operations is of prime importance. An ASPEN/SP model of a Lurgi coal gasifier that will predict the impact of variable input parameters, such as coal composition and reactant feed flows, on production rates and efficiency is the first step in constructing a model of the entire plant to control its operation and optimize the economic performance of producing SNG.

A model, called RGAS, was developed with the combined effort of several researchers (Benjamin, Denn, Dweck, etc.) during the Great Plains ASPEN Model Development project phase. This model contains parameters (i.e., equilibrium and kinetic constants, heat transfer coefficient to the jacket, and volatile heat capacity) that were verified to be the best established values or were optimized using a pattern search to obtain model predictions used for statistical analysis and comparison to plant data. The volatile heat capacity assumes that the energy associated with devolatilization is thermally neutral. However, pressure differential scanning calorimeter tests of five North Dakota lignite coal samples indicate this energy is exothermic.

In this study, some significant model improvements have been made.

• The predicted flow of condensible volatile matter (naphtha, phenol, tar oil) was corrected to allow for the significant amount of non-condensible volatile matter produced during devolatilization. (Previously, all volatile matter was assumed to be condensible.)

The heat transfer coefficient of the reactor vessel was reduced from 170 to 105 W/m²K
 by matching steam production and enthalpy predictions to experimental data.

• The kinetic rate constants used in the RGAS model were adjusted to provide predictions that would match plant data as closely as possible. Results provided predictions within 2% (relative) of plant data for raw gas mole fractions on a dry basis (i.e., H_2 , CO, CO₂, CH₄). However, the raw gas and water mass flow rates and steam utilization predictions are still in error by as much as 8%, 10%, and 20%, respectively.

• The predicted raw gas temperature was made to match the plant data by adjusting the specific heat of the volatile matter from 0.43862 + 1.5414(10⁻⁴)T to 0.17. We can justify this change by rejecting the previous assumption that the heat of devolatilization is neutral, since it is an exothermic process for many lignite coals (13). This was experimentally verified using a differential scanning calorimeter at operating conditions similar to those in a Lurgi gasifier for five representative samples of plant lignite.

We have proceeded as far as possible in our model improvement efforts without changing the model itself. The next logical step is to include a kinetic model of, and incorporate the drying of coal into, the devolatilization process. Since there is considerable overlap between the gasification and devolatilization zones the evolution of volatile products will affect the concentration of gasification reactants, and thus the reaction rates. The current devolatilization model is a simple, linear, temperature dependant evolution of volatile matter and does not reflect actual volatile evolution. A kinetic model of Beulah lignite devolatilization with drying, the next phase of the Great Plains Gasifier Plant Optimization project, would be much more realistic and hopefully give better mass flow predictions.

xi

Chapter I

INTRODUCTION

Coal as an Energy Alternative

The U.S. depends heavily or. oil (Figure 1, (22)), of which 42% is imported from potentially unreliable foreign suppliers. Recall from past experience the effect of a small change in the oil supply on economic stability. Concerns over continued U.S. dependence on imported oil and increasing environmental restrictions on conventional

Figure 1. U.S. Energy Consumption By Source

coal fired power plants are driving the research and development of alternative energy sources.

Coal supplies within U.S. borders are projected to last 300 years. However, coal is generally thought to be an environmentally harmful energy source. Natural gas is currently abundant in U.S. reservoirs and could last 35 years before supplies run short. A way to extend the natural gas supply is to develop coal gasification technologies.

The main concerns with burning coal are oxidized emissions of nitrogen and sulfur, which contribute to acid rain and are regulated by the Environmental Protection Agency. Technologies have emerged in which coal is gasified at very high temperatures and pressures to provide an efficient, clean, and inexpensive source of fuel. Gasification is the anaerobic reaction of the carbon within coal with steam and carbon oxide reactants. It produces the reduced form of nitrogen and sulfur which are more easily removed with adsorbent materials.

Because of the complex reactions that occur and the variability of the coal composition much research is being done to understand the gasification process and predict optimum operating conditions. The Energy and Environmental Research Center in Grand Forks, North Dakota is administering the University of North Dakota's research activities on the Great Plains Gasifier Plant (GPGP) Optimization project. GPGP Optimization is jointly sponsored by the Department of Energy and the Dakota Gasification Company, and it has an ultimate goal of optimizing the production of synthetic natural gas. The reason for the Department of Energy's interest is the development of this alternative energy source to reduce the United States' dependence on foreign energy supplies. Lignite coal, vast deposits of which are present in the northern great plains province (North and South Dakota and Montana), is ideal for the

Lurgi gasification process. Lignite is also scattered in gulf province fields (Texas, Arkansas, Louisiana, Mississippi, Alabama). Bituminous and subbituminous coals are also abundant in fields throughout much of the United States. These are valuable deposits and are expected to play an important role in the future energy supply.

Methane Production in North Dakota

The Dakota Gasification Company (DGC), located in Beulah, North Dakota, operates 14 Lurgi gasifiers to produce 158 million cubic ft/day of synthetic natural gas (equivalent to 25,000 barrels of oil) from 17,000 tons of North Dakota lignite coal. Beulah is located in western North Dakota adjacent to the Freedom Mine and expansive reserves of lignite coal. Mining equipment and mining rights are owned by the Dakota Coal Company, a subsidiary of Basin Electric. The adjacent Antelope Valley Station electric generation plant is part of a regional power supply system operated by Basin Electric and works in conjunction with the gasification plant by sharing water supply, water treatment, coal handling, rail and electrical transmission facilities.

The production process at DGC was designed in the 1970's and uses conventional moving bed Lurgi gasification technology with methanation. A unique characteristic of this plant is its ability to produce a nearly pure methane product. In fact, it is the only commercial coal-to-SNG plant in the USA, and continued research on it is of prime importance to the present and future generations of energy consumers.

The Dakota Gasification Company has made a commitment to understand plant operation, and they have a long range goal to build a computer model of the entire plant to be used for optimization and supervisory control. The first step toward this goal is to develop a model of the Lurgi gasifiers; thus the GPGP ASPEN Model Development

project was initiated and soon followed by the GPGP Optimization phase. Ultimately, the model should allow building a control system that will measure important variables and make adjustments that optimize plant operation. The goal of the Optimization phase was to improve model predictions by validating equilibrium constants and optimizing kinetic rate constants, the heat transfer coefficient to the jacket, and other parameters. As a verification of the simulation, data were available from a statistically designed (i.e., Box-Behnken) plant test in three operating variables: production rate, steam-oxygen ratio, and steam temperature.

Producing Electricity From Coal Gasification

Alternative technologies such as fluidized and entrained bed gasification have been developed by Exxon Corporation, Babcock & Wilcox, Westinghouse Electric Corporation, and others (14). In addition Shell Oil Company, Dow Chemical Company, and Texaco Incorporated have included high efficiency integrated gasification combined cycle gas turbines and produce electricity rather than methane. The gasification process produces a hydrogen, carbon monoxide mixture called syngas that is burned to produce steam. A power plant built by Texaco in southern California produces 120 megawatts of electricity from 1000 tons/day of coal. This particular plant is very environmentally sound. It has gasified high-sulfur coals, including Pittsburgh No. 8, with 3% sulfur content, while removing 97% of the sulfur. Airborne emissions were a fraction of the EPA's performances standards (23).

Although these plants use promising technologies, they are small in comparison to the Great Plains plant. In addition, production of synthetic natural gas is more efficient than electricity because of high power losses in transmission lines. The development of

a reliable supply and distribution system would promote the use of natural gas for transportation, heating and cooling requirements, and cogeneration units.

As the environmental restrictions increase, the number of older coal-burning power plants operating outside EPA performance standards increase. They are in need of upgrading or replacement. Clearly, gasification and a worldwide abundance of coal should create an economic opportunity for companies pursuing this technology, in addition to creating jobs and providing a clean, efficient supply of energy.

Chapter II

BACKGROUND

The Gasification Plant

Early stages of the planning process for a coal gasification synfuels plant began in the mid 1970's because of concerns over foreign energy dependence. Construction of the gasification plant was completed in 1984 by a consortium of five energy companies. Financing was provided by a federally secured loan of \$2.1 billion along with a \$550 million company investment. However, when oil prices resumed a pre-recession level in the mid 80's, the revenue from the sale of natural gas in a depressed market was too little to pay financers. Foreclosure proceedings resulted in the plant being administered by the Department of Energy for two years prior to selling it in 1988 to the Dakota Gasification Company, a subsidiary of Basin Electric Power Cooperative. The federal government shares revenues from natural gas sales because of a partnership agreement, and the operation has had positive cash flows in recent years.

Great Plains ASPEN Model Development

A FORTRAN unit operation model of a Lurgi gasifier (RGAS) was developed for incorporation into the ASPEN software package in 1984 by Bruce Benjamin of Scientific Design Company (2). This mechanistic model was later modified in 1985 by Jay Dweck of JSD Incorporated and further modifications were made between 1990 and 1993 by Simulation Sciences. By specifying the gasifier configuration, inlet stream flows, kinetic and equilibrium constants, and other physical parameters RGAS (ASPEN/SP) will perform mass and energy balances to predict outlet stream flows, compositions, and thermal conditions.

Several kinetic reaction models for simulating the behavior of a moving-bed gasifier have been developed and published (i.e., General Electric, IBM, Washington University, University of Minnesota models). From these, two were selected to be used to model the reaction kinetics within the gasification zone of a Great Plains gasifier (17). These are the DENN and WEN models developed by Denn, Yoon, and Wei of the University of Delaware (5) and C.Y. Wen of the University of West Virginia (24), respectively. J. Stefano of the Department of Energy compared the performance of the two models and found the DENN model to be superior to the WEN model, since it was simpler yet it gave comparable results (21).

GPGP Optimization and ERNIE Tests

In order to assess the adequacy of the RGAS model, plant data were collected at three operating rates to be used for validation and kinetic optimization studies. The data collected for the low (93.11%, August '90), average (98.35%, July '90), and high (103.79%, November '89) gasification rates are used as both simulation input parameters and output target levels.

The Great Plains Gasifier Plant (GPGP) Optimization study was initiated to improve the RGAS model in phases:

Revise the devolatilization product schedule and adjust the gasification and combustion kinetics.

- Develop a kinetic model of Beulah lignite devolatilization.
- Add lignite metal composition catalytic effects.
- Add ash phase chemistry.

J. Kautz, J. Erjavec, and R. Sears of the University of North Dakota began the optimization phase of the project by upgrading the raw gas component list to 105 to include the characterized phenol, naphtha, and tar oil streams, and performing an optimization study of the kinetic rate constants in the DENN model (4).

Data on a single gasifier was collected in 1988 (ERNIE tests) to determine the effects of three operating variables (oxygen flow, steam/oxygen ratio, and agent temperature) on gasifier performance (using a Box-Behnken statistical experimental design) (20). Once the RGAS kinetics were optimized as well as possible, the model was then used to rerun the ERNIE test "on paper". Quadratic equations were obtained from regression analysis of the Box-Behnken design predictions, and compared with those from the ERNIE tests. The work of Kautz and Erjavec showed promise but did not adequately predict outlet temperatures as well as other responses and effects from variable input parameters. This thesis continues their work (GPGP Optimization phase one) with one objective being to optimize the kinetic reaction constants as well as other parameters.

Chapter III

MODEL DESCRIPTION

Lurgi Gasifier Configuration

A Lurgi moving-bed dry-ash coal gasifier (Figure 2) produces synthetic natural gas (SNG) from the gasification of coal and steam. Coal is crushed into 1/4 to 2 inch diameter chunks and screened to remove smaller particles. Coal and recycled tar, fed at the top of the Lurgi reactor from the lock hopper after depressurization, move downward by gravity through an upward flowing gas stream. Steam and oxygen enter the bottom of the reactor and flow upward to provide reactants for combustion and gasification. The product gases exit at the top while ash and unreacted char collect in the bottom lock hopper. A Lurgi gasifier at the Beulah plant has a reactor vessel (minus the lock hoppers) that is 40 feet high with a 13 foot diameter.

The settling coal chunks are first heated and dried by the countercurrent gas stream and then devolatilized which leaves fixed carbon to react with steam, hydrogen gas, and carbon monoxide. Combustion of a portion of the fixed carbon with the injected oxygen occurs near the bottom of the reactor and is needed to provide energy for endothermic gasification reactions. A moving grate at the bottom acts as a gas distributer and removes dry powdered ash. At the top, a coal distributor is used to provide the feed for a nearly uniform plug flow reaction within the vessel. A water jacket surrounds the vessel to control temperatures.

Downstream Operations

A wet scrubber separates crude product gas from gas liquor by condensing tars, oils, phenols, ammonia, and steam and is the main source of waste water. The crude gas undergoes shift conversion to increase the ratio of hydrogen to carbon monoxide from 2.2:1 to 3:1. Cobalt-molybdenum catalytic reactors convert some of the carbon monoxide and water to hydrogen and carbon dioxide. Acid gas and organic impurities are removed in Rectisol by passing the raw gas through a cold (-95°F) methanol wash. The methanol is recycled by distillation; a naphtha distillate is incinerated while sulfur is recovered in the Sulfolin process. Finally, the clean raw gas undergoes methanation where the carbon monoxide reacts with free hydrogen in the presence of a nickel catalyst. The product gas is dried, compressed, and piped to distribution centers.

Most of the oil and tar in the gas liquor stream is removed in a closed settling tank clarifier where tar settles and is drained while oil is skimmed from the top. The lighter oils are sold while the tars are reinjected into the gasifiers. Diisopropyl ether is used to extract the remaining phenol and residual oil and tar. Phenol is recovered and sold as a byproduct after evaporating the organic solvent.

Ammonia is recovered using an ammonium phosphate solvent and sold as a fertilizer. The stripped gas liquor stream is now ready for EOD (biological oxygen demand) removal using a biological treatment process.

RGAS Model

RGAS models a moving-bed dry-ash Lurgi gasifier as a one-dimensional countercurrent plug flow reactor with no axial dispersion. In other words, no radial temperature and concentration gradients are present. This is a good assumption if the

reactor is adiabatic. However, a cooling water jacket creates a significant temperature gradient near the reactor wall, particularly at the bottom of the coal bed where combustion creates the peak temperature. This gradient is extreme but is generally limited to the one foot thick outer ring. Denn compared his two-dimensional model to a one-dimensional model (Yoon) and found a relatively small difference between the raw gas compositions (18). However, the one-dimensional model predicts a raw gas temperature about 40°F higher and a steam generation rate of one-half that of the two-dimensional model. These incongruities can be reduced by adjusting the heat transfer coefficient. Ringard and Benjamin concluded that a one-dimensional model was adequate for ASPEN simulation work and the relatively small differences between the models are generally within the accuracy of the plant data available for validation.

Mass and Energy Balance

S

A mass balance on the jth solids constituent at a distance z from the bottom of the bed gives:

$$-\frac{d(Sx_j)}{dz} = Ac \sum_{k=1}^{N_K} a_{j,k} R_k , \qquad j = 1, \dots, N_J$$
(3.1)

where

is the solids flow rate,

- x_i is the mole fraction of constituent j in the solids,
- Ac is the cross sectional area of the gasifier,

 R_k is the rate of the kth reaction in the solids,

 $a_{j,k}$ is the stoichiometric coefficient for the jth constituent and the kth reaction in the solids,

 N_{κ} is the number of solid phase reactions included in the model, and N_{μ} is the number of solid phase constituents included in the model.

For the solid phase there will be one mass balance for each element of the ultimate analysis (ash, carbon, hydrogen, nitrogen, chlorine, sulfur, and oxygen) and each component of the proximate analysis (water, fixed carbon, volatile matter, and ash). For example, a mass balance on the volatile proximate component results in:

$$\frac{d(Sx_{\nu})}{dz} = S \frac{dx_{\nu}}{dz} + x_{\nu} \frac{dS}{dz} = A_c R_{\nu}$$
(3.2)

where R_v is the rate of devolatilization. An overall mass balance on all proximate components produces:

$$\frac{dS}{dz} = A_c (R_1 + R_2 + R_3 + R_4 + R_{\nu})$$
(3.3)

where reaction rates one through four are due to fixed carbon reactions (the reaction rate of ash and water in the solid phase is zero).

Each of the solid phase reactions produce one or more gas phase products. The generation of the ith gas phase constituent is given by:

$$g_i = Ac \sum_{k=1}^{N_K} b_{i,k} R_k, \quad i = 1, ..., N_i$$
 (3.4)

where

b_{i,k} is the stoichiometric coefficient of the ith gas phase constituent with respect to the kth solid phase, and

N₁ is the number of gas phase constituents included in the model (i.e., from the proximate and ultimate analysis).

A component balance on the ith constituent in the gas phase gives:

$$\frac{d(G y_i)}{dz} = g_i + S \sum_{l=1}^{N_L} c_{l,l} R_l, \qquad i = 1, \dots, N_l$$
(3.5)

where

G is the total gas flow rate,

- y_i is the mole fraction of the ith constituent in the gas phase,
- R₁ is the Ith gas phase reaction rate,
- c_{i,i} is the stoichiometric coefficient of the ith gas phase constituent with respect to the Ith gas phase reaction, and
- N_L is the number of gas phase reactions included in the model.

For the gas phase, there will be one mass balance for each chemical species in the raw gas and one for oxygen.

An energy balance on the solid phase gives:

$$-\frac{d(SH_s)}{dz} = U_{GS}A_{GS}(T_G - T_s) - \sum_{i=1}^{N_t} g_i H_{G_i}\{T_s\} + U_{CS}A_w(T_C - T_s)$$
(3.6)

where

Hs is the enthalpy of the solids,

- H_{Gi} is the enthalpy of the ith component evaluated at the solids temperature Ts,
- U_{GS} is the heat transfer coefficient between the solids and the gas,
- U_{cs} is the heat transfer coefficient between the coolant in the jacket surrounding the reactor and the solids,

Ags in the heat transfer area per unit length of gasifier,

Aw is the heat transfer area of the coolant jacket wall per unit length,

Ts is the temperature of the solids,

Tc is the temperature of the coolant in the jacket, and

T_G is the temperature of the gas.

An energy balance on the gas phase gives:

$$\frac{d(G H_G)}{dz} = U_{GS} A_{GS} (T_S - T_G) + \sum_{i=1}^{N_i} g_i H_{G_i} \{T_S\} + U_{CG} A_W (T_C - T_G)$$
(3.7)

where

Hg

is the enthalpy of the gas, and

Ucc is the heat transfer coefficient between the coolant in the jacket around the wall and the gas.

It is assumed that the enthalpies of the solids (Hs) and the gas (HG) can be evaluated using the ideal mixture rule:

$$H_{s} = \sum_{j=1}^{N_{j}} x_{j} H_{s_{j}} \{T_{s}\}, \qquad H_{G} = \sum_{l=1}^{N_{l}} y_{l} H_{G_{l}} \{T_{G}\} \qquad (3.8), (9)$$

where Hs_i is the enthalpy of the jth solid phase constituent.

The solid phase (and likewise, gas phase) enthalpy can be written using heat capacities.

$$\frac{d(SH_{S})}{dz} = H_{S}\frac{dS}{dz} + SC_{p_{j}}\frac{dT_{S}}{dz} + \sum_{j}\left(\frac{h_{S}}{y_{j}}\frac{dy_{j}}{dz}\right)$$
(3.10)

The heat capacity (C_{pj}) of the jth solid phase constituent is written in polynomial form as a function of temperature.

These equations can be integrated and rearranged to produce ordinary differential equations in the variables S, G, x_j , y_j , Ts, and T_G. The conditions for these variables (i.e.,

feed flow rates, composition, and temperatures of the coal and blast gas) are specified at both the top and bottom of the gasifier. This is a two point boundary value problem that requires an iterative procedure to determine exit flows, compositions and thermal conditions. The enthalpies, heat transfer coefficients, and transfer areas are known or can be measured and represented by numerical values or correlations as a function of temperature. This model was simplified by assuming the temperatures of the gas and solids to be equal at any one axial position in the gasifier. This is a good approximation for the devolatilization and gasification zones (the drying zone is modeled differently).

The remaining unknown parameters in the mass balance equations are the reaction rates R_k and R_l . These are evaluated using chemical reaction kinetic theory in the gas phase and incorporating diffusion in a porous catalyst pellet for the solid phase reactions. Two reaction kinetic models were chosen (the DENN and WEN models) from several available models for use in RGAS (17).

Process Zones and Kinetic Model

As a coal particle travels downward through the coal bed it is exposed to different temperatures and gas concentrations. Depending on these conditions, different processes may occur. Four process zones can be defined in the gasifier: combustion, gasification, devolatilization, and drying (see Figure 3). At the top of the bed, the coal is first heated and then water is vaporized in the drying zone. Next, tars and oils present in the feed coal are evolved during devolatilization. Gasification reactions of carbon with steam, hydrogen, and carbon dioxide occur under high temperatures and anaerobic conditions. At the bottom of the coal bed, injected oxygen reacts with the remaining fixed carbon to produce heat and the consequent peak temperatures in the combustion zone.

FIGURE 3. Process Zones and Temperatures in Lurgi Gasification.

Combustion and Gasification

DENN Model - In the combustion and gasification zones, the University of Delaware (DENN) kinetic model (Table 1) uses the temperature dependent Arrhenius equation for both the kinetic and equilibrium constants used to determine reaction rates in a porous catalyst pellet. The kinetic parameters (pre-exponential factor and activation energy) depend on the specific coal type used while the equilibrium parameters are fixed by measured thermodynamic values. The reactions produce carbon monoxide, carbon dioxide, hydrogen gas, and methane from fixed carbon, steam, and oxygen reactants. The combustion reaction (Reaction 1) is fast and assumed irreversible while the qualification reactions may go in eather direction.

e	•	
>	ĸ	
s.		

TA	BLE	1.	DE	NN	Kinetic	Model

	DENN Kinetic Model Reactions		ENN Kinetic Rxn Heat odel Reactions (KJ/Kgmol) Process		Process	Equilibrium Parameters A ^o E ^o (cal/mol)		
1.	11/3C +O2		⅔CO₂ +	+ 3/3CO	+393,790*	Combustion	infinite	(irreversible)
2.	H ₂ O + C	~	CO + H	H2	-175,440	Steam-Carbon	3.098(10 ⁷)	32,457
3.	CO ₂ + C	*	2CO		-172,580	Bouduard	1.222(10 ⁹)	40,300
4.	2H ₂ + C		CH.		+74,900	Hydrogasification	1.472(10-6)	-21,854
5.	$H_2O + CO$	-	CO ₂ + 1	H₂	+2,853	Water-Gas Shift	0.0265	-7,860

* For complete combustion

The Arrhenius equation is written as:

$$K_{pj} = A_j^{o} \exp\left(\frac{E_j^{o}}{RT}\right)$$
(3.11)

where

A° = pre-exponential factor,

E° = activation energy,

 $K_{\mbox{\scriptsize pj}}$ = the dimensionless kinetic or equilibrium constant for reaction j,

R and T are the gas constant and temperature.

Reactions 1 through 4 are heterogeneous, while the last occurs in the gas phase. This reaction, the water-gas shift, is catalyzed by coal particles and is not assumed to be at equilibrium. Once the oxygen is consumed the gasification reactions dominate and continue throughout the length of the coal bed.

The kinetic expressions for the forward reaction rates using the Ash Segregation model are defined using diffusion theory in a catalyst pellet (17). The rate expressions for the combustion and steam-carbon reactions (Reactions 1 and 2) are of the same form

19

The rate expressions for the Ash Segregation Model are:

$$R_{i,j} = \frac{(1 - \epsilon_b) (P_i - P_i^*) V_c}{\frac{d_p^0 (r_{part} - r_{core})}{6 r_{core} k_{p,i}} + \frac{1}{\eta_i K_{pj} [C]^0}} = j^{\text{th}} \text{ rxn rate of species } i$$
(3.12)

where
$$k_i = \frac{2.06 F_G^{0.425}}{P \epsilon_b Sc^{0.092}} \left(\frac{P D_i}{d_p R T}\right)^{0.575}$$
 = mass transfer coefficient (3.13)

$$\eta_j = \frac{3}{\phi_j^2} (\phi_j \coth \phi_j - 1) = \text{effectiveness factor for reaction } j$$
 (3.14)

$$\phi_j = \frac{d_p^0 r_{core}}{6} \sqrt{\frac{K_{pj} [C]^0 RT}{\gamma_j D_{e_j} r_{part}}} = \text{Thiele modulus}$$
(3.15)

$$V_c = \frac{W\rho_c}{x\rho_a + (1-x)\rho_c f_{ash}}$$
(3.16)

and

w

x is the fractional conversion,

is the fraction of carbon remaining in a particle,

 $\rho_{\rm c}$ is the density of the original coal,

 ρ_a is the density of the ash,

f_{ash} is the weight fraction of ash,

De, is the effective diffusivity in particle core,

D, is the bulk gas diffusivity in particle core,

 $y_i = 1$ for steam-carbon reaction,

= q for combustion reaction (presently designated as 4/3).

P_i is the partial pressure of component i,

Pi* is the equilibrium partial pressure (zero for combustion),

- d_{p}^{0} is the initial solid particle diameter,
- r_{core} is the radius of char core,
- $\varepsilon_{\rm b}$ is the bed void volume,
- [C]^o is the initial concentration of fixed carbon in the particle,
- Sc is the Schmidt number,
- F_G is the molar gas flow, and
- K_i is the kinetic reaction rate coefficient from the Arrhenius equation.

The driving force of the reaction rate, $P_i - P_i^*$, in Equation 3.12 can be represented as mole fractions and expanded to include each species in the reaction:

$$(P_{i}^{v_{i}} - P_{i}^{*v_{i}}) = P^{v_{i}}(y^{v_{i}} - y^{*v_{i}})$$

$$= \left(y_{O_2} - \frac{y_{CO}^{q-1} y_{CO_2}^{2-q}}{K_{p1}^{\theta q}} \right)$$
 for Reaction 1 (combustion) (3.17)

$$= P\left(y_{H_2O} - \frac{y_{CO}y_{H_2}}{K_{p2}^{eq}}\right) \quad \text{for Reaction 2 (steam - carbon)} \quad (3.18)$$

where y is mole fraction and q is defined as the selectivity of the combustion reaction and represents a ratio of carbon monoxide and carbon dioxide produced during combustion (q = 2 for complete combustion but is presently designated as 1½ in RGAS). For the combustion reaction the equilibrium constant, K_{p1}^{eq} , is infinite since the reaction is assumed irreversible.

The Bouduard rate expression is:

$$R_{3} = K_{3} \left(y_{CO_{2}} - \frac{P y_{CO}^{2}}{K_{p3}^{\theta q}} \right) \left(\frac{P}{RT} \right) (1 - \epsilon_{b}) [FC]$$
(3.19)

where [FC] is the concentration of fixed carbon.

For the hydrogasification reaction we have:

$$R_4 = K_4 \left(y_{H_2}^2 - \frac{y_{CH_4}}{P K_{P4}^{eq}} \right) \left(\frac{P}{RT} \right)^2 (1 - \epsilon_b) [FC].$$
(3.20)

The water-gas shift reaction is a gas phase reaction with the rate expression defined as:

$$R_{5} = K_{5} \epsilon_{b} \left(y_{H_{2}O} y_{CO} - \frac{y_{CO_{2}} y_{H_{2}}}{K_{p5}^{eq}} \right) \left(\frac{P}{RT} \right)^{2}.$$
 (3.21)

The Ash Segregation model assumes that the ash layer is removed from the coal pellet by melting or movement in the bed. The Ash Segregation model was chosen by Benjamin (2) because it yields a higher peak temperature and is a more conservative prediction since the ash melting temperature will be reached at lower gasification rates. RGAS also incorporates two other physical models that can be selected to model a coal pellet as it is transformed to raw gas products and ash. The Shell Progressive model assumes that the ash remains in position around the coal during the course of the reaction. In other words, the fixed carbon is contained in a shrinking core internal to the ash layer. In the Homogenous model the ash and fixed carbon are assumed to be a homogeneous mixture.

WEN Model - The West Virginia University (WEN) model contains six equations, five of which are the same as in the DENN model. The sixth equation allows for the burning of hydrogen.

$$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$$

All six reactions are irreversible except the water-gas shift reaction. The combustion reaction is modeled as a heterogeneous reaction on a catalyst surface with mass transfer coefficients for both diffusion into the ash layer and across a thin film. The steam-carbon, Bouduard, and hydrogasification reactions are modeled as heterogeneous reactions while the water-gas shift and hydrogen burning reactions occur in the gas phase.

The WEN model was selected for RGAS because of the extensive documentation available and simplicity and similarity to the DENN model (17). It was designated as the backup to the DENN model because of convergence difficulties and very high peak temperatures. Ringard and Benjamin suggest that the convergence problem is a result of an infinite derivative of the combustion reaction rate with respect to carbon concentration, and the high peak temperatures are caused by integration errors due to high hydrogen burning reaction rates.

Devolatilization

As coal is heated, devolatilization of hydrocarbons, water and carbon oxides, and compounds containing nitrogen and sulfur such as aromatics, pyridines, thiophenes, phenols, aliphatics, olefins, and ketones occur at various rates. In addition, this volatile evolution involves cracking reactions that have not yet been well-defined. The RGAS model simply incorporates a thermally neutral evolution of volatiles that is linearly scaled with temperature and is incrementally added to the gasification products to form the raw gas stream. The rate of volatile evolution for species i is:

$$\frac{dV_i}{dT} = K_i \tag{3.22}$$

where V is the amount of the volatile produced up to temperature T and K is a devolatilization constant. Devolatilization begins when the coal temperature reaches the lower temperature for volatile matter release, TL, and continues linearly until the upper temperature limit, Tu, is reached. Actually, this is reversed in the simulation since discretization begins at the bottom of the coal bed. Therefore, the rate of volatile evolution for each species is constant and equivalent relative to their ultimate concentration in the raw gas stream.

If the devolatilization constant is assumed independent of temperature, an integration of Equation 3.22 results in:

$$V_{i}^{0} = K_{i}(T_{U} - T_{L})$$
(3.23)

where V_i^0 is the ultimate mass of volatile species i in the raw gas. V_i^0 , T₀, and T_L are defined input values to the model and therefore K_i is determined and used in Equation 3.22 to determine evolution rates.

Note that since both gasification and devolatilization depend on temperature these two zones may overlap. Therefore, the non-condensible volatile matter (specifically H_2 , H_2O , CO, CO_2 , and CH_4) will affect gasification reactant concentrations, and thus, the reaction rates.

Drying

Water released during drying consists of inherent and surface moisture contained in cracks and capillaries and also includes physically and chemically absorbed moisture. Water produced from decomposition and mineral dehydration is not modeled in the drying zone because it requires energy to break chemical bonds, but is evolved within the devolatilization zone. The drying zone is modeled as an instantaneous transfer of mass and energy after convergence of reaction zone calculations and so does not affect the reactant concentrations. These are simple one-step calculations that involve the proximate water mass fraction and physical properties in the ASPEN/SP physical property da'a bank.
Chapter IV

COMPUTER SIMULATION

ASPEN/SP

ASPEN/SP (<u>A</u>dvanced <u>System</u> for <u>Process ENgineering</u>) is a software system for computer-aided process design being marketed by Simulation Sciences in Denver, Colorado. ASPEN, a predecessor to ASPEN/SP, was developed at M.I.T. during the period 1976-81 under the sponsorship of the Department of Energy and 55 industrial participants. Simulation Sciences has updated ASPEN with an expert system (SPEXPERT) to make it more versatile and user-friendly.

Several types of blocks can be defined in the input file for the purpose of process design and statistical or economic analysis. ASPEN/SP can incorporate user-defined design specification blocks that allow the operator to stipulate that a calculated (output) variable attain a specified value by varying an input variable (parameter). Other useful techniques used to study the operating parameters of the gasifier are case-study and optimization blocks. A case-study is used to perform a series of runs during one simulation by specifying that a variable have a sequence of values. Partial or complete reports can be generated along with table and graph files. An optimization block will maximize (or minimize) the value of a design specification variable. On many occasions it is necessary for the user to insert FORTRAN block statements into the flowsheet computations to perform auxiliary calculations. The advantage of using these techniques is that computer processing and user editing time is reduced since the input file needs

only to be edited, compiled, and linked once.

The ASPEN/SP simulation can be broken into four operations. First, the input translator processes the user input file, enters all data regarding the process into a Problem Data File (PDF), and writes the main calling program. Any FORTRAN statements supplied by the user are converted into FORTRAN subprograms and a physical property initialization subprogram is written. Second, these programs are compiled and linked to create a tailor-made simulation program. Third, the simulation program reads data from the PDF, makes the necessary calculations, and writes the results back to the same PDF. Finally, the Report Writer generates a report using the simulation results from the PDF.

The SPEXPERT system allows the operator to construct a flow diagram by defining unit operation blocks, specifying component streams entering and leaving the block, and specifying the physical properties in the system (i.e., the ideal gas law). From this the SPEXPERT system can generate an input file to be used by ASPEN/SP during a simulation.

Verification of Equilibrium Constants

The rate at which reactions occur in the gasifier are described by the DENN model rate expressions given in Chapter III (Equations 3.12 through 3.21). The values of the rate expressions are determined by the deviation of actual reactant concentrations from equilibrium concentrations. So, the equilibrium constants play a direct role in the predictions made with the model. The temperature dependence of each equilibrium constant in the DENN model follows the Arrhenius form:

$$K_i^{oq} = K_i^o \exp\left(\frac{E_i^o}{RT}\right)$$
(4.1)

where

 K_i^{eq} = equilibrium constant for reaction i,

K° = pre-exponential factor,

 E° = activation energy,

The values for the equilibrium parameters K° and E° are given in Table 1 and originated from sources by Hottel and Howard (7) and Parent and Katz (15).

and R & T are the gas constant and temperature, respectively.

Lavrov, et. al. (12) used experimental thermochemical data and statistical thermodynamics to calculate equilibrium constants from:

$$RLOG(K_i^{eq}) = \frac{-\Delta H_i^o}{T} + \Delta \Phi_i$$
(4.2)

where ΔH_i° and $\Delta \Phi_i$ are the sums of the heats of formation and chemical potentials of all species in reaction i.

A comparison of the equilibrium constants used in the ASPEN/SP simulation with theoretical values from Lavrov for Reactions 2 through 5 of the DENN model are plotted versus temperature in Figures 4 through 7. Note that Reaction 1, the combustion of fixed carbon, is considered irreversible so no equilibrium constants are needed in the model. Since there is nearly perfect agreement with the thermodynamic values, it can be concluded that the equilibrium parameters given in the DENN model are theoretically correct.

FIGURE 5. Bouduard Reaction.

Input Adjustment

Several problems and inconsistencies were found with the input to the RGAS model. For example, preliminary simulations produced a high volatile stream flow of 6 mol% of the dry raw gas flow while plant data used for validation and kinetic optimization of the ASPEN/RGAS model showed 2½ mol%. In addition, a simulation error was reported on many occasions which indicated that the simulation was pre-

empted before convergence because of a low coal feed flow. Some of the major improvements made to the input are listed below.

- The mass fractions of the volatile components were adjusted to reduce condensible volatile flows, and four non-condensible raw gas components were added to the volatile matter (H₂S, C₂H₈, C₃H₈, and C₃H₈).
- A design specification ASPEN/SP routine was added which obtains a proper carbon conversion by iteratively adjusting the coal feed rate.
- The heat transfer coefficient was reduced from 170 to 105 W/m²K in order to correctly predict the rate of steam generation in the gasifier jacket.
- The heat capacity of the volatile matter was reduced to obtain a raw gas temperature corresponding to plant data.
- The initial and final temperature for volatile release was reduced when a simulation produced the error message "Severe Error. Temperature too low for devolatilization".
- The kinetic rate constants were adjusted to improve response predictions using a
 weighted and normalized performance criterion.

These improvements are discussed in more detail in the following paragraphs. In addition to the input file changes, the RGAS FORTRAN files were revised by Simulation Sciences to update the report files and to correct initialization errors that were found as a result of the design specification's iterative nature.

Coal Gas in Volatile Stream

Coal is composed of aromatic clusters of fused rings. Heating causes the structure to decompose, producing an assortment of organic fragments. Many of the fragments are highly reactive free radicals which react with steam, hydrogen, and other

fragments. Much of the volatile mass produced from these cracking reactions is noncondensible gas (coal gas). The volatile portion of the coal, as determined from the proximate analysis, was previously assumed to be condensible organic matter which ultimately can be separated into the tar oil, naphtha, and phenol streams

Adjustments were made to take into account the very significant fraction (~57%) of coal gas in the volatile matter. The amount of each coal gas component generated during devolatilization was estimated using an elemental mole balance on the components in the system. This was possible by using the proximate and ultimate analyses, the previously determined volatile slate of the tar oil, naphtha, and phenol streams, and by assuming the distribution of coal gas components. Once the elemental molar flow of non-condensible matter was determined by subtracting condensible volatile flows from total volatile flows, the elements were reassembled to form coal gas molecules. For example, all remaining nitrogen and sulfur were assumed to form nitrogen gas and hydrogen sulfide, respectively.¹ Since the current RGAS input file breaks the volatile matter into only three streams (tar oil, phenol, and naphtha), the fourth coal gas stream was nested in the other three streams. The assumptions provided results similar to devolatilization data obtained by Loison and Chauvin (1964) (5). The

¹The procedure to determine coal gas component flows was done separately from the ASPEN simulation (on a spreadsheet) and the results were entered into the RGAS input. A FORTRAN routine is available to perform these calculations using a smaller volatile component list (i.e., 28) and slightly different coal gas distribution criteria (3).

TABLE 2. Mole Balance of Volatile Matter

	Molar Flows (Ibmol/hr)							
	С	н	0	S	N			
Condensible Volatile Molar Flows	362.0	445.4	28.5	0.73	2.10			
Total Volatile Molar Flows	1079.4	3008.1	771.8	20.09	42.14			
Non-condensible Volatile Flows	717.4	2562.7	743.3	19.36	40.04			

Simultaneous Solution

Coal Gas F	rom De	volatiliza	Total Proximate Volatile Flows					
Component	Formula	ibmol/hr	lb/hr	Wt%	Component	lbmol/hr	lb/hr	Wt%
Hydrogen Gas	H ₂	17.5	35.3	0.2%	Water	406.2	7317.1	24.7%
Carbon Monoxide	CO	202.3	5666.5	33.4%	Coal Gas	726.0	16956.7	57.3%
Carbon Dioxide	CO2	67.4	2967.7	17.5%	Phenol	12.5	1143.5	3.9%
Methane	CH₄	358.6	5753.6	33.9%	Naphtha	6.9	559.5	1.9%
Ethane	C ₂ H ₆	28.5	857.2	5.1%	Tar Oil	27.5	3602.7	12.2%
Propane	C ₃ H ₈	3.5	153.9	0.9%	TOTAL	1179.1	29579.5	100%
Hydrogen Sulfide	H ₂ S	19.4	659.6	3.9%				
Nitrogen Gas	N ₂	20.0	560.9	3.3%	Average V	olatile Mole	cular Weigh	nt = 25.09
Ethylene	C2H4	4.7	130.6	0.8%				
Propylene	C ₃ H ₆	4.07	171.4	1.0%				
TOTAL		726.0	16956.7	100%				

Simultaneous Equations

A	$717.39 = CH_4 + CO + 2C_2H_6 + 3C_3H_8 + 2C_2H_4 + 3C_3H_8$	6
A	$2562.7 = 4CH_4 + 2H_2O + 6C_2H_6 + 8C_3H_8 + 2H_2S + 4C_3H_8$	$C_2H_4 + 6C_3H_6$
A	$743.33 = CO + 2CO_2 + H_2O$	
A	$19.356 = H_2S$	
A	$40.041 = 2N_2$	
В	$C_2H_6 = MOL^{*}0.49/100$	
В	$C_3H_8 = MOL^{*}0.06/100$	
В	$C_2H_4 = MOL^*0.08/100$	
в	$C_3H_6 = MOL^{*}0.07/100$	
В	MF = 125841 lb/hr	Mass flow rate of raw gas
В	MW = 21.63 lb/lbmol	Average molecular weight of raw gas
С	$CO + CO_2 + C_2H_6 + H_2 + N_2 + H_2S + C_3H_8 = CH_4$	50% methane in dry coal gas
С	$CO/CO_2 = 3$	3:1 carbon monoxide/carbon dioxide ratio
	MOL = MF/MW = 5817.9 lbmol/hr;	Mole flow rate of raw gas
	Key A => From Non-Condensible Mola	r Flows
	B => From Plant Data (Appendix E	5)
	C => Assumptions (based on Loise	on and Chauvin devolatilization data) (5)

Carbon Conversion Specification

The simulation error "Specified inlet coal flow is too low. Block exited in the middle of the simulation." was frequently reported. This indicates that the simulation was pre-empted before convergence because of a low coal feed flow. A design specification block (Table 3) was defined in the RGAS input file to specify the carbon conversion while varying the coal feed flow rate. Also, this is more realistic since the carbon conversion is known and the coal flow is determined by gasifier operating conditions.

TABLE 3. Carbon Conversion Design Specification

Design-Spec Spec1
Define FCCLFD Comp-Attr-Var Stream=COAL-TAR Subs=NC Comp=COAL &
Attr=Proxanal Elem=2
Define FCCHAR Comp-Attr-Var Stream=CHAR Subs=NC Comp=COAL
Attr=Proxanal &
Elem=2
Define FLCHAR Mass-Flow Stream=CHAR Subs=NC Comp=COAL
Define FLCLFD Mass-Flow Stream=COAL-TAR Subs=NC Comp=COAL
F CC=1-FCCHAR*FLCHAR/FCCLFD/FLCLFD
Spec 'CC' To '.975'
Tol-Spec .0005
Vary Substream-Var Stream=COAL-FD Subs=NC Var=Mass-Flow
Limits Lower=11.5 Upper=14.5

For example, this routine will choose a coal feed flow rate using a secant convergence method, calculate predictions from the gasifier model, and compare the specified carbon conversion with the predicted value. If the predicted value is within the specified tolerance, the simulation is completed and ASPEN writes the report files; otherwise, a new coal feed flow rate is chosen for the next iteration.

A word of caution when using this routine: the first iteration must not result in the above mentioned error since this will produce a zero slope using the secant convergence

method to predict a new coal flow, and no further iterations will be performed. The value given for the coal mass flow rate in the feed stream specification section of the input file is used for the initial iteration and should be chosen so the error does not occur.

The carbon conversion was specified at 0.975 rather than the 0.995 obtained from the plant. Carbon conversion values above this specification resulted in the simulation error. Not surprisingly, the change in the coal feed prediction was the largest effect (1.5% increase) per unit change in carbon conversion. While this adjustment had a small effect on the ultimate predictions it should not have hurt the ASPEN/RGAS model when being used to predict the impacts of changing operating variables.

Determination of Heat Transfer Coefficient

An energy balance was used to determine the heat transfer coefficient at the reactor wall. The following assumptions were made to simplify calculations:

- No heat loss to surroundings (adiabatic).
- No sensible heat change in water jacket (constant T and P).

With these assumptions the rate of energy passing through the gasifier wall can be determined from temperature, pressure, and mass flow measurements of the cooling water, which are available in the plant data sets.

A design specification block (listed in Appendix A) was used to determine the value of 105 W/m²K for the heat transfer coefficient. It specifies the temperature of the exiting cooling water at a value slightly above that of the water entering the gasifier jacket. This assures that the entire cooling water flow is vaporized with a negligible degree of superheat. The predicted value of the heat transfer coefficient using this design specification block will change slightly with changing input parameters (such as

kinetic reation rate constants).

Rather than determining a new heat transfer coefficient after each simulation the validity of the current value can be evaluated from the predicted outlet steam mass flow and temperature. These are the last two simulation responses listed in Tables 4 through 7. An outlet steam temperature of 460°F or below indicates a condition where a fraction of the cooling water is vaporized. This fraction can be determined by comparing predicted mass flows with plant data. An outlet steam temperature greater than 460°F indicates that the entire cooling water stream is vaporized and superheated. For example, the outlet steam temperatures in Table 4 (last prediction) are well above 460°F and indicates that the heat transfer coefficient is too high since the steam has a high degree of superheat.

Specific Heat of Volatile Matter

No provision was made in the RGAS model to directly allow for the enthalpy changes due to cracking reactions of the volatile matter. Rather, this was done indirectly. The total energy of devolatilization is the sum of the sensible heat, latent heat, and heat of reactions of all volatile components. The model currently assumes that devolatilization is thermally neutral (i.e., latent heat + heat of reactions = 0). The remaining sensible heat term is represented by the Kirov correlation specific heat value of 0.43862 + $1.5414(10^{-4})T$, where T is temperature in Celsius. The size of this term was "fudged" to compensate for devolatilization not being thermally neutral by substituting the original Kirov correlation coefficients with an average value for the energy of devolatilization over the temperature range that this process occurs. In particular, the specific heat of the volatile matter was reduced from $0.43862 + 1.5414(10^{-4})T$ to 0.17 after the results of the

kinetic parameter optimization provided little improvement in the predicted raw gas temperature. This will represent the significant exothermic nature of devolatilization that have been determined to occur with several North Dakota lignite samples (see Chapter VI). However, it should be noted that the specific value for this "fudged" heat capacity is expected to vary widely with different coal samples.

Temperature For Volatile Release

In the RGAS model, volatile matter is evolved at a rate that is linear with temperature. During the simulation, the gasifier is discretized from the bottom of the coal bed (high temperature) to the top (low temperature). If the temperature for volatile matter release is not reached, no volatile matter will evolve and a simulation error will be reported: "Severe Error. Temperature too low for devolatilization". The initial and final temperatures for volatile matter release were adjusted from 1255°K and 950°K to 1205°K and 750°K to prevent the simulation error when predicted temperatures did not reach this upper value (1255°K). There is evidence that devolatilization begins at temperatures below 750°K. However, during the simulation, the final (lower) temperature for volatile matter release is reset to the gas outlet temperature. Therefore, the input file value is only an initial guess and will not significantly affect predictions. The adjustment to the initial (upper) temperature for volatile matter release had only a minor effect on predictions. The concentration of methane had the largest percentage change (1.3%) while the other predictions changed by only a fraction of a percentage.

Optimization of Kinetic Reaction Rate Constants

The kinetic parameters were systematically adjusted using a Hooke-Jeeves pattern search (25) to optimize the fit to plant data. Since nine responses were compared, an overall measure of fit was defined (called the performance index) to facilitate the optimization procedure. The performance index was calculated by first comparing simulation results with plant data for the nine responses, normalizing the squared deviations (dividing by the average value of the three responses squared to put them all on a comparable basis), and summing the normalized deviations, each weighted by a multiplier between 1 and 10 to reflect its importance. Kinetic constants (pre-exponential factor and activation energy) for each of the five model reactions were sequentially varied, using the Hooke-Jeeves algorithm, to determine the direction to proceed (from the base case) so that the performance index was reduced.

Plant data were used to determine if simulation results were accurate. These data are recorded after all volatile matter (including a significant amount of water) is removed from the raw gas stream, while the ASPEN/SP simulation provides results that include all component flows in the raw gas. So the plant data were adjusted to be on the same basis (this was inadvertently omitted in previous optimization work (4)). For example, the mole fractions of non-condensible components in the raw gas stream (plant data) were each reduced to account for the condensible volatile flow. In addition, the weighting factors used to account for the relative importance of the various normalized error values for each response were changed to reflect a change in the opinion of Great Plains plant personnel as to which were really the important gasifier performance measures.

In the initial optimization, simulations were run for the three gasification rates (high, average, and low) using identical kinetic parameters to provide results for

comparing to the three sets of plant data. The kinetic parameters were then adjusted for the next run. This was very time consuming since each series of runs required 50-70 minutes of computer time and a minimum of 100 runs (possibly many more) were required before a minimum performance index could be located.

The second optimization was accomplished by running simulations at only one gasification rate (the average) to reduce the required simulation time to 15-25 minutes per run. This was the only practical alternative, and any small inconsistency in the minimized performance index from plant data at one rate compared with that for all three rates was presumably offset by the ability to perform a more complete optimization.

Chapter V

MODEL PREDICTIONS

ASPEN/SP Simulation Results

The previous optimization results, using kinetic constants determined by work performed prior to input modifications, are given in Table 4. The simulation predicted mass flow rates reasonably well. Notice, however, that the predicted coal feed flow and the flow of water in the raw gas are slightly higher than the plant data. In addition, predicted mole fractions of the raw gas components, with the exception of methane, deviate from plant data by up 20%. When the volatile matter adjustments were made to reduce non-condensible volatile flows, the mole fractions deviated even more.

Initial Optimization

Significant improvements were seen after making the previously outlined modifications to the input (see Table 5). In particular, the predicted mole fractions of the raw gas components (on a dry basis) are within 2% of plant data. For example, the predicted mole fraction of hydrogen in the raw gas is predicted at 0.3889 (average rate) compared to 0.3888 for actual plant data.

RESPONSE	Units WT	Low Rate	Avg Rate	High Norm Rate	alized Error
PLANT DATA COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CO2 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR % MOL% MOL% MOL% LB/HR LB/HR F	Aug.'90 100248 99.48 0.3909 0.1536 0.3183 0.1155 127399 82515 0.5085	July'90 104666 99.48 0.3888 0.1542 0.3165 0.1153 130890 88423 0.4852	Nov.'89 108620 99.48 0.3966 0.1527 0.3169 0.1121 137361 91763 0.5008	
SIMULATION COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CO2 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR 10 % 10 MOL% 1 MOL% 1 MOL% 3 MOL% 1 LB/HR 1 LB/HR 10 F 10 3	106483 97.26 0.3265 0.1184 0.3614 0.1163 123637 88159 409.2 0.4742	11242397.300.32750.12190.35860.114512996392442407.60.4776	118400 97.17 0.3293 0.1255 0.3562 0.1131 136594 96937 407.5 0.4811	0.1782 0.0152 0.0809 0.1281 0.1544 0.0002 0.0009 0.0975 0.7361 0.0196
PEAK TEMPERATURE MASS FLOW OF STEAM PRODUCED OUTLET STEAM TEMPERATURE	F 0 LB/HR 0 F 0	1886 8457 1344 Performan	1897 9169 1179 ce Index	1906 9575 1102	1.4111

TABLE 4. Predictions With Optimized Rate Constants; June 4, 1992 (4)

39

However, the predicted mass flow rate of water in the raw gas is 7,000 to 9,000 lb/hr (8-10%) too high while the raw gas mass flow on a dry basis and the coal feed flow rates are low. Improvements in the mole fraction predictions were made at the expense of the flow rate predictions. Increasing the reaction rate of fixed carbon and steam would provide better predictions by reducing raw gas water flow, increasing dry raw gas mass flow, and increasing the coal feed rate. Since the steam utilization depends on steam consumed in the gasifier, this prediction would also improve if more steam were consumed.

RESPONSE	Units WT	Low Avg Rate Rate	High Normalized Rate Error
PLANT DATA COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CO2 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR % MOL% MOL% MOL% LB/HR LB/HR F	Aug.'90 Jul 100248 104666 99.48 99.48 0.3909 0.3888 0.1536 0.1542 0.3183 0.3165 0.1155 0.1153 127399 130890 82515 88423 0.5085 0.4852	y '90 Nov.'89 108620 99.48 0.3966 0.1527 0.3169 0.1121 137361 91763 0.5008
SIMULATION COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CO2 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR 10 % 10 MOL% 5 MOL% 5 MOL% 5 LB/HR 1 LB/HR 3 F 10 3	9697210240796.9797.300.38710.38890.15130.15320.31810.31750.11910.11501120401175959068395566404.1403.10.40800.4054	1079470.014997.220.01630.39110.00150.15420.00180.31656.1E-050.11130.00521230400.03551007010.0773403.10.82940.40350.3134
PEAK TEMPERATURE MASS FLOW OF STEAM PRODUCED OUTLET STEAM TEMPERATURE	F 0 LB/HR 0 0	1994 2005 8457 9115 578.9 460.0 Performance Index	2015 9157 460.0 1.2953

TABLE 5. Predictions With Optimized Rate Constants; April 1, 1993

Optimization With Conversion to Wet Basis

It was thought that agreement of mass flow rates between predictions and plant data could be obtained and that high normalized errors for the raw gas temperature and steam utilization were affecting the optimization by shifting the location of the minimum. In an attempt to obtain a mass flow agreement, all predicted concentrations (including water) were converted to mole fractions on a wet basis and weighted at ten, and all other predictions were weighted at zero, except the coal feed which was also weighted at ten. Converting the raw gas component concentrations to a wet basis results in a much larger normalized error because of a large error in the water flow prediction. For example, the hydrogen mole fraction on a wet basis obtained from plant data is 0.2138 (Avg Rate) while the predicted value is 0.1964, an error of 7%.

Results obtained from this optimization (Table 6) were similar to those previously obtained in that the flow of raw gas was low while the flow of water in the raw gas washigh by a similar margin. However, some important improvements were noticed. The coal feed flow rate increased by 5% from the previous optimization (Table 5) while the flow of water in the raw gas increased by much less (1%). Since 36% of the feed coal is water, this means that more water and fixed carbon are being consumed.

RESPONSE	Units	W	Low T Rate	Avg Rate	High Nor Rate	malized Error
PLANT DATA COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (WET) CONC. OF CO IN RAW GAS (WET) CONC. OF CO2 IN RAW GAS (WET) CONC. OF CH4 IN RAW GAS (WET)	LB/HR % MOL% MOL% MOL%		Aug.'90 100248 99.48 0.2192 0.0861 0.1785 0.0648	July '90 104666 99.48 0.2138 0.0848 0.174 0.0634	Nov.'89 108620 99.48 0.2199 0.0847 0.1757 0.0621	
RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS CONC. OF H2O IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR LB/HR MOL% F		127399 82515 0.4352 0.5085	130890 88423 0.446 0.4852	137361 91763 0.4416 0.5008	
SIMULATION COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (WET) CONC. OF CO IN RAW GAS (WET) CONC. OF CO2 IN RAW GAS (WET) CONC. OF CH4 IN RAW GAS (WET) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS CONC. OF H2O IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR % MOL% MOL% MOL% LB/HR LB/HR MOL% F	10 10 10 10 0 0 10 0 0	101424 97.28 0.1955 0.0787 0.1630 0.0650 116279 90465 0.4809 396.2 0.4282	107461 97.27 0.1964 0.0794 0.1623 0.0628 122405 95535 0.4752 396.5 0.4252	113260 97.24 0.1972 0.0796 0.1613 0.0605 128051 100645 0.4836 39604 0.4239	0.0281 0 0.2913 0.1514 0.1886 0.0074 0 0.2641 0 0
PEAK TEMPERATURE MASS FLOW OF STEAM PRODUCED OUTLET STEAM TEMPERATURE	F LB/HR F		1858 8457 466.3 Performanc	1869 8517 460.0 ce Index	1878 8536 460.0	0.9309

TABLE 6. Predictions With Optimized Rate Constants (Wet Basis)

Predictions With Specific Heat Adjustment

The energy balance from the simulation results in a very low predicted raw gas temperature. These results assume that the energy associated with devolatilization is neutral, while it is actually an exothermic process (this is explained in more detail in Chapter VI). This energy can be compensated for in the ASPEN/SP model by adjusting the specific heat of the volatile matter. Adjusting this value from 0.43862 + 1.5414(10⁻⁴)T to 0.17 resulted in more accurate predicted raw gas temperatures. This change had very little impact on the simulation results other than the raw gas temperature (see Table 7).

RESPONSE	Units WT	Low Rate	Avg Rate	High Norn Rate	nalized Error
PLANT DATA COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CC2 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION	LB/HR % MOL% MOL% MOL% LB/HR LB/HR F	Aug. 100248 99.48 0.3909 0.1536 0.3183 0.1155 127399 82515 0.5085	.'90 Jul 104666 99.48 0.3888 0.1542 0.3165 0.1153 130890 88423 0.4852	y'90 Nov 108620 99.48 0.3966 0.1527 0.3169 0.1121 137361 91763 0.5008	.'89
SIMULATION COAL FEED FLOW RATE FIXED CARBON CONVERTED CONC. OF H2 IN RAW GAS (DRY) CONC. OF CO IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) CONC. OF CH4 IN RAW GAS (DRY) RAW GAS MASS FLOW RATE (DRY) FLOW OF WATER IN RAW GAS RAW GAS TEMPERATURE REACTOR STEAM UTILIZATION PEAK TEMPERATURE MASS FLOW OF STEAM PRODUCED OUTLET STEAM TEMPERATURE	LB/HR 10 % 10 MOL% 5 MOL% 5 MOL% 5 LB/HR 1 LB/HR 3 F 10 3 F 0 LB/HR 0 F 0	95739 97.31 0.3874 0.1488 0.3205 0.1189 111262 90461 0.4056 1993 8457 570.8	10174397.250.38910.15070.31970.1151116970955620.402920049074460.0	107116 97.21 0.3914 0.1517 0.3188 0.1112 122341 100631 0.4012 2015 9117 460.0	0.0285 0.0150 0.0013 0.0078 0.0009 0.0048 0.0391 0.0754 0.0166 0.3299
		Performar	nce Index	-	0.5193

TABLE 7. Predictions With Optimized Rate Constants (Cp=0.17)

The kinetic parameters for the Table 7 predictions were held at the same values as those obtained from the initial optimization (Table 5).

A comparison between the two predicted temperature profile cases in Figure 8 (the thermally neutral and exothermic heat of devolatilization) show that the temperatures are nearly identical throughout the reaction zone. This is reasonable since the axial temperature gradient is small within the gasification zone. The temperature increase when exothermic devolatilization reactions are considered is primarily due to the drop in energy needed to heat the volatile portion of the coal feed to gasification (and devolatilization) temperatures. In other words, the volatile specific heat adjustment has no significant affect on temperatures (and concentrations) in the

FIGURE 8. Temperature Profile Predictions In Gasifier Reaction Zone.

gasification/devolatilization zone but is accounted for in the drying zone. Consequently, the specific heat adjustment is not a good representation to the physical model since volatile reaction heat should be associated directly with devolatilization.

Table 8 gives the kinetic constants obtained from the optimization studies.

	(Table 4)	(Table 5, 7)	(Table 6)
RC 1	3.02M	2.70M	3.00M
AE 1	27.0K	24.2K	27.0K
RC 2	525	610	325
AE 2	36.0K	39.0K	33.6K
RC 3	550	525	500
AE 3	74.0K	59.1K	63.0K
RC 4	4.90E-3	4.78E-3	5.35E-3
AE 4	17.1K	19.2K	18.8K
RC 5	20.7M	26.3M	25.0M
AE 5	14.9K	10.65K	12.4K

TABLE 8. Kinetic Rate Constants

The first column gives the kinetic parameters for the simulation predictions of Table 4, the optimized predictions before the input adjustments were made. Column two gives the parameters for both Tables 5 and 7, the optimized predictions after input adjustment. The final column is the optimized parameters obtained after altering performance criteria in an attempt to achieve a mass flow agreement (Table 6).

Gasifier Model Equations

Data on a single gasifier were collected in 1988 (ERNIE tests) to correlate operating parameters to certain performance measures using a Box-Behnken design in three variables (oxygen flow, steam/oxygen ratio, and agent temperature) (20). To see if the ASPEN model with the optimized rate constants could predict the impact of these variable adjustments, the plant ERNIE test was repeated replacing the plant with the ASPEN model. The Box-Behnken test matrix (Table 9) consists of thirteen runs using scaled operating variables to represent high, average, and low values. The results of these ASPEN simulations were then fit to a quadratic equation in the three variables using regression analysis with coded variable rates (-1, 0, +1). The coefficients of the important quadratic equation terms (only significant terms were retained) are given in Table 10 along with the equations determined from the ERNIE tests. The coefficient of X_i for a particular response is the impact of changing the ith operating variable from its average level to its high level. Thus, the impacts predicted by ASPEN and those found from the ERNIE tests can be directly compared by examining the corresponding coefficients in the quadratic equations.

Many of the trends predicted by the ASPEN model, for the nine responses listed in Table 9, are similar in comparison to the plant model. Both methane (CH₄) and hydrogen (H₂) mole fractions are correlated with oxygen flow (X₁) and steam/oxygen ratio (X₂) to nearly the same magnitude for both models (i.e., 0.33 versus 0.31 coefficients for H₂ mol% and variable X₁). Others are not so similar. The ASPEN model predicted the response of variable X₃, the agent temperature, in the same direction but with a significantly smaller magnitude for each of the seven responses that had significant plant model coefficients. On the other hand, a few of the trends were predicted in the opposite direction (i.e., 0.20 versus -0.23 coefficients for Equivalent SNG Rate and variable X₂).

Box-Behnken design values (coded value) ¹							
O ₂ , % of design (X ₁)	H ₂ 0/O ₂ (X ₂)	Temp, F (X ₃)	Code Name ²				
100 (0)	(-1)	(-1)	F022				
100 (0)	(-1)	(+1)	F021				
100 (0)	(+1)	. (+1)	F011				
100 (0)	(+1)	(-1)	F012				
92 (-1)	(+1)	(0)	F210				
92 (-1)	(-1)	(0)	F220				
108 (+1)	(-1)	(0)	F120				
108 (+1)	(+1)	(0)	F110				
92 (-1)	(0)	(-1)	F202				
92 (-1)	(0)	(+1)	F201				
108 (+1)	(0)	(+1)	F101				
108 (+1)	(0)	(-1)	F102				
100 (0)	(0)	(0)	F000				

TABLE 9. Box-Behnken Test Matrix

Definition of Coded Operating Variables:

 X_1 = Oxygen Flow, % of design X_2 = Steam/Oxygen Ratio, lbs/scf) X_3 = Agent Temperature, °F

¹Actual design valus can be found in (4).

²Simulation predictions are given in Appendix C under these file codenames.

ABLE	10.	Constants	and Significant Coefficients
		of Gasifier	Model Equations

Res	<u>ponse</u> Const.	X,	X ₂	X ₃	X ₁ X ₂	X ₂ X ₃	X ₁ X ₃	X1 ²	X ₂ ²	X ₃ ²
Equ	iv. SNG I	Rate (kso	cfh)							
(P)	11.59	0.73	0.20	0.18						
(A)	12.81	0.84	-0.23	0.09						
Equ	iv. SNG I	Rate/Equ	iv. Gasif	ication (kscfh/eq)				
(P)	11.6	-0.20	0.20	0.18						
(A)	12.82	-0.18	-0.23	0.09						
CO2	in Raw (Gas (mol	%)							
(P)	32.30		0.31	-0.40						-0.37
(A)	31.89	-0.09	0.62	-0.13					-0.04	
CH₄	in Raw 0	Gas (mol	%)							
(P)	10.90	-0.34	-0.22	0.22					-0.03	
(A)	11.47	-0.27	-0.30	0.03						
H ₂ ii	n Raw Ga	as (mol%)							
(P)	40.88	0.33	0.64	-0.25					-0.28	
(A)	38.91	0.31	0.73	-0.04				-0.01		
со	in Raw G	as (mol	%)							
(P)	14.27	-0.20	-0.65	0.40					0.44	0.26
(A)	15.19	0.08	-1.01	0.14					0.05	
H ₂ /C	0									
(P)	2.90	0.06	0.17	-0.09		-0.01			-0.10	
(A)	2.56	0.01	0.22	-0.03					0.01	
Out	et Temp	erature (°F)							
(P)	482		13							
(A)	484	9.91	19.7	-2.91						
Gas	Liquor/E	quiv. Ga	asificatio	n (gal/da	y X 103))				
(P)	256		20							
(A)	307	0.79	11.0							

(P) = Plant model (A) = ASPEN model (04/01/93) X₁ = Coded Oxygen Flow X₂ = Coded Steam/Oxygen Ratio

X₃ = Coded Agent Temperature

Discussion of Results

Ultimate Prediction Levels

Consider the combination of DENN kinetic reaction equations 3, 4, and 5:

 $3 H_2O + 3 C \Rightarrow CO_2 + CO + H_2 + CH_4$

Increasing the forward reaction rate would provide better mass flow predictions. However, this reaction combination does not occur at an adequate rate with the optimized kinetic parameters. Possible explanations for this are:

1. We have not reached the minimum location in our optimization.

- 2. The reaction(s) are bounded by equilibrium constraints in the kinetic model.
- 3. The model for devolatilization is inappropriate.
- 4. The model for drying the feed coal is inappropriate.
- 5. FORTRAN code errors and undiscovered "bugs" still exist.

1. Local Minima

Each simulation requires 15-25 minutes of computing time when using the carbon conversion specification routine. The number of variables being considered in the kinetic optimization (ten), in addition to other variables that could be considered, creates a very time consuming route to the optimum. In an ideal situation (i.e., very short computing time), an exploratory search beginning at several different starting positions in the multivariable plane would be done to see whether each case converged to the same point or if there were local minima (a "false" optimum). This was unrealistic in the time frame available for this study and the local minima hypothesis is believed to be an unlikely situation since the optimization with conversion to wet basis (Table 6) provided results similar to the initial optimization (Table 5).

2. Equilibrium Constraints

Equilibrium constants are documented in literature and should not be adjusted. If the kinetic optimization is being constrained by equilibrium, which depends only on temperature, then the temperature profile within the gasifier is inappropriate. Recall that the temperature within the reaction zone of the model does not fall below 1350°F with the optimized kinetic rate constants (see Figure 8). However, devolatilization and gasification reactions will occur at much lower temperatures; the reaction rates may or may not be reduced (remember kinetic rate constants depend on coal composition) but equilibrium concentrations will shift. Temperature limitations on gasification reactions and devolatilization can be removed by improving coal drying and devolatilization processes in the RGAS model. This is discussed further in the following paragraphs.

3. Inappropriate Devolatilization Model

Both gasification and devolatilization rates depend on temperature. Therefore, these two zones may overlap, causing the evolution of volatile products to affect the concentration of gasification reactants, and thus the reaction rates. The current devolatilization model is a simple linear temperature dependant evolution of volatile matter and does not reflect actual volatile evolution. In other words, the model assumes that devolatilization begins at a lower temperature limit and proceeds at a constant rate until the upper temperature limit is reached, so that all volatile species evolve consistently throughout the entire temperature range. The order and appearance of the volatile species when coal is heated at a constant rate is important. After drying, the sequence is chemical water, carbon dioxide, carbon monoxide, higher hydrocarbons (tars, etc.),

ethane, methane, and finally hydrogen. The order in not precise, and substantial overlapping occurs (1).

The two assumptions made in order to sime a sously solve for the coal gas composition in Table 2 result in 359 lbmol/hr of methane being evolved during devolatilization. The methane in the raw gas flow from plant data is just 698 lbmol/hr. These assumptions result in 59% of the methane being produced during devolatilization. In addition, the flow of water from devolatilization makes up 14% of the raw gas water after excluding water resulting from drying of the feed coal. These are significant amounts and will have an effect on reaction rates. Using different criteria to solve for coal gas distributions and developing a more accurate devolatilization species sequence will affect ASPEN/RGAS predictions. It is possible that problems being encountered in obtaining accurate raw gas and water flows and temperatures can be explained by developing a better understanding of what is occurring in the devolatilization zone.

4. Inappropriate Model For Drying

The heating and drying of coal occurs after convergence of the gasifier reaction zone. Water released during drying consists of inherent and surface moisture contained in cracks and capillaries and also includes physically and chemically absorbed moisture. The percentage of raw gas water that originates from water in the feed coal is 43%. In the ASPEN model, this water is not available as a reactant but is added to the raw gas leaving the reaction zone. Yoon (26) estimated a heating and drying time of the order of 60 to 90 seconds for coal having 10% moisture and concluded that drying is instantaneous when compared to a solids residence time of one hour or more. However, North Dakota lignite contains 36% water. One could easil₂ assume that at water

saturation temperatures in the gasifier (460° F), with equilibrium favoring a forward reaction and coal providing a catalytic surface, the water-gas shift reaction would consume a portion of this water.

Consider the temperature profiles in Figure 6. The predicted temperature at the top of the gasification (and devolatilization) zone is ~1350°F (732°C). Between this temperature and the raw gas temperature (250°C) is the coal heating and drying zone. Within this broad temperature range (nearly 500°C) no reactions occur in the ASPEN model. In fact, coal drying, devolatilization, and char gasification are not independent processes in coal gasification. For example, coal gasification reactions for North Dakota lignite begin in the temperature range of 550-850°C for pulverized coal samples subjected to a wide range of hydrogen pressures (10-280 atm) and a high heating rate (~10⁴°C/s) (8). In addition, there is evidence that devolatilization begins at 350-400°C and is a strong function of temperature after that (1).

During the ASPEN simulation, the final (lower) temperature for volatile matter release is reset to the gas outlet temperature. Since coal drying and devolatilization are handled separately in the RGAS model, devolatilization begins at temperatures exceeding 700°C after the coal is heated and dried. Because of this separation in zones both the devolatilization and gasification processes are being "cut off" from the temperatures and reactants (steam) available in the drying zone.

Gasification and devolatilization are currently modeled as concurrent processes. However, gasification, devolatilization, and drying are processes that depend on temperature. If drying were combined with the former two processes, free water would be available as a gasification reactant and devolatilization and gasification could occur at lower temperatures. Adding drying as an incremental process in the RGAS model

would invalidate one assumption. The solid and gas temperatures are assumed to be equal at any one axial position within the bed of coal. During the heating and drying of coal this is an inadequate assumption and would need to be addressed when making changes to incorporate drying into the reaction zone.

5. Undiscovered Errors and "Bugs"

During the course of this investigation several "bugs" in the RGAS software were discovered which required programming adjustments. Some were minor and had little effect on simulation results while others were significant (i.e.,, carbon conversion design specification). It is believed that the simulation is now running properly. However, yet undiscovered programming inadequacies could become apparent. For example, during the final stages of this project (while deriving kinetic rate equations and comparing with FORTRAN routine equations), a programming error was discovered in the FORTRAN kinetic subroutine, DELKIN. This error affects the calculation of the rate of reaction 3.

Reaction 3: Bouduard reaction $CO_2 + C \Rightarrow 2CO$

To be more precise, the forward rate of the Bouduard reaction is given by:

$$R_3 = K_3 \left(y_{CO_2} - \frac{P y_{CO}^2}{K_3^{eq}} \right) \left(\frac{P}{RT} \right)^2 (1 - \epsilon_b) [C]$$
(3.19)

where y is mole fraction and K_3 and K_3^{eq} are the kinetic and equilibrium coefficients from the Arrhenius equation. In the numerator of the second term is the squared mole fraction of carbon monoxide. Up until March of 1993 this term was $Py_{co}y_{H2} / K_3^{eq}$.

A preliminary investigation of the effect this change would have on ASPEN predictions was performed using the optimized rate constants and several input files from

the Box-Behnken test matrix. Surprisingly, the results were unchanged (up to four significant figures) from those obtained from the original kinetic subroutine. However, it was noticed during optimization studies that the rate constant for reaction 3 had no effect on model predictions under particular kinetic conditions. This suggests that either the reaction is instantaneous or nonexistent. If this is the case, then changing a reactant variable in Equation 3.19 may not affect ASPEN predictions.

Impacts of Operating Variables

While the ASPEN model is predicting the ultimate response values more accurately, the ability to predict trends from adjustments to the three operating variables (Box-Behnken test matrix) have not improved much from previous optimization studies (some coefficients have improved, others are worse). However, some of the predicted trends are very good and most others are at least in the same direction (but different in magnitude). The three coefficients with an opposite sign (mol% CO and Equivalent SNG Rate) predict responses that directly involve carbon monoxide concentrations (and indirectly the Bouduard reaction). This reaction is believed to be occurring at an insignificant rate in the ASPEN model due to a low rate constant caused from optimization studies performed with a faulty reaction rate equation.

C. RGAS Convergence Scheme

The FORTRAN routine, which models the combustion and gasification zones in the gasifier (URE09), is a two point boundary value problem that requires an iterative approach for convergence. The composition, flow rate, and temperature of the reactants entering the bottom of the gasifier are specified. Also known are the coal feed flow and temperature at the top of the gasifier. It is neccessary, to solve this problem, to assume the amount of unreacted carbon in the ash. The differential mass and energy balance equations are integrated in the direction of the gas flow from the bottom to the top of the gasifier. If the correct amount of unreacted carbon has been assumed, the calculated amount entering the top will match the known value. If not, a new value of unreacted carbon is assumed and the integration is repeated (19).

The carbon conversion design specification routine added to the ASPEN/RGAS algorithm "guesses" (using a secant convergence scheme) the coal feed flow rate and calculates the carbon conversion. If the calculated carbon conversion does not match the specified value a new "guess" is made and the calculations are repeated. This design specification was added to prevent a simulation error when the known coal flow was not high enough to allow the original algorithm to converge because the solution contained a physically impossible situation: a carbon conversion greater than one (or a negative unreacted carbon flow). A design specification in ASPEN is a user-defined routine used to specify that a flowsheet variable (i.e., carbon conversion) attain a specified value by "freeing" a previously specified variable (coal feed flow). In essence, the new algorithm contains a double-loop convergence scheme where it "guesses" a coal feed flow then "guesses" a carbon conversion (see Figure 9) This is a very inefficient algorithm because it makes unnecessary calculations and iterations. The solution could be found with just one iteration by making programming adjustments to the original FORTRAN routine (URE09).

For example, if the unreacted carbon flow (or carbon conversion) is specified along with the reactant characteristics entering the bottom of the gasifier, then everything is known at this boundary except the ash flow rate. This flow rate depends on the ash

mass fraction from the proximate analysis and the coal feed flow rate. Once again, it becomes a two-point boundary value problem. However, since ash is not a reactant and contributes little to the mass and onergy balances, it could be approximated using a correlation involving the three operating variables (oxygen flow, steam/oxygen ratio, and steam temperature) and allow the direct calculation of flow predictions at the top of the gasifier.

FIGURE 9. ASPEN/RGAS Convergence Scheme

Chapter VI

HEAT OF DEVOLATILIZATION

In the RGAS model of a coal gasifier, coal devolatilization is modeled using a linear temperature dependent evolution of an experimentally determined mixture of volatile components and assumed to be thermally neutral. With this assumption, using optimized kinetic parameters, a disappointing energy balance resulted that predicted a raw gas temperature significantly below plant data. However, it was reported by Om P. Mahajan (13) that the enthalpies associated with pyrolysis of differing coal types have a large variability and may either be positive or negative. This study was undertaken to better define the enthalpies associated with Great Plains lignite coal devolatilization.

Experimental

Five samples of North Dakota lignite were analyzed to determine enthalpies associated with devolatilization using a pressure differential scanning calorimeter (DSC). The samples were subjected to 900 psi in an inert atmosphere and energy was applied to create a temperature ramp of 10°C/min from ambient temperature to 570°C. Measurements of heat flow versus temperature and time were recorded at 6 second intervals. A sapphire sample was subjected to the same conditions and used as a standard. Thermo-gravimetric analyses (TGA) were performed using the same temperature ramp at ambient pressure to estimate the rate of volatile weight loss.

Energy Balance

An energy balance on the coal can be written as:

$$\frac{dQ_{coal}}{dt M} = \frac{dH_{coal}}{dt M} = \frac{1}{M dt} \sum_{i} \left[(\mu_i C_{p,i}) dT + (\Delta H_i dm_i)_{vap} + (\Delta H_i dm_i)_{Rxn} \right]$$
(6.1)

where M is the mass of the coal sample, μ_i is the mass of proximate component i, and m_i is the mass of vaporized component i. Therefore, μ_i/M represents the mass fraction of proximate component i (from the proximate analysis). Similarly, the enthalpy change in the sapphire can be written as:

$$\frac{dQ_{sap}}{dt M'} = \frac{dH_{sap}}{dt M'} = C'_p \frac{dT}{dt}$$
(6.2)

where C_p ' is a known experimental value represented by (8):

$$C'_p[J/g \circ K] = -0.1224 + 0.004392 T - 5.241 (10^{-6}) T^2 + 2.226 (10^{-9}) T^3$$
 (6.3)
Taking the ratio of the two enthalpies and rearranging (i.e. multiplying by one) to reduce
errors due to nonlinearities in the temperature calibration and control system (i.e.,
dQ/dt = f{T}) results in:

$$Total Heat (adjusted) = \frac{dQ_{coai}/dt}{dQ_{sap}/dt} \frac{M'}{M} C_p' \frac{dT}{dt}$$

$$= \frac{1}{M dt} \sum_i [(\mu_i C_{p,i}) dT + (\Delta H_i dm_i)_{vap} + (\Delta H_i dm_i)_{Rxn}]$$
(6.4)

From DSC results and the heat capacity of sapphire the left-hand side of (4) can be evaluated. The sensible heat, latent heat, and heat of reaction terms are expanded using the proximate components: water (H_2O), fixed carbon (FC), volatiles (vol), and ash.

$$\sum_{i} (\mu C_{p})_{i} = (\mu C_{p})_{H_{2}O} + (\mu C_{p})_{FC} + (\mu C_{p})_{vol} + (\mu C_{p})_{ash}$$
(6.5)

Fixed carbon and ash remain in the solid state and so drop from the latent heat term.

$$\sum_{i} (\Delta H_{vap} dm)_{i} = (\Delta H_{vap} dm)_{H_2O} + (\Delta H_{vap} dm)_{vol}$$
(6.6)

Similarly, ash is non- reactive and has no heat of reaction term:

$$\sum_{i} (\Delta H_{Rxn} dm)_{i} = (\Delta H_{Rxn} dm)_{WGS} + (\Delta H_{vap} dm)_{FC} + (\Delta H_{vap} dm)_{vol}$$
(6.7)

where WGS represents the water-gas shift reaction.

$$H_2O$$
 + CO \rightleftharpoons CO_2 + H_2 ΔH = +2,853 KJ/Kg mol

In order to simplify this analysis, the reaction with fixed carbon and the water-gas shift reaction were neglected. This is addressed further in the discussion section.

The heat of vaporization of water and the heat capacities of water (16), fixed carbon, and ash at 900 psi can be approximated using the Kirov correlations (9) by:

$$C_{0,FC} = 0.165 + 0.00068 T - 4.2(10^{-7}) T^2$$
 cal/g°C

$$C_{p,ash} = 0.18 + 0.00014T$$
 T [=] Celsius

 $C_{p,H2O(h)} = 0.9909 + 1.582(10^{-4})T - 1.708(10^{-6})T^2 + 1.434(10^{-8})T^3 \quad \text{cal/g}^\circ\text{C}$

$$\Delta H_{\text{vap},H_{nO}} = 1558.$$
 J/g

The remaining sensible, latent, and reaction heat for the volatile matter ($C_{p,vol} + \Delta H_{vap,vol} + \Delta H_{Rxn}$ = heat of devolatilization) is brought to the left-hand side to produce an overall volatile enthalpy:

Heat of
Devolatilization =
$$\frac{1}{M} \int [\mu_{vol} C_p dT + (\Delta H dm)_{*3p} + (\Delta H dm)_{Rxn}]_{vol} =$$
Total Heat
(adjusted) - Non Volatile
Enthalpy (6.8)
= $\int \frac{dQ_{coa}/M}{dQ_{sap}/M'} C_p dT - \frac{1}{M} \int (\mu_{H_2O} C_p dT + \Delta H_{vap} dm)_{H_2O} - \frac{\mu_{FC}}{M} \int C_{p,FC} dT - \frac{\mu_{ash}}{M} \int C_{p,ash} dT$

From the DSC and TGA analyses, the heat of devolatilization is approximated by substituting the change in mass, temperature, and energy supplied within each 6 second interval i and summing over the entire temperature range.

Heat of
Devolatilization =
$$\sum_{l=l_0}^{l} \left[\left(\frac{\Delta Q_{l,cosl}/M}{\Delta Q_{l,sap}/M'} C_p' - \left(\frac{\mu}{M} C_p \right)_{FC} - \left(\frac{\mu}{M} C_p \right)_{ash} - \left(\frac{\mu}{M} C_p \right)_{H_2O} \right] \Delta T_l - \left(\Delta H_{vap} \frac{\Delta m_l}{\mu} \right)_{H_2C} \right]$$
(6.9)

Since the water and volatile matter undergo a change of phase, the instantaneous heat of vaporization and heat capacity within the Δ t interval can be written as:

$$C_{p,H_2O} = C_{p,H_2O(h)}(1 - VF_{H_2O}) + C_{p,H_2O(h)}(VF_{H_2O})$$
(6.10a)

$$C_{p,vol} = C_{p,vol(h)}(1 - VF_{vol}) + C_{p,vol(v)}(VF_{vol})$$
(6.10b)

$$dH_{vap,H_2O} = 1558 \ dm_{H_2O} \ Joules$$
 (6.11a)

$$\Delta H_{vap,vol} = \text{Unknown} \tag{6.11b}$$

where VF is the vapor fraction.

To adjust for the weight loss during the DSC analyses we will assume that as matter is vaporized it leaves the system immediately and thus, maintains a constant pressure. Therefore, the gaseous matter does not absorb any further energy and the second term in Equations 6.10a and 6.10b vanish.

To account for the loss of volatile matter a TGA analysis with a 10°C/min temperature ramp was used (see Figure 10) to approximate the vapor fraction of volatile

matter. As before, incremental intervals are summed:

$$VF_{vol} = \int_{0}^{t} \frac{dm_{vol}}{\mu_{vol} dt} \doteq \sum_{j=j_{0}}^{J} \frac{\Delta m_{j}}{\Delta t_{j} \mu_{vol}}$$
(6.12)

where j_0 and J are the Δt intervals at 20 and 56 minutes. The rate of vaporization of water, $dm_{H_{20}}/dt$, can be approximated by a normal distribution:

$$\frac{dm_{H_2O}}{dt} = \frac{\mu_{H_2O}}{\sigma\sqrt{2\pi}} \exp\left(\frac{t-t_0}{2\sigma^2}\right).$$
(6.13)

This is a reasonable since the left hand peak in Figure 10 (due to water vaporization) is a close approximation to the superimposed normal distribution. The vapor fraction of
water is then:

$$VF_{H_2O} = \frac{1}{\mu_{H_2O}} \int_0^t \frac{dm_{H_2O}}{dt} dt = \int_0^t \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{t-t_0}{2\sigma^2}\right) dt$$
(6.14)

where t_0 is the time of the peak temperature in the DSC curve, and σ was carefully chosen at 2.8 to match the width of the normal distribution with the width of the TGA water vaporization curve.

Results

Figure 11 is a graph of the raw data of heat flow versus temperature obtained during an experimental run using coal sample 1600N. The large peak is a result of the energy needed to vaporize water.

FIGURE 11. Raw Differential Scanning Calorimeter Results.

Figure 12 shows the adjusted heat flow data (Equation 6.4), the sum of the nonvolatile enthalpies (negative terms in Equation 6.9), and the resultant net heat of devolatilization (Equation 6.9). The heat of devolatilization is the sum of the volatile specific heat, the heat of vaporization, plus any reactions that may be occurring. The volatile heat flow below 150°C is constant at 0.5 J/g; above 350°C it is 0.8 J/g and indicates that endothermic reactions and/or volatilization of heavy volatile matter are occurring since the proximate fixed carbon and ash has a much smaller sensible heat contribution. The large exothermic (negative heat flow) dip in the volatile enthalpy curve suggests that exothermic reactions are occurring concurrent with water vaporization.

A proximate analysis of each blended coal sample was performed and is given in Table 11.

Sample 0200B 1000N	(Wt%) Water 32.82 31.49	(Wt%) Volatiles 27.28 29.01	Fixed Carbon 32.17 30.90	(Wt%) Ash 7.74 8.54	(Wt% daf) Carbon 71.04 70.63	
1600N 1400G	32.14 34.41	28.90 27.29	29.31 32.73	9.61 5.52	70.54 70.27	
2200G	31.67	29.20	33.56	5.59	71.12	

TABLE 11.	Proximate	Analyses	of (Coal S	Samples
-----------	-----------	----------	------	--------	---------

The summation of the enthalpies shown in Figure 12 are given in Table 12 for each coal sample over the temperature range of 100°C to 570°C along with an average volatile heat. The average volatile heat is calculated from:

Avg Volatile
Heat =
$$\frac{\text{Eqn 9}}{(570 - 100)^{\circ} C} \left(\frac{M}{\mu_{vol}}\right) (1 \ cal/4.184 \ J)$$
 (6.15)

and represents a specific heat value to be used for the ASPEN/RGAS simulation.

Sample 0200B	Adjusted 1191	Non-Vol 1003	Volatiles +188	Avg Heat +0.35	
1000N	1027	982	+45	+0.07	
1600N	1157	968	+189	+0.33	
1400G	961	1049	-88	-0.14	
2200G	1098	992	+107	+0.16	

TABLE 12. DSC Net Enthalpies (J/g coal)

Discussion of Results

The specific heat for volatile matter is approximated in ASPEN\RGAS by 0.4386 $+ 1.5414(10^{-4})$ T, and devolatilization is considered thermally neutral. The values obtained in this analysis fall below this in a range of -0.14 to +0.35 which means that less energy is being absorbed by the volatile matter. In other words, more energy is being generated by cracking reactions than is required to vaporize the volatiles.

The specific heat value obtained from the RGAS optimization study (0.17) is well within this range. Even so, the coal samples in the present study were subjected to different concentrations of reactants since the countercurrent flow of coal and reactants in a gasifier is difficult to reproduce in a differential scanning calorimeter. Mahajan, et.al. performed experiments on dried coal which simplified calculations. However, this method would significantly reduce the presence of water vapor, which is involved in the water-gas shift reaction. The equilibrium of this reaction favors the formation of hydrogen gas at low temperatures (K_p^{eq} >1 when T< 1100 K). Water vapor and hydrogen gas are major reactants in the cracking and hydrogenation reactions that occur during devolatilization.

At atmospheric pressure, water is evolved separately from the volatile matter; this is not the case under pressurized conditions. Coal drying, devolatilization, and char gasification are not independent in coal gasification. Devolatilization is generally thought to result from chemical decomposition reactions. Elevated temperatures cause the aromatic clusters of organic polymers present in the coal to decompose. Some of the fragments are highly reactive free radicals subject to a variety of secondary reactions. "Hydrogen will react with devolatilizing coal several orders of magnitude faster than with the residual char. The short-lived rapid-rate carbon species is not clearly identified, though convincing evidence suggests that hydrogen interferes with the char forming

secondary reactions presumably by hydrogenating reactive fragments sufficiently to stabilize them during their escape" (1).

In other words, the experimental conditions that coal is subjected to will affect the amount of decomposing volatiles that form char. For example, in an inert atmosphere Mahajan observed incomplete coal devolatilization. The ratio of total weight loss to proximate volatile matter ranged from 0.5 to 0.75. On the other hand, the hydrogenation of active carbon intermediates is apparent when coal is heated at high hydrogen gas pressures (10). The results of the DSC experiments indicate that exothermic reactions are occurring simultaneously with water vaporization and that steam may be a reactant in devolatilization.

In the derivation of the heat of devolatilization it was assumed that no char gasification reactions occurred. This is an important assumption since many researchers have reported total to proximate volatile weight loss in excess of one and indicates the occurance of char gasification. In the RGAS model this ratio can be specified. An elemental mole balance would then result in adjustments made to the coal gas volatile components only. Coal gas is evolved with no adjustment for reaction heat but adjustments can be made to account for the heat of devolatilization. These adjustments are redundant. A value for the heat of devolatilization with this ratio equal to one can theoretically be determined from the procedure used by Johnson (11):

$$\Delta H_{Bxn} = h_f \Delta F + h_v \Delta V \tag{6.16}$$

where

 ΔF = fixed carbon gasified,

 $\Delta V = \Delta m - \Delta F =$ volatile matter gasified,

 h_r , h_v = average heats of reaction for fixed carbon gasification and the heat of devolatilization.

Rearranging results in:

$$\frac{\Delta H_{Rxn}}{\Delta V} = h_f \left(\frac{\Delta m}{\Delta V} - 1 \right) + h_v.$$
 (6.17)

Thus, a plot of $(\Delta H_{Rxn}/\Delta V)$ versus $(\Delta m/\Delta V - 1)$ should give the heat of devolatilization at the intercept ($\Delta m = \Delta V$). This procedure may give adequate results for a single coal sample subjected to different hydrogen partial pressures but it is unknown how different coal samples will affect the variability of this intercept.

In this analysis we assumed that gaseous volatile matter does not absorb energy. In the gasifier model the volatile matter remains in the reactor to absorb heat and should be included in an energy balance to predict the heat of devolatilization. However, this is thought to be unimportant since Great Plains raw gas temperatures are only slightly above water saturation temperatures and most of the sensible heat absorbed by volatile matter is returned in the coal drying zone (in fact it is probable that heavy tars and oils are recondensed).

Although a specific value for the heat of devolatilization cannot be determined, it can be concluded that, since exothermic reactions occur, the specific heat for volatile matter in the ASPEN model should be adjusted to obtain more accurate raw gas temperatures. These results also indicate that drying and devolatilization under pressure are not independent processes and that "free" water may play an important role in these exothermic reactions.

At this point further DSC studies are not recommended. However, any future DSC experiments should be done using the following alterations to the current procedure.

Reduce DSC pressure to more closely match Great Plains gasifier operating conditions (460 psi).

- Approximate the countercurrent gas-solid flow in a moving-bed gasifier by providing an environment containing raw gas components (perhaps a 1:1 ratio of H₂ and CO₂).
- · Perform a constant temperature ramp TGA under pressurized conditions.¹

These adjustments should allow the energy associated with devolatilization and gasification to be evaluated separately using linear regression (Equation 6.17).

¹Equipment to perform a pressurized linear temperature ramp thermo-gravimetric analysis with a capacity to achieve 600 psi and 900°C should be available at the Energy and Environmental Research Center, University of North Dakota, in May, 1993

Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

Improvements in mole fraction predictions have been made at the expense of less accurate flow rate predictions. An elemental mole balance on the volatile matter in the coal has led to improved volatile flow predictions. Low raw gas temperature predictions have been determined to be the result of neglecting the exothermic nature of North Dakota lignite devolatilization, which was determined from differential scanning calorimeter experiments. An ASPEN/SP routine was used to estimate the heat transfer coefficient of the reactor wall. In addition, several ASPEN/RGAS simulation errors were defined and corrected.

Current predictions can be improved by defining parameters in the RGAS model that are constraining the approach to more accurate predictions (a "better" optimum). Increasing the consumption of steam (and carbon) would improve model predictions. However, because of the separation between the coal drying and gasification processes, gasification reactions and potential devolitilization reactants are being constrained by a temperature boundary. In addition, steam generated from drying coal is bounded from taking part in gasification reactions. Because reaction equilibria play no role at temperatures below that determined at the gasification/drying zone boundary (~1000°K), no further "tuning" of kinetic rate constants with the present model is recommended.

Rather, the model itself should be adjusted by developing improved RGAS algorithms for coal drying and devolatilization.

The following recommendations should provide improvement in future coal gasifier simulation studies.

- Perform an exploratory study using the kinetic parameters for the Bouduard reaction (Reaction 3) and the corrected kinetic FORTRAN code (DELKIN) to determine the effect this reaction has on predicted mole fractions (as compared to those obtained with the original DELKIN routine).
- Develop a more detailed model of North Dakota lignite devolatilization by determining coal gas distributions and the sequence of evolution of the noncondensible volatiles involved in gasification reactions.
- The heat of devolatilization appears to depend on coal composition. By considering the volatile specific heat to be an adjustable parameter, reactor temperatures can be more closely related to experimental data.
- Change the RGAS algorithm to use the carbon conversion as a boundary condition in its convergence scheme rather than the coal feed. This will simplify calculations and reduce the computing time by several factors. A correlation to predict the ash flow from the three operating variables will need to be developed.
- The RGAS model should be changed to achieve better temperature profile predictions and allow "free" water from coal drying to be available as a reactant. Since coal drying and volatile evolution are similar processes, they should be combined into a single process.

- The kinetic optimization procedure statistically compares predictions with test data for nine responses. The criteria used emphasized the importance of some responses. The importance and validity of these criteria should be verified prior to conducting further optimization studies.
- Since the reactor is modeled as a plug flow system, the reactor length is related to the extent of the reaction. Therefore, the entire bed depth should be accurately measured (including the heating and drying zone when combined with the reaction model).

These are some pronounced but necessary changes that will simplify calculations as well as produce a better representation of the physical gasifier and hopefully increase the accuracy of predicting both ultimate responses and trends from operating variables.

APPENDIX A

Updated RGAS Input File and FORTRAN Routines TITLE 'GASIFIER SIMULATION USING DENN KINETICS - UND CASE AVER' DESCRIPTION "BEULAH LIGNITE IN LURGI MARK IV USING DENN KINETICS WITH MODIFIED KINETIC PARAMETERS. RECYCLE TAR-OIL IS MIXED WITH THE FRESH COAL FEED BEFORE INTRODUCING THE COAL TO THE GASIFIER. THE RECYCLE TAR OIL IS MODELED USING A SLATE OF PURE COMPONENTS AND INCLUDES COAL FINES AND ASH. THIS IS FOR AN AVERAGE PRODUCTION MONTH 7/90." ; Global Parameters IN-UNITS SI OUT-UNITS ENG HISTORY MSG-LEVEL PROPERTIES=2 SIMULATION=4 HISTORY-UNITS SI SIM-OPTIONS RESULTS-PASS=1 HMB-RESULTS=2 RUN-CONTROL MAX-TIME=10000 ------: - -----Report Options ; ;---------REPORT FLOWSHEET PROPERTIES BLOCKS STREAMS STREAM-REPORT STREAMS ALL FLOW-FRAC MIXED BASES=MOLE MOLE-FRAC MASS MASS-FRAC / BASES=MASS MASS-FRAC NC PHASE-SPLITS MOLE INTENSIVE-PROPS MIXED PROPS=TEMP PRES ENTH DENS MW BASES=MOLE MASS / NC PROPS=TEMP PRES ENTH DENS BASES=MASS ATTRIBUTES NC COMPONENT ; ;---------Components : ;---------Oxygen, water, hydrogen, carbon-monoxide, carbon-dioxide, and methane must be the first six components listed in the COMPONENTS paragraph, and they must be listed in this order. In order to include more or different components, modify the COMPONENTS paragraph and the REALK and REALP arrays in the RGAS model. COMPONENTS 02 OXYGEN WATER H2O H2 HYDROGEN CARBON-MONOXIDE CO CARBON-DIOXIDE CO2 METHANE CH4 NITROGEN N2 ARGON AR HYDROGEN-SULFIDE H2S

ETHANE
PROPYLENE
PROPANE
METHYL-MERCAPTAN
METHANOL
ACETONITRILE
ETHYLENE
ACETALDEHYDE
ETHYL-MERCAPTAN
DIMETHYL-SULFIDE
PROPIONITRILE
ACETONE
TUIODUENE
DYDDOLE
MEMINI EMINI KEMONE
METHIL-EINIL-KEIONE
PIRIDINE
CYCLOPENTADIENE
CYCLOPENTENE
1,4-PENTADIENE
CYCLOPENTANONE
METHYL-N-PROPYL-KETONE
METHYL-ISOPROPYL-KETONE
1-PENTANETHIOL
BENZENE
PHENYL-MERCAPTAN
PHENOL
P-HYDROOUTNONE
ANTLINE
A-METHVI.DVRIDINE
CVCLOUEVENE
CYCLOHEXENE
I-HEAENE
N-HEXANE
TOLUENE
METHYL-PHENYL-ETHER
P-CRESOL
P-METHOXYPHENOL
METHYLPHENYLAMINE
2,6-DIMETHYLPYRIDINE
METHYLCYCLOHEXANE
1-HEPTENE
5-METHYL-2-HEXANONE
N-HEPTANE
METHYL-BENZOATE
P-TOLUIC-ACID
M-XYLENE
ETHYLBENZENE
P-ETHYLPHENOL
2.3-XYLENOL
N. N-DIMETHYLANILINE
TRANS-1 2-DIMETHYLCYCLOHEXANE
N_OCTANE
A - METUVI UFDTANF
2 2 DIMETHULI HEVANE
2, 2-DIMETHILHEAANE
2, 5-DIMETRIBREARIE
ISOQUINOLINE
QUINDLINE
ALPHA-METHYL-STYRENE
ETHYL-BENZOATE
N-PROPYLBENZENE
· MERCHINE O FINITE DENTITION
1-METHYL-2-ETHYLBENZENE
1,2,4-TRIMETHYLBENZENE
1 - METHYL- 2 - ETHYLBENZENE 1, 2, 4 - TRIMETHYLBENZENE ISOPHORONE

11/1/1/1/1

	C10H10-1 C10H12 C10H14-3 C10H140 C10H1402	M-DIVINYLBENZENE / 1,2,3,4-TETRAHYDRONAPHTHALENE / SEC-BUTYLBENZENE / P-TERT-BUTYLPHENOL / P-TERT-BUTYLCATECHOL / N-DECONE /	
	C10H22-1 C10H23N C11H10-1 C11H10-2 C11H160 C11H24	N-DECANE // N-DECYLAMINE // 1-METHYLNAPHTHALENE // 2-METHYLNAPHTHALENE // P-TERT-AMYLPHENOL // N-UNDECANE //	
	C12H9N C12H10 C12H10-2 C12H100 C12H11N C13H10	DIBENZOPYRROLE / DIPHENYL / ACENAPHTHENE / DIPHENYL-ETHER / DIPHENYLAMINE / FLUORENE /	
	C13H100 C13H12 C14H10-1 C14H10-2 C14H12-2 C14H30	BENZOPHENONE / DIPHENYLMETHANE / ANTHRACENE / PHENANTHRENE / TRANS-STILBENE / N-TETRADECANE /	
	C15H160 C15H32 C16H10-1 C16H10-2 C16H26 C16H34 C18H12	P-CUMYLPHENOL / N-PENTADECANE / FLUORANTHENE / PYRENE / N-DECYLBENZENE / N-HEXADECANE / CHRYSENE /	
	C18H14-1 C18H14-2 C18H38 C19H40 C20H42 C26H20 COAL	M-TERPHENYL / M-TERPHENYL / N-OCTADECANE / N-NONADECANE / N-EICOSANE / TETRAPHENYLETHYLENE /	
FORMULA 02 ; COMP-NAMES	02 / H20 COAL 'BE	H2O / H2 H2 / CO CO / CO2 CO2 / CH4 CH4 ULAH LIGNITE'	
; ATTR-COMPS ;	COAL PRO	XANAL ULTANAL SULFANAL	
;		Properties	
; PROPERTIES	SYSOP0		
NC-PROPS CC	DAL ENTHA	LPY HCOALGEN 3 1 1 1 / DENSITY DCHARIGT	
PROP-DATA PROP-LIST PVAL COAI	CP1C 1.0 0.0 0.223 0 0.17 0. 0.17 0. 0.18 0.	0.0 0.0 & ; MOISTURE .000218 0.0 0.0 & ; FIXED CARBON (WEN) 0 0.0 0.0 & ; PRIMARY VOLATILES (NEUTRAL) 0 0.0 0.0 & ; SECONDARY VOLATILES (NEUTRAL) 00014 0.0 0.0 ; ASH	
;			

Process Flowsheet Connectivity ----FLOWSHEET IN= COAL-FD TAR-REC BLOCKGASMIXIN=STM-FD02-FDOUT=STM-02BLOCKCOALMIXIN=COAL-FDTAR-RECOUT=COAL-TARBLOCKGASIFIERIN=STM-02COAL-TARCOOL-INOUT=PROD-GSCHAR DEF-STREAMS MIXNC ALL ; ; - -----Feed Stream Specifications ;---------STREAM STM-FD SUBSTREAM MIXED TEMP=600.900 PRES=3.175055D+06 MASS-FLOW H20 11.73000 STREAM 02-FD SUBSTREAM MIXED TEMP=600.900 PRES=3.175055D+06 MASS-FLOW 02 2.558567 / AR 0.040221 / N2 0.003074 STREAM COAL-FD SUBSTREAM NC TEMP=288.70 PRES=3.266756D+06 MASS-FLOW COAL 13 COMP-ATTR COAL PROXANAL (35.96 46.34 44.16 9.50) / ; Dry Basis ULTANAL (9.52 65.70 4.52 0.88 0.00 0.96 18.41) / SULFANAL (0.0 0.0 0.0) The coal fines and ash are lumped together as coal. The ; proximate and ultimate analyses for fresh coal were assumed ; for the coal fines and then adjusted to reflect the extra ash. This method is preferable over the case where Na2SO4 is used to model the ash because the enthalpy calculation for ash will be more accurate. The available Na2SO4 property constants are not sufficient for our purposes. STREAM TAR-REC SUBSTREAM MIXED TEMP=298.15 PRES=3.266756D+06 H2O 0.4307 / C2H3N 0.00001215 / C2H6S-1 0.0006075 / C3H6O-1 0.0000729 / MASS-FLOW H20 C4H5N-2 0.0001215 / C4H8O-3 0.0001215 0.0000243 / C5H8O 0.0001215 0.0001215 / C5H10O-3 0.0001215 0.0006075 / C6H6 0.0006075 0.00013365 / C6H6O 0.001944 C5H5N C5H100-2 0.0001215 C5H12S 0.0006075 C6H6S C6H6O2 0.00941215 / C6H7N-1 0.0001215 C6H7N-2 0.00020655 / C7H8 0.001701 C7H8O-1 0.00001215 / C7H8O-5 0.004617 / C7H8O2 0.00159165 / C7H9N-5 0.00042525 / C7H9N-10 0.0001215 / C7H14O-10 0.0001215 / / C8H10-2 0.0018255 C8H8O2 0.001215 C8H10-4 0.0008505 / C8H100-3 0.000972 C8H100-5 0.0038637 / C8H11N C9H7N-1 0.00088695 / C9H7N-2 0.0005346 0.0017253 0.0003645 / C9H10O2 0.0001215 C9H10 C9H12-3 0.00052245 / C9H12-7 0.000243
 C9H12-3
 0.0022515
 / C10H8
 0.00307395
 /

 C10H10-1
 0.0001215
 / C10H12
 0.001458
 /

 C10H14-3
 0.001215
 / C10H140
 0.001215
 /

 C10H1402
 0.0006075
 / C10H23N
 0.00144585
 /

76 C11H10-2 0.006075 / C11H160 0.00438615 / / C12H9N C11H24 0.000243 0.000729 / C12H10-2 0.00686475 / 0.001215 C12H10 0.00243 / C12H10-2 0.006864/5 0.0061965 / C12H11N 0.0010449 0.0061965 / C13H10O 0.006318 0.0033291 / C14H10-1 0.0006075 C12H100 0.00243 1 C13H10 C13H12 C14H10-2 0.0025515 / C14H12-2 0.004374 0.0001701 / C15H16O C14H30 0.0004131 C15H32 0.0047385 / C16H10-1 0.00198045 / C16H10-2 0.0001215 / C16H26 0.001701 / C16H34 0.0006075 / C18H12 0.0008505 / / C18H14-2 0.0183465 C18H14-1 0.000486 0.0007776 / C19H40 0.00057105 / 0.0148589 / C26H20 0.0021627 C18H38 0.0007776 C20H42 SUBSTREAM NC TEMP=298.15 PRES=3.266756D+06 MASS-FLOW COAL 0.0188 COMP-ATTR COAL PROXANAL (13.58 12.96 12.35 74.69) / ; Dry Basis ULTANAL (74.69 18.37 1.27 0.25 0.00 0.27 5.15) / SULFANAL (0.0 0.0 0.0) STREAM COOL-IN SUBSTREAM MIXED PRES=3.185398D+06 V=0.0 MASS-FLOW H20 1.1552746 ------Design Specifications ----Design-Spec Spec1 Define FCCLFD Comp-Attr-Var Stream=COAL-TAR Subs=NC Comp=COAL & Attr=Proxanal Elem=2 Define FCCHAR Comp-Attr-Var Stream=CHAR Subs=NC Comp=COAL Attr=Proxanal S Elem=2 Define FLCHAR Mass-Flow Stream=CHAR Subs=NC Comp=COAL Define FLCLFD Mass-Flow Stream=COAL-TAR Subs=NC Comp=COAL F CC=1-FCCHAR*FLCHAR/FCCLFD/FLCLFD Spec 'CC' To '.975' Tol-Spec .0005 Vary Substream-Var Stream=COAL-FD Subs=NC Var=Mass-Flow Limits Lower=11.5 Upper=13.1 ; -Unit Operation Specifications ;-----BLOCK COALMIX MIXER BLOCK GASMIX MIXER BLOCK GASIFIER RGAS BLOCK-OPTIONS SIM-LEVEL=4 SUBROUTINE KINET=DELKIN PARAM CODE=6 NOUT=10 STATE=1 & LENGTH=3.0 DIAM=4.0 & PRES=3.1026D+06 PRESDP=0.0 UCP=105.0 & ESP=0.03 TEST1=0.001 COOLANT CPRES=3.892468D+06 NPK=2 TINIT=672.049 COAL -4 / MIXED 02 -3 / MIXED CO 2 / MIXED CO2 2 / STOICH 1 NC

2 NC COAL -1 / MIXED H2O -1 / MIXED CO 1 / MIXED H2 1 / 3 NC COAL -1 / MIXED CO2 -1 / MIXED CO 2 / 4 NC COAL -1 / MIXED H2 -2 / MIXED CH4 1 / 5 MIXED CO -1 / MIXED H2O -1 / MIXED CO2 1 / MIXED H2 1 0.0 0.0 / 0.0 0.0 Dimensions for User Vectors: = 109 = Number of Conventional Components = 1 = Number of Nonconventional Components NCC NNCC = Number of Reactions = 5 NR NINTK = 2 NREALK = $60 + 4 \times NCC$ NIWK = 3 = NCC + NNCC + NR NWK NREALP = NCC + 18NWP = 4 NREALQ = 12UVEC NINTK=2 NREALK=496 NIWK=3 NWK=115 NREALP=127 NWP=4 NREALQ=12 INTK 10 & ; Maximum Number of Iterations 1 ; Report Option: 1 = Standard, 2 = Summary & ; Rate Constant for Reaction #1 REALK 2.700E+06 & ; Activation Energy for Reaction #1 24200 610 & ; Rate Constant for Reaction #2 39000 & ; Activation Energy for Reaction #2 & ; Rate Constant for Reaction #3 525 & ; Activation Energy for Reaction #3 59100 & ; Rate Constant for Reaction #4 4.780E-03 & ; Activation Energy for Reaction #4 19200 & ; Rate Constant for Reaction #5 & ; Activation Energy for Reaction #5 2.630E+07 10650 & ; Unused 0.0 0.0 & ; Unused & ; Unused 0.0 0.0 & ; Unused 0.0 & ; Unused & ; Unused 0.0 & ; Unused 0.0 & ; Unused 0.0 0.0 & ; Unused & ; Unused 0.0 & ; Bed Void Fraction 0.4 & ; Coal Void Fraction 0.6 & ; Initial Coal Particle Diameter (cm) 2.367 & ; Reserved for UWV Model 0.0 & ; Initial Density of Char Feed (g/cm3) 1.3 & ; Initial Density of Ash Feed (g/cm3) 0.5 & ; Ratio of C to O2 in Reaction 4 1.333333 & ; Schmidt Number 0.6 & ; Diffusion Constant for Oxygen (sqcm/sec) 0.01408 & ; Diffusion Constant for Water (sqcm/sec) 0.01408

	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Model: 1=Ash Seg, 2=Shell Prog, 3=Homogeneous Unused Unused Unused Unused Unused Unused Unused Unused Fraction Volatile Matter Released by Pyrolysis Final Temperature for Volatile Matter Release Initial Temperature for Volatile Matter Release Fraction Unconverted Fixed Carbon, 1st iteration Fraction Unconverted Fixed Carbon, 2nd iteration Mass Fraction of Rectisol Naphtha in Volatile
Matter	0.2155	&;	Mass Fraction of Crude Phenol in Volatile Matter
	0.6790	& ;	Mass Fraction of Tar Oils in Volatile Matter
	0.0	& ;	Unused
	0.0	; xo	Unused
	0.0	& ;	Unused
	0.0	δε ;	Unused
	0.0	& ;	Unused
	0.0	& ;	Unused
	0.0	& ;	Unused
	0.0	α; ε.	Unused
	0.0	& ;	Unused
	0.0	& ;	Unused
	0.0000E+00	& ;	Mass Fraction of O2 in Rectisol Naphth
	2.48412E-01	& ;	Mass Fraction of H20 * in Rectisol Naphth
	1.19491E-03	& ;	Mass Fraction of H2 * in Rectisol Naphth
	1.91569E-01	; xo 2	Mass Fraction of CO2 * in Rectisol Naphth
	1.94512E-01	& ;	Mass Fraction of CH4 * in Rectisol Naphth
	1.89609E-02	& ;	Mass Fraction of N2 * in Rectisol Naphth
	0.00000E+00	& ;	Mass Fraction of AR * in Rectisol Naphth
	2.22983E-02	& ;	Mass Fraction of H2S * in Rectisol Naphth
	2.89799E-02	& ;	Mass Fraction of C2H6 * in Rectisol Naphth
	5.79367E-03	č i	Mass Fraction of C3H8 * in Rectisol Naphth
	3.04931E-04	& ;	Mass Fraction of CH4S in Rectisol Naphth
	2.69056E-04	& ;	Mass Fraction of CH40 in Rectisol Naphth
	1.97308E-04	& ;	Mass Fraction of C2H3N in Rectisol Naphth
	4.68328E-03	& ;	Mass Fraction of C2H4 in Rectisol Naphth
	3.58742E-04	& ;	Mass Fraction of C2H4O-1 in Rectisol Naphth
	5.91924E-04	àc ;	Mass Fraction of C2H6S-1 in Rectisol Naphth
	1.97308E-04 3 58742E-04	α; & ;	Mass Fraction of C3H5N in Rectisol Naphth
	7.10309E-03	& ;	Mass Fraction of C3H6O-1 in Rectisol Naphth
	1.14797E-03	& ;	Mass Fraction of C4H4S in Rectisol Naphth
	1.43497E-04	& ;	Mass Fraction of C4H5N-2 in Rectisol Naphth
	8.12550E-03	& ;	Mass Fraction of C4H8O-3 in Rectisol Naphth
	5.38113E-05	& ;	Mass Fraction of C5H6 in Rectisol Naphth
	3.58742E-04	ζ, 20 ς	Mass Fraction of C5H8-1 in Rectisol Naphth
	3 58742E-04	8 :	Mass Fraction of C5H8-4 in Rectisol Naphth
	2.69056E-03	& ;	Mass Fraction of C5H8O in Rectisol Naphth
	1.07623E-03	& ;	Mass Fraction of C5H100-2 in Rectisol Naphth
	3.58742E-04	& ;	Mass Fraction of C5H100-3 in Rectisol Naphth
	9.86540E-04	& ;	Mass Fraction of C5H12S in Rectisol Naphth
	/ R9232E=02	CC 2	Habb Flaction of Cond In Receisor Naphon

in Rectisol Naphth 2.33182E-04 & ; Mass Fraction of C6H6S in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C6H6O 0.00000E+00 & ; Mass Fraction of C6H6O2 in Rectisol Naphth 0.00000E+00 Mass Fraction of C6H7N-1 in Rectisol Naphth & ; 8.96855E-04 & ; Mass Fraction of C6H7N-2 in Rectisol Naphth 8.96855E-04 & ; Mass Fraction of C6H10-2 in Rectisol Naphth 8.96855E-04 & ; Mass Fraction of C6H100 in Rectisol Naphth 4.12553E-03 & ; Mass Fraction of C6H12-3 in Rectisol Naphth Mass Fraction of C6H14-1 in Rectisol Naphth 3.40805E-03 & i 3.35424E-02 & ; in Rectisol Naphth Mass Fraction of C7H8 & ; Mass Fraction of C7H8O-1 in Rectisol Naphth 3.58742E-04 & ; Mass Fraction of C7H8O-5 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C7H8O2 0.00000E+00 in Rectisol Naphth Mass Fraction of C7H9N-5 in Rectisol Naphth 3.58742E-04 & ; 0.00000E+00 & ; Mass Fraction of C7H9N-10 in Rectisol Naphth 1.97308E-03 & ; Mass Fraction of C7H14-6 in Rectisol Naphth 2.88787E-03 & ; Mass Fraction of C7H14-7 in Rectisol Naphth & ; Mass Fraction of C7H140-10in Rectisol Naphth 1.61434E-03 & ; Mass Fraction of C7H16-1 in Rectisol Naphth 4.12553E-03 0.00000E+00 & ; in Rectisol Naphth Mass Fraction of C8H8O2 0.00000E+00 & ; Mass Fraction of C8H802-3 in Rectisol Naphth 3.40805E-03 & ; Mass Fraction of C8H10-2 in Rectisol Naphth & ; Mass Fraction of C8H10-4 7.78470E-03 in Rectisol Naphth Mass Fraction of C8H100-3 in Rectisol Naphth 0.00000E+00 & ; & ; Mass Fraction of C8H100-5 in Rectisol Naphth 0.00000E+00 3.58742E-04 & ; Mass Fraction of C8H11N in Rectisol Naphth 5.38113E-04 & ; Mass Fraction of C8H16-3 in Rectisol Naphth Mass Fraction of C8H18-1 1.79371E-03 & ; in Rectisol Naphth Mass Fraction of C8H18-3 3.58742E-04 in Rectisol Naphth & ; 8.96855E-04 & ; Mass Fraction of C8H18-5 in Rectisol Naphth 5.38113E-04 & ; Mass Fraction of C8H18-8 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C9H7N-1 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C9H7N-2 in Rectisol Naphth Mass Fraction of C9H10 0.00000E+00 & ; in Rectisol Naphth Mass Fraction of C9H1002 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C9H12-1 in Rectisol Naphth 8.96855E-04 & ; 8.96855E-04 & ; Mass Fraction of C9H12-3 in Rectisol Naphth 7.17484E-04 & ; Mass Fraction of C9H12-7 in Rectisol Naphth in Rectisol Naphth Mass Fraction of C9H140 0.00000E+00 & ; 5.38113E-05 & ; Mass Fraction of C10H8 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C10H10-1 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C10H12 in Rectisol Naphth & ; Mass Fraction of C10H14-3 in Rectisol Naphth 0.00000E+00 Mass Fraction of C10H140 in Rectisol Naphth 0.00000E+00 & ; 0.00000E+00 & ; Mass Fraction of C10H1402 in Rectisol Naphth 7.17484E-04 & ; Mass Fraction of C10H22-1 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C10H23N in Rectisol Naphth Mass Fraction of C11H10-1 in Rectisol Naphth & ; 0.00000E+00 Mass Fraction of C11H10-2 in Rectisol Naphth & ; 0.00000E+00 Mass Fraction of C11H160 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C11H24 in Rectisol Naphth 0.00000E+00 & ; 0.00000E+00 & ; Mass Fraction of C12H9N in Rectisol Naphth Mass Fraction of C12H10 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C12H10-2 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C12H100 in Rectisol Naphth 0.00000E+00 & ; 0.00000E+00 & ; Mass Fraction of C12H11N in Rectisol Naphth Mass Fraction of C13H10 in Rectisol Naphth 0.00000E+00 & ; & ; 0.00000E+00 Mass Fraction of C13H100 in Rectisol Naphth Mass Fraction of C13H12 in Rectisol Naphth 0.00000E+00 & ; Mass Fraction of C14H10-1 0.00000E+00 S : ... Rectisol Naphth Mass Fraction of C14H10-2 in Rectisol Naphth Mass Fraction of C14H12-2 in Rectisol Naphth J. UUJUUE+00 őx, Mass Fraction of C14H30 0.00000E+00 & ; in Rectisol Naphth

Mass Fraction of C15H160 in Rectisol Naphth

0.00000E+00 & ;

0 000000.00	r		Maaa	Dunation	-f	C1 EUDO	1 -	Destin	-7 Marshah
0.00000E+00	Č¢.	i	Mass	Fraction	OL	CIDH32	111	Rectis	or Naphth
0.00000E+00	&	;	Mass	Fraction	of	C16H10-1	in	Rectis	ol Naphth
0 00000E+00	2		Magg	Fraction	of	C16H10-2	in	Rectis	ol Nanhth
0.0000000000000000000000000000000000000	OC.	'	Mass	Fraction	01	CIUTILO 2		RECEIS	or Napitch
0.00000E+00	δc	;	Mass	Fraction	OI	C16H26	ın	Rectis	ol Naphth
0.00000E+00	Sc.	:	Mass	Fraction	of	C16H34	in	Rectis	ol Naphth
0 00000 .00	5	1	Magg	Fraction	of	C10U12	in	Pactic	ol Nonhth
0.000002+00	ČC.	;	Mass	Fraction	OL	CIGHIZ	TIT	Recuis	or Naphen
0.0000E+00	&	;	Mass	Fraction	of	C18H14-1	in	Rectis	ol Naphth
0 000005+00	.2		Mace	Fraction	of	C18H14-2	in	Pectie	ol Nanhth
0.000005+00	CK.	1	Mabb	Flaceron	OI	CI01114-2		RECUID	or Naphen
0.00000E+00	&	;	Mass	Fraction	ot	C18H38	ın	Rectis	ol Naphth
0.0000E+00	3		Mass	Fraction	of	C19H40	in	Rectis	ol Naphth
0.000000.00	~	'	Maaa	Deschion	e f	CONTIAO		Destin	al Markth
0.00000E+00	č.	;	Mass	Fraction	OL	C20H42	III	Rectis	or Naphen
0.00000E+00	δe	;	Mass	Fraction	of	C26H20	in	Rectis	ol Naphth
0 00000	£.		Mage	Fraction	of	02	in	Crude	Phanol
0.000002+00	œ	'	Mass	Flaction	UL.	02		crude	Flienor
2.54008E-01	&	;	Mass	Fraction	OÍ	H20	ln	Crude	Phenol
1.19491E-03	8	:	Mass	Fraction	of	H2	in	Crude	Phenol
1 015005 01	-		Maga	Exaction	of	00	in	Crudo	Dhonol
1.912696-01	œ	;	Mass	FIACLION	OI	0	111	crude	Phenor
1.00331E-01	&	;	Mass	Fraction	of	CO2	in	Crude	Phenol
1 94512E-01	S.		Mass	Fraction	of	CH4	in	Crude	Phenol
1.919120 01		'	Maga	Deschier		NO	1	Gunda	Dhamal
1.89609E-02	ð.	;	Mass	Fraction	OI	N2	ın	Crude	Phenoi
0.00000E+00	84	;	Mass	Fraction	of	AR	in	Crude	Phenol
2 220838-02	5	1	Magg	Fraction	of	HOG	in	Crude	Dhanol
2.229036-02	œ	1	Mass	FIACLION	OT.	1120	111	crude	Flienor
2.89799E-02	&	;	Mass	Fraction	of	C2H6	in	Crude	Phenol
5 79367E-03	æ		Mass	Fraction	of	C3H6	in	Crude	Phenol
5.799070 09	~	'	Maga	Deschion		03110		Canada	Dhamal
5.20389E-03	ð.	i	Mass	Fraction	OI	C3H8	ın	Crude	Phenot
0.00000E+00	Sc.	;	Mass	Fraction	of	CH4S	in	Crude	Phenol
0 00000	£.		Mace	Fraction	of	CHAO	in	Crude	Dhanol
0.000002+00	œ	,	Mass	riaccion	OI.	CITTO		crude	FILEHOL
0.00000E+00	8	;	Mass	Fraction	or	C2H3N	ln	Crude	Phenol
4.41422E-03	8		Mass	Fraction	of	C2H4	in	Crude	Phenol
0.000000.00	~	'	Magg	Exaction	of	C21140 1	in	Crudo	Dhonel
0.00000E+00	Ô¢	i	Mass	Flaction	OL	C2H40-1	111	crude	Phenor
0.00000E+00	8	;	Mass	Fraction	of	C2H6S-1	in	Crude	Phenol
0 0000000+00	2		Magg	Fraction	of	C2H6S-2	in	Crude	Phenol
0.0000000000000000000000000000000000000	C.	'	Mabb	Traceron.		CONCO 2		Guide	Dhama 1
0.00000E+00	δ¢	;	Mass	Fraction	OI	C3H5N	ın	Crude	Phenol
1.25560E-04	&	;	Mass	Fraction	of	C3H6O-1	in	Crude	Phenol
0.000000.00	5	1	Magg	Fraction	of	CAUAC	in	Crudo	Dhanal
0.0000000000000000000000000000000000000	œ	;	Mass	Flaction	UL	CANAD	111	crude	FILEHOI
1.79371E-04	&	i	Mass	Fraction	oİ	C4H5N-2	in	Crude	Phenol
3 58742E-05	æ		Mass	Fraction	of	C4H8O-3	in	Crude	Phenol
5.301128 04	~	'	Maga	Empetion	of	CELLEN	1 -	Cmide	Dhanal
5.38113E-04	č.	;	Mass	FLACLION	OL	COHON	111	crude	Phenor
0.00000E+00	&	;	Mass	Fraction	of	C5H6	in	Crude	Phenol
0 00000E+00	2		Mass	Fraction	of	C5H8-1	in	Crude	Phenol
0.000000.00	~	'	Maga	Exection	of	CETTO A	in	Conida	Dhonol
0.00000E400	č.	;	Mass	Fraction	OL	Cons-4	III	Crude	Phenor
0.00000E+00	8	;	Mass	Fraction	of	C5H8O	in	Crude	Phenol
1 61434E-04	2		Magg	Fraction	of	C5H100-2	in	Crude	Phenol
1.014040-04	œ	'	Mabb	Traction		0511100 2		Guide	Dhamal
0.00000E+00	δ¢	;	Mass	Fraction	OI	C2H100-3	in	Crude	Phenot
0.00000E+00	Se .	;	Mass	Fraction	of	C5H12S	in	Crude	Phenol
0 00000E+00	5.		Magg	Fraction	of	CEHE	in	Crude	Phenol
5.00000E+00	u.	'	11000	The states		actica		Guida	Dhama 1
4.30490E-04	δc	;	Mass	rraction	OI	COHOS	in	Crude	Phenol
6.18292E-02	8	;	Mass	Fraction	of	C6H6O	in	Crude	Phenol
3 597425-03	2		Mage	Fraction	of	CEHEO2	in	Crude	Phenol
3.567426-05	OK.	,	Mabb	riaccion	OL.	CONOCL		crude	Plicitor 1
8.96855E-05	δε	;	Mass	Fraction	OI	C6H7N-1	ın	Crude	Phenol
7 17484E - 04	Sr.	:	Mass	Fraction	of	C6H7N-2	in	Crude	Phenol
	~	'	Magg	Exaction	of	CCHIO 2	1.00	Crudo	Dhonol
0.00000E+00	Ôc	i	Mass	Flaction	OL	CONTO-2	111	crude	Phenor
0.00000E+00	&	;	Mass	Fraction	of	C6H100	in	Crude	Phenol
0 000005+00	2		Mass	Fraction	of	C6H12-3	in	inde	Phenol
0.0000000000000000000000000000000000000	C.	'	Mass	Deset		CONTA 3	1	Canada	Dhomel
0.00000E+00	ôc.	;	Mass	FLACE	101	C0H14-1	111	crude	Flienor
1.25560E-04	8	;	Mass	Fraction	of	C7H8	ın	Crude	Phenol
SECOE-04	2		Mage	Fraction	of	C7H80-1	in	Crude	Phenol
	QC.	'	110.00	Deset		071100 1		Guide	Dhamel
3.82060E-02	&	;	Mass	Fraction	OI	C/H80-2	in	Crude	Fuenor
1.94617E - 02	Se	;	Mass	Fraction	of	C7H8O2	in	Crude	Phenol
0.000000.00	c.	1	Magg	Fraction	of	C7H9N-5	in	Crude	Phenol
0.00000E+00	QC.	'	nass.	Fraction		CTITOT - J		Guil	Dhamil
1.79371E-03	&	;	Mass	Fraction	of	C7H9N-10	ın	Crude	Phenol
0 00000E+00	S.	:	Mass	Fraction	of	C7H14-6	in	Crude	Phenol
0.00000000000	C.	1	Maga	Enantion	of	C7U1 4 7	in	Crude	Phonel
0.00000E+00	Ôc.	;	Mass	Flaction	OL	C/n14-/	111	Crude	Filenor
0.00000E+00	&	;	Mass	Fraction	of	C7H140-1	Oin	Crude	Phenol
0 000005+00	2		Mass	Fraction	of	C7H16-1	in	Crude	Phenol
0.0000000000000000000000000000000000000	~	'							

0.00000E+00 & ; Mass Fraction of C8H8O2 in Crude Phenol 1.75783E-02 & ; Mass Fraction of C8H8O2-3 in Crude Phenol 2.51119E-04 & ; Mass Fraction of C8H10-2 in Crude Phenol 1.25560E-04 & ; Mass Fraction of C8H10-4 in Crude Phenol 4.66364E-03 & ; Mass Fraction of C8H100-3 in Crude Phenol Mass Fraction of C8H100-5 in Crude Phenol 1.32734E-02 & ; Mass Fraction of C8H11N in Crude Phenol 0.00000E+00 & ; & ; Mass Fraction of C8H16-3 in Crude Phenol 0.00000E+00 Mass Fraction of C8H18-1 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C8H18-3 & ; in Crude Phenol 0.00000E+00 Mass Fraction of C8H18-5 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C8H18-8 in Crude Phenol 0.00000E+00 & ; 0.00000E+00 & ; Mass Fraction of C9H7N-1 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C9H7N-2 in Crude Phenol & ; Mass Fraction of C9H10 in Crude Phenol 0.00000E+00 Mass Fraction of C9H1002 0.00000E+00 in Crude Phenol & ; Mass Fraction of C9HJ2-1 in Crude Phenol 0.0000E+00δε ; & ; Mass Fraction of C9H12-3 in Crude Phenol 0.00000E+00 1.79371E-04 & ; Mass Fraction of C9H12-7 in Crude Phenol Mass Fraction of C9H140 & ; in Crude Phenol 2.69056E-03 Mass Fraction of C10H8 1.79371E-05 & ; in Crude Phenol Mass Fraction of C10H10-1 in Crude Phenol & ; 0.00000E+00 Mass Fraction of C10H12 0.00000E+00 & ; in Crude Phenol & ; Mass Fraction of C10H14-3 in Crude Phenol 1.79371E-04 & ; Mass Fraction of C10H140 in Crude Phenol 0.00000E+00 Mass Fraction of C10H1402 in Crude Phenol & ; 3.94616E-03 Mass Fraction of C10H22-1 in Crude Phenol 0.00000E+00 & ; & ; Mass Fraction of C10H23N in Crude Phenol 0.00000E+00 & ; Mass Fraction of C11H10-1 in Crude Phenol 1.79371E-04 & ; Mass Fraction of C11H10-2 in Crude Phenol 0.0000E+00 & ; Mass Fraction of C11H160 in Crude Phenol 0.00000E+00 Mass Fraction of C11H24 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C12H9N in Crude Phenol 0.00000E+00 & ; & ; Mass Fraction of C12H10 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C12H10-2 in Crude Phenol 0.00000E+00 0.00000E+00 & ; Mass Fraction of C12H100 in Crude Phenol Mass Fraction of C12H11N in Crude Phenol 0.00000E+00 & ; Mass Fraction of C13H10 1.79371E-03 in Crude Phenol 8 Mass Fraction of C13H100 in Crude Phenol 0.00000E+ x i &; Mass Fraction of C13H12 Mass Fraction of C13H12 in Crude Phenol Mass Fraction of C14H10-1 in Crude Phenol 0.00000E+00 1.9371E-04 &: ; Mass Fraction of C14H10-2 in Crude Phenol 1.79371E-04 & ; 0.00000E+00 & ; Mass Fraction of C14H12-2 in Crude Phenol Mass Fraction of C14H30 in Crude Phenol Mass Fraction of C15H160 in Crude Phenol Mass Fraction of C15H32 in Crude Phenol 0.00000E+00 & ; Mass Fraction of C14H30 0.00000E+00 & ; 8.96855E-05 & ; 0.00000E+00 & ; Mass Fraction of C16H10-1 in Crude Phenol Mass Fraction of C16H10-2 in Crude Phenol 0.00000E+00 & ; in Crude Phenol & ; Mass Fraction of C16H26 0.00000E+00 & ; Mass Fraction of C16H34 0.00000E+00 in Crude Phenol Mass Fraction of C18H12 0.00000E+00 & ; in Crude Phenol Mass Fraction of C18H14-1 in Crude Phenol 0.0000E+00 & ; Mass Fraction of C18H14-2 in Crude Phenol 0.00000E+00 & ; in Crude Phenol Mass Fraction of C18H38 0.00000E+00 & ; 0.00000E+00 & ; Mass Fraction of C19H40 in Crude Phenol in Crude Phenol Mass Fraction of C20H42 0.00000E+00 & ; Mass Fraction of C26H20 in Crude Phenol 0.00000E+00 & ; Mass Fraction of 02 in Tar Oils 0.0000E+00 & ; in Tar Oils Mass Fraction of H2O 2.52232E-01 & ; in Tar Oils & ; Mass Fraction of H2 1.19491E-03 Mass Fraction of CO in Tar Oils 1.91569E-01 & ; & ; Mass Fraction of CO2 in Tar Oils 1.00331E-01 1.94512E-01 & ; Mass Fraction of CH4 in Tar Oils 1.89609E-02 & ; Mass Fraction of N2 in Tar Oils

0.00000E+00	&	i	Mass	Fraction.	of	AR	in	Tar	Oils
2.22983E-02	Se.	;	Mass	Fraction	of	H2S	in	Tar	Oils
2.89799E-02	&	;	Mass	Fraction	of	C2H6	in	Tar	Oils
5.79367E-03	8.	;	Mass	Fraction	of	C3H6	in	Tar	Oils
5.20389E-03	80		Mass	Fraction	of	C3H8	in	Tar	Oils
0.00000E:00	8	;	Mass	Fraction	of	CH4S	in	Tar	Oils
0.00000E+00	S.		Mass	Fraction	of	CH40	in	Tar	Oils
1 79371E-05	2		Magg	Fraction	of	C2H3N	in	Tar	Oils
A A1422E-03	5	'.	Mage	Fraction	of	C2H4	in	Tar	Oile
1.41422E-05	C C	'	Maga	Fraction	of	C2440-1	in	Tar	Oila
0.00000E+00	° c	'	Maga	Fraction	of	C2H40-1	in	Tax	Oila
8.968556-04	~	;	Mass	Fraction	of	C2H65-1	in	Tar	Oils
0.00000E+00	òc	;	Mass	Fraction	IO	C2H65-2	in	Idi	OIIS
0.00000E+00	ò.	;	Mass	Fraction	OI	C3H5N	in	Tar	OIIS
1.07623E-04	&	i	Mass	Fraction	OI	C3H60-1	in	Tar	Oils
0.00000E+00	8	i	Mass	Fraction	OI	C4H4S	in	Tar	Oils
1.79371E-04	84	;	Mass	Fraction	of	C4H5N-2	in	Tar	Oils
1.79371E-04	&	;	Mass	Fraction	of	C4H8O-3	in	Tar	Oils
3.58742E-05	&	;	Mass	Fraction	of	C5H5N	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C5H6	in	Tar	Oils
0.00000E+00	&	i	Mass	Fraction	of	C5H8-1	in	Tar	Oils
0.00000E+00	Sc.	;	Mass	Fraction	of	C5H8-4	in	Tar	Oils
1.79371E-04	δ¢	;	Mass	Fraction	of	C5H8O	in	Tar	Oils
1.79371E-04	&	;	Mass	Fraction	of	C5H100-2	in	Tar	Oils
1.79371E-04	8	;	Mass	Fraction	of	C5H100-3	in	Tar	Oils
8 96855E-04	2		Mass	Fraction	of	C5H12S	in	Tar	Oils
8 96855E-04	5		Mass	Fraction	of	Сбнб	in	Tar	Oils
1 07200E 04	5	'	Magg	Fraction	of	CEHES	in	Tar	Oile
2.9/3000-04	c c	'	Magg	Fraction	of	CENEO	in	Tar	Oilc
2.009936-03	c c	'	Maga	Fraction	of	CCHEO2	in	Tar	Oila
1.79371E-05	~	i	Mass	Fraction	of	COHOUZ	in	Tar	oila
1.79371E-04	ð.	;	Mass	Fraction	01	COH/N-1	in	Tar	Oils
3.04931E-04	6c	;	Mass	Fraction	OI	C6H/N-2	in	Tar	Oils
0.00000E+00	δe	;	Mass	Fraction	OI	C6H10-2	in	Tar	UIIS
0.00000E+00	&	i	Mass	Fraction	of	C6H100	in	Tar	Oils
0.00000E+00	δε	;	Mass	Fraction	of	C6H12-3	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C6H14-1	in	Tar	Oils
2.51119E-04	&	;	Mass	Fraction	of	C7H8	in	Tar	Oils
1.79371E-05	84	;	Mass	Fraction	of	C7H8O-1	in	Tar	Oils
6.81609E-03	&	;	Mass	Fraction	of	C7H8O-5	in	Tar	Oils
2.34976E-03	&	;	Mass	Fraction	of	C7H8O2	in	Tar	Oils
6.27798E-04	80	;	Mass	Fraction	of	C7H9N-5	in	Tar	Oils
1.79371E-04	δc	;	Mass	Fraction	of	C7H9N-10	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C7H14-6	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C7H14-7	in	Tar	Oils
1.79371E-04	8	;	Mass	Fraction	of	C7H140-1	Oin	Tar	Oils
0.00000E+00	8	;	Mass	Fraction	of	C7H16-1	in	Tar	Oils
1 79371E-03	\$		Mass	Fraction	of	C8H8O2	in	Tar	Oils
0 00000E+00	£		Mass	Fraction	of	C8H802-3	in	Tar	Oils
2 69056E-03	2		Magg	Fraction	of	C8H10-2	in	Tar	Oils
1 25560E-03	5	'	Mage	Fraction	of	C8H10-4	in	Tar	Dile
1.43407E 03	c c	'	Maga	Fraction	of	C94100-3	in	Tar	Oile
1.434976-03	× ×	,	Mass	Fraction	of	CONTOO-3	111	Tar	Oila
5.703998-03	Ô¢.	;	Mass	Fraction	of	CON100-5	111	Tar	Oila
7.89232E-04	64	;	Mass	Fraction	or	CONTIN	in	Tar	Oils
0.00000E+00	čx.	;	Mass	Fraction	OI	CONTO-3	in	Tar	OIIS
0.00000E+00	&	;	Mass	Fraction	or	C8H18-1	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C8H18-3	in	Tar	OILS
0.00000E+00	&	i	Mass	Fraction	ot	C8H18-5	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C8H18-8	in	Tar	Oils
1.30941E-03	&	;	Mass	Fraction	of	C9H7N-1	in	Tar	Oils
2.54707E-03	δ¢	;	Mass	Fraction	of	C9H7N-2	in	Tar	Oils
5.38113E-04	δe	i	Mass	Fraction	of	C9H10	in	Tar	Oils
1.79371E-04	δ.	;	Mass	Fraction	of	C9H1002	in	Tar	Oils
0.00000E+00	&	;	Mass	Fraction	of	C9H12-1	in	Tar	Oils
7.71295E-04	&	;	Mass	Fraction	of	C9H12-3	in	Tar	Oils
3 58742E-04	8	;	Mass	Fraction	of	C9H12-7	in	Tar	Oils

	3.76679E-03	2		Mass Fraction	of	C9H140	in	Tar	Oils
	4 520005 03	~	'	Mass Dusstion		01 0110	1.00	Tom	0:10
	4.53808E-03	čκ	ï	Mass Fraction	OL	CIUNO	111	Idi	ULIS
	1.79371E-04	&	;	Mass Fraction	of	C10H10-1	in	Tar	Oils
	2.15245E-03	8	:	Mass Fraction	of	C10H12	in	Tar	Oils
	1 702715 02	~	'	Maga Exaction	of	C10U14-2	in	Tan	Oila
	1.793716-03	¢.	;	Mass Flaction	OL	CIUNI4-3	111	Iar	OIIS
	1.79371E-03	&	;	Mass Fraction	of	C10H140	in	Tar	Oils
	8,96855E-04	8		Mass Fraction	of	C10H1402	in	Tar	Oils
	0.000000.00	~	'	Maga Emagtion	o f	C10U22 1	in	Tom	Oila
	0.0000E+00	¢<	;	Mass Fraction	OL	CIUNZZ-I	111	Iar	ULIS
	2.13451E-03	&	;	Mass Fraction	of	C10H23N	in	Tar	Oils
	0.0000E+00	æ		Mass Fraction	of	C11H10-1	in	Tar	Oils
	0.00000000000	~	'	Maga Eraction	of	C11U10-2	in	Tar	Oila
	8.968556-03	Ô¢.	;	Mass Flaction	OL	CITHIO-2	111	Iar	OTIS
	6.47529E-03	&	;	Mass Fraction	of	C11H160	in	Tar	Oils
	3.58742E-04	8		Mass Fraction	of	C11H24	in	Tar	Oils
	1 076225 02	c.		Magg Fragtion	of	CIQUAN	in	Tar	Oile
	1.076236-03	œ	,	Mass Flacelon	UL	CIZHIN		Tal	OLIB
	1.79371E-03	&	i	Mass Fraction	oI	C12H10	ın	Tar	0115
	1.01345E-02	80	:	Mass Fraction	of	C12H10-2	in	Tar	Oils
	3 587428-03	2		Mass Fraction	of	C12H100	in	Tar	Oils
	5.507428-05	C.	'	Mass Praction		CLOTTIN		Tan	0110
	1.54259E-03	òc.	;	Mass Fraction	OI	CIZHIIN	In	Tar	0115
	9.14792E-03	80	;	Mass Fraction	of	C13H10	in	Tar	Oils
	9 32729E-03	2		Magg Fraction	of	C13H100	in	Tar	Oils
	5.527258 05	a	'	Mass Fraction		01 2111 0		man	0:1-
	4.91476E-03	8	;	Mass Fraction	OI	CI3H12	1.n	Tar	0115
	8.96855E-04	Sc.	;	Mass Fraction	of	C14H10-1	in	Tar	Oils
	3 76679E-03	2		Mass Fraction	of	C14H10-2	in	Tar	Oils
	3.700791-03	OC.	'	Mass Fraction		CIATIO 2		Tan	0110
	6.45735E-03	ð.	;	Mass Fraction	OL	C14H12-2	in	Tar	0115
	2.51119E-04	&	;	Mass Fraction	of	C14H30	in	Tar	Oils
	6 09861E-04	5.		Mass Fraction	of	C15H160	in	Tar	Oils
	0.0001104	C.	'	Mass Prestin		CICILIOO	1	Tam	0110
	6.99547E-03	8	;	Mass Fraction	OL	C15H32	in	Tar	0115
	2.92375E-03	&	;	Mass Fraction	OÏ	C16H10-1	in	Tar	Oils
	1 793718-04	5.		Mage Fraction	of	C16H10-2	in	Tar	Oile
	1.795716-04	CC.	'	Mass Fraccion		CICILLO 2		man	0110
	2.51119E-03	8	;	Mass Fraction	OI	C16H26	ın	Tar	0115
	8.96855E-04	&	;	Mass Fraction	of	C16H34	in	Tar	Oils
	1 255608-03	2		Mage Fraction	of	C18H12	in	Tar	Oile
	1.25500E-05	CX.	'	Mass Flaction	01	CIONIZ 1		man	0115
	7.17484E-04	8	;	Mass Fraction	OI	C18H14-1	in	Tar	0115
	2.70850E-02	&	;	Mass Fraction	of	C18H14-2	in	Tar	Oils
	1 147978-03	s.,		Magg Fraction	of	C18H38	in	Tar	Oils
	1.14/5/15-05	CK.	'	Mass Fraction		0101110		man	0110
	8.43043E-04	6.	;	Mass Fraction	OI	CI9H40	ln	Tar	0115
	8.25106E-04	80	;	Mass Fraction	of	C20H42	in	Tar	Oils
	3 19280F-03			Mass Fraction	of	C26H20	in	Tar	Oils
	5.152001.05		'	Hubb I Luccion	-	0101120			0110
;									
REALP	0.025	Se.	;	Integration We	ight	ting for (22		
	0 025	2		Integration We	ight	ing for	H20		
	0.025	C.	'	Tatespration We	i ah	ing for 1	120		
	0.025	če.	i	integration we	igni	ling for	HZ		
	0.025	84	;	Integration We	ight	ing for	CO		
	0.025	\$		Integration We	ight	ing for	CO2		
	0.025	c.	'	Integration We	ight	ing for	CLIA		
	0.025	Ô¢.	;	Integracion we	TAU	Ling for	CH4		
	0.0	8	;	Integration We	10,71	ting for 1	N2		
	0 0	\$		Integration We	ight	ing for	AR		
	0.0	c .	'	Integration Wo	ight	ting for	UDC		
	0.0	œ	;	Integration we	Lym	Ling for	125	-	
	0.0	δe	;	Integration We	ight	ting for	C2H	6	
	0 0	2		Integration We	ight	ing for	C3H	6	
	0.0	c	'	Integration We	ight	ing for	COU	0	
	0.0	Ô¢.	;	integration we	rgin	ing for	Con	0	
	0.0	80	;	Integration We	ight	ing for	CH4	S	
	0.0	80	;	Integration We	ight	ting for	CH4	С	
	0.0	5	1	Integration We	ight	-ing for	COU	INT	
	0.0	CK CK	i	Thegracion we	- 911	ing for	Can.		
	0.0	8	;	integration We	igni	ting for	C2H	4	
	0.0	80	;	Integration We	ight	ting for	C2H4	40-1	
	0 0	5		Integration We	ight	ing for	C24	65-1	
	0.0	CXC .	1	Thegracion we	- 911	ing for	Carr	CC -1	
	0.0	6	ï	integration We	rdu	ing for	C2H	05-2	
	0.0	Sc.	;	Integration We	ight	ting for	C3H!	5N	
	0 0	5-		Integration We	ight	ting for	C3H	60-1	
	0.0	CC C	'	Tatagration Me	i ah	ting for	CATT	AC	
	0.0	ð.	;	incegration We	rau	ing for	C4H	45	
	0.0	Se .	;	Integration We	ight	ting for	C4H	5N-2	
	0.0	8	;	Integration We	ight	ting for	C4H	80-3	
	0.0	5	΄.	Integration We	ight	ting for	CSH	5N	
	U.U	00	i	THE ATUCTON MC			~~++	1	

0.0		&	;	Integration	Weighting	for	C5H6
0.0		£		Integration	Weighting	for	C5H8-1
0.0		8		Integration	Weighting	for	C5H8-4
0.0		ŝ		Integration	Weighting	for	C5H80
0.0		e.		Integration	Weighting	for	C5H100-2
0.0		£		Integration	Weighting	for	C5H100-3
0.0		ŝ		Integration	Weighting	for	C5H12S
0.0		ŝ		Integration	Weighting	for	Сене
0 0		e.		Integration	Weighting	for	CEHES
0 0		c.		Integration	Weighting	for	CEHEO
0.0		c.	'.	Integration	Weighting	for	CEHEO2
0.0		c.	'.	Integration	Weighting	for	C6H7N-1
0.0		5	'.	Integration	Weighting	for	CGH7N-1
0.0		ŝ	'	Integration	Weighting	for	C6H10-2
0.0		S.	'	Integration	Weighting	for	C6H10-2
0.0		CX C	'	Integration	Weighting	for	COHIO
0.0		× c	1	Integration	Weighting	for	CON12-3
0.0		×	,	Integration	Weighting	for	COHI4-1
0.0		~	;	Integration	weighting	for	C7H8
0.0		×	i	Integration	Weighting	LOL	C7H80-1
0.0		8	;	Integration	weighting	LOL	C7H80-5
0.0		à	;	Integration	weighting	for	C7H802
0.0		8	;	Integration	weighting	Ior	C7H9N-5
0.0		6c	;	Integration	Weighting	for	C7H9N-10
0.0		&	;	Integration	Weighting	for	C7H14-6
0.0		Sec.	;	Integration	Weighting	for	C7H14-7
0.0		Sc.	;	Integration	Weighting	for	C7H14O-10
0.0		Sc.	;	Integration	Weighting	for	C7H16-1
0.0		δc	;	Integration	Weighting	for	C8H8O2
0.0		&	;	Integration	Weighting	for	C8H8O2-3
0.0		&	;	Integration	Weighting	for	C8H10-2
0.0		&	;	Integration	Weighting	for	C8H10-4
0.0		&	;	Integration	Weighting	for	C8H100-3
0.0		&	;	Integration	Weighting	for	C8H100-5
0.0		80	;	Integration	Weighting	for	C8H11N
0.0		&	;	Integration	Weighting	for	C8H16-3
0.0		80	;	Integration	Weighting	for	C8H18-1
0.0		80	;	Integration	Weighting	for	C8H18-3
0.0		8.	;	Integration	Weighting	for	C8H18-5
0.0		&	;	Integration	Weighting	for	C8H18-8
0.0		80	;	Integration	Weighting	for	C9H7N-1
0.0		80	;	Integration	Weighting	for	C9H7N-2
0.0		&	;	Integration	Weighting	for	C9H10
0.0		Se .	;	Integration	Weighting	for	C9H1002
0.0		&	;	Integration	Weighting	for	C9H12-1
0.0		&	;	Integration	Weighting	for	C9H12-3
0.0		&	;	Integration	Weighting	for	C9H12-7
0.0		80	;	Integration	Weighting	for	C9H14O
0.0		80	;	Integration	Weighting	for	C10H8
0.0		84	;	Integration	Weighting	for	C10H10-1
0.0		&	;	Integration	Weighting	for	C10H12
0.0		80	;	Integration	Weighting	for	C10H14-3
0.0		8		Integration	Weighting	for	C10H140
0.0		80	;	Integration	Weighting	for	C10H1402
0.0		8		Integration	Weighting	for	C10H22-1
0.0		e.	;	Integration	Weighting	for	C10H23N
0.0		æ	;	Integration	Weighting	for	C11H10-1
0 0		e		Integration	Weighting	for	C11H10-2
0.0		e		Integration	Weighting	for	C11H160
0.0		e		Integration	Weighting	for	C11H24
0.0		e.		Integration	Weighting	for	C12H9N
0.0		c.		Integration	Weighting	for	C12H10
0.0		2		Integration	Weighting	for	C12H10-2
0.0		2		Integration	Weighting	for	C12H100
0.0		8	;	Integration	Weighting	for	C12H11N
		-			5 5		

	0.0 0.0	& &	;;	Integration Integration	Weighting Weighting	for for	C13H10 C13H100
	0.0	&	;	Integration	Weighting	for	C13H12
	0.0	&	;	Integration	Weighting	for	C14H10-1
	0.0	δe	;	Integration	Weighting	for	C14H10-2
	0.0	84	;	Integration	Weighting	for	C14H12-2
	0.0	&	;	Integration	Weighting	for	C14H30
	0.0	&	;	Integration	Weighting	for	C15H16O
	0.0	&	;	Integration	Weighting	for	C15H32
	0.0	Sec.	;	Integration	Weighting	for	C16H10-1
	0.0	&	;	Integration	Weighting	for	C16H10-2
	0.0	&	;	Integration	Weighting	for	C16H26
	0.0	&	;	Integration	Weighting	for	C16H34
	0.0	&	;	Integration	Weighting	for	C18H12
	0.0	&	;	Integration	Weighting	for	C18H14-1
	0.0	&	;	Integration	Weighting	for	C18H14-2
	0.0	8	;	Integration	Weighting	for	C18H38
	0.0	&	;	Integration	Weighting	for	C19H40
	0.0	&	;	Integration	Weighting	for	C20H42
	0.0	&	;	Integration	Weighting	for	C26H20
	0.010	Se.	;	Integration	Weighting	for	Gas Mass Balance
	0.0	&	;	Integration	Weighting	for	Coal Proxanal(1)
	0.010	&	;	Integration	Weighting	for	Coal Proxanal(2)
	0.005	&	;	Integration	Weighting	for	Coal Proxanal(3)
	0.005	80	;	Integration	Weighting	for	Coal Proxanal(4)
	0.005	δ¢	;	Integration	Weighting	for	Coal Ultanal(1)
	0.005	&	;	Integration	Weighting	for	Coal Ultanal(2)
	0.0	&	;	Integration	Weighting	for	Coal Ultanal(3)
	0.0	80	;	Integration	Weighting	for	Coal Ultanal(4)
	0.0	&	;	Integration	Weighting	for	Coal Ultanal(5)
	0.0	&	;	Integration	Weighting	for	Coal Ultanal(6)
	0.0	&	;	Integration	Weighting	for	Coal Ultanal(7)
	0.0	&	;	Integration	Weighting	for	Coal Sulfanal(1)
	0.0	&	;	Integration	Weighting	for	Coal Sulfanal(2)
	0.0	δc	;	Integration	Weighting	for	Coal Sulfanal(3)
	0.010	&	;	Integration	Weighting	for	Solid Mass Balance
	0.800	&	;	Integration	Weighting	for	Process Temperature
Equation	n						-
1	0.0		;	Integration	Weighting	for	Coolant Enthalpy Balance
;				-			
REALQ	0.0 0.0 0.0	0.0) (0.0 0.0 0.0	0.0 0.0 0.0	0.	0 0.0

C\$ #11 BY: SIMSCI DATE: 07/03/92 CORR. AVERAGES FOR PROX-, ULT-, SULFANAL C\$ #10 BY: MARINAN DATE: 09/01/81 DON'T MIX ATTRIBS. IF NONE THERE C\$ #9 BY: ZIEGLER DATE: 03/18/81 REMOVE UNLOCK NBTYPE C\$ #8 BY: CCCHEN DATE: 06/30/81 ADD COMMENTS AND CHANGE FLOW1 TO FLOW C\$ #7 BY: DWECK DATE: 04/10/81 CALC AVERAGE COMP ATTR FROM COMP FLOWS C\$ #6 BY: BRITT DATE: 03/27/81 UNLOCK BEADS C\$ #5 BY: CCCHEN DATE: 10/17/80 CODE REVIEW C\$ #4 BY: ZIEGLER DATE: 09/19/79 DON'T PRINT MSGG FOR 0 FLOW C\$ #3 BY: ZIEGLER DATE: 09/07/79 GET SIZE OF DESCRIPT RIGHT (4 C\$ #2 BY: ZIEGLER DATE: 09/05/79 IMPROVED STUB (DOES FLOW AVERAGE) C\$ #1 BY: CCCHEN DATE: 04/13/79 DUMMY FOR TEST C-C С *-----C * **** NOTICE **** C *-----* C C C C COPYRIGHT (C) 1981-85 C JAY S. DWECK, CONSULTANT, INC. C C C C C COPYRIGHT (C) 1980 MASSACHUSETTS INSTITUTE OF TECHNOLOGY C C CAMBRIDGE, MA C-----,SS1 ,SS2 ,SSO) SUBROUTINE CAMIX (IP C C NAME OF MODULE : C C MODULE TITLE: C C PURPOSE : C C TASK, SUBSYSTEM, SYSTEM: C C DATE WRITTEN: WRITTEN BY: C C READ BY: DATE READ: C DATE APPROVED: C APPROVED BY: C C CALLING SEQUENCE: C C C C VARIABLES USED: C VARIABLES IN ARGUMENT LIST C C DIMENSION DESCRIPTION AND RANGE CC VARIABLE I/O TYPE SUBSTREAM TYPE IP I I 1 OR 2: CONVENTIONAL C 3: NONCONVENTIONAL C C 1ST INPUT SUBSTREAM Τ R SS1 C SS2 I R 2ND INPUT SUBSTREAM OUTPUT SUBSTREAM C SSO 0 R C IMPORTANT INTERNAL VARIABLES C С VARIABLE I/O TYPE DIMENSION DESCRIPTION AND RANGE C

C C COMPONENTS OF VECTOR REAL C C VARIABLE I/O TYPE DIMENSION DESCRIPTION AND RANGE C C C ERROR CONDITIONS: C C NUMBER LEVEL TEXT C C SUBROUTINES CALLED: C C NAME -C DESCRIPTION -CC NAME -C DESCRIPTION -C C FILES: C C FILE NAME -- TITLE -C FORTRAN UNIT NUMBER -- I/O -C CREATED BY / USED BY -C SEQUENCED ON -C ACCESS MODE -C DESCRIPTION -C C SPECIFICATIONS, DECLARATIONS, DATA STATEMENTS, ETC. C C* DABS(X) = ABS(X)C* DMIN1(X,Y) = AMIN1(X,Y)C** DOUBLE PRECISION C* DABS(X) = ABS(X)IMPLICIT REAL*8 (A-H,O-Z) LOGICAL IDRYFL DIMENSION IPROG(2), SS1(50), SS2(50), SSO(50), IDATT(2,3) COMMON /GLOBAL/ KPFLG1 , KPFLG2 , KPFLG3 , LABORT , NH LDIAG ,NCHAR ,IMI C ,MISSC1 ,MISSC2 , LPDIAG ,IEBAL ,IRFLAG ,MXBLKW ,ITYPRN , 1 2 LBNCP ,LBCP ,LSDIAG ,MAXNE ,MAXNP1 , MAXNP2 ,MAXNP3 ,IUPDAT ,IRSTRT ,LSFLAG , 3 4 5 LRFLAG , KBLK1 , KBLK2 , KRFLAG , IRNCLS END COMMON /GLOBAL/ 06-22-79 C COMMON /RGLOB/ RMISS ,RMIN ,ABSMIN ,SCLMIN ,XMIN HSCALE ,RELMIN ,SCLDEF ,TMAX ,TNOW 1 C END COMMON /RGLOB/ 10-13-78 COMMON /PLEX/ IB(1) DIMENSION B(1) EQUIVALENCE (IB(1), B(1)) END COMMON /PLEX/ 10-13-78 C ,NBAC ,NBACC ,NBCVAL , COMMON / PPCTBL/ NBCV , NBNC NBNCAL , NBACL 1 END COMMON /PPCTBL/ 8-29-79 C COMMON /NCOMP/ NCC , NNCC ,NC , NAC , NACC NVCP , NVNCP , NVACC , NVANCC 1 END COMMON /NCOMP/ 10-13-78 C COMMON /MW/ XMW(1) DATA IPROG/4HCAMI,4HX / DATA IDATT /4HPROX,4HANAL,4HULTA,4HNAL ,4HSULF,4HANAL/ C . ASSUME A CONVENTIONAL PHASE, CHANGE IF ITS NON-CONVENTIONAL C C N = NCCISFLG = 1

```
NBALOC = NBACL
       IF (IP .EQ. 3) N = NNCC
       IF (IP .EQ. 3) ISFLG = 2
IF (IP .EQ. 3) NBALOC = NBNCAL
IF (NBALOC .EQ. 0) GO TO 10000
       LBALOC = LOCATI (NBALOC)
C
C
          LOOP FOR EACH COMPONENT
C
       DO 500 K = 1, N
       FLOW1=SS1(K) *XMW(K)
       FLOW2 = SS2(K) * XMW(K)
         IF(IP.EQ.3) FLOW1 = SS1(K)
         IF(IP.EQ.3) FLOW2 = SS2(K)
         FLOWO = FLOW1 + FLOW2
         IF (DABS(FLOWO) .LT. RMIN) GO TO 500
C
C
     DETERMINE THE OFFSET TO THE FIRST ATTRIBUTE FOR THIS COMPONENT
C
         LATT1 = LCAOFF(ISFLG, K, 1) + 1
C
C
   SKIP TO NEXT COMPONENT IF NO ATTRIBUTES FOR THIS ONE
C
         IF (LATT1 .EO. 1) GO TO 500
C
C
     DETERMINE THE NUMBER OF ATTRIBUTES FOR THIS COMPONENT
C
         NATTR = NCTYPE(ISFLG, K)
C
C
     DETECT IF PROXANAL IS AMONG ATTRIBUTES. IF SO, CORRECT DRY-BASIS
     MIXTURE VALUES WILL BE CALCULATED FOR PROXANAL, ULTANAL AND SULFANAL
C
C
         J = 1
         LATT = LATT1
         LOC1 = NCATID(ISFLG, K, J)
         LOCA = LOC1
         IDRYFL = . FALSE.
         DO 200 J = 1, NATTR
           IF (IB(LOCA).EQ.IDATT(1,1) .AND. IB(LOCA+1).EQ.IDATT(2,1))
     1
             THEN
             DRY1 = FLOW1 * (1D2 - SS1(LATT)) * 1D - 2
             DRY2 = FLOW2 * (1D2 - SS2 (LATT)) * 1D - 2
             DRYO = DRY1 + DRY2
             IDRYFL = . TRUE.
             GO TO 210
           END IF
           NUMELS = NCAVAR(ISFLG, K, J)
           LATT = LATT + NUMELS
           LOCA = LOCA + 4
  200
         CONTINUE
        CONTINUE
  210
C
C
           LOOP FOR EACH ATTRIBUTE
C
        LATT = LATT1
         LOCA = LOC1
         DO 400 J = 1, NATTR
           NUMELS = NCAVAR(ISFLG, K, J)
С
              INSERT COMPUTED GOTO HERE TO PROCESS DIFFERENT KINDS OF
C
              ATTRIBUTES.
C
C
           IF (IDRYFL) THEN
```

IF (IB(LOCA).EQ.IDATT(1,1) .AND. IB(LOCA+1).EQ.IDATT(2,1))

1 THEN С C PROXANAL C DO 230 I = 1, NUMELSII = LATT + I - 1IF (SS1(II).LT.RMISS .AND. SS2(II).LT.RMISS) THEN IF (I .EQ. 1) THEN SSO(II) = (SS1(II) * FLOW1 + SS2(II) * FLOW2) / FLOWOELSE SSO(II) = (SS1(II)*DRY1 + SS2(II)*DRY2)/DRYOEND IF ELSE SSO(II) = DMIN1 (SS1(II), SS2(II))END IF 230 CONTINUE GO TO 310 END IF IF ((IB(LOCA).EQ.IDATT(1,2) .AND. IB(LOCA+1).EQ.IDATT(2,2)) 1 .OR. (IB(LOCA).EQ.IDATT(1,3) .AND. IB(LOCA+1).EQ.IDATT(2,3))) 2 THEN C C ULTANAL, SULFANAL C DO 250 I = 1, NUMELSII = LATT + I - 1IF (SS1(II).LT.RMISS .AND. SS2(II).LT.RMISS) THEN SSO(II) = (SS1(II) * DRY1 + SS2(II) * DRY2) / DRYOELSE SSO(II) = DMIN1 (SS1(II), SS2(II))END IF 250 CONTINUE GO TO 310 END IF END IF C C THE FOLLOWING TAKES A TOTAL-FLOW-WEIGHTED AVERAGE C DO 300 I = 1, NUMELS II = LATT + I - 1IF (SS1(II).LT.RMISS .AND. SS2(II).LT.RMISS) THEN SSO(II) = (SS1(II) *FLOW1 + SS2(II) *FLOW2) / FLOWO ELSE SSO(II) = DMIN1 (SS1(II), SS2(II))END IF 300 CONTINUE 310 CONTINUE LATT = LATT + NUMELS LOCA = LOCA + 4400 CONTINUE CONTINUE 500 10000 IF (NBALOC.GT.0) CALL UNLOCK (NBALOC) RETURN CALL DMSTST 1111 CONTINUE 1112 END

C\$ #1 BY: SIMSCI DATE: 07/03/92 NEW ROUTINE C - . C------------FUNCTION NCATID (ISSCNC, NCSEQ, J) C C NAME OF MODULE: NCATID C PURPOSE: TO FIND PLEX LOCATION FOR BEGINNING OF ATTRIBUTE ID C C C TASK, SUBSYSTEM, SYSTEM: STREAM, STREAM HANDLING, ASPEN C C WRITTEN BY: WILLIAM KEISTER DATE WRITTEN: 07/03/92 C C C CALLING SEQUENCE: LOC = NCATID (ISSCNC, NCSEQ) C С C C VARIABLES USED: C C VARIABLES IN ARGUMENT LIST C C VARIABLE I/O TYPE DIMENSION DESCRIPTION AND RANGE C C ISSCNC I INTEGER FLAG: C = 1 CONVENTIONAL SUBSTREAM C = 2 NON CONVENTIONAL C SUBSTREAM C NCSEQ I INTEGER ATTRIBUTED COMPONENT C SEQUENCE NUMBER C J I INTEGER COMP ATTRIBUTE TYPE NO C C NCATID 0 INTEGER PLEX LOCATION FOR FIRST INTEGER C WORD OF ATTRIBUTE ID C C IMPORTANT INTERNAL VARIABLES C VARIABLE I/O TYPE С DIMENSION DESCRIPTION AND RANGE C C NBTBL -INTEGER BEAD NUMBER OF ATTRIBUTED С COMPONENT LOCATION NBDEF BEAD NO OF ATTRIBUTE C - INTEGER C DEFINITION C C ERROR CONDITIONS: C NUMBER LEVEL С TEXT C SUBROUTINES CALLED: С C C NAME - LOCATI DESCRIPTION - TO LOCATE AN INTEGER BEAD C C SPECIFICATIONS, DECLARATIONS, DATA STATEMENTS, ETC. C C C** DOUBLE PRECISION IMPLICIT REAL*8 (A-H, O-Z) C COMMON /PPCTBL/ NBCV , NBNC , NBACC , NBCVAL , NBNCAL , NBACL 1 COMMON /PPCTBL/ 3-27-79 C , NNCC COMMON /NCOMP/ NCC , NC , NAC , NACC , NVNCP , NVACC , NVANCC NVCP 1

END COMMON /NCOMP/ 10-13-78 C COMMON /PLEX/ IB(1) DIMENSION B(1) EQUIVALENCE (IB(1), B(1)) END COMMON /PLEX/ 10-13-78 С CC С CHECK STRUCTURE OF SUBSTREAM C IF (ISSCNC .EQ. 2) GO TO 210 С C CONVENTIONAL SUBSTREAM С NBTBL = NBCVAL GO TO 220 С C NON CONVENTIONAL SUBSTREAM C 210 CONTINUE NBTBL = NBNCAL C С LOCATE BEAD NUMBER TO ATTRIBUTE DEFINITION BEAD C 220 CONTINUE LBTBL = LOCATI (NBTBL) NBDEF = IB(LBTBL + NCSEQ) LBDEF = LOCATI (NBDEF) С CC FIND ID LOCATION AND RETURN NCATID = LBDEF + 4 + 4*(J - 1)RETURN END

DATE: 08/05/92 REMOVE LOOP EXIT AFTER 3150 C\$ #18 BY: BCC C\$ #17 BY: SIMSCI DATE: 07/14/92 INITIALIZE K AFTER 1200 C\$ #16 BY: SIMSCI DATE: 03/08/91 ADD MIXED COMPS IN COAL FEED TO GAS C\$ #15 BY: SIMSCI DATE: 01/17/91 CLEAN-UP DIAGNOSTIC MESSAGES C\$ #14 BY: SIMSCI DATE: 01/17/91 CLEAN-UP ERROR HANDLING C\$ #13 BY: SIMSCI DATE: 01/15/91 ADD /RGAS1A/ AND USE REALK OFFSETS C\$ #12 BY: SIMSCI DATE: 09/25/90 FIX ILLEGAL GOTO FOR STATEMENT 2600 C\$ #11 BY: KEW DATE: 07/31/84 FIX FORMATS C\$ #10 BY: KEW DATE: 07/31/84 RENAME TO URE09 FOR METC VAX SYSTEM C\$ #09 BY: BWB DATE: 03/27/85 CONFORM TO ASPEN PROXANAL STANDARD C\$ #08 BY: BWB DATE: 06/22/84 ADD EXPLANATORY TEXT FOR HISTORY C\$ #07 BY: BWE DATE: 06/15/84 CORRECT REAL1 ORDER C\$ #06 BY: BWB DATE: 05/04/84 CORRECT GAS OUT FOR HEATING COAL C\$ #05 BY: BWB DATE: 05/04/84 MODIFY FOR VAX C\$ #04 BY: BWB DATE: 05/02/84 ALLOW FOR VARIABLE ITERATIONS C\$ #03 BY: BWB DATE: 04/23/84 ADD VMD, CONVERSION, MOISTURE DATE: 04/04/84 CORRECT MAXIMUM TEMPERATURE C\$ #02 BY: BWB C\$ #01 BY: BWB DATE: 04/04/84 NEW C-----C C *-----C **** NOTICE **** C *-----C C C C COPYRIGHT (C) 1981-85 C JAY S. DWECK, CONSULTANT, INC. C C C C-----SUBROUTINE URE09(LD , LVRIN , LVROUT, LVRI3 , LVRO3 , LVRINC, LVROUC, NISCP , ISCP , NPO , NBOPST, NIDS 1 IDS ,NINT ,INT ,NREAL ,REAL ,PEXP , ENGR ,EXCN ,COEF ,NINT1 ,INT1 ,NINT2 , INT2 ,NINT3 ,INT3 ,NREAL1,REAL1 ,NREAL2, 2 3 4 REAL2 ,NREAL3, REAL3 ,NIWK1 , IWK1 ,NIWK2 , 5 IWK2 ,NIWK3 ,IWK3 ,NWK1 ,WK1 ,NWK2 , WK2 ,NWK3 ,WK3 ,NXLOC ,XLOC ,TEMPPR, NSUBS ,NCQ ,NCCQ ,NR ,NF ,IWA , IDXSUB,JDXSUB,ITYPE ,JTYPE ,NWDIR ,IWDIR , 6 7 8 9 KINET , PDROP , QTRANS, Y , DERY , AUX X NSTATE, PRMT) 1 C NAME OF MODULE: GAS-ZONE C C C MODULE TITLE: COAL GASIFIER COMBUSTION/GASIFICATION ZONE C C PURPOSE: THIS MODEL THE COMBUSTION/GASIFICATION ZONE OF A COAL C GASIFIER OF THE LURGI TYPE. IT PROVIDES FOR COUNTER-C CURRENT FLOW OF GAS AND SOLID STREAMS. THE FLOW OF COOLANT IS ASSUMED TO BE CO-CURRENT TO THE GAS FLOW. C. THE MODEL USES A MODIFIED FORM OF THE IBM SSP DRKGS C (VARIABLE STEP FOURTH ORDER RUNGE KUTTA) INTEGRATION С ROUTINE INSTEAD OF THE HARWELL GEAR PROVIDED WITH ASPEN. C C C TASK, SUBSYSTEM, SYSTEM: URE09, REACTOR, UOS C WRITTEN BY: BRUCE W.BENJAMIN DATE WRITTEN: MARCH 20, 1984 C C CALLING SEQUENCE: C C CALL URE09() C

VARIABLES USED:

CC

```
C
C
        VARIABLES IN ARGUMENT LIST (SEE URE04)
C
C
      SUBROUTINES CALLED:
С
C
          NAME - TOTENT
C
          DESCRIPTION - CALCULATE TOTAL STREAM ENTHALPY
C
C
          NAME-SFLASH
C
          DESCRIPTION-STREAM FLASH ROUTINE
C
C
          SPECIFICATIONS, DECLARATIONS, DATA STATEMENTS, ETC.
C
       IMPLICIT REAL*8(A-H,O-Z)
       SAVE
       EXTERNAL KINET, INTSTT
      DIMENSION ITYPE (NSUBS), JTYPE (NSUBS), IDXSUB (NSUBS), JDXSUB (NSUBS)
DIMENSION ISCP (NISCP), IDS (2, NIDS), NBOPST (2, NPO)
       DIMENSION INT (NINT), REAL (NREAL)
       DIMENSION INT1 (NINT1), INT2 (NINT2), INT3 (NINT3)
       DIMENSION REAL1 (NREAL1), REAL2 (NREAL2), REAL3 (NREAL3)
       DIMENSION IWK1 (NIWK1), IWK2 (NIWK2), IWK3 (NIWK3)
       DIMENSION WK1 (NWK1), WK2 (NWK2), WK3 (NWK3)
       DIMENSION ENGR (NR), PEXP (NCCQ), EXCN (NCCQ), COEF (NSUBS, NCQ, NR)
       DIMENSION XLOC (NXLOC), TEMPPR (NXLOC)
      DIMENSION IWDIR (NWDIR)
      DIMENSION Y (NSTATE), DERY (NSTATE), AUX (8, NSTATE), PRMT (10)
       COMMON /RGLOB/RMISS , RMIN , ABSMIN, SCLMIN, XMIN
                       HSCALE, RELMIN, SCLDEF, TMAX , TNOW
     1
C
      END COMMON /RGLOB/ 10-13-78
       COMMON /MW/XMW(1)
       COMMON /GLOBAL/KPFLG1, KPFLG2, KPFLG3, LABORT, NH
                        LDIAG ,NCHAR , IMISS ,MISSC1,MISSC2,
      1
                        LPDIAG, IEBAL , IRFLAG, MXBLKW, ITYPRN,
     2
     3
                        LBNCP , LBCP , LSDIAG, MAXNE , MAXNP1,
                        MAXNP2, MAXNP3, IUPDAT, IRSTRT, LSFLAG,
     4
     5
                        LRFLAG, KBLK1 , KBLK2 , KRFLAG, IRNCLS,
      6
                        LSTHIS, IRETCD, JRFLAG, JSFLAG
C
      END COMMON /GLOBAL/ 4-30-80
                       NCC , NNCC , NC , NAC
NVCP , NVNCP , NVACC , NVANCC
                                                      , NACC
      COMMON /NCOMP/NCC
     1
      END COMMON /NCOMP/ 10-13-78
C
                                                             , NWYF
      COMMON /STWORK/ NRETN , NIRETN , NHXF
                                                   , NHYF
                                         , KK2
                                 , KK1
                                                   ,KZ1
     1
                         NSTW
                                                             ,KZ2
                                          , KRET
                                                   , KRSC
                                 , KA2
                         KAI
                                                             , MF
     2
                                          ,MX2
                                 , MX1
                                                   , MY
                                                             , MCS
     3
                         MX
                                 , MHXF
                                          , MHYF
                                                   , MWY
                         MNC
                                                             , MRETN
     4
                                                   , MPH
                                 , MIC
                                          , MIN
     5
                         MIM
                                                             , MIRETN
                                 , NBLM
                                                             , NIWR
                                          , NCOVAR , NWR
                         NDUM
     6
                                 , KLNK
                                          , KFOUT , KPHV
                                                             , KPHL
                         KEXT
      7
                                 ,MSTOI
                                          , MLNKIN , MZWK
                                                             , MIZWK
                         KLNGM
     8
                                 , HV
                                          ,HL
                                                             ,HL2
     9
                         IDUMX
                                                   ,HL1
                                 ,SL
                                          ,SL1
                                                    ,SL2
                                                             , vv
                         SV
     1
                                 ,VL1
                                          ,VL2
                                                   , XMWV
                                                             , XMWL
     2
                         VL
      XMWL1 , XMWL2
END COMMON /STWORK/ 2- 3-81
     3
C
      COMMON /STWKWK/IDUM(6), DUM(26), WK(1)
      DIMENSION IWK(1)
      EQUIVALENCE (IWK(1), WK(1))
      END COMMON /STWKWK/ 11-1-80
C
      COMMON /WORK/WORK(1)
      DIMENSION IWORK(1)
```

```
EQUIVALENCE (WORK (1), IWORK (1))
C
       END COMMON /WORK/ 12-6-78
       COMMON /PLEX/IB(1)
       DIMENSION B(1)
      EQUIVALENCE(IB(1), B(1))
END COMMON /PLEX/ 10-13-78
C
       COMMON /RGAS1A/ LRK1, LRK2, LRK3, LRK4, LRK5, LRK6, LRK7
      DIMENSION IPROG(2)
       DATA IPROG /4HURE0, 4H9
                                    1
       DATA ICLASS /3/
С
С
C
         INITIALIZATION SECTION
C
      KRSTRT=ISCP(6)
      LODIAG=ISCP(1)
      LODIAF=LODIAG-3
      LOPDIA=ISCP(2)
       LCFLAG=-9999
      LIRETN=INT(25)
      LIRSF3=INT(61)
      LIRETC=INT(28)
      LRETN=JNT(31)
      LRRSF3=INT(64)
      LRETNC=INT(32)
      LRATE=IWDIR(6)
      LFLUXM=IWDIR(7)
      LFLUXS=IWDIR(8)
      LFSTEP=IWDIR(9)
      LDFDZ=IWDIR(10)
      LWA=IWDIR(11)
      LXOUT=IWDIR(13)
C
C
      GET INFO ABOUT IDXSUB AND ITYPE
C
      CALL STRVEC(LD, NSUBS, IDXSUB, ITYPE)
      Z = 0.D + 00
C
CC
      ISTATE:
                   PHASE STATE OF THE MIXED SUBSTREAM
                    1: VAPOR 2:LIQUID
C
      XLONG:
                   REACTOR LENGTH
C
      DIA:
                   REACTOR DIAMETER
C
      ISTATE=1
      NPKC=INT(5)
      KPHC=INT(6)
      MAXIT=INT(7)
      XLONG=REAL(1)
      DIA=REAL(2)
      PRES=REAL(3)
      PRESDP=REAL(4)
      UCP=REAL(5)
      UCM=REAL(6)
      UCS=REAL(7)
      USM=REAL(8)
      CPRES=REAL(13)
      CPDP=REAL(14)
      TOL=REAL(16)
      CTEMP=REAL(17)
      AREA=3.14159D+00* (DIA/2.D+00)**2
      CIRM=3.14159D+00*DIA
C
C
      COMPOSE THE BLENDED VOLATILE MATTER COMPONENT DISTRIBUTION
C
```

DO 1000 I = 1, NCC REAL1(LRK7+I) = REAL1(LRK3+6)*REAL1(LRK4+I)/XMW(I) + REAL1(LRK3+7)*REAL1(LRK5+I)/XMW(I) + REAL1 (LRK3+8) *REAL1 (LRK6+I) /XMW(I) 1000 CONTINUE C CC THIS SECTION SET UP PARAMETERS TO CALL SFLASH. NSTRML=NVCP+NVNCP+NVANCC KODE=1 NPKODE=1 KPHASE=ISTATE IF(ISTATE.EQ.3) NPKODE=2 SPEC1=0.D+00 SPEC2=0 D+00 ENTHST=0.D+00 GUESS=RMISS KREST=1 KDENS=2 C C DENSITY IN THE REACTOR IS ALWAYS CALCULATED C C C COPY INLET VAPOR STREAM TO OUTLET C CALL SCOPY (LD, LVRIN, LVROUT) C C CHECK ZERO FLOW, EXIT IF YES. C CALL TOTMAS (B (LVROUT), NSUBS, IDXSUB, ITYPE, TMASS) IF (TMASS.GE.RMIN) GO TO 1200 IF (MERRPT (IPROG, JDS, 1, 8684101, LODIAG, KPFLG3). EQ.0) GO TO 1100 WRITE(NH, 9100) 1100 CALL ERROR (1, ICLASS) ISCP(5) = -1RETURN 1200 CONTINUE K = 0DO 1400 I=1, NSUBS IF(ITYPE(I).NE.1) GO TO 1300 MDXSUB=IDXSUB(I) GO TO 1400 1300 K=K+1 JTYPE(K) = ITYPE(I) JDXSUB(K) = IDXSUB(I) 1400 CONTINUE C C CHECK ZERO PRESSURE, EXIT IF YES. C IF (PRES.GE.RMIN) GO TO 1600 IF (MERRPT (IPROG, IDS, 1, 8684105, LODIAG, KPFLG3). EQ.0) GO TO 1500 WRITE (NH, 9200) 1500 CALL ERROR (1, ICLASS) ISCP(5) = -5RETURN 1600 CONTINUE C CHECK SUBSTREAM TYPE C С DO 2000 I=1, NSUBS IF (ITYPE(I)-2) 1700,1800,1900 C MIXED SUBSTREAM C C

```
1700 IWK1(1)=1
      GO TO 1900
C
С
      CONVEN SOLID SUBSTREAM
C
 1800 IWK1(2) = 1
      GO TO 1900
C
C
      NONCONVEN SOLID SUBSTREAM
C
 1900 IWK1(3) = 1
 2000 CONTINUE
      IF(IWK1(1).NE.0) GO TO 2100
      GO TO 2200
 2100 IF (IWK1(3).NE.0) GO TO 2400
 2200 IF (KPFLG3.EQ.0) GO TO 2300
      IF (MERRPT (IPROG, IDS, 1, 8684106, LODIAG, KPFLG3). EQ.0) GO TO 2300
      WRITE (NH, 9300)
 2300 CALL ERROR(1, ICLASS)
       ISCP(5) = -6
      RETURN
 2400 CONTINUE
C
CC
      SET UP PRMT VECTOR FOR DRKGSA
      NOUT = 10
      PRMT(1) = 0.D + 00
      PRMT(2)=XLONG
      PRMT(3) = REAL(11)
      IF(PRMT(3).LE.0.D+00) PRMT(3)=1.D-03
      PRMT(4) = REAL(9)
      IF(PRMT(4).LE.0.D+00) PRMT(4)=1.D-10
      DELINC=DFLOAT (NXLOC) -2.D+00
      PRMT(10) = PRMT(2) / DELINC
C
C
      SET UP TEMPERATURE PROFILE
C
      XLOC(1) = 0.D+00
      TEMPPR(1) = B(LVRIN+IDXSUB(1)+NCC)
      CALL SDUMMY (LD, LVRD, NBDUM)
C
C
      CORRECT PROXANAL ANALYSIS FOR VMD NUMBER
CC
      BUILD SOLIDS PORTION OF COMBINED BOTTOMS STREAM
      RANGE GIVEN BY REAL1 (LRK3+4) TO REAL1 (LRK3+5)
C
      PRXMOD=1D0-B(LVRI3+IDXSUB(2)+NNCC+8)/100D0
      REAL3(1) = B(LVRI3 + IDXSUB(2) + NNCC + 8)
      REAL3(3) = B(LVRI3+IDXSUB(2)+NNCC+10)*REAL1(LRK3+1)*PRXMOD
      REAL3(4) = B(LVRI3+IDXSUB(2)+NNCC+11)*PRXMOD
      REAL3(2)=100.-REAL3(1)-REAL3(3)-REAL3(4)
      REAL3(6) = B(LVRI3+IDXSUB(2)+NNCC+13)-REAL3(2)/(1.-REAL3(1)/100.)
      ULTSUM=REAL3(6)
      DO 2500 I=1,5
      REAL3 (6+I) = B(LVRI3+IDXSUB(2)+NNCC+13+I)
      ULTSUM=ULTSUM+REAL3(6+I)
 2500 CONTINUE
      IF (ULTSUM.LE.0.D+00) GO TO 2600
C
         (ULTSUM.LE.0.D+00) GO TO 2650
      IF
      DO 2600 I=1,6
      REAL3(5+I)=REAL3(5+I)/ULTSUM
 2600 CONTINUE
 2650 CONTINUE
      REAL3(12) = 0.
      DO 2700 I=1,NCC
```
WTCHRF=B(LVRI3+IDXSUB(2)+NNCC-2)*REAL3(2)/1.D+02 WTASH=B(LVRI3+IDXSUB(2)+NNCC-2)*B(LVRI3+IDXSUB(2)+NNCC+11) *PRXMOD/1.D+02 BEGIN ITERATION LOOP DO 4900 IT=1,NIT IF(IT.EQ.1.AND.LODIAG.GE.6) WRITE(NH,9000) IF(IT-2) 2800,2900,3000 2800 WTCHAR=REAL1 (LRK3+4) *WTCHRF 2900 WTCHAR=REAL1 (LRK3+5) *WTCHRF 3000 WTCHAR=WK2(3) + (WK2(3) - WK2(1)) * (WTCHRF-WK2(4)) / (WK2(4) - WK2(2)) CHECK FOR NEGATIVE GUESS OF OUTLET FIXED CARBON

C С C

C C

C

C

C C

C

IF (WTCHAR, GE, WK2 (1), AND, WTCHAR, LE, WK2 (3)) GO TO 3200 3100 CONTINUE

IF (MERRPT (IPROG. IDS, 2, 8684107, LODIAG, KPFLG3). EQ.0) GO TO 3150 WRITE (NH. 9350) 3150 CALL ERROR (2, ICLASS)

1SCP(5) = -7GO TO 5000 ~

```
3200 WTTTL=WTASH+WTCHAR
     CALL SCOPY (LD, LVRIN, LVROUT)
```

2700 CONTINUE

NIT=INT1(1)

WK2(1) = WTCHARGO TO 3200

WK2(3) = WTCHAR GO TO 3200

1

C C

C

B(LVROUT+IDXSUB(2)+NNCC+8)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+9)=1.D+02*WTCHAR/WTTTL

B(LVROUT+IDXSUB(2)+NNCC+10)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+11)=1.D+02*WTASH/WTTTL

B(LVROUT+IDXSUB(2)+NNCC+12)=1.D+02*WTASH/WTTTL B(LVROUT+IDXSUB(2)+NNCC+13)=1.D+02*WTCHAR/WTTTL

B(LVROUT+IDXSUB(2)+NNCC+14)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+15)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+16)=0.D+00

REAL3 (12) = REAL3 (12) + REAL1 (LRK7+I)

B(LVROUT+IDXSUB(2)+NNCC+17)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+18)=0.D+00B(LVROUT+IDXSUB(2)+NNCC+19)=0.D+00

B(LVROUT+IDXSUB(2)+NNCC-1)=WTTTL

OUTLET CHAR/ASH MIXTURE ASSUMED TO BE AT INLET GAS TEMPERATURE SPEC1=B(LVRIN+IDXSUB(1)+NCC) SPEC2=B(LVRIN+IDXSUB(1)+NCC+1) (B(LVROUT) ,NSUBS,IDXSUB,ITYPE,NBOPST,2 NPKODE,KPHASE,MAXIT,TOL ,SPEC1,SPEC2,G LODIAF,LOPDIA,KREST,KDENS,REAL(LRETN), CALL FLASH (B(LVROUT) ,SPEC1 ,SPEC2 ,GUESS , 1 2 INT(LIRETN) , LCFLAG) 3 CALL SCOPY (LD, LVROUT, LVRO3)

SET UP MAXIMUM TEMPERATURE

XLOC(NXLOC) = 0.D+00TEMPPR (NXLOC) = B (LVRIN+IDXSUB(1)+NCC) PRMT(9) = 2.D + 00

C PACK INITIAL VALUES OF DEPENDENT VARIABLES C THERE WILL BE NCC + 18 STATE VARIABLES: C NCC - GAS COMPONENT MOLE FRACTIONS: C 02 H2C H2 CO CO2 CH4 C N2 H2S NH3 C3H8 C6H6 CEHEO C C11H10-2 C21H42 COS CS2 C4H4S COOLANT C 1 - GAS MASS BALANCE C 4 - SOLID COMPONENT PROXANAL WEIGHT FRACTIONS: C 7 - SOLID COMPONENT ULTANAL WEIGHT FRACTIONS: C 3 - SOLID COMPONENT SULFANAL WEIGHT FRACTIONS: C 1 - SOLID MASS BALANCE C 1 - PROCESS TEMPERATURE EQUATION C 1 - COOLANT ENTHALPY BALANCE C DO 3300 I=1,NCC Y(I) = B(LVROUT + IDXSUB(1) + I - 2) / B(LVROUT + IDXSUB(1) + NCC - 1)3300 CONTINUE Y(NCC+1) = B(LVROUT + IDXSUB(1) + NCC-1)DO 3400 I=1,14 Y(NCC+I+1) = B(LVROUT+IDXSUB(2)+NNCC+I+7)/1.D+023400 CONTINUE Y(NCC+16) = B(LVROUT+IDXSUB(2)+NNCC-1)Y(NCC+17) = B(LVROUT+IDXSUB(1)+NCC)Y(NCC+18) = 0.D+00C C SET UP ERROR TEST WEIGHTING FACTORS FOR DRKGSA C LX=NCC+18 DO 3500 I=1, LX DERY(I) = REAL2(I)3500 CONTINUE C INTEGRATION STARTS HERE. C C , Y , DERY , LX , IHLF , KINET , NSUBS , IDXSUB, ITYPE , NINT CALL DRKGSA (PRMT , IHLF , KINET , INTSTT, , NOUT 1 AUX , INT NREAL1, REAL1 , NIDS , IDS , NPO 2 , NBOPST, NWK1 , NCQ 3 WK1 , WORK (LRATE) , WORK (LFLUXM) 4 WORK(LFLUXS) , XLONG , AREA , CIRM , LVROUT, UCP ,REAL ,NREAL , LRETN , LIRETN, LVRIN , PRESDP, 5 T.D LVRINC, NPKODE, KPHASE, MAXIT, TOL, GUESS, LODIAF, 6 LOPDIA, KREST , KDENS , LCFLAG, ISTATE, NX , LVRD , LVRI3 , LVRO3 , NXLOC , XLOC , TEMPPR, NREAL3, REAL3) 7 8 C INTEGRATION COMPLETE - CHECK CONVERGENCE C C IF(IHLF.LT.26) GO TO 3600 IF (MERRPT (IPROG, IDS, 2, 8684104, LODIAG, KPFLG3). EQ.0) GO TO 3550 WRITE (NH, 9400) 3550 CALL ERROR(2, ICLASS) ISCP(5) = -4RETURN C REBUILD OUTLET PROCESS STREAM VECTOR C C 3600 CONTINUE DO 3700 I=1,NCC B(LVROUT+IDXSUB(1)+I-2)=Y(I)*Y(NCC+1)3700 CONTINUE B(LVROUT+IDXSUB(1)+NCC-1)=Y(NCC+1)DO 3800 I=1,14 B(LVROUT+IDXSUB(2)+NNCC+I+7)=1.D+02*Y(NCC+I+1)3800 CONTINUE B(LVROUT+IDXSUB(2)+NNCC-2)=Y(NCC+16)

C B(LVROUT+IDXSUB(2)+NNCC-1)=Y(NCC+16)B(LVROUT+IDXSUB(1)+NCC) = Y(NCC+17)TEMPP=Y(NCC+17) REAL(12) = -Y(NCC+18)PRESO=PRES-PRESDP DO 4100 J=1,NSUBS NM=ITYPE(J) IF (NM.EQ.3) GO TO 3900 C C CALCULATE TOTAL FLOWRATES AND MOLECULAR WEIGHT C DUM1=SAVEMW(LVROUT+IDXSUB(J)-1) GO TO 4100 3900 CONTINUE DUM1=0.D+00 DO 4000 I=1, NNCC DUM1 = DUM1 + B(LVROUT + IDXSUB(J) + I - 2)4000 CONTINUE B(LVROUT+IDXSUB(J)+NNCC-1)=DUM1 4100 CONTINUE SPEC2=PRESO SPEC1=TEMPP CALL SETP(B(LVROUT), NSUBS, IDXSUB, ITYPE, PRES) CALL SETH (B(LVROUT), NSUBS, IDXSUB, ITYPE, ENTHST) CALL FLASH (B (LVROUT) ,NSUBS , IDXSUB, ITYPE ,NBOPST, 2 NPKODE, KPHASE, MAXIT, TOL, SPEC1, SPEC2 LODIAF, LOPDIA, KREST, KDENS, REAL (LRETN) ,SPEC1 ,SPEC2 ,GUESS , 1 2 3 INT (LIRETN) , LCFLAG) C C CHECK FOR PROCESS STREAM PHASE STATE SPECIFIED. C VAP=B(LVROUT+MDXSUB+NCC+3) IF(LODIAG.GE.6) WRITE(NH, 9500) VAP DVAP=DABS(VAP-1D+00) IF(ISTATE.EQ.1.AND.DVAP.GT.RMIN) GO TO 4200 IF(ISTATE.EQ.2.AND.DABS(VAP).GT.RMIN) GO TO 4200 GO TO 4400 4200 CONTINUE IF(MERRPT(IPROG,IDS,1,8684102,LODIAG,KPFLG3).EQ.0) GO TO 4300 WRITE (NH, 9600) 4300 CALL ERROR (1, ICLASS) ISCP(5) = -24400 CONTINUE C C PREPARE NEXT ITERATION C DETERMINE INLET CARBON FLOW AND COMPARE C TPCHRF=B(LVROUT+IDXSUB(2)+NNCC+9) *B(LVROUT+IDXSUB(2)+NNCC-2)/1.D+02 1 DLTCHR=WTCHRF-TPCHRF IF(IT.EQ.1.AND.DLTCHR.LT.0.D+00) GO TO 3100 ADC=DABS (DLTCHR) IF (ADC.LE.1.E-02) GO TO 5000 IF(IT-2) 4500,4600,4700 4500 WK2(2) = TPCHRF GO TO 4800 4600 WK2(4) = TPCHRF GO TO 4800 4700 IF (DLTCHR.GT.0.D+00) WK2(1) = WTCHAR IF (DLTCHR.GT.0.D+00) WK2(2) = TPCHRF IF(DLTCHR.LT.0.D+00) WK2(3)=WTCHAR IF (DLTCHR.LT.O.D+00) WK2(4) = TPCHRF 4800 CONTINUE IF (LODIAG.GE.5) THEN

WRITE (NH, 9900) B(LVRO3+IDXSUB(2)+NNCC+9), WTCHAR, WTTTL, 1 B(LVROUT+IDXSUB(2)+NNCC+9), 2 B(LVROUT+IDXSUB(2)+NNCC-1), TPCHRF, DLTCHR END IF C C RESET DEVOLATILIZATION LOW TEMPERATURE TO GAS OUTLET TEMPERATURE C REAL1 (LRK3+2) = B(LVROUT+IDXSUB(1)+NCC)4900 CONTINUE IF (MERRPT (IPROG, IDS, 2, 8684108, LODIAG, KPFLG3) . EQ. 0) GO TO 4950 WRITE(NH, 9700) NIT 4950 CALL ERROR(2, ICLASS) ISCP(5) = -85000 CONTINUE C C DETERMINE TOTAL ENTHALPY OF HEATED DRIED COAL STREAM С SLOENT=B(LVROUT+IDXSUB(2)+NNCC-1)*B(LVROUT+IDXSUB(2)+NNCC+2) C C REMOVE SOLIDS FROM GAS OUTLET STREAM (LVROUT) C DO 5100 I=1,NNCC B(LVROUT+IDXSUB(2)+I-2)=0.D+005100 CONTINUE B(LVROUT+IDXSUB(2)+NNCC-1)=0.D+00B(LVROUT+IDXSUB(2)+NNCC)=RMISS B(LVROUT+IDXSUB(2)+NNCC+2)=RMISS B(LVROUT+IDXSUB(2)+NNCC+3)=RMISS B(LVROUT+IDXSUB(2)+NNCC+4)=RMISS DO 5200 I=1,NVANCC B(LVROUT+IDXSUB(2)+NNCC+7+I)=RMISS 5200 CONTINUE C REMOVE GAS FROM SOLID OUTLET STREAM (LVRO3) C C PHOLD=B(LVRO3+IDXSUB(1)+NCC+1) DO 5300 I=1,NCC B(LVRO3 + IDXSUB(1) + I - 2) = 0.D + 005300 CONTINUE B(LVRO3+IDXSUB(1)+NCC-1)=0.D+00DO 5400 I=2,9 B(LVRO3+IDXSUB(1)+NCC+I-2)=RMISS 5400 CONTINUE B(LVRO3+IDXSUB(1)+NCC+1)=PHOLD C ADD MIXED SUBSTREAM COMPONENTS FROM INLET COAL FEED (LVRI3) C C TO PRODUCT GAS (LVROUT) C FMOLI = B(LVRI3 + IDXSUB(1) + NCC - 1)IF (FMOLI .GT. RMIN .AND. FMOLI .LT. RMISS) THEN DO 5410 I = 1, NCC IOFF = IDXSUB(1) + I - 2B(LVROUT+IOFF) = B(LVROUT+IOFF) + B(LVRI3+IOFF)CONTINUE 5410 FMOLO = B(LVROUT+IDXSUB(1)+NCC-1)FMASI = B(LVRI3+IDXSUB(1)+NCC+7) * FMOLI FMASO = B(LVROUT+IDXSUB(1)+NCC+7) * FMOLOHGASI = B(LVRI3 + IDXSUB(1) + NCC+2)HGASO = B(LVROUT+IDXSUB(1)+NCC+2)FMOLM = FMOLI + FMOLO FMASM = FMASI + FMASO IF (FMOLM .LE. RMIN .OR. FMOLM .GE. RMISS) THEN FMOLM = 0D0FMASM = 0D0

END TF HGASM = 0D0IF (FMASM .GT. RMIN) HGASM = (HGASI*FMASI+HGASO*FMASO)/FMASM B(LVROUT+IDXSUB(1)+NCC-1) = FMOLMB(LVROUT+IDXSUB(1)+NCC+2) = HGASMB(LVROUT+IDXSUB(1)+NCC+7) = 0D0IF (FMOLM .G'T. RMIN) B(LVROUT+IDXSUB(1)+NCC+7) = FMASM/FMOLM END IF C С ADD WATER VAPORIZED FROM COAL FEED C CDRY=B(LVRI3+IDXSUB(2)+NNCC+8)*B(LVRI3+IDXSUB(2)+NNCC-1)/1801.5 SLIENT=B(LVRI3+IDXSUB(2)+NNCC-1)*B(LVRI3+IDXSUB(2)+NNCC+2) GSIENT=B(LVROUT+IDXSUB(1)+NCC-1)*B(LVROUT+IDXSUB(1)+NCC+2) 1 *B(LVROUT+IDXSUB(1)+NCC+7) SPEC1=3(LVROUT+IDXSUB(1)+NCC+1) SPEC2=GSIENT+SLIENT-SLOENT B(LVROUT+IDXSUB(1)) = B(LVROUT+IDXSUB(1))+CDRY B(LVROUT+IDXSUB(1)+NCC-1)=B(LVROUT+IDXSUB(1)+NCC-1)+CDRY DUM1=SAVEMW(LVROUT+IDXSUB(1)-1) CALL SETH (B(LVROUT), NSUBS, IDXSUB, ITYPE, ENTHST) (B(LVROUT) ,NSUBS ,IDXSUB,ITYPE ,NBOPST,1 , NPKC ,KPHC ,MAXIT ,TOL ,SPEC1 ,SPEC2 ,GUESS , LODIAF,LOPDIA,KREST ,KDENS ,REAL(LRETN) , CALL FLASH (B(LVROUT) 1 2 3 INT(LIRETN) , LCFLAG) C C CONVERSION CALCULATION C REAL3(5)=100.-100. 1 *B(LVRO3+IDXSUB(2)+NNCC+13)*B(LVRO3+IDXSUB(2)+NNCC-1) 2 /B(LVRI3+IDXSUB(2)+NNCC+13)/B(LVRI3+IDXSUB(2)+NNCC-1) 3 /(1.-B(LVRI3+IDXSUB(2)+NNCC+8)/100.) С C CHECK IF MAXIMUM TEMPERATURE HIGH ENOUGH FOR DEVOLATILIZATION C IF (TEMPPR (NXLOC).GE.REAL1 (LRK3+3)) GO TO 5500 IF (MERRPT (IPROG, IDS, 1, 8684109, LODIAG, KPFLG3). EQ.0) GO TO 5450 WRITE (NH. 9800) 5450 CALL ERROR(1, ICLASS) ISCP(5) = -95500 CONTINUE C C COOLANT CALCULATION C CALL SCOPY(LD, LVRINC, LVROUC) C CALL TOTENT (B(LVRINC), NSUBS, IDXSUB, ITYPE, HCOOLI) C CALL SETP(B(LVROUC), NSUBS, IDXSUB, ITYPE, CPRES) CALL SETH (B (LVROUC), NSUBS, IDXSUB, ITYPE, ENTHST) SPEC1=B(LVRINC+IDXSUB(1)+NCC+1)-CPDP SPEC2=B(LVRINC+IDXSUB(1)+NCC-1)*B(LVRINC+IDXSUB(1)+NCC+2) 1 *B(LVRINC+IDXSUB(1)+NCC+7)-REAL(12) (B(LVROUC) ,NSUBS ,IDXSUB,ITYPE ,NBOPST,1 , NPKC ,KPHC ,MAXIT ,TOL ,SPEC1 ,SPEC2 ,GUESS , LODIAF,LOPDIA,KREST ,KDENS ,REAL(LRETN) , CALL FLASH (B(LVROUC) 1 2 INT(LIRETN) , LCFLAG) 3 C C FORMAT STATEMENTS C 9000 FORMAT(/6X, 'BEGINNING OF ITERATIONS:', 1 //6X,'IHLF IS INTERVAL HALVING, X IS REACTOR POSITION', /6X, 'FIRST NCC VARIABLES IN Y ARE GAS MOLE FRACTIONS', 2 3 /6X, 'VARIABLE NCC+1 IS THE GAS MOLE FLOW', /6X, 'VARIABLES NCC+2 TO NCC+5 IS THE PROXANAL ANALYSIS', 4 /6X, 'VARIABLES NCC+6 TO NCC+12 IS THE ULTANAL ANALYSIS', 5

E	/6X, VARIABLES NCC+13 TO NCC+15 IS THE SULFANAL ANALYSIS',
7	/6X, 'VARIABLE NCC+16 IS THE SOLID WEIGHT FLOW',
8	/6X, 'VARIABLE NCC+17 IS THE PROCESS TEMPERATURE',
9	/6X, 'VARIABLE NCC+18 IS HEAT LOSS TO THE COOLANT')
9100	FORMAT(6X, 'TOTAL FLOW IS ZERO.')
9200	FORMAT(6X, 'TOTAL PRESSURE IS ZERO.')
9300	FORMAT(6X, 'MIXED SUBSTREAM AND A NONCONVENTIONAL SUBSTREAM',
1	1X, 'EXPECTED BUT ONE OR BOTH NOT PRESENT. ')
9350	FORMAT(6X, 'SPECIFIED INLET COAL FLOW IS TOO LOW.')
9400	FORMAT(6X, 'RUNGE-KUTTA INTEGRATION HAS HALVED OUT.')
9500	FORMAT(/6X, 'VAPOR FRACTION = ', G12.5)
9600	FORMAT(6X, 'OUTLET PROCESS STREAM PHASE SPEC. IS INCORRECT.')
9700	FORMAT(6X, 'NO CONVERGENCE IN ', I3, ' ITERATIONS.')
9800	FORMAT(6X,'TEMPERATURE IS TOO LOW FOR DEVOLATILIZATION.')
9900	FORMAT(/6X,'SECANT CALCULATION FOR CONVERGENCE:',
1	<pre>//6X,'ESTIMATED WEIGHT FRACTION OUTLET FIXED CARBON ',G12.5,</pre>
2	<pre>/6X,'ESTIMATED WEIGHT OF FIXED CARBON IN OUTLET ',G12.5,</pre>
3	/6X,'ESTIMATED TOTAL WEIGHT CHAR-ASH OUTLET ',G12.5,
4	/6X, 'CALCULATED WEIGHT FRACTION INLET FIXED CARBON ', G12.5,
5	/6X,'CALCULATED INLET WEIGHT DRY COAL ',G12.5,
6	/6X,'CALCULATED INLET WEIGHT FIXED CARBON ',G12.5,
7	/6X, 'DIFFER. BETWEEN CALCULATED AND DESIRED RESULT ',G12.5)
	RETURN
	END

C\$ #09 BY; SSIWPK DATE: 03/04/93 C\$ 7 CUT OUT FOR DELIVERY TO U.N.D. C\$ #08 BY: SSIWPK DATE: 03/03/93 SAVE INPUT VOL.MATTER RELEASE TEMP. C\$ #07 BY: SSIKRC DATE: 02/05/93 ADD CALL FOR TRANSPORT PROPERTY CALCS. C\$ #06 BY: SIMSCI DATE: 01/15/91 ADD /RGAS1A/ AND CALC. REALK OFFSETS C\$ -------- V8 CHANGES START ABOVE ------C\$ #05 BY: JSDINC DATE: 11/16/88 UPDATE /GLOBAL/ AND ARG LIST DATE: 03/20/84 TRANSMIT ALL PROCESS STREAMS DATE: 03/20/84 REMOVE TRANSMISSION OF WORK STREAMS C\$ #04 BY: BWB C\$ #03 BY: BWB C\$ #02 BY: JSDINC DATE: 03/20/84 RETRIEVE WORK AREA OFFSETS C\$ #01 BY: JSDINC DATE: 03/15/84 NEW C-C C C **** NOTICE **** C _____ C C C C COPYRIGHT (C) 1981-85 C JAY S. DWECK, CONSULTANT, INC. C C C C---,NISCP ,ISCP ,NIDS ,IDS ,NBOPST ,NWDIR ,IWDIR ,NINT SUBROUTINE URE091 (NB 1 NPO ,NSIN ,NBSIN , ,NINFO ,NISIZE , INT ,NREAL ,REAL NSOUT ,NBSOUT ,NINFI 2 3 ISIZE ,NSIZE ,SIZE PDROP ,QTRANS ,MODELE) , MODEL , KINET , 4 5 C C NAME OF MODULE: C C CASK, SUBSYSTEM, SYSTEM: URE09I, URE09, UOS C C WRITTEN BY: MICHAEL MENDELSON DATE WRITTEN: 03/15/84 C C C NAME - URE09 (....) С C DESCRIPTION - MODEL C C NAME - SUNLCK C DESCRIPTION - TO UNLOCK STREAMS C C C C SPECIFICATIONS, DECLARATIONS, DATA STATEMENTS, ETC. C C** DOUBLE PRECISION IMPLICIT REAL*8 (A-H, O-Z) SAVE EXTERNAL MODEL, KINET, PDROP, QTRANS, MODELE DIMENSION ISCP(NISCP), IDS(2,NIDS), NBOPST(2,NPO), IWDIR(NWDIR), INT(NINT), REAL(NREAL), NBSIN(NSIN), NBSOUT(NSOUT), 1 2 ISIZE (NISIZE), SIZE (NSIZE) COMMON /USER/ RUMISS, IUMISS, NGBAL , IPASS , IRESTR , ICONVG , \$ LMSG , LPMSG , KFLAG , NHSTRY , NRPT , NTRMNL END COMMON /USER/ 05-26-80 C COMMON /WORK/ WORK(1) DIMENSION IWORK(1) EQUIVALENCE (WORK(1), IWORK(1)) , NNCC , NC COMMON /NCOMP/ NCC , NAC , NACC NVNCP , NVACC , NVANCC NVCP 1

C END COMMON /NCOMP/ 10-13-78 COMMON /RGLOB/ RMISS ,RMIN ,ABSMIN ,SCLMIN ,XMIN HSCALE ,RELMIN ,SCLDEF ,TMAX ,TNOW 1 C END COMMON /RGLOB/ 10-13-78 COMMON /GLOBAL/ KPFLG1 , KPFLG2 , KPFLG3 , LABORT , NH LDIAG ,NCHAR ,IMISS ,MISSC1 ,MISSC2 LPDIAG ,IEBAL ,IRFLAG ,MXBLKW ,ITYPRN 1 2 3 LBNCF , LBCP , LSDIAG , MAXNE , MAXNP1 MAXNP2 , MAXNP3 , IUPDAT , IRSTRT , LSFLAG 4 5 LRFLAG ,KBLK1 ,KBLK2 ,KRFLAG ,IRNCLS LSTHIS ,IRETCD ,JRFLAG ,JSFLAG ,ICOMTP 6 С END COMMON /GLOBAL/ 7-21-81 COMMON /RPTGLB/ IREPFL, ISUB(10) C END COMMON /RPTGLB/ 09-06-79 COMMON /PLEX/ IB(1) DIMENSION B(1) EQUIVALENCE (IB(1), B(1)) C END COMMON /PLEX/ 10-13-78 COMMON /RGAS1A/ LRK1, LRK2, LRK3, LRK4, LRK5, LRK6, LRK7 DATA VMRT, VMRTF /0D0,0D0/ C C FORMAT STATEMENTS . C 10 FORMAT (6X, 'INCONSISTENT HMB FLAG. SIZING CALCULATIONS WILL NOT', 1' BE DONE.') C C CHECK FOR REPORT PASS C IF(IREPFL .EQ. 0)GO TO 202 CALL URE09R (NSIN , NBSIN , NSOUT , NBSOUT, NINT , INT NREAL , REAL , NPO , NBOPST, NIDS , IDS 1 2 NISCP , ISCP , NISIZE, ISIZE , NB GO TO 10000 C C . SET THE HMB RESULT FLAG C 202 IF (JRFLAG.EQ.0) GO TO 9999 IF(JRFLAG.NE.2) ISCP(5) = -9999C------_____ C GET THE STREAM INFORMATION C-----CALL LOCATS (NBSOUT (1), LVIOUT, LVROUT, LD, NBD) CALL LOCATS (NBSOUT (2), LVIO3, LVRO3, LD, NBD) CALL LOCATS (NBSOUT (3), LVIOUC, LVROUC, LD, NBD) C---_____ C SET UP FEED STREAM TO CALL MODEL (URE09) C-CALL LOCATS (NBSIN(1), LVIIN, LVRIN, LD, NBD) CALL LOCATS (NBSIN (2), LVI3, LVRI3, LD, NBD) CALL LOCATS (NBSIN (3), LVIINC, LVRINC, LD, NBD) NXLOC = INT(10)LXLOC = INT(8)LTEMP = INT(9)NREACT = INT(15)LCOEF = INT(14)LPEXP = INT(17)LENGR = INT(18)LEXCN = INT(22)C LIRSF1 = INT(25)LIRSF2 = INT(28)C LRRSF1 = INT(31)C C LRRSF2 = INT(34)C LIRSF3 = INT(61)C LRRSF3 = INT(64)

C	NINK = INT(36) $NRK = INT(37)$ $NIWK = INT(38)$ $NWK = INT(39)$ $NINP = INT(40)$ $NRP = INT(41)$ $NIWP = INT(42)$ $NWP = INT(42)$ $NWP = INT(43)$ $NINQ = INT(44)$ $NRQ = INT(45)$ $NIWQ = INT(46)$ $NWQ = INT(47)$ $LINK = INT(49)$ $LRK = INT(51)$ $LINP = INT(53)$ $LRP = INT(57)$ $LRQ = INT(59)$
C	INITIALIZE THE REALK OFFSET VARIABLES
с с	LRK1 = 0 $LRK2 = LRK1 + 20$ $LRK3 = LRK2 + 20$ $LRK4 = LRK3 + 20$ $LRK5 = LRK4 + NCC$ $LRK6 = LRK5 + NCC$ $LRK7 = LRK6 + NCC$ $INITIALIZE OP RESTORE VOLATILE MATTER RELEASE TEMPERATURE$
C	INITIALIZE OR RESTORE VOLATILE MATTER RELEASE TEMPERATURE
C	<pre>IF (VMRT .EQ. 0D0) THEN VMRT = REAL(LRK+LRK3+1) ELSE IF (REAL(LRK+LRK3+1) .EQ. VMRTF) THEN REAL(LRK+LRK3+1) = VMRT ELSE VMRT = REAL(LRK+LRK3+1) END IF END IF</pre>
C	FIND THE TOTAL NUMBER OF COMPONENT
550 560 570 580	NSUBS=NPHASE(LD) NX= 0 DO 580 I = 1 , NSUBS KTYPE = IPTYPE(LD,I) GO TO(550,560,570), KTYPE CONTINUE NX = NX + NCC GO TO 580 CONTINUE NX = NX + NCC GO TO 580 CONTINUE NX = NX + NCC CONTINUE LX = NX + 2 NF = 17*LX IWA = 2*LX*LX NSTATE=NCC+40
C	GET VECTOR ADDRESS LOCATION
-	

LITYPE = IWDIR(2)LJTYPE = IWDIR(3)LIDXSU = IWDIR(4)LJDXSU = IWDIR(5)LIWK = IWDIR(14) LWK = IWDIR(15)LIWP = IWDIR(16)LWP = IWDIR(17)LIWQ = IWDIR(18) LWQ = IWDIR(19) LWSTAT = IWDIR(20) LWDERV = IWDIR(22)LWAUX = IWDIR(24)LPRMT = IWDIR(26)C------С CALL MODEL C-С С LOAD COMMON USER FROM GLOABL AND ISCP C IUMISS = IMISS RUMISS = RMISS NGBAL = ISCP(3)IPASS = JRFLAG IF(IREPFL.EQ.1) IPASS = 4 IRESTR = ISCP(6)LMSG = ISCP(1)LPMSG = ISCP(2)KFLAG = KPFLG3 NHSTRY = NH NRPT = NRNTRMNL = NTERM C C (LD ,LVRIN ,LVROUT,LVRI3 ,LVRO3 ,LVRINC,LVROUC, NISCP ,ISCP ,NPO ,NBOPST,NIDS ,IDS ,NINT , INT' ,NREAL ,REAL ,REAL (LPEXP) , REAL (LENGR) CALL MODEL (LD 1 REAL (LEXCN) , REAL (LCOEF) , NINK , INT (LINK) NINP , INT (LINP) 2 3 ,NINQ , INT(LINQ) 4 , NRK , NRP , REAL (LRP) , NRO 5 REAL (LRK) , NIWK , IWORK (LIWK) , NIWP 6 REAL (LRQ) 7 IWORK (LIWP) ,NIWQ , IWORK(LIWQ) , NWK , NWP , WORK (LWP) 8 WORK (LWK) , NWQ , NXLOC , REAL (LXLOC) 9 , REAL (LTEMP) WORK (LWQ) , NCC Х NSUBS , NC , NREACT, NF , IWA 1WORK (LIDXSU), IWORK (LJDXSU), IWORK (LITYPE), 1 IWORK(LJTYPE), NWDIR , IWDIR , KINET , PDROP , QTRANS , WORK(LWSTAT) , WORK(LWDERV), WORK(LWAUX) , NSTATE , 2 3 WORK (LPRMT)) 4 VMRTF = REAL(LRK+LRK3+1)IF(ISCP(5).EQ.-9999), ISCP(5)=0C - -_____ C 9999 IF(JSFLAG .EQ. 0) GO TO 10000 C C - -C C UNLOCK THE STREAMS C 10000 CALL SUNLCK (NSIN, NBSIN, NSOUT, NBSOUT) RETURN END

C\$ #07 BY: SIMSCI DATE: 07/17/92 REPORT COAL FEED FLOW RATE C\$ #06 BY: SIMSCI DATE: 07/15/92 SET UNIT NUMBER FOR SPECIAL REPORT FILE C\$ #05 BY: SIMSCI DATE: 11/18/91 ADD ATOMBAL POSSIBILITY C\$ #04 BY: SIMSCI DATE: 06/14/91 CONTROL LOGIC FOR PRINTING SPECIAL FILE C\$ #03 BY: SIMSCI DATE: 04/03/91 PRINT SUMMARY IN SPECIAL FILE C\$ #02 BY: SIMSCI DATE: 03/08/91 ADD STEAM UTILIZATION CALCULATION C\$ #01 BY: SIMSCI DATE: 01/18/91 NEW C ,NBSIN , NBSOUT , NINT SUBROUTINE URE09R (NSIN , NSOUT , NPO 1 INT , NREAL , REAL , NBOPST , , IDS , NISCP 2 NIDS , ISCP ,NIREP , NB 3 IREP С C-C С * --C **** NOTICE **** C C C C C COPYRIGHT (C) 1991 C SIMULATION SCIENCES INC. C C C C-C C NAME: URE09R C C DESC: REPORT WRITER FOR URE09 (RGAS). C C SYST: SP C C AUTH: STEVEN C. LYTHGOE C C DATE: 01/18/91 C C ----------C C VARIABLES IN ARGUMENT LIST: C C VARIABLE I/O TYPE DIMENSION DESCRIPTION C C NUMBER OF INLET STREAMS NSIN Ι Ι С C NBSIN NSIN BEAD NUMBERS OF INLET STREAMS Ι T C CC NUMBER OF OUTLET STREAMS NSOUT Ι Ι C NSOUT BEAD NUMBERS OF OUTLET STREAMS NBSOUT Т I 00000000000 NUMBER OF INTEGER VARIABLES NINT Τ T INTEGER VARIABLES INT Ι 1 NINT NREAL Ι I NUMBER OF REAL VARIABLES REAL Ι R NREAL REAL VARIABLES CC NPO NUMBER OF PROP. OPTION SETS Τ Ι NPO PROPERTY OPTION SETS C NBOPST Ι Ι C

C NUMBER OF BLOCK IDS NIDS Ι I C С NIDS BLOCK IDS IDS Т I C NISCP Т Ι NUMBER OF SIM. CONTROL PARAM С CC ISCP I I NISCP SIMULATION CONTROL PARAM C NUMBER OF REPORT CONTROL FLAGS NIREP I I C C IREP I I NIREP REPORT CONTROL FLAGS C C NB I I BLOCK BEAD NUMBER C C------С C IMPORTANT INTERNAL VARIABLES: C C VARIABLE I/O TYPE DIMENSION DESCRIPTION C C-----C С SUBROU'TINES CALLED: C C NAME - LABCTR C DESC - LABEL CENTERING UTILITY C C NAME - LOCATI C DESC - LOCATE AN INTEGER BEAD C C NAME - LOCATM C DESC - LOCATE A MIXED INTEGER/REAL BEAD C C NAME - LOCATS C DESC - LOCATE A STREAM BEAD C C NAME - LOCATR C DESC - LOCATE A REAL BEAD C С NAME - NPHASE C DESC - RETRIEVE THE NUMBER OF SUBSTREAMS FOR A STREAM CLASS C C NAME - RCONV1 DESC - UNIT CONVERSION UTILITY C C NAME - RPTBAL C DESC - HMB BALANCE REPORT C C NAME - RPTHDR DESC - REPORT PAGINATION UTILITY C C NAME - STRVEC DESC - UTILITY TO RETRIEVE STREAM STRUCTURE FOR A STREAM CLASS C С С NAME - UOBOX DESC - BLOCK DIAGRAM PRINTING UTILITY С C NAME - UOSHDR C DESC - REPORT SECTION HEADER UTILITY C C. _____ C--C *** DOUBLE PRECISION *** C C

IMPLICIT REAL*8 (A-H.O-Z) C C COMMON STATEMENTS C COMMON /PLEX / IB(1) DIMENSION B(1) EQUIVALENCE (IB(1), B(1)) END COMMON /PLEX / 10-13-78 C C / WORK(1) COMMON /WORK DIMENSION IWORK (1) EQUIVALENCE (IWORK(1), WORK(1)) С COMMON /GLOBAL/ KPFLG1 , KPFLG2 , KPFLG3 , LABORT , NH LDIAG , NCHAR , IMISS 1 ,MISSC1 ,MISSC2 , LPDIAG , IEBAL , IRFLAG , MXBLKW , ITYPRN , 2 LBNCP ,LBCP ,LSDIAG ,MAXNE ,MAXNP1 MAXNP2 ,MAXNP3 ,IUPDAT ,IRSTRT ,LSFLAG 3 4 LRFLAG , KBLK1 , KBLK2 , KRFLAG , IRNCLS 5 LSTHIS , IRETCD , JRFLAG , JSFLAG , ICOMTP 6 END COMMON /GLOBAL/ 07-21-81 C C RMISS ,RMIN ,ABSMIN ,SCLMIN ,XMIN HSCALE ,RELMIN ,SCLDEF ,TMAX ,TNOW COMMON /RGLOB / RMISS 1 C END COMMON /RGLOB / 10-13-78 C COMMON / PPGLOB/ PREF, TREF, RGAS C COMMON /RPTGLR/ IREPFL , ISUB(10) END COMMON /RPTGLB/ 09-06-79 C C / IFLS(30) COMMON /FLES (IFLS(1),NID), (IFLS(2),NDSPFR), (IFLS(3),NINFOR), (IFLS(4),NDSFTE), (IFLS(5),IJNK01), (IFLS(6),IJNK02), EQUIVALENCE (IFLS(1), NID 1 (IFLS(7), NWWWW), (IFLS(8), NDSFIN), (IFLS(9), NTOC 2),), 3 (IFLS(10),NSD), (IFLS(11),NPF), (IFLS(12),NPD), (IFLS(14),NR (IFLS(13),NPH), (IFLS(15), NMP 4)), (IFLS(17),NLCF), (IFLS(18),MPD EQUIVALENCE (IFLS(16),NIS), (IFLS(20),NCI), (IFLS(21),NP1 1 (IFLS(19),NAD), (IFLS(22),NP2), (IFLS(23),NP3), (IFLS(24),NP4 2),), (IFLS(26),NA1), 3 (IFLS(25),NP5), (IFLS(27),NA2 4 (IFLS (28), NA3), (IFLS(29),NA4), (IFLS(30),NA5) END COMMON /FLES / 04-05-79 C C COMMON /STWORK/ NRETN , NIRETN , NHXF , NHYF , NWYF , KK2 ,KZ1 ,KZ2 , KK1 NSTW 1 , KRET 2 KA1 , KA2 , KRSC , MF 3 MX ,MX1 ,MX2 , MY , MCS , MHYF , MWY , MRETN MNC , MHXF 4 5 MIM , MIC ,MIN , MPH , MIRETN C END COMMON /STWORK/ 7-28-81 C COMMON /STWKWK/ IDUM(6), DUM(26), WK(1) DIMENSION IWK(1) EQUIVALENCE (IWK(1), WK(1)) END COMMON /STWKWK/ 11-1-80 C C , NNCC , NACC COMMON /NCOMP / NCC ,NC , NAC , NVNCP , NVACC , NVANCC NVCP 1 C END COMMON /NCOMP / 10-13-78 C COMMON / IDSCC / IDSCC(2,1) C COMMON /FRMULA/ FRMULA(3,1)

INTEGER FRMULA

```
COMMON /MW
```

C

C

CC

C

CC

C

CC

C

C

CC

C

CC

CC

C

COMMON /RGAS1A/ LRK1, LRK2, LRK3, LRK4, LRK5, LRK6, LRK7

DIMENSION STATEMENTS

/ XMW(1)

DIMENSICN NBSIN(1), NBSOUT(1), INT(1), REAL(1), NBOPST(1), IDS(2,1), ISCP(1), IREP(1) DIMENSION LABEL1(4), STRNG1(8), LABEL2(4), STRNG2(8) DIMENSION IFORM(3,6), ICOMP(6), IDSS(2)

DATA STATEMENTS

177 177	THOP		/ 4110	5		4 77			4 77	
DATA	TFORM	1	/ 4HO	4	1	4H		,	4 H	,
1			4 HH	2	,	4H		,	4 H	,
2			4HC	0	,	4H		,	4 H	,
3			4HC	02	,	4H		,	4H	,
4			4HC	H4	,	4H		,	4H	,
5			4HH	20	,	4H		,	4H	1
DATA	IDSS	/	4HNC	,	4H		1			

EXECUTABLE CODE

IFLAG = IREP(2) + IREP(3) + IREP(4) + IREP(5) + IREP(6) IF (IFLAG .EQ. 0) GO TO 9999

INITIALIZE CONTROL VARIABLES

```
IHD = 0
IFF = 1
ISC = 3
IFM = 0
IPR = 0
IERR = 0
KEEP = 5
IOPT = 1
```

RETRIEVE THE HEADER

CALL UOSHDR (NIDS, IDS)

PRINT THE HEADER AND THE BLOCK DESCRIPTION

```
LINES = 1

CALL LOCATM ( NB, LBI, LBR, IOFF )

NBDESC = IB(LBI+2)

IF ( NBDESC .NE. 0 ) THEN

LBDESC = LOCATI(NBDESC)

LNDESC = LENTHI(NBDESC)

LINES = LINES + 1

CALL RFTHDR ( LINES, IFF, ISC, ISUB )

WRITE(NR, 1000) (IB(LBDESC+I-1), I=1, LNDESC)

ELSE

CALL RFTHDR ( LINES, IFF, ISC, ISUB )

END IF
```

PRINT THE BLOCK DIAGRAM SHOWING THE INLET AND OUTLET STREAMS CALL UOBOX (NB, NBSIN, NSIN, NBSOUT, NSOUT, IDS, NIDS, 1 NBOPST, NPO)

C

C

CC

CHECK ISCP(5) FOR ERROR CONDITIONS DURING THE SIMULATION

C

C

CC

C

```
IF ( ISCP(5) .EQ. -9999 ) THEN
    LINES = 7
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2000)
    IERR = 1
END IF
IF ( ISCP(5) .EQ. -IMISS ) THEN
   LINES = 7
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2000)
    IERR = 1
END IF
 IF ( ISCP(5) .EQ. -1 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2010)
    IERR = 1
END IF
 IF ( ISCP(5) .EQ. -2 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE(NR, 2020)
END IF
 IF ( ISCP(5) .EQ. -4 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
   WRITE (NR, 2040)
END IF
IF ( ISCP(5) .EQ. -5 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2050)
    IERR = 1
END IF
 IF ( ISCP(5) .EQ. -6 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2060)
    IERF = 1
END IF
IF ( ISCP(5) .EQ. -7 ) THEN
    LINES = 8
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
    WRITE (NR, 2070)
END IF
IF ( ISCP(5) .EQ. -8 ) THEN
    LINES = 7
    CALL RPTHDR ( LINES, IHD, ISC, ISUB )
   WRITE (NR, 2080)
END IF
IF ( ISCP(5) .EQ. -9 ) THEN
   LINES = 7
    CALL RPTHDR ( LINES, IND, ISC, ISUB )
   WRITE (NR, 2090)
END IF
IF ( IERR .NE. 0 ) GO TO 9999
   REPORT THE MATERIAL BALANCE
IFLAG = IREP(2) + 2*IREP(3) + 4*IREP(6)
CALL RPTBAL ( NSIN, NBSIN, NSOUT, NBSOUT, WORK(1), WORK(NCC+1),
               WORK(2*NCC+1), WORK(2*NCC+NNCC+1), IFLAG, 3 )
1
```

RETRIEVE THE REPORT OPTION AND CHECK FOR SUMMARY OPTION IF (IOPT .EQ. 2) GO TO 200 REPORT THE INPUT DATA

IF (IREP(4) .EQ. 0) GO TO 200 LINES = 2 CALL RPTHDR (LINES, IFF, ISC, ISUB) WRITE(NR, 1010)

GENERAL PARAMETERS

IOFF = INT(49) + 1IOPT = INT(IOFF)

C

C

C C

C

C C

C

C C

C

LINES = 14CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1020) IVALI = INT(1)WRITE(NR, 1030) IVALI IVALI = INT(4)WRITE(NR, 1040) IVALI IVALI = INT(2)WRITE(NR, 1050) IVALI IVALI = INT(15)WRITE(NR, 1060) IVALI RVALO = REAL(1)CALL RCONV1 (17, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1070) (LABEL1(I), I=1,4), RVAL1 RVAL0 = REAL(2)CALL RCONV1 (17, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE (NR, 1080) (LABEL1 (I), I=1, 4), RVAL1 RVALO = REAL(3)CALL RCONV1 (20, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1090) (LABEL1(I), I=1,4), RVAL1 RVALO = REAL(4)CALL RCONV1 (20, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1100) (LABEL1(I), I=1,4), RVAL1 RVALO = REAL(5)CALL RCONV1 (16, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1110) (LABEL1(I), I=1,4), RVAL1 RVALO = REAL(11)CALL RCONV1 (0, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1120) (LABEL1(I),I=1,4), RVAL1 RVALO = REAL(9)CALL RCONV1 (0, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1130) (LABEL1(I), I=1,4), RVAL1

COOLANT PARAMETERS

LINES = 9IF (IABS(INT(5)) .EQ. 1) LINES = LINES + 1 CALL RPTHDR (LINES, IHD, ISC, ISUB) WF ITE (NR, 1140) RVALO = REAL(13)CALL RCONV1 (20, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1150) (LABEL1(I), I=1,4), RVAL1 RVALO = REAL(14)CALL RCONV1 (20, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR, 1160) (LABEL1(I), I=1,4), RVAL1 IVALI = INT(5)WRITE(NR, 1170) IVALI IF (IABS(INT(5)) .EQ. 1) THEN IVALI = INT(6)

WRITE(NR, 1180) IVALI END IF RVAL0 = REAL(15)CALL RCONV1 (22, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1190) (LABEL1(I), I=1,4), P.VAL1 IVALI = INT(7)WRITE(NR, 1200) IVALI RVAL0 = REAL(16)CALL RCONV1 (0, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE (NR, 1210) (LABEL1(I), I=1,4), RVAL1 С REACTION STOICHIOMETRY MR = INT(15)IF (MR .GT. 0) THEN NSUBS = INT(12)LINES = 3 + MR*(2+NSUBS*2)CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1220) CALL LOCATS (NBSOUT(1), LVIO, LVRO, LDO, NBSO) CALL STRVEC (LDO, NSUBS, IWK (MPH+NSUBS), IWK (MPH)) INT11 = INT(11)INT14 = INT(14)CALL RPSTOI (MR, INT(INT11), NSUBS, IWK(MPH), NC, 1 REAL(INT14)) END IF DIMENSIONS FOR USER VECTORS LINES = 6CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1230) IOFF = 36WRITE(NR, 1240) (INT(IOFF+I-1), I=1, 12) INTK ARRAY IOFF = INT(49)LINES = 5CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1250) WRITE(NR, 1260) INT(IOFF), INT(IOFF+1) REALK ARRAY IOFF = INT(51)LINES = 23CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1270) WRITE (NR, 1280) (REAL (IOFF+LRK1+I-1), I=1, 20) LINES = 21CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1290) (REAL (IOFF+LRK2+I-1), I=1, 20) LINES = 21CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1300) (REAL(IOFF+LRK3+I-1), I=1, 20) LINES = 1CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1310) DO 100 I = 1, NCC CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR,1320) IDSCC(1,I), IDSCC(2,I), REAL(IOFF+LRK4+I-1) 100 CONTINUE LINES = 1

C

C

С C

C

C C

C

C С

C

CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1310) DO 110 I = 1, NCC CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1330) IDSCC(1, I), IDSCC(2, I), REAL(IOFF+LRK5+I-1) 110 CONTINUE LINES = 1CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1310) DO 120 I = 1, NCC CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR,1340) IDSCC(1,I), IDSCC(2,I), REAL(IOFF+LRK6+I-1) 120 CONTINUE C C REALP ARRAY C IOFF = INT(55)LINES = 3 + KEEPCALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1350) LINES = 1DO 130 I = 1, NCC IF (I .GT. KEEP) CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR,1360) IDSCC(1,I), IDSCC(2,I), REAL(IOFF+I-1) 130 CONTINUE LINES = 18CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1370) (REAL (IOFF+NCC+I-1), I=1, 18) C C REPORT THE RESULTS C 200 CONTINUE IF (IREP(5) .EQ. 0) GO TO 9999 LINES = 2CALL RPTHDR (LINES, IFF, ISC, ISUB) WRITE(NR, 1380) IF (IOPT .EQ. 2) GO TO 230 C C WET BASIS PROXIMATE ANALYSIS FOR COAL C IOFF = INT(59)LINES = 7CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE (NR, 1390) WRITE (NR, 1400) (REAL (IOFF+I-1), I=1, 4) C DEVOLATILIZATION CONSTANTS C C IOFF = INT(51)LINES = 3 + KEEPCALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR, 1410) LINES = 1DO 210 I = 1, NCC IF (I .GT. KEEP) CALL RPTHDR (LINES, IHD, ISC, ISUB) WRITE(NR,1420) IDSCC(1,I), IDSCC(2,I), REAL(IOFF+LRK7+I-1) 210 CONTINUE C C TEMPERATURE PROFILE C NPTS = INT(10)IF (NPTS .GT. 0) THEN INT8 = INT(8)INT9 = INT(9)

```
RVAL0 = 0D0
         CALL RCONV1 ( 17, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1 )
CALL RCONV1 ( 22, RVAL0, RVAL2, LABEL2, IFM, IPR, STRNG2 )
         CALL LABCTR ( LABEL1, 4, 12 )
         CALL LABCTR ( LABEL2, 4, 12 )
         LINES = 6 + KEEP
         CALL RPTHDR ( LINES, IHD, ISC, ISCB )
         WRITE(NR,1430) (LABEL1(I), I=1,3), (LABEL2(I), I=1,3)
         LINES = 1
         IEND = NPTS - 1
         DO 220 I = 1, IEND
             RVALO = REAL(INT8+I-1)
             CALL RCONV1 ( 17, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1 )
             RVAL0 = REAL(INT9+I-1)
             CALL RCONV1 ( 22, RVAL0, RVAL2, LABEL1, IFM, IPR, STRNG1 )
             IF ( I .GT. KEEP ) CALL RFTHDR ( LINES, IHD, ISC, ISUB )
            WRITE(NR, 1440) RVAL1, RVAL2
  220
         CONTINUE
      END IF
C
С
         PERFORMANCE SUMMARY
C
  230 CONTINUE
      NSUM = 70
      LINES = 19
      CALL RPTHDR ( LINES, IHD, ISC, ISUB )
      WRITE(NR,1450)
      IF (NSUM.NE.0) WRITE (NSUM, 1450)
С
C
         COAL FEED FLOW RATE
C
      CALL LOCATS ( NBSIN(2) , LVII2, LVRI2, LDI2, NBSI2 )
      CALL FIPHN(IDSS, LDI2, ISEQ)
      ISSO = LPHASE(LDI2, ISEQ)
      RVAL0 = B(LVRI2 + ISS0)
      CALL RCONV1 ( 10, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1 )
      WRITE (NR,1455) (LABEL1(I), I=1,4), RVAL1
      IF (NSUM.NE.0) WRITE (NSUM,1455) (LABEL1(I),I=1,4), RVAL1
C
         PERCENTAGE OF FIXED CARBON CONVERTED
C
C
      IOFF = INT(59)
      WRITE(NR, 1460) REAL(IOFF+4)
      IF (NSUM.NE.0) WRITE(NSUM,1460) REAL(IOFF+4)
C
C
         PEAK TEMPERATURE
C
      NPTS = INT(10)
      INT9 = INT(9)
      RVAL0 = 0D0
      IF ( NPTS .GT. 0 ) RVAL0 = REAL(INT9+NPTS-1)
      CALL RCONV1 ( 22, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1 )
      WRITE (NR, 1470) (LABEL1(I), I=1,4), RVAL1
      IF (NSUM.NE.0) WRITE(NSUM,1470) (LABEL1(I),I=1,4), RVAL1
C
         FIND THE KEY COMPONENTS
C
C
      DO 250 K = 1, 6
         ICOMP(K) = 0
                       NCC
         DO 240 J = 1,
               IF ( FRMULA(1, J) .EQ. IFORM(1, K) .AND.
                     1
     2
  240
         CONTINUE
```

250 CONTINUE IF (ICOMP(6) .EQ. 0) GO TO 9999 C C DRY RAW GAS COMPOSITION AND FLOW RATE, WATER FLOW RATE, & C RAW GAS TEMPERATURE C CALL LOCATS (NBSOUT(1), LVIO, LVRO, LDO, NBSO) NSUBS = NPHASE (LDO) CALL STRVEC (LDO, NSUBS, IWK(MPH+NSUBS), IWK(MPH)) IMIXED = 0DO 260 I = 1, NSUBS IF (IWK(MPH+I-1) .EQ. 1) IMIXED = I 260 CONTINUE IF (IMIXED .GT. 0) THEN IOFF = LVRO + IWK (MPH+NSUBS+IMIXED-1) - 1 $DRYFLO = B(IOFF+NCC) - \exists(IOFF+ICOMP(6)-1)$ IF (DRYFLO .GT. ODO) THEN DO 270 I = 1, 5 J = ICOMP(I)RVAL1 = B(IOFF+J-1) / DRYFLO WRITE(VR,1480) IDSCC(1,J), IDSCC(2,J), RVAL1 IF (NSUM.NE.0) WRITE(NSUM, 1480) IDSCC(1, J), IDSCC(2, J), RVAL1 1 270 CONTINUE RVAL0 = B(IOFF+NCC) * B(IOFF+NCC+8) -B(IOFF+ICOMP(6)-1) * XMW(ICOMP(6))1 CALL RCONV1 (10, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1490) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM,1490) (LABEL1(I),I=1,4), RVAL1 RVALO = DRYFLO * RGAS * 273.15D0 / PREF CALL RCONV1 (50, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR, 1500) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.O) WRITE(NSUM, 1500) (LABEL1(I), I=1,4), RVAL1 END IF RVAL0 = B(IOFF+ICOMP(6)-1) * XMW(ICOMP(6))CALL RCONV1 (10, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1510) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM,1510) (LABEL1(I), I=1,4), RVAL1 RVAL0 = B(IOFF+NCC+1)CALL RCONV1 (22, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1520) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM, 1520) (LABEL1(I), I=1,4), RVAL1 END IF C C STEAM JACKET DUTY, STEAM FLOW RATE, & STEAM TEMPERATURE C CALL LOCATS (NBSIN(3) , LVII, LVRI, LDI, NBSI) CALL LOCATS (NBSOUT(3), LVIO, LVRO, LDO, NBSO) NSUBS = NPHASE (LDO) CALL STRVEC (LDO, NSUBS, IWK (MPH+NSUBS), IWK (MPH)) IMIXED = 0DO 280 I = 1, NSUBS IF (IWK(MPH+I-1) .EQ. 1) IMIXED = I280 CONTINUE IF (IMIXED .GT. 0) THEN IOFFI = LVRI + IWK (MPH+NSUBS+IMIXED-1) - 1 IOFFO = LVRO + IWK (MPH+NSUBS+IMIXED-1) - 1 RVAL0 = B(IOFFO+NCC) * B(IOFFO+NCC+8) * B(IOFFO+NCC+3) -B(IOFFI+NCC) * B(IOFFI+NCC+8) * B(IOFFI+NCC+3) 1 CALL RCONV1 (13, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1530) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM, 1530) (LABEL1(I), I=1,4), RVAL1 RVAL0 = B(IOFFO+NCC) * B(IOFFO+NCC+4) * B(IOFFO+NCC+8) CALL RCONV1 (10, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1)

WRITE(NR, 1540) (LABEL1(I), I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM, 1540) (LABEL1(I), I=1,4), RVAL1 RVAL0 = B(IOFFO+NCC+1)CALL RCONV1 (22, RVAL0, RVAL1, LABEL1, IFM, IPR, STRNG1) WRITE(NR,1550) (LABEL1(I),I=1,4), RVAL1 IF (NSUM.NE.0) WRITE(NSUM, 1550) (LABEL1(1), I=1,4), RVAL1 END IF C C STEAM UTILIZATION WITHIN REACTOR C CALL LOCATS (NBSIN(1) , LVII1, LVRI1, LDI1, NBSI1) CALL LOCATS (NBSIN(2) , LVII2, LVRI2, LDI2, NBSI2) CALL LOCATS (NBSOUT(1), LVIO1, LVRO1, LDO1, NBSO1) NSUBS = NPHASE (LDO1) CALL STRVEC (LDO1, NSUBS, IWK (MPH+NSUBS), IWK (MPH)) IMIXED = 0INCSOL = 0DO 290 I = 1, NSUBS IF (IWK(MPH+I-1) .EQ. 1) IMIXED = IIF (IWK(MPH+I-1) .EQ. 3) INCSOL = I290 CONTINUE IF (IMIXED .GT. 0 .AND. INCSOL .GT. 0) THEN IOFFI1 = LVRI1 + IWK(MPH+NSUBS+IMIXED-1) - 1 IOFFI2 = LVRI2 + IWK(MPH+NSUBS+IMIXED-1) - 1 IOFFI3 = LVRI2 + IWK (MPH+NSUBS+INCSOL-1) - 1 IOFF01 = LVR01 + IWK(MPH+NSUBS+IMIXED-1) - 1 STMIN1 = B(IOFFI1+ICOMP(6)-1)STMIN2 = B(IOFFI2 + ICOMP(6) - 1)STMIN3 = B(IOFFI3+NNCC) + B(IOFFI3+NNCC+9)/1D2/XMW(ICOMP(6))STMOU1 = B(IOFFO1 + ICOMP(6) - 1)STUTIL = 0D0 IF (STMIN1 .GT. ODO) THEN STUTIL = (STMIN1-(STMOU1-(STMIN2+STMIN3))) / STMIN1 END IF WRITE(NR, 1560) STUTIL IF (NSUM.NE.0) WRITE(NSUM, 1560) STUTIL END IF C C RETURN C 9999 CONTINUE RETURN C C FORMAT STATEMENTS - INPUT DATA AND RESULTS C 1000 FORMAT(1X, 16A4) 1010 FORMAT(/3X,27X,'*** INPUT DATA ***') 1020 FORMAT(/3X,'GENERAL PARAMETERS:') 1030 FORMAT(/5X,'CALCULATION OPTION CODE ',16X,I4) 1040 FORMAT (5X, 'NUMBER OF INTEGRATION INCREMENTS ,16X,I4) ',16X,I4) 1050 FORMAT (5X, 'PHASE CODE FOR THE PROCESS STREAM 1060 FORMAT(5X, 'NUMBER OF REACTIONS 1076 FORMAT(5X, 'REACTOR LENGTH 1080 FORMAT(5X, 'REACTOR DIAMETER ',16X,I4) ',4A4,6X,G13.6) ',4A4,6X,G13.6) 1090 FORMAT(5X, 'REACTOR INLET PRESSURE ',4A4,6X,G13.6) 1100 FORMAT (5X, 'REACTOR PRESSURE DROP ',4A4,6X,G13.6) 1110 FORMAT (5X, 'HEAT TRANSFER COEFFICIENT, UCP ',4A4,6X,G13.6) 1120 FORMAT (5X, 'MAXIMUM INTEGRATION STEP SIZE 1130 FORMAT (5X, 'CONVERGENCE TOLERANCE ',4A4,6X,G13.6) ',4A4,6X,G13.6) 1140 FORMAT(/3X, 'COOLANT PARAMETERS:') 1150 FORMAT(/5X,'COOLANT INLET PRESSURE 1160 FORMAT(5X,'COOLANT PRESSURE DROP ',4A4,6X,G13.6) ',4A4,6X,G13.6) 1170 FORMAT (5X, 'NUMBER OF PHASES 1180 FORMAT (5X, 'SINGLE PHASE CODE ',16X,I4) ',16X,I4)

1190	FORMAT (5X,	'INITIAL TEMPERATURE ESTIMATE ',4A4,6	5X,G13.6)
1200	FORMAT (5X,	'MAXIMUM NUMBER OF FLASH ITERATIONS	,16X,I4)
1210	FORMAT(5X,	'FLASH CONVERGENCE TOLERANCE ', 4A4, 6	5X,G13.6)
1220	FORMAT (/3X,	'REACTION STOICHIOMETRY: '/)	
1230	FORMAT(/3X,	'DIMENSIONS FOR USER VECTORS: ')	
1240	FORMAT(/5X,	'NINTK = ', I4, 5X, 'NREALK = ', I4,	
1	L 5X,	'NIWK = ', I4, 5X, 'NWK = ', I4,	
2	2 /5X,	'NINTP = ', I4, 5X, 'NREALP = ', I4,	
3	3 5X,	'NIWP = ', I4, 5X, 'NWP = ', I4,	
4	1 /5X,	'NINTQ = ', I4, 5X, 'NREALQ = ', I4,	
5	5 5X,	'NIWQ = ', I4, 5X, 'NWQ = ', I4)	
1250	FORMAT (/3X,	'INTK ARRAY:')	
1260	FORMAT(/5X,	'MAXIMUM NUMBER OF ITERATIONS	',15X,I4,
1	L /5X,	'REPORT OPTION: 1 = STANDARD, 2 = SUMMARY	',15X,I4)
1270	FORMAT (/3X,	'REALK ARRAY: ')	
1280	FORMAT (/5X,	'RATE CONSTANT FOR REACTION #1	',15X,G13.6
1	L /5X,	'ACTIVATION ENERGY FOR REACTION #1	',15X,G13.6
2	2 /5X,	'RATE CONSTANT FOR REACTION #2	',15X,G13.6
3	3 /5X,	'ACTIVATION ENERGY FOR REACTION #2	',15X,G13.6
4	4 /5X.	'RATE CONSTANT FOR REACTION #3	',15X,G13.6
5	5 /5X.	'ACTIVATION ENERGY FOR REACTION #3	',15X.G13.6
e	5 /5X.	'RATE CONSTANT FOR REACTION #4	',15X.G13.6
-	7 /5X.	'ACTIVATION ENERGY FOR REACTION #4	',15X,G13,6
8	3 /5X.	'RATE CONSTANT FOR REACTION #5	1.15X.G13.6
0) /5X	ACTIVATION ENERGY FOR REACTION #5	'.15X.G13.6
-	/5X	'UNUSED	1.15X.G13.6
-	/5X	'UNUSED	1.15X.G13 6
-	/5X	'INUSED	' 15X G13 6
-	/5X	UNUSED	15X G13 6
-	/5X	(INUSED	' 15X G13 6
-	/5X,	(INUSED	' 15X G13 6
-	/5X	'INUSED	' 15X G13 6
-	/5X	'INUSED	15X G13 6
5	/5X	'INUSED	' 15X G13 6
	/5X	UNUSED	1.15X.G13.6
1290	FORMAT (/5X	BED VOID FRACTION	1.15X.G13.6
1250	/5%	COAL VOID FRACTION	'.15X.G13.6
	/5X	INITIAL COAL PARTICLE DIAMETER CM	1.15X.G13.6
-	/5X.	'RESERVED FOR UWV MODEL	'.15X.G13.6
-	/5X	'INITIAL DENSITY OF CHAR G/CM3	1.15X.G13.6
	/5X	'INITIAL DENSITY OF ASH G/CM3	1.15X.G13.6
F	/5X.	'RATIO OF C TO 02 IN REACTION #4	'.15X.G13.6
-	/5X.	SCHMIDT NUMBER	',15X,G13.6
5	3 /5X.	'DIFFUSION CONSTANT FOR OXYGEN CM2/S	',15X,G13.6
c	/5X.	DIFFUSION CONSTANT FOR WATER CM2/S	',15X,G13.6
-	/5X.	'KINETIC MODEL: 1=AS, 2=SP, 3=HOMO	1.15X.G13.6
1	/5X.	UNUSED	'.15X.G13.6
5	/5X	'UNUSED	',15X.G13.6
-	/5X	'UNUSED	1.15X.G13.6
-	/5X	' UNUSED	'.15X.G13.6
5	/5X	'UNUSED	1.15X.G13.6
6	/5X	'INVISED	'.15X.G13.6
	/5X	'UNUSED	'.15X.G13.6
9	/5X	'INVISED	1.15X.G13.6
	/5X	' INVISED	1.15X.G13 6
1300	FORMAT (/SY	FRACTION VM RELEASED BY PYROLYSIS	1.15X.G13 6
1300	LOUNT (/ JY'	FINAL TEMPERATURE FOR VM RELEASE K	1.15X G13 6
1	/ 54,	INTTIAL TEMPERATURE FOR VM RELEASE K	1.15X G13 6
4	/ JA,	CONVERSION OF FIXED CARBON 1ST ITERATION	1.15X G13 6
5	/54,	CONVERSION OF FIXED CARBON, 2ND ITERATION	1.15X G13 6
4	/ 5X, /5Y	MASS FRACTION OF RECTISOL NAPHTHA IN VM	1.15X.G13 6
	/51	MASS FRACTION OF CRUDE PHENOL IN VM	1,15X.G13.6
0	/5X	MASS FRACTION OF TAR OILS IN VM	',15X.G13.6
, Я	/5X.	'UNUSED	',15X,G13.6
0	,,		

9 /5X, 'UNUSED ',15X,G13.6, /5X, 'UNUSED ',15X,G13.6, /5X,'UNUSED /5X,'UNUSED /5X,'UNUSED ',15X,G13.6, 1 2 ',15X,G13.6, ',15X,G13.6, 3 /5X, 'UNUSED 4 ',15X,G13.6, /5X, 'UNUSED 5 ',15X,G13.6, /5X, 'UNUSED /5X, 'UNUSED /5X, 'UNUSED ',15X,G13.6, 6 7 ',15X,G13.6, ,15X,G13.6, 8 /5X, 'UNUSED ',15X,G13.6) 9 1310 FORMAT(1X) 1320 FORMAT(5X, 'MASS FRACTION OF ', 2A4, ' IN RECTISOL NAPHTHA', 12X,G13.6) 1 1330 FORMAT(5X, 'MASS FRACTION OF ', 2A4, ' IN CRUDE PHENOL 12X,G13.6) 1 1340 FORMAT(5X, 'MASS FRACTION OF ', 2A4, ' IN TAR OILS 1 12X,G13.6) 1350 FORMAT(/3X,'REALP ARRAY:'/) 1360 FORMAT(5X,'INTEGRATION WEIGHTING FOR ',2A4,23X,G13.6) 1370 FORMAT(5X, 'INTEGRATION WEIGHTING FOR TOTAL GAS FLOW ', 15X, G13.6, ',15X,G13.6, /5X, 'INTEGRATION WEIGHTING FOR PROXANAL(1) 1 /5X, 'INTEGRATION WEIGHTING FOR PROXANAL(2) ',15X,G13.6, 2 ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, /5X,'INTEGRATION WEIGHTING FOR PROXANAL(3)
/5X,'INTEGRATION WEIGHTING FOR PROXANAL(4) 3 4 /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(1) 5 6 /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(2) ',15X,G13.6, /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(3) 7 ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, ',15X,G13.6, /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(4)
/5X, 'INTEGRATION WEIGHTING FOR ULTANAL(5) 8 9 /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(6) + /5X, 'INTEGRATION WEIGHTING FOR ULTANAL(7) 1 /5X, INTEGRATION WEIGHTING FOR SULFANAL(1)
/5X, INTEGRATION WEIGHTING FOR SULFANAL(2)
/5X, INTEGRATION WEIGHTING FOR SULFANAL(3)
/5X, INTEGRATION WEIGHTING FOR TOTAL SOLID FLOW, 15X, G13.6,
/5X, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/52, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/55, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/55, INTEGRATION WEIGHTING FOR PROCESS TEMP
/ 15X, G13.6,
/55, INTEGRATION WEIGHTING FOR PROCESA FOR PROCESA FO 2 /5X, 'INTEGRATION WEIGHTING FOR SULFANAL(1) 3 4 5 6 /5X, 'INTEGRATION WEIGHTING FOR HEAT TRANSFER ',15X,G13.6) 7 1380 FORMAT(/3X,28X,'*** RESULTS ***') 1390 FORMAT(/3X,'WET BASIS PROXIMATE ANALYSIS FOR COAL:') 1400 FORMAT(/5X, 'MOISTURE (WET) WT% ',15X,G13.6, /5X, 'FIXED CARBON (WET) ',15X,G13.6, 1 WT% 2 /5X, 'VOLATILE MATTER (WET) 3 /5X, 'ASH (WET) 1410 FORMAT(/3X, 'DEVOLATILIZATION CONSTANTS:'/) ',15X,G13.6, WT% WT% ',15X,G13.6) 1420 FORMAT (5X, 'KGMOL OF ', 2A4, ' PER KG OF VOLATILE MATTER', 14X, G13.6) 1430 FORMAT (/3X, 'TEMPERATURE PROFILE:', //5X,18X,' LOCATION ',5X,' TEMPERATURE ', 1 /5X,18X,3A4,6X,3A4, 2 /5X,18X,'----',5X,'-----') 3 1440 FORMAT(5X, 18X, G13.6, 5X, G13.6) 1450 FORMAT(/3X, 'PERFORMANCE SUMMARY:') 1455 FORMAT(/5X, FERFORMARCE SOMMART) 1455 FORMAT(/5X, 'COAL FEED FLOW RATE 1460 FORMAT(5X, 'FIXED CARBON CONVERTED 1470 FORMAT(5X, 'PEAK TEMPERATURE ',4A4,6X,G13.6) ','%',21X,G13.6) ',4A4,6X,G13.6) 1480 FORMAT(5X, 'CONC. OF ', 2A4, ' IN RAW GAS (DRY) MOL% ', 14X, G13.6) 1490 FORMAT (5X, 'RAW GAS MASS FLOW RATE (DRY) ',4A4,6X,G13.6) 1500 FORMAT(5X, 'RAW GAS VOLUME FLOW RATE (DRY) 1510 FORMAT(5X, 'FLOW OF WATER IN RAW GAS 1520 FORMAT(5X, 'RAW GAS TEMPERATURE ',4A4,6X,G13.6) ',4A4,6X,G13.6) ',4A4,6X,G13.6) ',4A4,6X,G13.6) 1530 FORMAT (5X, 'HEAT TRANSFERRED TO STEAM JACKET ',4A4,6% G13.6) ',4A4,6% G13.6) ',16X,6% G13.6) 1540 FORMAT (5X, 'MASS FLOW OF STEAM PRODUCED 1550 FORMAT(5X, 'OUTLET STEAM TEMPERATURE 1560 FORMAT(5X, 'REACTOR STEAM UTILIZATION

```
C
            FORMAT STATEMENTS - ERROR MESSAGES
C
C
 2000 FORMAT(//5X,70('*'),/5X,'*',68X,'*'
                   /5X,'*',23X,'BLOCK WAS NOT EXECUTED',23X,'*',
/5X,'*',68X,'*',/5X,70('*'))
      1
       2
 2010 FORMAT(//5X,70('*'),/5X,'*',68X,'*'
 1X, 'INCORRECT', 11X, '*',
       2
                   /5X, '*', 12X, 'BLOCK EXITED IN THE MIDDLE OF THE',
       3
                    1X, 'SIMULATION', 12X, '*'
       4
 5 /5X,'*',68X,'*',/5X,70('*'))
2040 FORMAT(//5X,70('*'),/5X,'*',68X,'*',
                   /5X,'*',17X,'RUNGE-KUTTA INTEGRATION HALVED OUT',17X,'*',
/5X,'*',12X,'BLOCK EXITED IN THE MIDDLE OF THE',
      1
       2
       3
                    1X, 'SIMULATION', 12X, '*'
 4 /5X, '*', 68X, '*', /5X, 70('*'))
2050 FORMAT(//5X, 70('*'), /5X, '*', 68X, '*',
 1 /5X,'*',23X,'TOTAL PRESSURE IS ZERO',23X,'*',

2 /5X,'*',23X,'BLOCK WAS NOT EXECUTED',23X,'*',

3 /5X,'*',68X,'*',/5X,70('*'))

2060 FORMAT(//5X,70('*'),/5X,'*',68X,'*',
 1X, 'LOW', 16X, '*',
       2
                   /5X, '*', 12X, 'BLOCK EXITED IN THE MIDDLE OF THE',
       3
                    1X, 'SIMULATION', 12X, '*'
       4
 5 /5X,'*',68X,'*',/5X,70('*'))
2080 FORMAT(//5X,70('*'),/5X,'*',68X,'*',
 1 /5X,'*',20X,'CONVERGENCE WAS NOT ACHIEVED',20X,'*',
2 /5X,'*',68X,'*',/5X,70('*'))
2090 FORMAT(//5X,70('*'),/5X,'*',68X,'*',
1 /5X,'*',12X,'TEMPERATURE IS TOO LOW FOR',
                    1X, 'DEVOLATILIZATION', 13X, '*',
       2
       3
                   /5X, '*', 68X, '*', /5X, 70('*'))
        END
```

C\$ #13 BY: SIMSCI DATE: 01/26/93 PROTECT AGAINST DIV./0 AROUND LINE 353 C\$ #12 BY: SIMSCI DATE: 08/28/92 PROTECT AGAINST DIV./0 AROUND LINE 350 C\$ #11 BY: SIMSCI DATE: 12/10/91 NPKODE=3 TEST FIRST FOR MIXED RESULTS C\$ ------ V8 CHANGES START ABOVE ------C\$ #10 BY: JSDINC DATE: 04/25/89 CHANGE FREE TO FREESP C\$ #9 BY: JSDINC DATE: 12/04/88 CORRECT SOLID MW NAME IN DENSITY CALC C\$ #8 BY: JSDINC DATE: 05/13/87 DIMENSN. DD TO 15 C\$ #7 BY: JSDINC DATE: 09/29/85 DIMENSN. DD TO 16 CS #6 BY: JSDINC DATE: 10/10/86 UPDATE FOR SOLIDS C\$ #5 BY: JSDINC DATE: 07/07/86 CORRECT MW CALCULATION C\$ #4 BY: JSDINC DATE: 06/27/86 STREAM LINE CODE C\$ #3 BY: JSDINC DATE: 04/21/86 CORRECT MASS VOLUME CALC C\$ #2 BY: CHEN DATE: 11/13/81 ADD ARGS. C\$ #1 BY: CCCHEN DATE: 10/26/81 SPLIT APART C------C COPYRIGHT (C) 1980-1986 C JAY S. DWECK, CONSULTANT, INC. C DENVER, CULORADO 80222 C------COPYRIGHT (C) 1980 C MASSACHUSETTS INSTITUTE OF TECHNOLOGY C CAMBRIDGE, MA C C------SUBROUTINE FLASHA(B ,NPH ,LPB ,IPHASE ,NBOPST , 1 NCPM ,NCPCS ,SCS ,NCPNCS ,SNCS , ,NPKODE , KPHASE , LCPDIA , KDENS , MJ, 2 HM , IDX , NX , X1 , IDX1, NX1, , IDX2 , NX2 , Y , IDY , NY , , IDF , NF) 3 x 4 X2 5 F C C NAME OF MODULE: FLASHA C C MODULE TITLE: STREAM FLASH ROUTINE (APPENDIX) C C C PURPOSE: THIS ROUTINE IS USED TO CALCULATE AND STORE STREAM C PROPERITIES AFTER A FLASH. C NO DEFUALT IS PROVIDED, ALL VALUES HAVE TO BE SPECIFIED. C C TASK, SUBSYSTEM, SYSTEM: STREAM FLASH, UTILITY ROUTINE, UOS C C WRITTEN BY: CHAU-CHYUN CHEN DATE WRITTEN: JUNE 9, 1980 CC READ BY: DATE READ: C C APPROVED BY: DATE APPROVED: C C CALLING SEQUENCE: C CALL FLASH C C VARIABLES USED: C C VARIABLES IN ARGUMENT LIST: C VARIABLE I/O TYPE DIM DESCRIPTION AND RANGE C I/O: INPUT/OUTPUT C DIM: DIMENSION C C STREAM VECICR I/O R (1) C SVEC NUMBER OF SUBSTREAMS IN THE STREAM C I I ------NSUBS IDSUBS I NSUBS LOCATION VECTOR OF SUBSTREAM SEGMENTS C I IN THE STREAM VECTOR C I I NSUBS SUBSTREAM TYPE VECTOR C ITYPE

NBOPST		т	т	(3 NPO)	1: MIXED SUBSTREAM 2: CSOLID SUBSTREAM 3: NCSOLID SUBSTREAM BUYSICAL PROPERTY OPTION SET
KODE		I	Ī		FLASH OPTION KODE 1:PQ 2:TP 3:PV 4:TQ 5:TV
NPKODE		I	I		IF NPKODE=1, 1:Q 2:T NUMBER OF PHASES IN THE MIXED SUBSTREA IF NPKODE=1 WFLASH IS CALLED IF NPKODE=2 XFLASH IS CALLED
KPHASE		I	I		IF NPKODE=3 YFLASH IS CALLED KEY PHASE FOR NPKODE=1 (WFLASH)
MXIT		I	I		MAXIMUM NUMBER OF ITERATIONS
TOL		I	R		ITERATION TOLERANCE
SPEC1		I	R		FIRST SPECIFIED VARIBLE
					IF KODE=1 SPEC1=P
					IF KODE=2 SPECI=T
					IF KODE=3 SPECI=P
					IF KODE-5 SPECI-T
SPEC2		т	R		SECOND SPECIFIED VARIABLE
		-			IF KODE=1 SPEC2=0
					IF KODE=2 SPEC2=P
					IF KODE=3 SPEC2=V
					IF KODE=4 SPEC2=0
					IF KODE=5 SPEC2=V
1	FOR	SPECT	AND	SPEC2 :	P CAN BE < OR = 0D0
GUESS		I	R		INITIAL GUESS
					IF KODE=1 GUESS=T
					IF KODE=2 NO GUESS RFJUIRED
					IF KODE=3 GUESS=T
					IF KODE=4 GUESS=P
					IF KODE=5 GUESS=P
		NOTE	E: IN	VITIAL V.	ALUES ARE NOT REQUIRED; DEFAULT PROVIDE
LODIAG		I	I		LOCAL DIAGNOSTIC MESSAGE FLAG
LOPDIA		1	1		LOCAL PHYSICAL PROPERTY DIAGNOSTIC FLA
KSIM		1 T	1 T		SIMULATION RESTART FLAG
RUENS		Т	Т		KESULI CALCULATION FLAG
					VDENS=0 NOI RESOLI PASS
DETIN		D	DN	TOETN	DEAL DEVENUTION VECTOR
RE IN		R	R D	REIN	NETN-6*NCC.31
IRETN		R	I N	IRETN	INTEGER RETENTION VECTOR
LOFT.AC		0	т		LOCAL CONVERGENCE FLAG
DCL DEG		0	т		LE LCELAGEO CONVERGED
					IF LCFLAG=-1 NOT CONVERGED
					at man mine a troi convender
COMPO	ONEN	TS OF	VECT	OR RETN	
(SEE	XFL	ASH A	ND YF	LASH TE	CHNICAL DOCUMENTATIONS)
K1	(NCC)			
K2	(NCC)			
21	(NCC)			
Z2	(NCC)			
ALE	PHA1	(NCC)			
ALE	PHA2	(NCC)			
RET	r(20)			
RSC	LAR	(11)			
COME	PONE	NTS C	F VEC	TOR WK	AND IWK
F (NCC	2)				
X (NCC	:)				

X1 (NCC) X2 (NCC) Y(NCC) XCS (NCC) XNCS (NNCC) HXF(NHXF) NHXF=(NCC+8) *2HYF(NHYF) NHYF=(2*NCC+10)**2WYF(NWYF) NWYF=20*NCC+45 IDXM (NCC) IDXCS (NCC) IDXNCS (NNCC) IPHASE (NPH) LPB (NPH) ERROR CONDITIONS NUMBER LEVEL TEXT SUBROUTINES CALLED: NAME - CPACK (SUBROUTINE) DESCRIPTION - CONVENTIONAL PHASES PACKING NAME - TEMPC (SUBROUTINE) DESCRIPTION - CONVENTIONAL PHASE TEMPERATURE CALCULATION NAME - NCPACK (SUBROUTINE) DESCRIPTION - NON-CONVENTIONAL PHASES PACKING NAME - TEMPNC (SUBROUTINE) DESCRIPTION - NON-CONVENTIONAL SOLID PHASE TEMPERATURE CALCULATION NAME - SPACK (SUBROUTINE) DESCRIPTION - ADDING AND PACKING SOLID PHASES OF A STREAM NAME - WFLASH (SUBROUTINE) DESCRIPTION - GENERAL PURPOSE SINGLE PHASE FLASH NAME - XFLASH (SUBROUTINE) DESCRIPTION - GENERAL PURPOSE TWO PHASE FLASH NAME - YFLASH (SUBROUTINE) DESCRIPTION - GENERAL PURPOSE THREE PHASE FLASH NAME - AVEMW (FUNCTION) DESCRIPTION - AVERAGE MOLECULAR WEIGHT NAME - TEMPS (SUBROUTINE) DESCRIPTION - TEMPERATURE CALCULATION OF SOLID PHASES NAME - VMTHRM (SUBROUTIN' DESCRIPTION - VAPOR MIXT RE THERMAL MONITOR NAME - VOLS (SUBROUTINE) DESCRIPTION - SOLID VOLUME MONITOR NAME - LMTHRM (SUBROUTINE) DESCRIPTION - LIQUID MIXTURE THERMAL MONITOR NAME - DENSTY DESCRIPTION - NON-CONVENTIONAL DENSITY MONITOR

123

C

C

C

C

C

C

C

C

C

C

C

C

C

CCC

CC

C

CC

C

C

CCCC

C

C

CC

C

CCCC

C

CC

C

C

C

CCC

000

CC

C

CC

C

CC

C

CC

C

CC

C NAME - ENTHAL C DESCRIPTION - NON-CONVENTIONAL ETHALPY MONITOR C C NAME - ENTROP C DESCRIPTION - NON-CONVENTIONAL ENTROPY MONITOR C C NAME - SIMISS C DESCRIPTION - STREAM VECTOR INITIALIZATION ROUTINE C CCC NAME - SMTHRM DESCRIPTION - SOLID MIXTURE THERMAL MONITOR NAME - LERRPT (FUNCTION) CC DESCRIPTION - ERROR MESSAGE CHECKING C NAME - ERRSP (SUBROUTINE) C DESCRIPTION - ERROR HANDLING ROUTINE C C FILES: C C FILE NAME - HISTORY - TITLE -C FORTRAN UNIT NUMBER -- I/O -C CREATED BY / USED BY -CCC SEQUEN ED ON -ACCESS MODE -DESCRIPTION -CC SPECIFICATIONS, DECLARATIONS, DATA STATEMENTS, ETC. C C* DABS(X) = ABS(X)C** DOUBLE PRECISION IMPLICIT REAL*8 (A-H, O-Z) COMMON /PLEX/ IPB(1) LOGICAL SOLIDS DIMENSION PB(1) EQUIVALENCE (IPB(1), PB(1)) END COMMON /PLEX/ 10-13-78 C COMMON /ICHWRK/ JWORK(1) END COMMON /ICHWRK/ 6-20-85 C COMMON /CHWRK/ WORK(1) C END COMMON /CHWRK/ 6-20-85 COMMON /IDXNCC/ IDXNCC(1) COMMON /GLOBAL/ KPFLG1 , KPFLG2 , KPFLG3 , LABORT , NH LDIAG ,NCHAR ,IMISS ,MISSC1 ,MISSC2 , LPDIAG ,IEBAL ,IRFLAG ,MXBLKW ,ITYPRN , LBNCP ,LBCP ,LSDIAG ,MAXNE ,MAXNP1 , MAXNP2 ,MAXNP3 ,IUPDAT ,IRSTRT ,LSFLAG , 1 2 3 4 LRFLAG , KBLK1 , KBLK2 , KRFLAG 5 END COMMON /GLOBAL/ 05-02-79 C COMMON /RGLOB/ RMISS ,RMIN ,ABSMIN ,SCLMI HSCALE ,RELMIN ,SCLDEF ,TMAX ,ABSMIN ,SCLMIN ,XMIN 1 , TNOW END COMMON /RGLOB/ 10-13-78 C , NC , NNCC , NAC COMMON /NCOMP/ NCC , NACC , NVNCP , NVACC , NVANCC NVCP 1 END COMMON /NCOMP/ 10-13-78 C DIMENSION B(1) DIMENSION NBOPST(3,1), IPHASE(NPH), LPB(NPH) , NHYF , NWYF COMMON /STWORK/ NRETN ,NIRETN ,NHXF , KK1 ,KK2 ,KZ1 ,KZ2 NSTW 1 , KRET KA1 ,KA2 , KRSC , MF 2 ,MX2 MX ,MX1 , MY , MCS 3 , MHYF , MWY , MHXF , MRETN MNC 4 , MPH , MIRETN ,MIC MIM , MIN 5 , NIWR , NBLM NDUM , NCOVAR , NWR 6 KEXT , KLNK , KFOUT , KPHV , KPHL 7

	8	KLNGM	,MSTOI	, MLNKIN	, MZWK	, MIZWK	,
	9	IDUMX	, HV	,HL	,HL1	,HL2	,
	1	SV	,SL	,SL1	,SL2	, vv	,
	2	VL	,VL1	,VL2	, XMWV	, XMWL	,
	3	XMWL1	,XMWL2	, NPO	, CALCL	, HS	,
	4	SS	,VS	, XMWS			
C	END COMMON /STV	ORK/ 10-	10-86				
	COMMON /STWKWK/	NCPMOC	, NCPCSO,	NCPNCO, N	TRIAL, K	RSTRT, ID	UMY,
	1 TCALC, PCALC, VC	ALC. OCAL	C, BETA,	F. P. VFRAG	C.O. TINI	T. PINIT.	
	2 DD(15),WK(1)	1					
	DIMENSION IWK()), $X1(1)$, IDX1(1	1), X2(1)	, IDX2(1), Y(1)	, IDY(1),
	1 F(1),	IDF(1), X(1),	IDX(1)			
	EQUIVALENCE (IN	K(1), WK	(1))				
С	END COMMON /STV	KWK/ 11-	1-80				
C							
C	CALCULATE RETEN	TION VEC	TOR LOCA	ATION			
C							
C	KK1=1						
C	KK2=KK1+NCC						
C	KZ1 = KK2 + NCC						
C	KZ2 = KZ1 + NCC						
C	KA1=KZ2+NCC						
C	KA2 = KA1 + NCC						
C	KRET=KA2+NCC						
C	KRSC=KRET+26						
C							
C	CALCULATE WORK	AND TWO	RK VECTO	R LOCATI	ON		
C			in visore				
C	MF=1						
C	MX = MF' + NCC						
C	MX1 = MX + NCC						
C	MX2=MX1+NCC						
C	MY=MX2+NCC						
C	MCS=MY+NCC						
C	MNC=MCS+NCC						
C	MHXF=MNC+NNCC						
C	MHYF=MHXF+NHXF						
C	MWY=MHYF+NHYF						
C	MIM=1						
C	MIC=MIM+NCC						
C	MIN=MIC+NCC						
100	CONTINUE						
C							
C	FILL OUTPUT ST	REAM SOL	ID PHASE	s			
C							
	IONE = 1						
	IZER = 0						
	DO 200 I =1, NP	Н					
	IF(IPHASE(I).EC	.1) GO T	0 200				
	NCD=NCC						
	IF(IPHASE(I).EC	.3) NCD=	NNCC				
	INDEX=LPB(I)						
	INDEX0=INDEX+NC	D					
	INDEX1=INDEX+NC	D+1					
	INDEX2 = INDEX+NC	D+2					
	INDEX3=INDEX+NC	D+3					
	INDEX4 = INDEX+NC	D+4					
	INDEX5=INDEX+NC	D+5					
	INDEX6=INDEX+NC	D+6					
	INDEX7=INDEX+NC	D+7					
	INDEX8=INDEX+NC	D+8					
	B(INDEX2)=PCALC						
	IF(B(INDEXO).LE	.RMIN) G	O TO 200)			
	B(INDEX1) = TCALC						

B(INDEX4) = 0D0B(INDEX5) = 0D0IF(IPHASE(I).EQ.3) GO TO 150 CALL CPACK (B(INDEX), NCPCS, IWK (MIC), WK (MCS), SCS) CALL SMTHRM (TCALC , PCALC , WK(MCS), NCPCS , IWK(MIC), NBOPST , LOPDIA , IONE , IZER , IONE , 1 , HCS 2 KDENS , IZER , KDENS , DUMMY , VOL , DUMMY , DUMMY , D'JMMY , DUMMY 3 SS , KAR 4 DUMMY , DUMMY) B(INDEX3)=HCS/B(INDEX8) IF(KDENS.EQ.1) B(INDEX7)=B(INDEX8)/VOL IF(KDENS.EQ.1) B(INDEX6)=SS/B(INDEX8) GO TO 200 150 CALL NCPACK (B(INDEX), NCPNCS, IWK (MIN), WK (MNC), SNCS) HNCS=0D0 IF(KDENS.EQ.1) VOL=0D0 IF(KDENS.EQ.1) SS=0D0 JDEX=INDEX+NVNCP DO 175 K=1, NCPNCS J = IWK(MIN+K-1)CALL ENTHAL (IDXNCC (J), B (JDEX), TCALC, PCALC, LOPDIA, ,HTEMP , DUMMY , KER) 1 1 HNCS=HNCS+WK (MNC+K-1) *HTEMP IF(KDENS.EQ.0) GO TO 175 CALL ENTROP(IDXNCC(J), B(JDEX), TCALC , PCALC , LOPDIA , 1 , SS1 , DUMMY , KER) ,SS1 1 SS=SS+SS1*WK(MNC+K-1) IF(SS1.EQ.RMISS) SS=RMISS , LOPDIA , CALL DENSTY (IDXNCC(J), B(JDEX), TCALC , PCALC , RHO , DUMMY , KER 1 1) IF (RHO .GT. RMIN) VOL=VOL+WK(MNC+K-1)/RHO 175 CONTINUE B(INDEX3)=HNCS IF (KDENS.EQ.1) THEN B(INDEX7) = RMISSIF (VOL .GT. RMIN) B(INDEX7)=1D0/VOL B(INDEX6)=SS END IF 200 CONTINUE IF (NPO .LT. 1 .OR. NPO .GT. 2) NPO=1 OUTPUT STREAM MIXED PHASE INDEX=LPB(MJ)+NCC INDEX1=INDEX+1 INDEX2=INDEX+2 INDEX3 = INDEX+3INDEX4 = INDEX+4 INDEX5=INDEX+5 INDEX8=INDEX+8 B(INDEX2) = PCALC B(INDEX1) =TCALC SS = 0D0VS = 0D0XMWV = 0D0XMWL = 0D0XMWS = 0D0CHECK FOR SOLIDS

SOLIDS = .FALSE. CHECK = VCALC + CALCL + RMIN IF (CHECK .LT. 1.0D0) SOLIDS = .TRUE. NPO2 = 1

CC

C

CC

C

IF (BETA .EQ. 0D0) NPO2 = NPO C C CHECK FOR AQUEOUS CHEMISTRY C IF (NPO .EQ. 1) GOTO 250 C С CALCULATE MOLECULAR WEIGHT OF MIXED PHASE C IF (.NOT. SOLIDS) GOTO 250 LOFF = JWORK(1)CALL ALLOCI (NF, NBI, LBI) CALL ALLOCR (NF, NBR, LBR) CALL CPACK(WORK(LOFF), NS, IPB(LBI), PB(LBR), TFLOW) C C CALCULATE THE AVERAGE MOLECULAR WEIGHT OF THE SOLIDS C XMWS = AVEMW(NCPM, IPB(LBI), PB(LOFF)) C C CALCULATE THE PROPERTIES OF THE SOLIDS C IF (KDENS .NE. 0) , PCALC , PB(LBR), NCPM, IWK(MIM), 1CALL SMTHRM (TCALC , IONE , IZER , IONE , , IZER 2 NBOPST(1,NPO),LOPDIA , DUMMY , DUMMY ,SS , DUMMY , IONE ,VS 3 IZER , DUMMY , KER , DUMMY , DUMMY , DUMMY) 4 DUMMY C CALL FREEBD(NBI) CALL FREEBD (NBR) C 250 CONTINUE IF (IABS(NPKODE) .GT. 1) GOTO 380 IF (KPHASE .NE. 1) GOTO 300 XMWV = AVEMW (NY, IDY, Y) VCALC = 1D0B(INDEX4) = 1D0B(INDEX5) = 0D0GOTO 500 300 CONTINUE IF (KPHASE .NE. 2) GOTO 500 XMWL = AVEMW(NX, IDX, X)B(INDEX4) = 0D0B(INDEX5) = 1D0GOTO 500 380 XMWV = AVEMW(NY, IDY, Y) IF (NPKODE.EQ.3) GO TO 400 XMWL = AVEMW(NX, IDX, X) GO TO 500 400 XMWL1 = 0D0XMWL2 =0D0 IF (NX1 .GT. 0) XMWL1 = AVEMW(NX1, IDX1, X1) IF (NX2 .GT. 0) XMWL2 = AVEMW(NX2, IDX2, X2) XMWL = BETA * XMWL1 + (1D0 - BETA) * XMWL2 C 500 B(INDEX8) = XMWV*VCALC + XMWL*CALCL + XMWS*(1D0-VCALC-CALCL) IF(NPKODE.EQ.1) B(INDEX3)=HM/B(INDEX8) IF (NPKODE.EQ.2) B (INDEX3) = (HL*CALCL+HV*VCALC+HS*(1D0-VCALC-CALCL)) 1 /B(INDEX8) IF (NPKODE.EQ.3) B (INDEX3) = (HV*VCALC+HL1*CALCL*BETA+ 1 HL2*CALCL*(1D0-BETA)+HS*(1D0-VCALC-CALCL))/B(INDEX8) IF (NPKODE.EQ.1 AND. KPHASE.EQ.1) B(INDEX4)=1D0 IF (NPKODE.EQ.1 AND. KPHASE.NE.1) B(INDEX4)=0D0 IF (NPKODE.NE.1) B(INDEX4)=VCALC B(INDEX5)=1D0-B(INDEX4) IF (NPKODE.EQ.1 .AND. KPHASE.EQ.3) B(INDEX5)=0D0

CHECK LOCAL RESULT SWITCH IF(KDENS .EO.0) GO TO 999 MIXED PHASE RESULT PASS CALCULATION INDEX7=INDEX+7 INDEX6=INDEX+6 IF (NPKODE.EQ.3) GO TO 900 IF(B(INDEX4).EQ.1D0) GO TO 600 IF(B(INDEX5).EQ.1D0) GO TO 700 IF(B(INDEX4).EQ.0D0 .AND. B(INDEX5).EQ.0D0) GO TO 800 , NY , IDY CALL VMTHRM(TCALC , PCALC , Y NBOPST , LOPDIA , IONE , IZER , IZER , IONE 1 , IONE , DUMMY , DUMMY , DUMMY , DUMMY , DUMMY 2 IZER , SV , DUMMY 3 WV , DUMMY , DUMMY 4 KER) TCALC , PCALC , X , NX NBOPST(1,NPO2) , LOPDIA , IONE , IDX CALL LMTHRM (TCALC , IZER , IZER , IONE, 1 , IONE , DUMMY , DUMMY , DUMMY , DUMMY , DUMMY ,SL , DUMMY 2 IZER 1 , DUMMY 2 VT. , DUMMY , 4 KER) , X) AVMWX=AVEMW(NX , IDX ,Y) AVMWY=AVEMW (NY IDY B(INDEX6) = (VCALC*SV+(CALCL)*SL +(1D0-VCALC-CALCL)*SS)/B(INDEX8) 1 B(INDEX7) = (VCALC*AVMWY + CALCL*AVMWX + (1D0 - VCALC - CALCL) *XMWS) / (VV*VCALC+VL*CALCL+VS*(1D0-VCALC-CALCL)) 1 GO TO 999 ,NF , IDF , F 600 CALL VMTHRM (TCALC , PCALC , NBOPST , , IZER , IZER , IONE , IZER , IONE LOPDIA , ICNE 1 , SV , vv DUMMY , DUMMY DUMMY , DUMMY , DUMMY , DUMMY , DUMMY 2 , DUMMY , KER 3) B(INDEX7) = B(INDEX8) /VV B(INDEX6) = SV/B(INDEX8) GO TO 999 , F , NF 700 CALL LMTHRM(TCALC , PCALC 1 LOPDIA , IONE , IZER , IDF, NBOPST(1, NPO2), LOPDIA, IONE , IZER DUMMY , DUMMY , SL DUMMY , DUMMY , DUMMY , IZER , IONE , IZER , IONE , DUMMY , DUMMY 2 , DUMMY ,VL , KER) 3 B(INDEX7) = B(INDEX8) /VL B(INDEX6) = SL/B(INDEX8) GO TO 999 , F , NF , IDF , NBOPST(1, NPO), 800 CALL SMTHRM (TCALC , PCALC , IZER , IONE , IONE LOPDIA , IONE , IZER , IZER 1 ,VS DUMMY , DUMMY DUMMY , DUMMY , SS , DUMM , DUMMY , KER , DUMMY , DUMMY , DUMMY 2) DUMMY 3 B(INDEX7) = B(INDEX8)/VS B(INDEX6) = SS/B(INDEX8) GO TO 999 , PCALC , Y , NY , IDY 900 CALL VMTHRM (TCALC , NBOPST , , IZER , IONE , IZER , IONE LOPDIA , IONE , IZER 1 , vv DUMMY , DUMMY , SV DUMMY , DUMMY , DUMMY , DUMMY , DUMMY , DUMMY 2 , KER 3) SL1 = 0D0VL1 = 0D0IF (NX1 .GT. 0) ,X1 ,NX1 , IDX1 1CALL LMTHRM (TCALC , PCALC , NBOPST, , IZER , IZER , IONE , IZER , IONE LOPDIA , IONE 2 1 , DUMMY DUMMY , DUMMY , SL1 , DUMM DUMMY , DUMMY , DUMMY , KER , DUMMY , VL1 , DUMMY 3) 4 SL2 = 0D0VL2 = 0D0

128

C

C

C

C

IF (NX2 .GT. 0) , NX2 1CALL LMTHRM (TCALC , PCALC 2 LOPDIA , IONE , IZER 3 DUMMY , DUMMY , SL2 4 DUMMY , DUMMY , DUMMY ,NX2 ,IDX2,NBOPST(1,NPO), ,IONE ,IZER ,IONE , ,VL2 ,DUMMY ,DUMMY , , X2 ,IZER , DUMMY , KER) AVMWY=AVEMW(NY, IDY, Y) AVMWX1=XMWL1 AVMWX2 = XMWL2B(INDEX7) = (VCALC*AVMWY + CALCL*BETA*AVMWX1 + CALCL *(1D0-BETA) *AVMWX2 + (1D0-VCALC-CALCL) *XMWS)/ 1 (VV*VCALC+VL1*CALCL*BETA+VL2*CALCL*(1D0-BETA)+ 2 VS*(1D0-CALCL-VCALC)) 3 B(INDEX6) = (VCALC*SV+SL1*CALCL*BETA+SL2*CALCL*(1D0-BETA)+ SS*(1D0-VCALC-CALCL))/B(INDEX8) 1 SL = BETA * SL1 + (1.D0 - BETA) * SL2 VL = BETA * VL1 + (1.D0 - BETA) * VL2 999 CONTINUE RETURN END

C\$ #07 BY: BRAD C DATE: 03/12/93 CORRECT RXN 3 CO2 EQUILIBRIUM C\$ #06 BY: SIMSCI DATE: 01/15/91 ADD /RGAS1A/ AND USE REALK OFFSETS C\$ #05 BY: JSDINC DATE: 04/30/85 REMOVE SYSTEM DEPEND. REALS C\$ #04 BY: JSDINC DATE: 01/31/85 DOUBLE PREC. CONSTANTS DATE: 03/27/85 CONFORM TO ASPEN PROXANAL STANDARD C\$ #03 BY: BWB DATE: 06/15/84 CORRECT REAL1 ORDER C\$ #02 BY: BWB DATE: 06/11/84 NEW C\$ #01 BY: BWB C - ---------------_____ C С *. С **** NOTICE **** C C С C С COPYRIGHT (C) 1981-85 C JAY S. DWECK, CONSULTANT, INC. C C C C-----C C KINETIC MODEL FOR PLUG FLOW COAL GASIFIER (DENN MODEL) C ,SOUT ,DERIV ,NSUBS ,IDXSUB,ITYPE , SUBROUTINE DELKIN (Z , INT 1 NINT ,NREAL1,REAL1 ,NIDS ,IDS NPO , NBOPST, NW , W , NCQ , RATES , FLUXG , FLUXS , XLONG , LX , AREA , CIRM , LVROUT, UCP , LD , REAL , NREAL , LRETN , LIRETN, LVRIN , PRESDP, LVRINC, NPKODE, KPHASE, 2 3 4 5 MAXIT , TOL , GUESS , LODIAF, LOPDIA, KREST , 6 KDENS ,LCFLAG,ISTATE,NX ,H ,LVRD , LVRI3 ,LVRO3 ,NXLOC ,XLOC ,TEMPPR,NREAL3 , REAL3) 7 8 9 IMPLICIT REAL*8 (A-H, O-Z) SAVE DIMENSION SOUT(LX), DERIV(LX), IDXSUB(NSUBS), ITYPE(NSUBS), INT (NINT), REAL1 (NREAL1), IDS (2, NIDS), NBOPST (2, NPO) 1 W(NW), RATES(NCQ), FLUXG(NCQ), FLUXS(NCQ), REAL(NREAL), 2 XLOC (NXLOC), TEMPPR (NXLOC), REAL3 (NREAL3) 3 DIMENSION IPROG(2) DIMENSION AKI(5), EKI(5), AKEQ(5), HKEQ(5), BKEQ(5), BKI(5) DIMENSION D(2), DT(2), DE(2), DM(2), AKG(2), ATH(2), EFF(2), BKG(2) COMMON/USER/RMISS, IMISS, NGBAL, IPASS, IRESTR, ICONVG, LMSG, LPMSG, 1 KFLAG, NHSTRY, NRPT, NTRMNL COMMON/NCOMP/NCC, NNCC, NC, NAC, NACC, NVCP, NVNCP, NVACC, NVANCC COMMON/IDSCC/IDSCC(2,1) COMMON/IDSNCC/IDSNCC(2,1) COMMON/MW/XMW(1) COMMON /PLEX/ IB(1) DIMENSION B(1) EQUIVALENCE (IB(1), B(1)) END COMMON /PLEX/ 10-13-78 C COMMON /GLOBAL/ KPFLG1 , KPFLG2 , KPFLG3 , LABORT , NH LDIAG ,NCHAR , IMISSX ,MISSC1 ,MISSC2 , 1 LPDIAG , IEBAL , IRFLAG , MXBLKW , ITYPRN , 2 LBNCP ,LBCP ,LSDIAG ,MAXNE ,MAXNP1 MAXNP2 ,MAXNP3 ,IUPDAT ,IRSTRT ,LSFLAG 3 4 LRFLAG , KBLK1 , KBLK2 , KRFLAG , IRNCLS , LSTHIS , IRETCD , JRFLAG , JSFLAG 5 6 END COMMON /GLOBAL/ 4-30-80 C COMMON /STWORK/ NRETN , NIRETN , NHXF , NHYF , NWYF ,KK2 ,KZ1 ,KRET ,KRSC , KK1 , KK2 ,KZ2 NSTW 1 , KA2 , MF KA1 2

,MX1 ,MX2 , MY , MCS 3 MX 4 MNC , MHXF , MHYF , MWY , MRETN 5 ,MIC , MPH MIM , MIN , MIRETN , NBLM 6 NDUM , NCOVAR , NWR , NIWR 7 , KFOUT , KPHV , KLNK , KPHL KEXT 8 , MSTOI KLNGM , MLNKIN , MZWK , MIZWK , HV ,HL ,HL1 ,HL2 9 IDUMX 1 SV ,SL ,SL1 ,SL2 , vv ,VL1 ,VL2 , XMWV , XMWL 2 VL 3 XMWL1 , XMWL2 C END COMMON /STWORK/ 2 3-81 COMMON /STWKWK/NCPMC NCPCSO,NCPNCO,NTRIAL,KRSTRT,IDUMY, 1 TCALC,PCALC,VCALC, LC,BETA,T,P,VFRAC,Q,TINIT,PINIT, 2 DD(15).WK(1) DIMENSION IWK(1) EQUIVALENCE (IWK(1),WK(1)) END COMMON /STWKWK/ 11-1-80 C COMMON /IDXNCC/IDXNCC(1) COMMON /RGAS1A/ RK1, LRK2, LRK3, LRK4, LRK5, LRK6, LRK7 DATA IPROG/4HDE K,4HIN 1 DATA AKEQ/0.D0 3098.D+04,1222.D+06,1472.D-09,0.0265D0/ DATA HKEQ/0., 3 457D0,40300D0,-21854D0,-7860D0/ С C THERE WILL BE NCC + 18 STATE VARIABLES: C NCC - GAS COMPONENT MOLE FRACTIONS: С 02 H20 H2 CO CO2 CH4 C N2 AR H2S HCT. HIN COS C CS2 CHN C2H4O2-1 C2H6 C2H4 C3H6-2 C C3H8 C3H60-1 C4H4S C4H8-1 C4H8-2 C4H8-3 С C4H8O-3 C4H10-1 C5H5N C6H6 C6H6O C6H14-1 C C7H8 C7H8O-3 C10H8 C10H22-1 COOL C 1 - GAS MASS BALANCE C 4 - SOLID COMPONENT PROXANAL WEIGHT FRACTIONS: C 7 - SOLID COMPONENT ULTANAL WEIGHT FRACTIONS: C 3 - SOLID COMPONENT SULFANAL WEIGHT FRACTIONS: C 1 - SOLID MASS BALANCE C 1 - PROCESS TEMPERATURE EOUATION C 1 - COOLANT ENTHALPY BALANCE C C CALCULATE PROCESS STREAM CONDITIONS C PRES=B(LVRIN+IDXSUB(1)+NCC+1)-PRESDP*Z/XLONG PRESA=PRES/101300.D0 ENTHST=0.D0 C C CALCULATE REACTION RATES USING DELAWARE MODEL C C REACTION 1: Q * C + 1.0 * 02 --- 2 * (Q - 1.0) * CO C (2.0 - Q) * CO2 C REACTION 2: 1.0 * H2O + 1.0 * C === 1.0 * CO + 1.0 * H2 C 1.0 * CO2 + 1.0 * C === 2.0 * CO **REACTION 3:** C **REACTION 4:** 2.0 * H2 + 1.0 * C === 1.0 * CH4 1.0 * H2O + 1.0 * CO === 1.0 * CO2 + 1.0 * H2 C **REACTION 5:** C C ONLY REACTION 1 IS NOT REVERSIBLE C REACTION 5 WILL NOT BE AT EQUILIBRIUM C RMINV = 1D0/RMISS DO 1100 I=1,NCQ RATES(I) = 0.D0FLUXG(I) = 0.D0FLUXS(I) = 0.D01100 CONTINUE DO 1200 I=1,NW

W(I) = 0.D01200 CONTINUE DO 1300 I=1, LX DERIV(I) = 0.D01300 CONTINUE GSHRNK=0.D0 SSHRNK=0.D0 C C EXPONENTIAL FAILSAFES FOR OVERLY LARGE STEP SIZE C TIDLGS=DMAX1(1D0, SOUT(NCC+17)) COALLO=DMAX1 (RMINV, SOUT (NCC+3)) COALIM=DMIN1 (1D0-1D-10, COALLO) C C TEST FOR MINIMUM REACTION TEMPERATURE C IF(TIDLGS.LT.300D0) GO TO 2400 C C CALCULATE REACTION RATES C C 1 = KGMOLES OF VOLATILE 02 MADE/KG VOLATILE MATTER REAL1 C REAL1 2 = KGMOLES OF VOLATILE H20 MADE/KG VOLATILE MATTER C 3 = KGMOLES OF VOLATILE H2 MADE/KG VOLATILE MATTER REAL1 MADE/KG VOLATILE MATTER C REAL1 4 = KGMOLES OF VOLATILE CO C 5 = KGMOLES OF VOLATILE CO2 MADE/KG VOLATILE MATTER REAL1 C 6 = KGMOLES OF VOLATILE CH4 MADE/KG VOLATILE MATTER REAL1 C 7 = KGMOLES OF VOLATILE N2 MADE/KG VOLATILE MATTER REAL1 C 8 = KGMOLES OF VOLATILE ??? MADE/KG VOLATILE MATTER REAL1 C . . . REAL1 NCC-1 = KGMOLES OF VOLATILE ??? MADE/KG VOLATILE MATTER C C NCC = 0. (DUMMY SPACE FOR COOLANT) REAL1 C REAL1 NCC+ 1 = RATE CONSTANT OF REACTION 1 C REAL1 NCC+ 2 = ACTIVATION ENERGY OF REACTION 1 C REAL1 NCC+ 3 = RATE CONSTANT OF REACTION 2 C REAL1 NCC+ 4 = ACTIVATION ENERGY OF REACTION 2 C REAL1 NCC+ 5 = RATE CONSTANT OF REACTION 3 C REAL1 NCC+ 6 = ACTIVATION ENERGY OF REACTION 3 C REAL1 NCC+ 7 = RATE CONSTANT OF REACTION 4 C REAL1 NCC+ 8 = ACTIVATION ENERGY OF REACTION 4 REAL1 NCC+ 9 = RATE CONSTANT OF REACTION 5 C C REAL1 NCC+10 = ACTIVATION ENERGY OF REACTION 5 C REAL1 NCC+21 = BED VOID FRACTION C REAL1 NCC+22 = COAL VOID FRACTION C REAL1 NCC+23 = INITIAL PARTICLE DIAMETER (CM) REAL1 NCC+25 = INITIAL DENSITY OF CHAR FEED (GM/CU.CM.) C C REAL1 NCC+26 = INITIAL DENSITY OF ASH FEED (GM/CU.CM.) REAL1 NCC+27 = RATIO OF C TO 02 IN REACTION 4 C C REAL1 NCC+28 = SCHMIDT NUMBER REAL1 NCC+29 = DIFFUSION CONSTANT FOR OXYGEN (SQ.CM./SEC) C C REAL1 NCC+30 = DIFFUSION CONSTANT FOR WATER (SQ.CM./SEC) REAL1 NCC+31 = MODEL TYPE: 1 = ASH SEGREGATION C 2 = SHELL PROGRESSIVE C C 3 = HOMOGENEOUS C REAL1 NREAL1-4 = FRACTION VOLATILE MATTER RELEASED BY PYROLYSIS REAL1 NREAL1-3 = FINAL TEMPERATURE FOR VOLATILE MATTER RELEASE C C REAL1 NREAL1-2 = INITIAL TEMPERATURE FOR VOLATILE MATTER RELEASE REAL1 NREAL1-1 = FRACTION UNCONVERTED FIXED CARBON 1ST ITERATION C REAL1 NREAL1 = FRACTION UNCONVERTED FIXED CARBON 2ND ITERATION C C D(1) = REAL1(LRK2+9)D(2) = REAL1(LRK2+10)MODEL=REAL1 (LRK2+_1) AKI(1) = REAL1(LRK1+1)

EKI(1) = REAL1(LRK1+2)
```
AKI (2) = REAL1 (LRK1+3)
      EKI(2) = REAL1(LRK1+4)
      AKI(3)=REAL1(LRK1+5)
      EKI(3) = REAL1(LRK1+6)
      AKI(4) = REAL1(LRK1+7)
      EKI(4) = REAL1(LRK1+8)
     AKI(5) = REAL1(LRK1+9)
      EKI(5) = REAL1(LRK1+10)
      PRXMOD=1D0-B(LVRI3+IDXSUB(2)+NNCC+8)/100D0
     CC0=REAL1(LRK2+5)*B(LVRI3+IDXSUB(2)+NNCC+9)*PRXMOD/12.01115D0
    1
          /100D0
     VFC2=REAL1 (LRK2+2) *REAL1 (LRK2+2)
     VFS=REAL1 (LRK2+2) + (1D0-REAL1 (LRK2+2)) *B (LVRI3+IDXSUB (2) +NNCC+9)
    1
           /(B(LVRI3+IDXSUB(2)+NNCC+9)+B(LVRI3+IDXSUB(2)+NNCC+11))
     VFS2=VFS*VFS
     RTW2=82.05D0*B(LVRINC+IDXSUB(1)+NCC)
     AKG0= (2.06D0/REAL1 (LRK2+1)/PRESA) * (REAL1 (LRK2+8) ** (-0.092D0))
           *((PRESA/REAL1(LRK2+3)/82.05D0)**0.575D0)
    1
     DO 1500 I=1,2
     DT(I)=D(I)*(B(LVRINC+IDXSUB(1)+NCC)**0.8D0)/(352.3D0**1.8D0)
      DE(I) = DT(I) * VFC2
     DM(I) = DT(I) * VFS2
     AKG(I) = AKG0 * (DT(I) * * .575D0)
1500 CONTINUE
     ATH(1) = REAL1(LRK2+3) * DSQRT(CC0*82.05D0/REAL1(LRK2+7)/DE(1))/2D0
     ATH(2) = REPL1(LRK2+3)*DSQRT(CC0*82.05D0/DE(2))/2D0
     APH=(1.-REAL1(LRK2+1))*PRESA*1D2*XLONG
     APHC=APH*CC0
     AWGS=REAL1(LRK2+1)*1D2*XLONG*PRESA*PRESA/RTW2/RTW2
     YFC=COALIM
     APHCVC=APHC*YFC/(YFC+(1D0-YFC)*REAL1(LRK2+5)*0.01D0
    1
             *B(LVRI3+IDXSUB(2)+NNCC+11)*PRXMOD/REAL1(LRK2+6))
     FDP=YFC**(1D0/3D0)
     DP=REAL1 (LRK2+3) *FDP
     TTW=TIDLGS/B(LVRINC+IDXSUB(1)+NCC)
     RT1=1.987D0*TIDLGS
     RT2 = 82.05D0 * TIDLGS
     DO 1600 I=1,5
     BKEQ(I) = AKEQ(I) * DEXP(-HKEQ(I)/RTI)
1600 CONTINUE
     XEQ02=0.
     XEQH2O=DMAX1(PRESA*SOUT(3)*SOUT(4)/BKEQ(2), 0.D+00)
     XEQCO2=DMAX1 (PRESA*SOUT(4)*SOUT(4)/BKEQ(3),0.D+00)
     XEQH22=DMAX1(SOUT(6)/PRESA/BKEQ(4), 0.D+00)
     XEQWGS=DMAX1(SOUT(3) * SOUT(5) / BKEQ(5), 0.D+00)
     DO 1700 I=1,5
     BKI(I) = AKI(I) * DEXP(-EKI(I)/RT1)
1700 CONTINUE
     DO 1900 I=1,2
     THIELE=ATH(I)*FDP*DSQRT(BKI(I)/(TTW**(0.8D0)))
     IF(THIELE.LE.0.02D0) GO TO 1800
     EFF(I) = (3D0/THIELE) * (1D0/DTANH(THIELE) - 1D0/THIELE)
     GO TO 1900
1800 EFF(I)=1D0
1900 CONTINUE
     FGAS=1D3*SOUT(NCC+1)/AREA/1D2/1D2
     IF(FGAS.LE.ODO) FGAS = RMINV
     BKGO=(FGAS**(0.425D0))*(TTW**(0.46D0))
     IF (MODEL.EQ.1) BKGO=BKGO/(FDP**(0.575D0))
     DO 2000 I=1,2
     BKG(I)=BKGO*AKG(I)
2000 CONTINUE
     S1=DMAX1(0.D0, SOUT(1))
     S2=DMAX1(0.D0,SOUT(2))
```

C

```
S3=DMAX1(0.D0, SOUT(3))
       S4 = DMAX1(0.D0, SOUT(4))
       S5=DMAX1(0.D0,SOUT(5))
       GO TO (2100,2200,2300), MODEL
       ASH SEGREGATION MODEL
C
 2100 CONTINUE
       W(NC+1) = 10. *APHCVC* (S1-XEQO2)
               /(CC0*DP/6./BKG(1)+REAL1(LRK2+7)/EFF(1)/BKI(1))
      1
       W(NC+2) = 10. *APHCVC*(S2-XEQH2O)
               /(CC0*DP/6./BKG(2)+1./EFF(2)/BKI(2))
      1
       W(NC+3)=10.*APHCVC*(S5-XEQCO2)*BKI(3)
       W(NC+4)=10.*APHCVC*PRESA*(S3*S3-XEQH22)*BKI(4)
       W(NC+5)=10.*AWGS*(S2*S4-XEQWGS)*BKI(5)/TTW/TTW
       GO TO 2400
C
       SHELL PROGRESSIVE MODEL
 2200 CONTINUE
C
       COMMENT BELOW REPRESENTS ORIGINAL FORM (RT2 COMMENTED ABOVE)
       W(NC+1) = 10.*APH*(S1-XEOO2)
      1
               /(REAL1(LRK2+3)/6./BKG(1)
      2
               +REAL1(LRK2+3)*REAL1(LRK2+3)*(1.-FDP)*82.05
               /12./FDP/DM(1)/(TTW**(0.8))
      3
      4
               +REAL1(LRK2+7)/EFF(1)/YFC/BKI(1)/CC0)
       W(NC+2) = 10. *APH* (S2-XEQH2O)
      1
               /(REAL1(LRK2+3)/6./BKG(2)
               +REAL1(LRK2+3)*REAL1(LRK2+3)*(1.-FDP)*82.05
      2
C
      2
               +REAL1 (LRK2+3) *REAL1 (LRK2+3) * (1.-FDP) *RT2
               /12./FDP/DM(2)/(TTW**(0.8))
      3
               +1./EFF(2)/YFC/BKI(2)/CC0)
      W(NC+3) = 10. *APHC*YFC*(S5-XEQCO2)*BKI(3)
      W(NC+4) = 10.*APHC*YFC*PRESA*(S3*S3-XEQH22)*BKI(4)
      W(NC+5)=10.*AWGS*(S2*S4-XEQWGS)*BKI(5)/TTW/TTW
       GO TO 2400
C
      HOMOGENEOUS MODEL
 2300 CONTINUE
      W(NC+1) = 10. *APHC*(S1-XE002)
               /(CC0*REAL1(LRK2+3)/6./BKG(1)
      1
               +REAL1(LRK2+7)/EFF(1)/BKI(1)/YFC)
     2
      W(NC+2) = 10. *APHC*(S2-XEOH2O)
     1
               /(CC0*REAL1(LRK2+3)/6./BKG(2)
               +1./EFF(2)/BKI(2)/YFC)
     2
      W(NC+3)=10.*APHC*(S5-XEQCO2)*BKI(3)*YFC
      W(NC+4)=10.*APHC*PRESA*(S3*S3-XEQH22)*BKI(4)*YFC
      W(NC+5)=10.*AWGS*(S2*S4-XEQWGS)*BKI(5)/TTW/TTW
 2400 CONTINUE
      O2LIM=SOUT(1) *SOUT(NCC+1)/H/AREA
      IF(O2LIM.LE.O.D+00) O2LIM=0.D+00
      IF(W(NC+1).GT.O2LIM) W(NC+1) = 02LIM
C
      REBUILD OUTLET PROCESS STREAM VECTOR
C
C
      DO 2500 I=1,NCC
      B(LVROUT+IDXSUB(1)+I-2) = SOUT(I) * SOUT(NCC+1)
 2500 CONTINUE
      B(LVROUT+IDXSUB(1)+NCC-1)=SOUT(NCC+1)
C
      DO 2600 I=1,14
      B(LVROUT+IDXSUB(2)+NNCC+I+7)=1.D+02*SOUT(NCC+I+1)
 2600 CONTINUE
      B(LVROUT+IDXSUB(2)+NNCC-2)=SOUT(NCC+16)
      B(LVROUT+IDXSUB(2)+NNCC-1)=SOUT(NCC+16)
C
      B(LVROUT+IDXSUB(1)+NCC)=SOUT(NCC+17)
      DO 2900 J=1, NSUBS
      NM=ITYPE(J)
      IF (NM.EQ.3) GO TO 2700
C
```

```
134
```

C CALCULATE TOTAL FLOWRATES AND MOLECULAR WEIGHT C DUM1=SAVEMW(LVROUT+IDXSUB(J)-1) GO TO 2900 2700 CONTINUE DUM1=0.D+00 DO 2800 I=1,NNCC DUM1 = DUM1 + B(LVROUT + IDXSUB(J) + I - 2)2800 CONTINUE B(LVROUT+IDXSUB(J)+NNCC-1)=DUM1 2900 CONTINUE SPEC2=PRES SPEC1=TIDLGS CALL SETP(B(LVROUT), NSUBS, IDXSUB, ITYPE, PRES) CALL SETH(B(LVROUT), NSUBS, IDXSUB, ITYPE, ENTHST) CALL FLASH (B(LVROUT) ,NSUBS , IDXSUB, ITYPE , NBOPST, 2 NPKODE, KPHASE, MAXIT, TOL, SPEC1, SPEC2, GUESS LODIAF, LOPDIA, KREST, KDENS, REAL (LRETN), 1 2 3 INT(LIRETN) , LCFLAG) C C CALCULATE FORMATION RATE FOR FIXED CARBON C SSHRNK=12.01115* (REAL1(LRK2+7)*W(NC+1)+W(NC+2)+W(NC+3)+W(NC+4)) C C OBTAIN DHGDT C CALL SCOPY (LD, LVROUT, LVRD) CALL CPACK (B(LVROUT), NCPGG, IWK (MIC), WK (MCS), TGFLOW) CALL IDLGAS (TIDLGS, WK (MCS) , NCPGG , IWK (MIC) ,0 ,DHI , 0 ,0 ,2 ,0 1 KDIAG ,1 ,SI ,DSI 2 ,GI 0 ,HI ,DGI ,s , G , DG 3 , DHGDTT, DS , KER Η C С OBTAIN DHFDT C CALL NCPACK(B(LVROUT+IDXSUB(2)-1), NCPSS, IWK(MIN), WK(MNC), TSFLOW) DHSDTT=0.D0 JDEX=LVROUT+IDX\$UB(2)+NNCC+8 DO 3000 I=1,NCPSS J=IWK(MIN+I-1) , TIDLGS, PRES CALL ENTHAL (IDXNCC(J) , B (JDEX) , HSOLID, DHSDT , KER 1 LOPDIA, 2) , B (JDEX) , TIDLGS, PRES CALL DENSTY (IDXNCC(J) , DRHO , KER LOPDIA, 1 , RHO 1) DHSDTT=DHSDTT+WK (MNC+I-1) *DHSDT 3000 CONTINUE C C OBTAIN DEVOLATILIZATION TERM OF RHS C HFMVG=0.D+00HFMVS=0.D+00ZMV=0.D+00 IF (TEMPPR (NXLOC) . LT. REAL1 (LRK3+3) . OR. SOUT (NCC+17) GT. REAL1 (LRK3+3)) GO TO 3600 1 ZMV = -B(LVRI3 + IDXSUB(2) + NNCC + 10) / 100./(REAL1(LRK3+3)-REAL1(LRK3+2)) 1 /(1.-B(LVRI3+IDXSUB(2)+NNCC+8)/100.) C 2 DO 3100 I=1,NCC FLUXS(I)=SOUT(NCC+16)*ZMV*REAL1(LRK7+I)/(1.-SOUT(NCC+4)) 3100 CONTINUE B(LVRD+IDXSUB(1)+NCC-1)=0.D+00DO 3200 I=1,NCC B(LVRD+IDXSUB(1)+I-2)=FLUXS(I) B(LVRD+IDXSUB(1)+NCC-1)=B(LVRD+IDXSUB(1)+NCC-1)

1 +B(LVRD+IDXSUB(1)+I-2) 3200 CONTINUE B(LVRD+IDXSUB(2)+NNCC-2)=0.D0B(LVRD+IDXSUB(2)+NNCC-1)=0.D0DO 3300 I=1,14 B(LVRD+IDXSUB(2)+NNCC+7+I)=0.D03300 CONTINUE DUM1=SAVEMW(LVRD+IDXSUB(1)-1) CALL SETP(B(LVRD), NSUBS, IDXSUB, ITYPE, PRES) CALL SETH (B(LVRD), NSUBS, IDXSUB, ITYPE, ENTHST) CALL FLASH(B(LVRD) ,NSUBS , IDXSUB, ITYPE , NBOPST, 2 NPKODE, KPHASE, MAXIT, TOL , SPEC1 , SPEC2 , GUESS , LODIAF, LOPDIA, KREST , 0 , WK (MRETN) , 1 2 , LCFLAG) 3 IWK (MIRETN) CALL TOTENT (B(LVRD), NSUBS, IDXSUB, ITYPE, HFMVG) C C OBTAIN VOLATILE MATTER TERM OF RHS C B(LVRD+IDXSUB(1)+NCC-1)=0.D+00DO 3400 I=1,NCC B(LVRD+IDXSUB(1)+I-2)=0.D03400 CONTINUE B(LVRD+IDXSUB(2)+NNCC-2) = SOUT(NCC+16) * ZMV/(1.-SOUT(NCC+4))B(LVRD+IDXSUB(2)+NNCC-1)=SOUT(NCC+16)*ZMV/(1.-SOUT(NCC+4)) B(LVRD+IDXSUB(2)+NNCC+10)=1.D+02DO 3500 I=1,6 B(LVRD+IDXSUB(2)+NNCC+12+I)=1.D+02*REAL3(5+I)3500 CONTINUE DUM1=SAVEMW(LVRD+IDXSUB(1)-1) CALL SETP(B(LVRD), NSUBS, IDXSUB, ITYPE, PRES) CALL SETH(B(LVRD), NSUBS, IDXSUB, ITYPE, ENTHST) ,NSUBS , IDXSUB, ITYPE , NBOPST, 2 CALL FLASH (B(LVRD) NPKODE, KPHASE, MAXIT, TOL LODIAF, LOPDIA, KREST, 0 ,SPEC1 ,SPEC2 ,GUESS , 2 , WK (MRETN) IWK (MIRETN) 3 , LCFLAG) CALL TOTENT (B(LVRD), NSUBS, IDXSUB, ITYPE, HFMVS) C C CALC THE NET ENTHALPY FLUX RESULTING FROM REACTIONS C 3600 CONTINUE DO 3700 I=1,NCC FLUXS(I)=SOUT(NCC+4)*SSHRNK*REAL1(LRK7+I)/(1.-SOUT(NCC+4)) 3700 CONTINUE FLUXG(1) = +1.0 * W(NC+1)FLUXG(2) = +1.0 *W(NC+2) + 1.0 *W(NC+5)FLUXG(3) = +2.0 *W(NC+4)FLUXG(4) = +1.0*W(NC+5)FLUXG(5) = +1.0*W(NC+3)FLUXS(2) = FLUXS(2)FLUXS(3) = FLUXS(3) + 1.0 * W(NC+2) + 1.0 * W(NC+5)FLUXS(4) = FLUXS(4) + 1.0 * W(NC+2) + 2.0 * W(NC+3)+2.0*(REAL1(LRK2+7)-1.0)*W(NC+1) 1 FLUXS(5) = FLUXS(5) + (2.0 - REAL1(LRK2+7)) * W(NC+1) + 1.0 * W(NC+5)FLUXS(6) = FLUXS(6) + 1.0 * W(NC+4)B(LVRD+IDXSUB(1)+NCC-1)=0.D+00DO 3800 I=1,NCC B(LVRD+IDXSUB(1)+I-2)=FLUXG(I)B(LVRD+IDXSUB(1)+NCC-1) = B(LVRD+IDXSUB(1)+NCC-1)1 +B(LVRD+IDXSUB(1)+I-2)3800 CONTINUE B(LVRD+IDXSUB(2)+NNCC-2)=SSHRNK/(1.-SOUT(NCC+4)) B(LVRD+IDXSUB(2)+NNCC-1)=SSHRNK/(1.-SOUT(NCC+4)) DO 3900 I=1,14 B(LVRD+IDXSUB(2)+NNCC+7+I)=0.D0

```
3900 CONTINUE
       B(LVRD+IDXSUB(2)+NNCC+9)=1.D+02*(1.-SOUT(NCC+4))
      B(LVRD+IDXSUB(2)+NNCC+10) = 1.D+02*SOUT(NCC+4)
      DO 4000 I=1,6
      B(LVRD+IDXSUB(2)+NNCC+12+I)=1.D+02*SOUT(NCC+4)*REAL3(5+I)
 4000 CONTINUE
      B(LVRD+IDXSUB(2)+NNCC+13)=B(LVRD+IDXSUB(2)+NNCC+13)
     1
                                    +1.D+02*(1.-SOUT(NCC+4))
      DUM1=SAVEMW(LVRD+IDXSUB(1)-1)
      CALL SETP(B(LVRD), NSUBS, IDXSUB, ITYPE, PRES)
       CALL SETH (B(LVRD), NSUBS, IDXSUB, ITYPE, ENTHST)
                   (B(LVRD) ,NSUBS,IDXSUB,ITYPE ,NBOPST,2
NPKODE,KPHASE,MAXIT ,TOL ,SPEC1 ,SPEC2 ,GU
LODIAF,LOPDIA,KREST ,0 ,WK(MRETN) ,
      CALL FLASH(B(LVRD)
                                                ,SPEC1 ,SPEC2 ,GUESS
     1
     2
                   IWK (MIRETN) , LCFLAG)
     3
      CALL TOTENT (B(LVRD), NSUBS, IDXSUB, ITYPE, HCALR)
      B(LVRD+IDXSUB(1)+NCC-1)=0.D+00
      DO 4100 I=1,NCC
      B(LVRD+IDXSUB(1)+I-2) = FLUXS(I)
      B(LVRD+IDXSUB(1)+NCC-1)=B(LVRD+IDXSUB(1)+NCC-1)
                                  +B(LVRD+IDXSUB(1)+I-2)
     1
 4100 CONTINUE
      B(LVRD+IDXSUB(2)+NNCC-2)=0.D+00
      B(LVRD+IDXSUB(2)+NNCC-1)=0.D+00
      DO 4200 I=1,14
      B(LVRD+IDXSUB(2)+NNCC+7+I)=0.D0
 4200 CONTINUE
      CALL SETP(B(LVRD), NSUBS, IDXSUB, ITYPE, PRES)
       CALL SETH(B(LVRD), NSUBS, IDXSUB, ITYPE, ENTHST)
                                 ,NSUBS , IDXSUB, ITYPE , NBOPST, 2
      CALL FLASH(B(LVRD)
                   NPKODE, KPHASE, MAXIT, TOL , SPEC1, SPEC2, GUESS
LODIAF, LOPDIA, KREST, 0, WK (MRETN),
     1
     2
                   IWK (MIRETN)
                                 , LCFLAG)
     3
      CALL TOTENT (B(LVRD), NSUBS, IDXSUB, ITYPE, HCALP)
C
C
      CALCULATE HEAT TRANSFER FROM REACTION MIXTURE TO COOLANT STREAM
C
      QTCP=CIRM*UCP*(B(LVRINC+IDXSUB(1)+NCC)-SOUT(NCC+17))
      DHTDT=SOUT(NCC+1) *DHGDTT-SOUT(NCC+16) *DHSDTT+HFMVG-HFMVS
      DERIV (NCC+17) = ((HCALR-HCALP) *AREA+QTCP)/DHTDT
      DERIV(NCC+18) = -QTCP
C
C
      COMPUTE FUNCTIONS AND PACK FOR INTEGRATION ROUTINE
C
      DERIV(NCC+4) = ZMV*DERIV(NCC+17)
      RV= (SOUT (NCC+16) * DERIV (NCC+4) / AREA+SOUT (NCC+4) * SSHRNK)
        /(1.-SOUT(NCC+4))
     1
      DERIV (NCC+16) = (AREA*SSHRNK+SOUT (NCC+16)*DERIV (NCC+4))
                      /(1.-SOUT(NCC+4))
     1
      DERIV(NCC+2) = 0.
      DERIV (NCC+3) = (AREA*SSHRNK-SOUT (NCC+3)*DERIV (NCC+16))/SOUT (NCC+16)
      DERIV (NCC+5) =- SOUT (NCC+5) *DERIV (NCC+16) / SOUT (NCC+16)
      DERIV(NCC+6) =-SOUT(NCC+6) *DERIV(NCC+16)/SOUT(NCC+16)
      DERIV(NCC+7) = (AREA*(SSHRNK+RV*REAL3(6))
                       -SOUT (NCC+7) *DERIV (NCC+16) ) / SOUT (NCC+16)
     1
      DO 4300 I=1,5
      DERIV(NCC+7+I) = (AREA*RV*REAL3(6+I))
                      -SOUT (NCC+7+I) *DERIV (NCC+16))/SOUT (NCC+16)
     1
 4300 CONTINUE
      GSHRNK= (REAL1 (LRK2+7)-1.0) *W (NC+1)+W (NC+2)+W (NC+3)
              -W(NC+4)+RV*REAL3(12)
      DO 4400 I=1,NCC
      RATES(I) = REAL1(LRK7+I) * RV-SOUT(I) * GSHRNK
4400 CONTINUE
```

```
RATES(1) = -W(NC+1) + RATES(1)
     RATES (2) = -1.0 * W (NC+2) - 1.0 * W (NC+5) + RATES (2)
      RATES (3) = -2.0 * W (NC+4) + 1.0 * W (NC+2) + 1.0 * W (NC+5) + RATES (3)
     RATES (4) = -1.0 * W (NC+5) + 1.0 * W (NC+2) + 2.0 * W (NC+3) + RATES (4)
                +2.0*(REAL1(LRK2+7)-1.0)*W(NC+1)
    1
     RATES (5) = -1.0 * W (NC+3) + 1.0 * W (NC+5) + RATES (5)
                +(2.0-REAL1(LRK2+7))*W(NC+1)
    1
      RATES(6)=+1.0*W(NC+4)+RATES(6)
      DO 4500 I=1,NCC
     DERIV(I) = RATES(I) * AREA/SOUT(NCC+1)
4500 CONTINUE
      DERIV(NCC+1) = AREA*GSHRNK
      B(LVROUT+IDXSUB(2)+NNCC+6)=RHO
      B(LVRO3+IDXSUB(2)+NNCC+6)=RHO
      RETURN
      END
```

*Note: This ASPEN routine will vary the heat tansfer coefficient (UCP) of the reactor wall until the resultant cooling water temperature is 512 K with a tolerance of +/- 5 K. The gasifier block calculations will be iterated until convergence using a secant method. The heat transfer coefficient is bounded by limits of 0 and 200 Watts/m² K.

APPENDIX B

Hooke-Jeeves Searches

Kinetic Parameters

_			AE = Acti	ivation En	nergy R	C = Rate C	Constant				Norma	alized E	rrors	Norma	alized E	Errors	Norma	alized E	Errors		
(Place Cu	rsor in Af	# and typ	e ALT-Z)					_													
HC #1	AE #1	HC #2	AE #2	RC #3	AE #3	RC #4	AE #4	RC#5/10	AE #5	Coal FD	CCora	H2	CO	CO2	CH4	RG Mas	RG H2	RG Te	Stm Util	P Index	
3019000	26999	5249	. 36012	550	74000	0.0049	17114	20670 5	14900	0	0.0379	0.0456	0.0018	0.0002	0.4266	0.0024	0 11 19	1 2797	0.0437	1 9498	
					11040			20070.0	14500			0.0400	0.0010	0.0002	0.4100	0.0024	0.1110	1.2101	0.0107	1.0100	
3019000	27000	525	36012	550	74000	0.0049	17114	20670.5	14900	0.396	0.0164	211	0.0165	0.0165	2.8056	0.0016	0.1562	1.1064	0.1041	4.8304	NEW WT ADL.CL FL
2500000	30000	600	42000	550	60000	0.004	20204	24000	12200	0.396	0.9188	0.0162	0.0609	0.0647	0.0166	0.035	0.5107	0.9122	0.8267	3.758	First Change over stage
2000000	33000	715	48000	550	46000	0.0031	23290	27300	9500	0.396	2.1297	0.0302	0.0062	0.0895	0.1076	0.1324	0.9956	0.6194	2.046	6.5526	Pattern Move
2500000	30000	600	42000	550	60000	0.004	20204	24000	12200	0.396	1.0947	0.0145	0.0562	0.0796	0.0344	0.0291	0.5881	0.9371	0.8351	4.0648	New coal flow rts
2500000	30000	600	42000	550	60000	0.004	20204	24000	12200	0.396	0.7478	0.0178	0.0664	0.0542	0.0086	0.0403	0.4416	0.8701	0.8257	3.4684	
2500000	30000	600	42000	550	60000	0.004	20204	24000	12200	0.8397	0.0043	0.0331	0.1009	0.0042	0.116	0.0932	0.1111	0.0117	0.7882	2.1023	10.4, 11.0, 11.5
3000000	30000	600	42000	550	60000	0.004	20204	24000	12200	0.8397	0.0048	0.0335	0.1012	0.0037	0.1223	0.0941	0.1095	0.006	0.7803	2.095	
3000000	33000	600	42000	550	60000	0.004	20204	24000	12200	0.8397	0.1716	0.0389	0.0603	0.0153	0.1303	0.0883	0.1237	0.1905	0.8492	2.5077	
3000000	27000	660	42000	550	60000	0.004	20204	24000	12200	0.8397	0.0015	0.034	0.1029	0.0034	0.115	0.1093	0.0897	0.3889	0.6826	2.367	
3000000	27000	540	42000	550	60000	0.004	20204	24000	12200	0.8397	0.0069	0.03	0.1056	0.0025	0.1133	0.0972	0.1146	0.0023	0.805	2.1172	
-													and the second				-				
3000000	27000	600	42000	• 550	. 60000	0 004	20204	24000	12200	0.9839	6.8E-05	0.0191	0 -	0 0182	0.4381	0.0938	0.0967	0.0006	0 7711	2.5166	Base B1_DES-SPE
3000000	27000	600	38000	550	60000	0.004	20204	24000	12200	0.5548	0.0002	0.0694	0.1154	0.0017	0.62/1	0.046	0.0665	0.2851	0.4501	2.2164	
2700000	27000	600	38000	550	60000	0.004	20204	24000	12200	0.5546	0.0002	0.07	0.1153	0.0019	0.6359	0.0461	0.0666	0.282	0.45	2.2226	4
3300000	27000	600	38000	550	60000	0.004	20204	24000	12200	0.5561	0.0002	0.0699	0.1155	0.0019	0.6357	0.0461	0.0665	0.2874	0.4497	2.2289	 .
2700000	30000	600	38000	550	60000	0.004	20204	24000	12200	0.5828	0.0002	0.0762	0.1075	0.0014	0.6945	0.0474	0.0649	0.2595	0.4537	2.2881	
2700000	24000	600	38000	550	60000	0.004	20204	24000	12200	0.5532	0.0001	0.0685	0.1165	0.0018	0.618	0.0457	0.0667	0.274	0.4501	2.1945	
2/00000	24000	540	38000	550	60000	0.004	20204	24000	12200	0.5513	0.0002	0.0665	0.1181	0.0021	0.6067	0.0462	0.0672	0.2936	0.4517	2.2035	
2700000	24000	-660	38000	550	60000	0.004	20204	24000	12200	0.54/2	0.0003	0.071	0.1142	0.0017	0.6414	0.0455	0.0669	0.273	0.4491	2.2104	
300000	24000	600	38000	600	60000	0.004	20204	24000 .	12200	0.5506	0.0002	0.0689	0.1163	0.0019	0.6235	0.0463	0.0665	0.3156	0.4483	2.2381	
3000000	24000	600	38000	500	60000 E 4000	0.004	20204	24000	12200	0.5506	0.0002	0.0689	0.1163	0.0019	0.6235	0.0463	0.0665	0.3155	0.4483	2.238	
300000	24000	600	38000	550	0000	0.004	20204	24000	12200	0.555	0.0001	0.0000	0.1100	0.0019	0.022	0.0403	0.0004	0.3069	0.4407	2.2321	
2000000	24000	600	38000	550	54000	0.004	20204	24000	12200	0.5500	0.0002	0.0009	0.1103	0.0019	0.7704	0.0403	0.0605	0.3152	0.4464	2.23/0	
2000000	24000	600	20000	550	54000	0.00044	20204	24000	12200	0.4947	0.0002	0.0524	0.1220	0.0021	0.4967	0.0430	0.0601	0.2577	0.4341	2.4037	
3000000	24000	600	38000	550	54000	0.0044	20204	24000	12200	1 007	0.0003	0.0324	0.1529	0.0021	1 9376	0.0425	0.0537	0.1186	0 5428	4 1101	
3000000	24000	600	38000	550	54000	0.0044	20204	26000	12200	0 4843	0.0003	0.0524	0 1108	0.0021	0 4864	0.0425	0.0691	0.3549	0 4339	2 0367	
3000000	24000	600	38000	-550	54000	0.0044	20204	26000	11000	0 4824	-0.0003	0.0521	01113	0.0021	0.4815	0.0423	0.0691	0.3553	0 4333	2 0297	Base B2
36,0000	21000	600	34000	550	48000	0.0048	20204	24000	9800	Error ca	innot ma	ke patter	n move.	Use sma	ller varia	ble adjus	tments (5%).			Pattern Move
2850000	24000	600	38000	550	54000	0.0044	20204	26000	11000	0.5016	4.1E-05	0.0525	0.1118	0.0022	0.4867	0.0421	0.0678	0.2925	0.4348	1.992	+/-0.0005 tol; not converge; 5
2850000	24000	600	38000	550	54000	0.0044	20264	26000	11000	0.4899	0.0002	0.0522	0.1116	0.0022	0.4828	0.0419	0.0687	0.3083	0.4346	1.9924	+/-0.002 tol; 53.8 min run tim
2850000	22800	600	38000	550	54000	0.0044	20204	26000	11000	0.489	0.0002	0.0524	0.1117	0.0023	0.4873	0.0422	0.0686	0.326	0.4338	2.0135	
2850000	25200	600	38000	550	54000	0.0044	20204	26000	11000	0.4906	0.0002	0.0532	0.1112	0.0023	0.4972	0.0424	0.0685	0.3345	0.4336	2.0336	
2850000	24000	570	38000	550	54000	0.0044	20204	26000	11000	0.4894	0.0002	0.0518	0.1121	0.0025	0.4869	0.0425	0.0687	0.3375	0.4342	2.0259	
2850000	24000	630	38000	550	54000	0.0044	20204	26000	11000	0.4902	0.0002	0.0534	0.1106	0.0021	0.4949	0.0424	0.0683	0.3426	0.4326	2.0373	

Kinetic Parameters

- "

			AE = Act	vation E	nergy R	IC = Rate C	onstant				Norma	alized E	Frors	Norm	alized E	Errors	Norma	alized E	Frors		
RC #1	AE #1	RC #2	AE #2	RC #3	AE #3	RC #4	AE #4	RC#5/10	AE #5	Coal FD	C Conv	H2	CO	CO2	CH4	RG Mas	RG H2	RG Te	Stm Util	P Index	
2850000	24000	600	36100	550	54000	0.0044	20204	26000	11000	0 5173	0.0002	0.0630	0.0003	0.0008	0 5044	0.0435	0.0670	0.2408	0.4418	2 0600	
2850000	24000	600	39900	550	54000	0.0044	20204	26000	11000	0.5559	0.0002	0.0305	0.106	0.0063	0.3746	0.0435	0.0079	0.2490	0.4410	1 065	
2850000	24000	600	39900	575	54000	0.0044	20204	26000	11000	0.5559	0.0001	0.0305	0 1061	0.0063	0.3746	0.0532	0.0782	0 2492	0.5111	1 9654	
2850000	24000	600	39900	525	54000	0.0044 *	20204	26000	11000	0.5559	0.0001	0.0305	0.106	0.0063	0.3745	0.0532	0.0783	0 2486	0.5112	1.9647	
2850000	24000	600	39900	525	56700	0.0044	20204	26000	11000	0.5559	0.0001	0.0305	0 1059	0.0063	0 3737	0.0531	0.0783	0 2445	0 5114	1 9598	
2850000	24000	600	39900	525	56700	0.00462	20204	26000	11000	0.5263	0.0001	0.0245	0.102	0.0065	0.3167	0.0512	0.0796	0.253?	0.5048	1.8649	
2850000	24000	600	39900	525	56700	0.00462	21214	26000	11000	0.8121	0.0002	0.1008	0.1371	0.0046	0.9863	0.0684	0.0686	0.1534	0.5637	2.8953	
2850000	24000	600	39900	525	56700	0.00462	19194	26000	11000	1.488	1.9E-05	0.0011	0.052	0.0366	0.1016	0.0678	0.0121	0.7549	0.3122	2.8263 err	or
2850000	24000	600	39900	525	56700	0.00462	19200	26000	11000	0.2474	0.0002	0.0027	0.0678	0.0096	0.0059	0.0331	0.0937	0.4586	0.4281	1.3472	
2850000	24000	600	39900	525	56700	0.00462	19200	24700	11000	0.2476	0.0002	0.0027	0.0678	0.0096	0.006	0.0331	0.0937	0.4577	0.4282	1.3466	
2850000	24000	600	39900	525	56700	0.00462	19200	24700	10450	0.2434	0.0002	0.0027	0.0666	0.0093	0.0057	0.033	0.094	0.4719	0.4268	1.3536	
2850000	24000	. 600	- 39900	525	56700	0.00462	19200	24700	11450	0.2473	0.0002	0.003	0,0685	0.0082	0.0058	0.0322	0.0951	0.3973	0.4331	1 2906 Ba	se B3
2700000	24000	600	41800	500	59400	0.00484	18200	23400	11900	0.34	0.0001	0.0402	0.0517	0.0273	0.0661	0.0506	0.1203	0.1794	0.5887	1.4646 PA	TTERN MOVE
2780000	24000	600	41800	500	59400	0.00484	18200	23400	11900	0.3434	0.0001	0.0403	0.0517	0.0275	0.0658	0.0507	0.1198	0.1758	0.5884	1.4636	
2780000	24720	600	41800	500	59400	0.00484	18200	23400	11900	0.3348	0.0003	0.0402	0.0514	0.0268	0.0673	0.0506	0.1211	0.1914	0.589	1.4727	
2780000	23280	600	41800	500	59400	0.00484	18200	23400	11900	0.3291	0.0003	0.0403	0.0517	0.0264	0.0689	0.05	0.1224	0.1746	0.5905	1.4543	
2780000	23280	618	41800	500	59400	0.00484	18200	23400	11900	0.3226	0.0002	0.0414	0.0512	0.0265	0.0734	0.0487	0.1204	0.1865	0.5786	1.4497	
2780000	23280	618	39700	500	59400	0.00484	18200	23400	11900	1.7497	1.9E-05	0.0625	0.0253	0.0515	0.1121	0.0417	0.0055	0.4982	0.193	2.7395 err	or
2780000	23280	618	43054	500	59400	0.00484	18200	23400	11900	0.7079	0.0002	0.0216	0.0626	0.0405	0.0049	0.0874	0.1282	0.0009	0.8137	1.8679	
2780000	23280	618	39900	500	59400	0.00484	18200	23400	11900	0.0496	0.0002	0.0656	0.0398	0.0126	0.292	0.0154	0.1102	0.6557	0.3359	1.5769	
2780000	23280	618	41800	475	59400	0.00484	18200	23400	11900	0.3237	0.0002	0.0415	0.0511	0.0265	0.0735	0.0491	0.1197	0.2073	0.5765	1.469	
2780000	23280	618	41800	. 525	59400	0.00484	18200	. 23400	11900	0.3237	0.0002	0.0415	0.0511	0.0265	0.0735	0.0491	0.1197	0.2074	0.5765	1.4691	
2780000	23280	618	41800	500	56700	0.00484	18200	23400	11900	0.3233	0.0002	0.0415	0.0512	0.0265	0.0734	0.0487	0.1203	0.1861	0.5785	1.4497	
2780000	23280	618	41800	500	62100	0.00484	18200	23400	11900	0.3231	0.0002	0.0415	0.0511	0.0265	0.0735	0.0491	0.1198	0.208	0.5765	1.4692	
2780000	23280	618	41800	500	59400	0.00462	18200	23400	11900	0.3337	0.0003	0.037	0.0524	0.0251	0.0604	0.0496	0.1207	0.1676	0.5864	1.4332	
2780000	23280	618	41800	500	59400	0.00462	17290	23400	11900	0.1824	0.0049	0.0805	0.0428	0.0293	0.2378	0.0387	0.1371	0.326	0.5408	1.6203	
2780000	23280	618	41800	500	59400	0.00462	19200	23400	11900	0.5309	0.0003	0.0042	0.0683	0.0214	0.0198	0.064	0.1104	0.0795	0.6475	1.5464	
2780000	23280	618	41800	500	59400	0.00462	18200	24700	11900	0.3402	0.0001	0.037	0.0525	0.0263	0.0578	0.0501	0.1192	0.1777	0.5839	1.4449	
2780000	23280	618	41800	500	59400	0.00462	18200	24700	11450	0.3451	0.0001	0.037	0.0529	0.0264	0.0579	0.0499	0.1187	0.1586	0.5848	1.4313	
P. Index to	oo large.	Will not	make pat	tem mor	ve. Colla	pse back to	old base	e B3.													
+/-30000	+/-500	+/-10	+/-400	+/-10	+/-600	+/-4E-5	+/-200	+/-300	+/-100	Choose	new incr	ements.									
2850000	24000	600.	39900	525	56700	0.00462	19200	24700	11450	0 2473	.0,0002	0.003	0.0685	0.0082	0.0058	0.0322	0.0951	0 3973	0.4331	1 2906 Ba	se B3
2800000	24000	600	39900	525	56700	0.00462	19200	24700	11450	0.251	0.0001	0.0027	0.0678	0.0094	0.0057	0.033	0.0936	0.4375	0.4293	1.3301	
2900000	24000	600	39900	525	56700	0.00462	19200	24700	11450	0.2525	0.0001	0.0027	0.0678	0.0095	0.0058	0.0331	0.0932	0.4432	0.4288	1.3368	
2850000	24500	600	39900	525	56700	0.00462	19200	24700	11450	0.25565	7.7E-05	0.00268	0.0678	0.00954	0.00614	0.03365	0.09307	0.42244	0.42986	1.3203	
2850000	23500	600	39900	525	56700	0.00462	19200	24700	11450	0.25033	0.00015	0.00271	0.06782	0.00953	0.00607	0.03301	0.09368	0.44387	0.42901	1.3362	
2850000	24000	600	39900	525	56700	0.00462	19200	24700	11450	0.23939	0.00041	0.00274	0.0675	0.00929	0.00587	0.0327	0.09541	0.45389	0.42964	1.33685 Ba	se B3
2820000	24500	600	39900	525	56700	0.00462	19200	24700	11450	0.2576	6.1E-05	0.00269	0.06801	0.00921	0.00561	0.03294	0.09288	0.40965	0.43048	1.30914	
2820000	24500	590	39900	525	56700	0.00462	19200	24700	11450	0.25788	8.4E-05	0.00284	0.06805	0.00916	0.00592	0.03311	0.09383	0.40039	0.43431	1.30556	

142

Kinetic Parameters

			AE = Acti	vation Er	nergy R	C = Rate C	constant				Norma	alized E	Errors	Norm	alized E	Errors	Norma	alized E	Errors		
RC #1	AE #1	RC #2	AE #2	RC #3	AE #3	RC #4	AE #4	RC#5/10	AE #5	Coal FD	C Conv	H2	co	CO2	CH4	RG Mas	RG H2	RG Te	Stm Util	P Index	
						-		-				-				-		-		es succes	
2820000	24500	610	39900	525	56700	0.00462	19200	24700	11450	0.25805	8E-05	0.00259	0.06776	0.00951	0.00588	0.03281	0.09296	0.44363	0.42628	1.33956	
2820000	24500	590	39500	525	56700	0.00462	19200	24700	11450	0.22466	7.2E-05	0.00212	0.06841	0.00802	0.00581	0.02941	0.09059	0.47699	0.40208	1.30815	
2820000	24500	590	41300	525	56700	0.00462	19200	24700	11450	0.46153	6.5E-05	0.0042	0.0683	0.01814	0.01336	0.05484	0.10565	0.1123	0.592	1.43039	wrong value
2820000	24500	590	40300	525	56700	0.00462	19200	24700	11450	0.30159	6.9E-05	0.00328	0.06722	0.01198	0.00694	0.03878	0.09608	0.37252	0.46792	1.36638	
2820000	24500	590	39900	530	56700	0.00462	19200	24700	11450	0.25788	8.4E-05	0.00284	0.06805	0.00916	0.00592	0.03311	0.09383	0.40042	0.43431	1.3056	
2820000	24500	590	39900	515	56700	0.00462	19200	24700	11450	0.25788	8.4E-05	0.00284	0.06805	0.00916	0.00592	0.03311	0.09383	0.40033	0.43432	1.30552	
2820000	24500	590	39900	515	56100	0.00462	19200	24700	11450	0.25786	8.4E-05	0.00284	0.06806	0.00917	0.00593	0.03312	0.09382	0.40107	0.43428	1.30622	
2820000	24500	590	39900	515	57300	0.00462	19200	24700	11450	0.25789	8.4E-05	0.00284	0.06805	0.00915	0.00592	0.0331	0.09383	0.39975	0.43435	1.30497	
2820000	24500	590	39900	515	57300	0.00466	19200	24700	11450	0.25369	8.2E-05	0.00316	0.06753	0.0092	0.9053	0.03276	0.09411	0.40049	0.43301	1.29932	
2820000	24500	590	39900	515	57300	0.00466	19000	24700	11450	0.20932	5.2E-05	0.00819	0.06137	0.01054	0.00902	0.02982	0.0962	0.46929	0.41447	1.30829	
2820000	24500	590	39900	515	57300	0.00466	19400	24700	11450	0.30548	6.3E-05	0.00102	0.07344	0.00932	0.02479	0.03696	0.09024	0.39894	0.44602	1.38628	
2820000	24500	590	39900	515	57300	0.00466	19200	24400	11450	0.25372	7.5E-05	0.00306	0.06733	0.00951	0.00527	0.03302	0.09382	0.41708	0.43183	1.3147	
2820000	24500	590	39900	515	57300	0.00466	19200	25000	11450	0.25323	7.4E-05	0.00306	0.06738	0.0095	0.00527	0.03293	0.09398	0.41108	0.43217	1.30868	
2820000	24500	590	39902	515	57300	0.00466	19200	24700	11350	0,25682	5.7E-05	0.00308	0.06809	0.00917	0.00398	-0.0322	0.09438	0.33812	0 43551	1.2412	Base B4
2760000	24500	590	39900	515	57300	0.00466	19200	24700	11350	0.25654	5.3E-05	0.003	0.06733	85600.0	0.00516	0.03324	0.09315	0.42203	0.43075	1.32112	Pattern move
2880000	24500	590	39900	515	57300	0.00466	19200	24700	11350	0.25664	5.9E-05	0.00308	0.0681	0.00915	0.00391	0.03222	0.09433	0.34007	0.43541	1.24296	
2820000	25500	590	39900	515	57300	0.00466	19200	24700	11350	0.25766	5.7E-05	0.00299	0.06733	0.00962	0.00515	0.03308	0.09343	0.40258	0.43236	1.30425	
2820000	23500	590	39900	515	57300	0.00466	19200	24700	11350	0.25521	7E-05	0.00307	0.06789	0.00963	0.00433	0.03276	0.09371	0.39201	0.43216	1.29084	· · · · ·
2820000	24500	580	39900	515	57300	0.00466	19200	24700	11350	0.25655	7.4E-05	0.0031	0.06718	0.00986	0.0054	0.0337	0.09378	0.43621	0.43337	1.33923	
2820000	24500	610	39900	515	57300	0.00466	19200	24700	11350	0.24493	6E-05	0.0029	0.06338	0.00964	0.00554	0.03346	0.09238	0.51701	0.42108	1.39039	
2820000	24500	590	39900	535	57300	0.00466	19200	24700	11350	0.24684	0.00023	0.00307	0.06761	0.00936	0.004	0.03248	0.09515	0.39366	0.43311	1.28552	•
2820000	24500	690	39900	495	57300	0.00466	19200	24700	11350	0.24684	0.00023	Q.00307	0.06761	0.00936	. 0.004	0.03248	0.09516	0.3935	0.43311	1.28537	
2820000	24500	590	39900	515	58500	0.00466	19200	24700	11350	0.24687	0.00023	0.00307	0.06761	0.00935	0.004	0.03247	0.09516	0.39276	0.43315	1.28468	
2820000	24500	590	39900	515	56100	0.00466	19200	24700	11350	0.24679	0.00023	0.00307	0.06762	0.00937	0.00401	0.03249	0.09514	0.39493	0.43304	1.2867	
2820000	24500	590	39900	515	57300	0.00462	19200	24700	11350	0.25159	0.00025	0.00272	0.06809	0.00951	0.00475	0.03303	0.09455	0.40826	0.43356	1.30631	
2820000	24500	590	39900	515	57300	0.0047	19200	24700	11350	0.24364	0.0002	0.00341	0.06722	0.00933	0.00348	0.0321	0.09544	0.38999	0.43207	1.27688	
2820000	24500	590	39900	515	57300	0.00466	19200	24700	11150	0.24761	0.00018	0.00398	0.06953	0.00691	0.00834	0.03077	0.09731	0.3304	0.44237	1.23741	
2820000	24500	590	39900	515	57300	0.00466	19200	24700	11350	0.24684	0.00023	0.00307	0.06761	0.00936	0.004	0.03248	0.09516	0.39358	0.43311	1.28544	B4 (Diff Tol Spec)
2820000	24500	590	39900	495	58500	0.0047	19200	24700	11150	0.24207	0.00028	0.00314	0.06049	0.01054	0.0045	0.03561	0.09327	0.58524	0.4226	1.45775	
2820000	24500	590	39900	495	58500	0.00466	19200	24700	11350	0.24687	0.00023	0.00307	0.06761	0.00935	0.004	0.03247	0.09516	0.39271	0.43316	1.28463	
2820000	24500	590	39900	495	58500	0.00462	19200	24700	11350	0.25162	0.00025	0.00271	0.06806	0.00958	0.00477	0.03307	0.0945	0.41079	0.43336	1.30871	
2820000	24500	590	39900	495	58500	0.00466		. 24700	11150	024763	0.00018	0 00398	0.06953.	0.0069	0.00835	0.03076	0.09732	0 32953	0.44243	1 23666	Base B5
+/-30000	+/-500	+/-10	+/-400	+/-10	+/-600	+/-4E-5	+/-200	+/-300	+/-100												

																					HOUKE
2820000	24500	590	39920	495	58500	- C.CO466	19200	24700	11150	025783	0.00019	-0.00333	0.0690	0:01013	0.00516	0.0344	0.09265	0.40283	0.43024	1.30215	Base B
2850000	24500	590	39900	.495	58500	0.00466	19200-	24700	11150	0/26172	0.00013	0.00333	0.07073	0.01013	0 00512	0 03328	.0 09364	0 29615	0 43655	1 21078	Base B6
2850000	24000	590	39900	495	58500	0.00466	19200	24700	11150	0.26254	0.00024	0.00431	0.07248	0.00742	0.00812	0.0318	0.09477	0.29366	0.4429	1.21823	
2850000	25000	590	39900	495	58500	0.00466	19200	24700	11150	0.25763	0.0002	0.00426	0.07197	0.00746	0.00839	0.03218	0.0952	0.31847	0.44184	1.23762	
2850000	24500	580	39900	495	58500	0.00466	19200	24700	11150	0.26552	9.7E-05	0.00334	0.0702	0.01062	0.00537	0.03494	0.09229	0.38788	0.43359	1.30385	

Kinetic Parameters

· .:

			AE = Act	ivation E	nergy RO	C = Rate C	onstant				Norma	alized E	rrors	Norm	alized l	Errors	Norma	alized	rrors		
RC #1	AE #1	RC #2	AE #2	RC #3	AE #3	RC #4	AE #4	RC#5/10	AE #5	Coal FD	C Conv	H2	CO	CO2	CH4	RG Ma	s RG H2	RG Te	Stm Util	P Index	
						-				-			-								
2850000	24500	600	39900	495	58500	0.00466	19200	24700	11150	0.25686	0.00017	0.00326	0.06988	0.01019	0.00563	0.03449	0.09146	0.44168	0.42571	1.33932	
2850000	24500	590	39500	495	58500	0.00466	19200	24700	11150	0.221	0.00027	(1.00264	0.07054	0.0086	0.00509	0.03022	0.09034	.0.46271	0.40006	1.29145	
2850000	24500	590	40300	495	. 58500	0.00466	19200	24700	11150	0.30954	7.1E-05	0.0039	0.06951	0.01279	0.00593	0.03995	0.0943	0.33478	0.46613	1.3369	
2850000	24500	590	39900	485	58500	0.00466	19200	.24700	11150	0.25785	0.0002	0.00337	0.07063	0.00995	0.00517	0.03318	0.09419	0.30217	0.43661	1.21333	
2850000	24500	590	39900	505	58500	0.00466	19200	24700	11150	0.25785	0.0002	0.00337	0.07063	0.00995	0.00518	0.03318	0.09419	0.3022	0.43661	1.21336	
2850000	24500	590	39900	495	57900	0.00466	19200	24700	11150	0.25785	0.0002	0.00337	0.07063	0.00995	0.00517	0.03318	0.09419	0.30211	0.43661	1.21326	
2850000	24500	590	39900	495	59100	0.00466	19200	24700	11150	0.25703	0.00022	0.00337	0.07058	0.009999	0.00517	0.03321	0.09426	0.30003	0.43641	1.21626	
2850000	24500	590	30900	495	58500	0.00462	19200	24700	11150	0.26308	0.0002	0.00304	0.07058	0.01002	0.00592	0.03473	0.0923	0.39561	0.43215	1.30763	
2850000	24500	590	39900	495	58500	0.0047	19200	24700	11150	0.25223	0.00024	0.00372	0.06934	0.01003	0.00485	0.03391	0.09318	0.39715	0.42995	1.2946	
2850000	24500	590	39900	495	58500	0.00466	19400	24700	11150	0.30935	0.00021	0.00116	0.07629	0.00936	0.02231	0.03797	0.03965	0.35449	0.44696	1.34775	
									-												
2850000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.26172	0.00013	0.00333	0.07073	0.01013	0.00512	0.03328	0.09364	0.29615	0.43655	1.21078	Base B6 - Hooke
2850000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.24358	0.0004	0.00404	0.0693	0.00674	0.00864	0.03067	0.09773	0.35459	0.44207	1.25775	Case-Study
2880000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.24568	0.00033	0.00404	0.0694	0.00673	0.00868	0.03067	0.09747	0.3506	0.44231	1.25591	Temporary Head
2910000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.24361	0.0004	0.00404	0.0694	0.00679	0.00872	0.0304	0.09806	0.33211	0.44337	1.23689	
										Temperat	tures are a	bnormal?	?								
2850000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.26362	9.7E-05	0.00333	0.07085	0.0101	J.C0508	0.03316	0.09356	0.28092	0.43736	1.19799	Hooke
2850000	24500	590	39900	495	58500	0.00466	19200	24700	11150	0.24467	0.00038	0.00404	0.06949	0.00672	0.00862	0.03027	0.09813	0.31691	0.44409	1.22329	Case

*These runs were made after adjusting plant data.

Kinetic Parameters

					AE = Act	ivation E	nergy R	C = Rate C	constant				Weight	ted Fra	ctional	Errors		Weigh	ted Fra	ctional	Errors		
		RC #1	AE #1	RC #2	AE #2	RC #3	AE #3	RC #4	AE #4	RC#5/10	AE #5	Coal FD	C Conv	H2	CO	CO2	CH4	RG Mas	RG H2	RG Te	Stm Util	P Index	
						-				-		-				-			-	-			
•	 	+/-90000	+/-500	+/-20	+/-600	+/-15	+/-1000	+/-14E-5	+/-400	+/-900	+/-250												
		2850000	2:500	500	39000	295	58500	0000	10200	21700	11950	- n = 1-7	. 00053		0 1125	00745	0.0389	:0 1219	021215	1 0948	0 567	2.98462	Base B6
		2850000	24500	590	39900	495	58500	0.00466	19200	25000	11150	-0.7467	-0.0053	-0.0083	-0.1106	0.07389	-0.038	-0.1219	0.21255	-1.0923	-0.5674	2.97691	
		2850000	24500	590	39900	495	58500	0.0047	19200	25000	11150	-0.7027	-0.0086	-0.0125	-0.0638	0.05434	-0.0331	-0.1194	0.21484	-1.0S13	-0.5609	2.86147	
		2850000	24500	590	39900	510	58500	0.0047	19200	25000	11150	-0.7027	-0.0086	-0.0125	-0.0638	0.05434	-0.0331	-0.1194	0.21484	-1.0914	-0.5609	2.86153	
		2850000	24500	600	39900	510	58500	0.0047	19200	25000	11150	-0.6858	-0.0083	-0.0114	-0.0413	0.04411	-0.0376	-0.118	0.21422	-1.098	-0.5554	2.91433	
		2950000	24500	600	39900	510	58500	0.0047	19200	25000	11150	-0.6815	-0.0125	-0.0113	-0.0407	0.04487	-0.0395	-0.1182	0.21428	-1.1327	-0.5545	2.85004	
		2750000	24500	600	39900	510	58500	0.0047	19200	25000	11150	-0.6865	-0.0088	-0.0117	-0.0417	0.04325	-0.0355	-0.1177	0.21452	-1.0723	-0.5562	2.78804	
		2650000	24500	610	39900	. 525	58500	0 00474	19200	25300	11150	0'6789.	0.0038	0015	-0.0411	0.04302	0.0245	-0.1167	0.21373	1.0783	0.5527	2.7677	Base B7 +
		2650000	24500	610	39900	525	58500	0.00474	19200	25800	11150	-0.659	-0.0087	-0.0149	-0.018	0.03324	-0.0285	-0.1157	0.21469	-1.0876	-0.5496	2.7299	
		2650000	24500	610	39900	525	58500	0.00474	19200	25800	11400	-0.6551	-0.0125	-0.0146	-0.0171	0.05392	-0.0308	-0.116	0.21477	-1.1225	-0.5488	2.76618	
		2650000	24500	610	39900	525	58500	0.00474	19200	25800	10900	-0.6632	-0.0047	-0.0149	-0.0185	0.03327	-0.0281	-0.1157	0.21422	-1.0729	-0.5498	2.71528	
		2650000	24500	610	39900	525	58500	0.00474	19000	25800	10900	-0.5877	0.00367	-0.061	0.01077	0.0342	0.08734	-0.1105	0.21365	-1.1879	-0.5298	2.82647	
		2650000	24500	610	39900	525	58500	0.00474	19400	25800	10900	-0.7501	-0.0048	0.03311	-0.0329	0.03038	-0.1565	-0.1215	0.20961	-1.027	-0.5625	2.9285	
		2650000	24500	610	39900	525	58800	0.00474	19200	25800	10900	-0.6632	-0.0047	-0.0149	-0.0185	0.03327	-0.0281	-0.1157	0.21422	-1.0726	-0.5498	2.71507	0. 00
		2650000	24500	610	39600	525	58800	0.00474	19200	25800	10900.	0.6129	-0.0049	-0.0088	0.0229	0.02498	-9.0219	-0.1104	0.21157	111185	-0.532	2.66887	Base BB
		2650000	24800	610	39600	525	58800	0.00474	19200	25800	10900	-0.6074	-0.0081	-0.0074	-0.0203	0.02949	-0.0343	-0.1121	0.21009	-1.25//	-0.5278	2.81467	
		2650000	24200	610	39600	525	58800	0.004/4	19200	25800	10900	-0.6153	-0.0049	-0.0078	-0.021	0.02904	-0.0319	-0.1118	0.20906	-1.2248	-0.5283	2.78413	Tillerd
		2650000	24200	610	39300	525	59100	0.00474	19200	26300	10650	-0.5689	-0.0072	-0.0004	-0.0251	0.02216	-0.0325	-0.1074	0.206/3	-1.2867	-0.5115	2.70508	I. Head
		2650000	24200	610	39300	525	59100	0.00474	19200	26800	10650	-0.5599	-0.0134	9E-05	-0.0309	0.02597	-0.0:346	-0.10/9	0.20/13	-1.3456	-0.5101	2.83565	
		2650000	24200	610	39300	525	59100	0.004/4	19200	25800	10650	-0.5769	-0.0048	0.00022	-0.03//	0.02874	-0.0338	-0.1082	0.20556	-1.3201	-0.5112	2.82/30	
		2650000	24200	610	39300	525	59100	0.00478	19200	26300	10650	-0.5785	-0.0061	-0.0057	-0.0474	0.03024	-0.0114	-0.1071	0.20129	-1.2389	-0.515	2.14/18	
		2650000	24200	610	39000	525	59100	0.00478	19200	26300	10650	-0.5463	-0.0041	0.00324	-0.0408	0.02068	-0.0218	-0.1032	0.20227	-1.299	-0.49/2	2./3851	
		2650000	23900	610	39000	525	59100	0.00478	19200	25300	10650	-0.5368	-0.0101	0.00381	-0.0391	0.02305	-0.0278	-0.1041	0.20219	-1.3/64	-0.4946	2.81798	
		2650000	24500	610	39000	525	59100	0.00478	19200	26300	10650	-0.5468	-0.0047	0.00428	-0.0499	0.02701	-0.0271	-0.1046	0.20253	-1.35/4	-0.4978	2.02213	0.00
		2700000	24200	610	05066	525	59100	0.00478	100000	20500	10050	0.5455	0.0100	0.0045	0.0523	0.02120	0.0220	0 1027	0.20529	1 2510	0.5029	2400101	Base By
		2/0000	24200	620	39000	525	59100	0.00478	19200	. 20300	10050	0.5332	-0.0106	0.0045	-0.0502	0.02400	-0.0239	-0.1037	0.20030	1 2470	0.49/2	2.00304	
		2/0000	24200	600	39000	525	59100	0.00478	19200	20300	10000	-0.5199	-0.0119	0.00085	-0.052	0.02109	-0.000	0.1025	0.20940	1 0147	0.5047	2.0701	
		2700000	24200	610	39000	535	59100	0.00478	19200	26300	10650	-0.5455	0.0041	0.00213	-0.0523	0.02120	-0.0111	-0.1024	0.23529	1 2146	0.5029	2.00179	
		270000	24200	610	20000	525	59300	0.00478	19200	26300	10650	-0.5435	0.0041	0.00213	-0.0523	0.02120	-0.1647	-0.1024	0 19707	-1 2295	-0.5129	3 00141	
		270000	24200	010	35000	625	50100	0.00470	10100	20000	10050	0.00	0.00009	0.00702	0.0004	0.00050	0.040		0.20475	1 3300	0 4999	2 75822	
		2/0000	24200	610	39000	525	50100	0.00478	10200	20300	10000	0.4934	-0.0045	0.0236	-0.0517	0.02230	-0.0119	-0.1	0.20475	.1 2412	-0 5025	2.68681	
		270000	24200	610	39000	525	59100	0.00478	19200	26300	10500	-0.5441	0.00172	0.00251	-0.0523	0.02288	-0.0144	-0.103	0.20493	-1.2512	-0.5018	2 69887	
		210000	24200	010	33000	JEJ	33100	0.00470	136.00	2000	10000	0.0441	0.00112	0.00001	0.00000	a.ampres	0.0111	0.100	0.20100		0.0010		

				Kineti	c Paran	neters															
			AE = Ac	tivation	Energy	RC = R	ate Cons	stant			Norma	alized E	Frors	Norm	alized	Errors	Norma	lized	Errors		
RC #1	AE #1	RC #	AE #2	RC#	AE #3	RC #4	AE #4	RC#5/1	AE #5	Coal F	C Con	H2	co	002	CH4	RG Ma	RG H2	RGT	e Stm Util	P Index	
		====																			
+/-5000	+/-500	+/-10	+/-800	+/-10	+/-1000	+/-5E-5	+/-400	+/-500	+/-200	10	10	10	10	10	10	10	10				
2800000	25000	600	100000	520	57000	0.00465	- 19200	23500	111400	325927	0 00013	0.00006	0 13376	0.02645	0.01206	0.31409	0.31292	1	0	1.08875	Base A1
2850000	25000	600	40000	520	57000	0.00465	19200	24500	11400	0.25779	0.00017	0.00617	0.13395	0.0196	0.01114	0.34212	0.31413	C	0	1 08506	
2850000	25500	600	40000	520	57000	0.00465	19200	24500	11400	0.25181	0.00027	0.00601	0.13396	0.01976	0.01046	0.33748	0.31886	0	0	1.07864	
2850000	25500	590	40000	520	57000	0.00465	19200	24500	11400	0.25686	0.00028	0.00614	0.1343	0.01989	0.00979	0.34003	0.31955	0	0	1.08683	
2850000	25500	610	40000	520	57000	0.00465	19200	24500	11400	0.25735	0.00011	0.00592	0.13403	0.01972	0.01188	0.33746	0.31302	0	0	1.0795	
2850000	25500	600	39200	520	57000	0.00465	19200	24500	11400	0.19675	0.0002	0.00371	0.1364	0.01342	0.01121	0.26353	0.29608	0	0	0.92328	
2850000	25500	600	39200	530	57000	0.00465	19200	24500	11400	0.19675	0.0002	0.00371	0.1364	0.01342	0.01121	0.26354	0.29807	0	0	0.9233	
2850000	25500	600	39200	510	57000	0.00465	19200	24500	11400	0.19675	0.0002	0.0.371	0.1364	0.01341	0.0112	0.26353	0.29808	0	0	0.92328	
2850000	25500	600	39200	510	56000	0.00465	19200	24500	11400	0.19674	0.0002	0.00346	0.1357	0.01517	0.01223	0.27032	0.29546	0	0	0.92928	
2850000	25500	600	39200	510	58000	0.00465	19200	24500	11400	0.19675	0.0002	0.00371	0.13639	0.0134	0.0112	0.26344	0.2981	0	0	0.92318	
2850000	25500	600	39200	510	58000	0.0047	19200	24500	11400	0.19283	0.00014	0.00424	0.13498	0.01421	0.00946	0.26246	0.29747	0	0	0.91578	
2850000	25500	600	39200	510	58000	0.0047	19600	24500	11400	0.2953?	0.00013	0.00757	0.16279	0.01269	0.14908	0.33921	0.27574	0	0	1.24256	
2850000	25500	600	39200	510	58000	0.0047	18800	24500	11400	0.10948	0.00013	0.03097	0.10924	0.01623	0.09036	0.19454	0.31853	0	0	0.86949	
2850000	25500	600	39200	510	58000	0.0047	18800	25000	11400	0.10401	0.0003	0.03052	0.09389	0.01466	0.08092	0.1962	0.32227	0	0	0.84275	
2850000	25500	600	39200-	510	56000	0.0047	18800	25000	11200	0 10645	0.0002	0.02816	0.07645	001274	-0.04748	0.21282	0.31745	0	Ö •	0.80177 E	ase A2
2900000	26000	600	38400	500	59000	0.00475	18400	25500	11000	0.02194	0.00016	0.08759	0.08403	0.01282	0.45234	0.06899	0.33124	0	0	1.07912 7	emporary Head
2950000	26000	600	38400	500	59000	0.00475	18400	25500	11000	0.02121	6.0002	0.08752	0.0836	0.01358	0.44431	0.09069	0.33052	0	0	1.07162	
2950000	26500	600	38400	500	59000	0.00475	18400	25500	11000	0.02197	0.00023	0.06678	0.08328	0.01383	0.43683	0.09044	0.33114	0	0	1.06448	
2950000	26500	610	38400	500	:9000	0.00475	18400	25500	11000	0.02223	0.00013	0.08679	0.08284	0.0131	0.44324	0.08991	0.32819	0	0	1.06643	
2950000	26500	590	38400	500	59000	0.00475	18400	25500	11000	0.02367	0,00012	0.0872	0.08304	0.01351	0.44133	0.09314	0.32843	0	0	1.07044	
2950000	26500	600	37600	500	59000	0.00475	18400	25500	11000	Q.01466	8.9E-05	0.08043	0.08143	0.01039	0.43348	0.06948	0.31979	0	• 0	1.00974	
2950000	26500	600	37600	510	59000	0.00475	18400	25500	11000	0.01466	8.9E-05	0.08043	0.08143	0.01039	0.43347	0.06947	0.31978	0	0	1.00972 *	
2950000	26500	600	37600	500	60000	0.00475	18400	25500	11000	0.01467	8.7E-05	0.08043	0.081.13	0.01039	0.43355	0.06937	0.31989	0	0	1.0098	
2950000	26500	600	37600	510	60000	0.00475	18400	25500	11000	0.01467	8.8E-05	0.08043	0.08143	0.01039	0.43353	0.06937	0.31988	0	0	1.00978	
2950000	26500	600	37600	500	58000	0.00475	18400	25500	11000	0.01464	9.1E-05	0.08044	0.08147	0.01034	0.43414	0.06939	0.3199	0	0	1.01042	
2950000	26500	600	37600	500	59000	0.0048	18400	25500	11000	0.01292	0.00013	0.08455	0.0795	0.01063	0.45743	0.0683	0.32074	0	0	1.03419	
2950000	26500	600	37600	ŧω	59000	0.0047	18400	25500	11000	0.01605	0.00013	0.07663	0.08285	0.00961	0.41643	0.07088	0.3208	0	0	0.99339	
2950000	26500	600	37600	500	59000	0.0047	18000	25500	11000	0.0038	0.00017	0.17076	0.06027	0.01251	1.02119	0.0313	0.34455	0	0	1.64456	
2950000	26500	500	37600	500	59000	0.0047	18800	25500	11000	0.06793	0.00015	0.01986	0.10753	0.00878	0.0707	0.13285	0.29589	0	0	0.70369	
2950000	26500	600	37600	500	59000	0.0047	18800	25000	11000	0.06732	0.00019	0.01996	0.10816	0.00828	0.07387	0.13024	0.29793	0	0	0.70596	
2950000	26500	600	37600	500	59000	0.0047	18800	26000	11000	0.06754	0.00016	0.0199	0.10789	0.0086P	0.07136	0.12975	0.29805	0	0	0.70333	
2950000	26500.	600	37600	500	. 59000	0.0047	18800	-26000-	11200	-0.06718	0.00018	0.01972	0.10749	0.00906	0.06885	0.13282	0:29672	0	0	0.70202 8	ase A3
3050000	27500	600	36000	490	60000	0.0047	18800	27000	11200	0.06999	0.00026	0.01189	0.10276	0.00598	0.03645	0.12785	0.28954	0	0	0.64473	emporary Head
3100000	27500	600	36000	490	60000	0.0047	18800	27000	11200	0.07232	0.00012	0.0119	0.10246	0.00563	0.03818	0.13274	0.28583	0	0	0.64918	
300000	27500	600	36000	490	6000	0.0047	18800	2/000	11200	0.0/304	0.00014	0.01184	0.10284	0.00589	0.03689	0.12947	0.28674	0	0	0.64685	
3050000	28000	600	36000	490	60000	0.0047	18800	27000	11200	0.07485	0.00013	0.01154	0.10265	0.00554	0.036	0.12715	0.2872	0	0	0.64507	
				27 M M																	

TABLE 14. Hooke-Jeeves Searches - Weight Adjustments

TABLE 14 (cont). Hooke-Jeeves Searches - Weight Adjustments

Kinetic Parameters

			AE = Ac	tivation	Energy	RC=F	Rate Con	istant			Norma	alized	Errors	Norma	alized I	Errors	Norma	lized Er	rors		
RC #1	AE #1	RC#	AE #2	RC.#	AE #3	RC #4	AE #4	RC#5/1	AE #5	Coal F	C Con	H2	CO	CO2	CH4	RGM	RGH2	RG Te S	Stm Util	P Index	ĸ
	*****		#1011.000							-	-		-		-						
+/-5000	+/-500	+/-10	+/-800	+/-10	+/-1000	+/-5E-5	+/-400	+/-500	+/-200	10	10	10	10	10	10	10	10				
3050000	27500	610	36000	490	60000	0.0047	18800	27000	11200	0.07296	0.00018	0.01204	0.10386	0.00512	0.0411	0.12273	0.29058	0	0	0.64857	
3050000	27500	590	36000	490	60000	0.0047	18900	27000	11200	0.07407	0.00013	0.01183	0.10318	0.00594	0.03648	0.12854	0.28609	e	0	0.64625	
3050000	27500	600	35200	490	60000	0.0047	18800	27000	11200	0.07602	0.00019	0.00966	0.1008	G:00507	0.02744	0.13047	0,28701	0	0	0.63665	A3b
3050000	27500	600	35200	500	60000	0.0047	18800	27000	11200	0.07602	0.00019	0.00966	0.1008	0.00507	0.02744	0.13047	0.28701	0	0	0.63065	
3050000	27500	600	35200	510	60000	0.0047	18800	27000	11200	0.07602	0:00019	0.00966	0.1008	0.00507	0.02744	0.10047	0.28701	0	0	0.63665	
3050000	27500	600	35200	550	60000	0.0047	18800	27000	11200	0.07602	0.00019	0.00966	0.1008	0.00507	0.02744	0.13048	0.287	0	0	0.63666	
3050000	27500	600	35200	700	60000	0.0047	18800	27000	11200	0.07602	0.00019	0.00966	0.10081	0.00507	0.02743	0.13048	0:287	0	0	0.63666	
3050000	27500	600	35200	350	60000	0.0047	18800	27000	11200	0.07602	0.00019	0.00966	0.10079	0.00507	0.02744	0.13045	0.28701	0	0	0:63662	
3050000	27500	600	35200	100	60000	0.0047	18800	27000	11200	0.07601	0.00019	0.00966	0,10078	0.00507	0.02744	0.13045	0.28701	0	0	0.6366	
3050000	27500	600	35200	490	60000	0.0047	18800	29000	11200	0:07639	0.00019	0.00954	0.10083	0.00521	0.02615	0.12999	0.28718	0	0	0.6355	
3050000	27500	600	35200	490	60000	01447	18800	28000	10800	0.07727	0.00014	0.00976	0.10116	0.00504	0.02801	0.12949	0.28642	0	ø	0.63729	
3050000	27500	600	35200	490	60000	0.0047	18800	28000	11400	0.07528	0.0002	0 00965	0.10078	0.00521	0.02692	0.12966	0.28822	0	0	0.63591	
3050000	,27500,	tant (600)	. 35200			. 0.0047	18800	-= 28000 a	11200	0.07639	0.00019	0.00954.	0.10063	+0.00521	0.02615	0.12996	0.287,19		0	0.63547	
0050000	.27,500	600	35200	490	61000	0.00475	18800	28000	11200	0.07219	0.00018	0.01092	0.09955	0.00514	0.0329	0.12481	0.28888	·0·	. 0 '	0.63457	Base A4
3050000	27500	600	35200	490	61000	0.00475	19200*	28000	11200	0.17217	0.00013	0.00394	0.12655	0.00433	0.05728	0.2092	0.26609	0	0	0.83966	a contra contra contra
3050000	27500	600	35200	490	61000	0.00475	18400	28000	11200	"error"	Does not a	omplete s	inulation.	No errors	iapoited.	See Runid	FAULT.				
3150000	28500	600	32800	480	63000	0.0048	18800	30000	11200	0.01505	0.00024	0.02038	0.03637	0.48826	2:35165	1.80628	0.07083	0	0	4.78904	Temporary Head
"Severe Er	ror** Term	peerature	TooLow	or Devola	dilization. R	G Temp = :	345 F.		**Severe	Error" Te	mpeeratur	e Too Los	w for Devo	atilization	RG Terr	p=345F.		. D	corease Incr	ments.	
+/-20000	+/-200	+/-5	+/-600	+/-5	+/-500	+/-2E-5	+/-200	+/-200	+/-100												
3100000	28000	600	34000	485	62000	0.00477	18800	29000	11200	0.07837	0.00013	0.00876	0.09448	0:0043	0.02316	0.12929	0.28424	0	0	0.62271	Temporary Mead
3100000	. 28000	600	34000	485	\$2000	0.00477	18800	29000	11200	0.07837	0.00013	0.00876	0.09448	0.0043	0.02316	0,12929	0.28424	0	٩	0.62271	Temp Head(tol=.001)
3120000 7	- 28000	600	34000	485.	62000	0:00477	18800 *	29000	- 11200	0.07936	9.2E-05	0.00878	0.09434	0.00436	0.02324	0.13142	0.28211	Ø	0	0.62371	
3080000	28000	600	34000	485	62000	0.00477	18800	29000	11200	0.07882	0.00012	0.00868	0.09434	0.00429	0.02286	0.13028	0.28298	0	0	0.62238	
3080000	27800	600	34000	485	62000	0.00477	18800	29000	11200	0.07275	9.7E-05	0.00879	0.09471	0.00454	0.02254	0.12992	0.28347	0	0	0.62281	
3080000	28206	600	34000	485	62000	0.00477	18800	29000	11200	0:07639	0.0002	0.00875	0.09416	0.00403	0.02379	0.12873	0.28544	0	0	0.62199	
3080000	28200	595	34000	485	62000	0.00477	18900	29000	11200	0.07814	0.00015	0.00869	0.09431	0.00414	0.02309	0.12813	0.28483	0	0	0.62148	
3080000	28200	595	34600	485	62000	0.00477	18800	29000	11200	0.07785	0.0001	0.00976	0.09617	0.00448	0.02829	0.12917	0.2834	0	0	0.62921	
3080000	28200	595	33400	485	62000	0.00477	18800	29000	11200	0.0308	0.00017	0.01971	0.04534	0.4911	2.33491	1.22813	0.14456	0	Q	4.29471	
3080000	28200	595	34000	480	62000	0.00477	18800	29000	11200	0.07814	0.00015	0.00869	0.09431	0.00414	0.02309	0.12813	0.28483	0	0	0.62148	
3080000	28200	595	34000	480	62500	0.00477	18800	29000	11200	0.07814	0.00015	0.00869	0.09431	0.00414	0.02309	0.12813	0.28483	0	0	0.62149	
3080000	28200	595	34000	480	61500	0.00477	18800	29000	11200	0.07814	0.00015	0.00869	0.09432	0.00414	0.02309	0.12814	0.28483	0	0	0.6215	
3080000	28200	595	34000	480	62000	0.00479	18800	29000	11200	0.07714	0.00012	0.00921	0.09368	0.00408	0.02587	0.12797	0.28389	0	0	0.62197	
3080000	28200	595	34000	480	65000	0.00475	18800	29000	11200	0.0817	0.0001	0:00792	0.09472	0.00443	0.01886	0.13234	0.28213	0	0	0.62222	
3080000	28200	595	34000	480	62000	0.00477	19000	29000	11200	0.12607	0,00013	0.00227	0.10709	0:00391	0.0133	0.16986	0,27393	O	0	0.69655	
3080000	28200	595	34000	480	62000	0.00477	18600	29000	11200	0.04244	8.8E-05	0.02516	0.0815	0.00452	0.11042	0.09365	0.29329	0	0	0.65107	
3080000	28200	595	34000	480	62000	0.00477	18800	29200	11200	0.0793	0.00012	0.00872	0.0941	0.00406	0.02357	0.12931	0.2834	0	0	0.62258	
3080000	28200	595	34000	480	62000	0.00477	18800	28800	11200	0.08009	9.8E-05	0.0087	0.09407	0.00417	0.02314	0.12932	0.28296	0	0	0.62254	
3080000	28200	595	34000	480	62000	0.00477	18800	29000	11100	0.07731	0.00017	0.00877	0.09409	0.00409	0.02359	0.12954	0.28456	0	0	0.62212	
_3080000	28200	595)	34000	480	62000	0.00477	18800	29000	11300	0.08052	8.8E-05	0.00868	0.09417	0.004	0.02361	0.12853	0.28339	0	0	0.62298	and all the state of the state
3080000	28200	595	34000	480	62000	0.00477	18800	29000	1 200	007814	0.00015	0.00869	0.09431	0.00414	0 02309	0.12813	0.28483	0	0	0.62148	Base A5

and the second state of th

NC SHALL CHARGE W

TABLE 14 (cont). Hooke-Jeeves Searches - Weight Adjustments, Wet Basis

Kinetic Parameters

AE = Activation Energy RC = Rate Constant Percentage Error Percentage Error Percentage Error RC #1 AE #2 RC # AE #3 RG #4 AE #4 RC#5/1 AE #5 Coal F C Con H2 CO CO2 CH4 RG Ma RG H2 RG Te Stm Util Index ومستحم يحموهم وحمدا بمعودتهم بمعصو بعور والمرمخ فالمخر

3000000	27000	605	- 33600	475	63000	0.00479	18800.	20500	12400	4 2654	0 12825	7 3131	10.602	57164	5 7696	0 4097	8-70924	Z-1140	14 400	1274502 D		38 1029
3000000	27000	605	33600	475	63000	0.00479	18800	21500	12400	4'2577	0 12815	7316	10,602	57197	57600	0 4117	9 70422	7 1070	14 4	10 1500	able total	30,1230
3000000	27000	605	33600	475	63000	0.0048	18800	21500	12400	4.187	0.0972	-7.3602	-10.578	56918	60313	9.5767	8.86363	-9.1211	-14 223	42 7119		
3000000	27000	605	33600	475	63000	0.00465	18800	21500	12400	-4.7587	0.18997	-6.466	-9.8735	-6.2859	-6.082	-8.6019	8,4053	3.80475	-15,209	41.8713		
3000000	27000	625	33600	475	63000	0.00465	18800	21500	12400	4.6426	0.07026	-6.4882	-9.877	-6.3008	-62492	-8 6768	845725	2 60847	-15 196	42 0151		
3000003	27000	585	33600	475	63000	0.00465	18800	21500	12400	4.7737	0.1964	-6.4762	-9.8641	-6.2734	-6.0668	-8.6133	8.40328	3.67045	-15.188	41.8574		
.3000000	27000		33600			0.00465	12800		12400	4.7737	0.1964		9.8641.	-6.2734	-6.0668	8.6133	8.40328	3.67045	-15,188	41.8574 N	o Effect	
3100000	27000	585	33600	500	63000	0.00465	18800	21500	12400	4 7765	0.24163	6 4636	-98718-	6,2846	-5.8997	8 5163	8.36673	4.74773	-15.2744	41.6629 B	2000	36,88636
3200000	27000	565	33600	475	63000	0.00451	18800	22500	12400	5:3599	0.20545	-6:2925	-10.454	26.3345	-6.655	-8.7486	8,51005	6,80103	-15.768	43.6062 T	Head	
3200000	27000	565	33600	475	63000	0.00451	18800	23500	12400	-5.3533	0.20404	6.2965	-10.455	-6,3308	-6.678?	-8.7646	8.51625	6.59545	-15.749	43.6304		
3200000	27000	565	33600	475	63000	0.00451	18800	21500	12400	-5.3669	0.20696	-6.3206	-10.457	-6.3127	-7.1237	-9:0091	8.61442	4.16054	-15.571	44,1957		
3200000	27000	565	33600	475	63000	0.00437	18800	22500	12400	-5.6042	0.10564	-6.1096	-10.66	-6.477	-8216	-9.2727	8,78039	4.01446	-15.787	45.8468		
3200000	27000	565	33600	475	63000	0.00465	18800	22500	12400	4.9342	0.18012	-6.5701	-10.266	-6.1693	6:0846	-8.7646	8.49047	3.36901	-15,304	42.5152		
3200000	27000	565	33600	490	63000	0.00465	18800	22500	12400	4.9342	0.18012	-6.5701	-10.266	6.1693	-6.0845	-8.7046	8.49047-	-3.36901	-15.304	42.5152		
3200000	27000	545	33600	475	63000	0.00465	18800	22500	12400	-4.9048	0.16927	-6.581	-10.263	-6.1712	-5.9497	-8.7058	8.47015	3.84504	-15.337	42.3398		
3300000	27000	545	33600	475		0.00465	18800	22500	at 12400 t	4.5828	0.09137	6.7517_	a10.232	6.124	7.9596	-9.7868	8.956,19	-8.2157	-14.417	44.6065		
S100009	27030	545	33600	. 475 -	63000	0.00465	18800	22500	12400	4.8598	0.11237	-6.5871	10.255/	-6.1784	5.9098	-8.6821	8.46693	3.86777	-15.341	42.2574 B	se.C3	37.3976
3100000	27000	505	33600	475	63000	0.00465	18800	23500	12400	4.7976	0.13016	-6.6227	-10.246	-6.1684	-5.7709	-8,6454	8.45648	3.92025	-15.333	42.062 T.	HEAD	
3104000	27000	505	33600	4/5	63000	0.00465	18800	24500	12400	4.7924	0.12956	-6:5247	-10.246	-6.1652	-5.7731	-8:6485	8.45715	3.84256	-15.324	42.0582		
3100000	27000	505	33600	490	63000	0.00465	18800	24500	12400	-4.7924	0.12956	6.6247	-10.246	-6.1652	-5.7731	8.6485	8.45715	3.84256	-15.324	42.0582		
3100000	27000	505	33600	460	63000	0.00465	18800	24500	12400	4.7924	0.12956	-6.6247	-10.246	-6.1652	-5.7731	-8.6485	8.45715	3.84256	-15.324	42.0582		
3100000	2/000	525	33600	475	63000	0.00465	18800	24500	12400	4.7785	0.11438	-6.6171	-10.256	-6.1757	-5.8758	-8.6829	8.47775	3.51777	-15.312	42.1809		
3100000	27000	485	33600	475	63000	0.00465	18800	24500	12400	4.7504	0.10996	-6.6347	-10.237	-6.1712	-5.5312	-8.5339	8.41524	4.80723	-15.393	41.7392		
2100000	2/000	485	33600	4/5	63000	0.00465	18800	24500	12400	4.8281	0.18977	-6.6364	-10.245	-6.1516	6.1302	-8.841	8.53086	2.06632	-15.193	42.5218		
30000	2/000	485	33600	475	63000	0.00465	18800	24500	12400	4.8129	0.16856	-6.624	-10,238	-6.1616	-5.5834	-8.5629	8.41651	4.76446	-15.384	41.8367		
320000	2/000	485	33600	475	63000	0.00465	18800	24500	12400	-4.8743	0.20213	-6.6494	-10.237	-6.1201	-6.076	8.8509	8.51779	1.95785	-15,16	42.4746		
310000	27000	485	33000	475	63000	0.00451	18800	24500	12400	5.2572	0.19359	s-6.3864	-10.429	6:286	.4-6.8043	8.9166	8.5784	4.40909	-15.556	43.741		
2100000	27,000	425	20000	ATE	62000	10 004001	100001	24300	12400.	-4 2 19	0.21047	0.91.15	-10.09	0.0505	4.7762	-8-4208	837802	2.625	15.061	40.4206 B	ase C4	36.20867
3100000	27000	425	22600	475	62000	0.00493	18800	24500	12400	-3.8518	0.06001	-/.1/20	-9.8292	-5.881	-3.146	-7.9303	8,12403	4.18388	-14.92	38:0046 T.	Head	
3100000	27000	425	33600	475	63000	0.00495	18900	23500	12400	2 0560	0.00 6	7.1837	-9.8302	-5.8/39	-3.242	-7,9854	8.14819	3.50599	-14.866	38.1145		
3100000	27000	125	22600	175	62000	0.00507	10000	24500	12400	0.5401	0.12 200	7.1057	-9.0204	-0.8008	-3.3240	-8.038	8.147.09	3.45331	-14.853	38.211		
3100000	27000	425	33600	500	63000	0.00507	18800	24500	12400	2 5461	0.00021	-7.4057	-9.0413	-5,7211	-2.3305	-7,8043	8.03017	2./16/4	-14.598	36.6749		
3100000	27000	405	- 33600	475	63000	0.00507	18200	24500	12400	36101	0.055216	72062	9.0413	57020	21516	7 7970	7.09777	25502	14.098	30.0749 N	O.Effect	00 00000
3150000	27000	405	33600	475	63000	0.00507	18900	24500	124007	3/1611	0.11227	74202	0 6400	57005	2,1010	7 7652	0.00779	10,7070	14.000	00.5007	158 C-3	32.8/913
3050000	27000	405	33600	475	63000	0.00507	18900	24500	12400	3 2706	0.10422	7,5025	-9.0409	-0.7230	11000	-/./003	0.40246	2.18/0	-14.000	36.508/		
3100000	27000	325	33600	475	63000	0.00535	18800	24500	12400	2 6749	0 17891	8 0013	-9.2207	5 4013	0 22847	-0.0032	7 72696	2 20122	-14 121	30.7739 LU	W temp?	
3100000	27000	225	336.10	475	63000	0.00535	18800	25000	12400	2 4920	0.16703	70100	0.0104	5 6170	O EEOOC	C 0700	7.60070	4.00000	14.121	00.2000 1.	neau	
3100000	27000	325	33600	475	63000	0.00549	18800	25000	12400	-2 0291	0 10252	-8 1603	-86337	-5.3962	1 40610	6 7041	7.50354	2 63264	-19.113	32.03/4		
3100000	27000	325	33600	475	63000	0.00521	18800	25000	12400	2 8879	0 20002	-77192	-8 9818	-56078	0.8987	-7 4024	7.80552	1 6531	-14 112	33,0000		
3100000	27000	325	33600	0	63000	0.00535	18800	25000	12400	-24103	0.12001	79833	-8 7984	-5 4773	-01126	-7 2771	7 74552	-0.4107	-13 771	32 5274		
3100000	27000	305	33600	0	63000	0.00535	18800	25000	12400	-2.032	0.05207	-8.1767	87292	-5:435	-14311	8:0541	8 10272	-94045	-13 045	33 9067		
3100000	27000	345	33600		:63000:	0.00535	18800	25000	12400	2.672	0.25661	-7.8463	-8.8228	5:5088	0.40796	-6.9203	7.572	4.40723	-14 137	32,8299		
3000000	27000	325	33600	Ó Ó	63000	10.00535	18800	25000	12400	2 4284	0.08614	-7 9763	-8 7893	-5 4761	-0.07	-7 2534	773111	-0.163	-13 785	- 324712 R	160 G6	20 04276
2900000	27000	285	33600	0	63000	0.00553	18800	25500	12400	-1.883	0.13348	48,2806	-8:5495	-5.3447	2.20946	-6.4367	7.38771	4'20599	-13.866	33.6548 T	Hoad	31,77186
2900000	27000	285	33600	100	63000	0.00553	18800	25500	12400	-1.883	0.13348	-8.2806	-8.5495	-5.3447	2 20941	-6:4367	738777	4 20661	-13.866	33,655		
2900000	27000	285	33600	100	58000	0.00553	18800	25500	12400	-1.883	0.13358	-8 2804	-8.5499	5.3448	2.21129	6.4359	7.38749	4:21736	-13.867	33,6568		
2900000	27000	285	33600	500	70000	0.00553	18800	25500	12400	-1.883	0.13348	-8:2806	-8:5495	-5.3447	2.20946	6.4367	7.38771	4:20599	-13.866	33,6548		
2900000	27000	285	33600	500	70000	0.00553	18800	26000	12400	-1.8782	0.13187	-8.2834	-8.5487	-5.3424	2,19249	-6.4482	7.39208	4.05909	-13:853	33,6372		

ALTERNAL CONTRACT STRATES

TABLE 14 (cont). Hooke-Jeeves Searches - Weight Adjustments, Wet Basis Kinetic Parameters

			AE = Ac	tivation	Energy	RC = R	ate Cons	stant			Percer	ntage E	rror	Perce	ntage E	Error	Perce	ntage E	Error		
RC #1	AE #1	RC #	AE #2	RC #	AE #3	RC #4	AE #4	RC#5/1	AF #5	Coal F	C Con	H2	00	CO2	CH4	RG Ma	RGH	RGT	Stm 1 Itil	Index	
										ooun	0 0011			OOL	OTH				Genou	in reason	
2900000	27000	225	22600	500	70000	0.00567	10000	20000													
2000000	27000	205	22600	500	70000	0.00507	18600	20000	12400	2.5/615	-2.5583	-9.0933	-8.4602	-5.9/1	3.52144	-5.5512	7.79213	-3.586	-13.646	37.4143	Did Not Converge
290000	27000	285	33600	500	.90000	0.00567	18800	20000	12400	-1:461/	0.08/45	-8.5562	-8.3652	-5.1882	2.66797	-6.5032	7.39228	0.39711	-13.384	33.6315	
2900000	27000	285	33600	500	40000	0.00567	18900	26000	12400	-1.4017	0.08745	-8.0002	-8.3002	-5.1882	2.00/9/	-6.5032	1.39228	0.39/11	-13.384	33.6315	
2900000	27000	285	33600	500	50000	0.00567	19900	20000	12400	1 4005	0.07550	0 5077	0 4700	-3.3/01	1.99020	-10.197	7 45050	4.7903	-10.700	02.11//	
2900000	27000	265	33600	500	70000	0.00567	18800	26000	12400	-1.4000	0.07555	-0.09//	-0.4733	-0.1497	2.4//9/	-0.0322 C 4451	7.40909	-0.8/00	-13.320	33.0448	
2900000	27000	305	33600	500	70000	0.00567	18900	26000	12400	-1 5897	0 19901	-8 5001	-8 3956	-5 1859	2 39997	6 6048	7 41845	0.00947	13 363	33 4788	
2950000	27000	305	33600	500	70000	0.00567	18800	26000	12400	- 1 2668	0:16846	-R 5965	R 4276	5 206	1 92041		7 58080	3 5260	10 104	32 0083	Bace C7
2950000	27000	305	33600	500	70000	0.00567	18800	26000	12400	-2.2154	0.11318	-8.9022	-10.111	-4.7622	0.60048	-8.0602	8.13955	10.3002	-13.322	34,7303	Set Co(vol)=0
2900000	27000	285	33600	500	70000	0.00599	18800	27000	12400	-0.8312	0.09328	-9.0804	-8.333	-4.8357	4.91984	-5.9989	7.15605	0.0405	-13.092	35.1562	T.Head
2900000	27000	285	33600	500	70000	0.00599	18800	27500	12400	-0.8293	0.09338	-9.0803	-8.3326	-4.8346	4.92429	-5.9966	7.15476	0.04236	-13.091	35,1559	
2900000	27000	285	33600	500	70000	0.00599	18800	26500	12400	-0.8341	0.09378	-9.0784	-8.3347	-4.8364	4.9207	-5.9966	7.15511	0.08161	-13.096	35.1594	
2900000	27000	285	33600	500	70000	0.0061	18800	27000	12400	-0.6583	0.18484	-9.2158	-8.2117	4.7395	5.68821	-5.7842	7.03991	0.55062	-12.987	35.5534	
2900000	27000	285	33600	500	70000	0.0059	18800	27000	12400	-1.0261	0.0791	-8.9688	-8.4337	4.8987	4.1537	-6.2556	7.27352	-0.9969	-13.126	34.7545	
2900000	27000	305	33600	500	70000	0.0059	18800	27000	12400	-1.2028	0.22113	-8.8544	-8.4788	-4.9371	4.381	-6.0425	7.17722	2.14483	-13.384	35.0314	
2900000	27000	265	33600	500	70000	0.0059	18800	27000	12400	-1.0892	0.21178	-9.0075	-8.4189	4.8617	4.22971	-6.2847	7.26762	-1.13	-13.092	34.8746	
2950000	27000	285	33600	500	70000	0.0059	18800	27000	12400	-1.0538	0.08182	-8.9851	-8.4228	-4.8742	3.95767	-6.384	7.31374	-2.2835	-13.015	34.6074	
2950000	2/000	285	33600	500	60000	0.0059	18800	27000	12400	-1.0538	0.08182	-8.9854	-8.4237	-4.8742	3.9565	-6.3848	7.31414	-2.288	-13.015	34.6079	
295000	2/000	285	33600	500	80000	0.0059	18800	27000	12400	-1.0538	0.08182	-8.9851	-8.4228	-4.8742	3.95767	-6.384	7.31374	-2.2833	-13.015	34.6074	
2950000	2/000	285	33600	500	80000	0.0059	18800	27000	12800	-1.0796	0.08825	-8.9721	-8.4236	-4.8917	3.98851	-6.3511	7.30416	-1.7428	-13.074	34.6597	
2950000	27000	285	33600	500	80000	0.0059	18800	27000	12000	-1.0032	0.06131	-9.0168	-8.419	-4.8495	3.77265	-6.5093	7.36284	-3.7967	-12.879	34.424	
2950000	27000	285	33000	500	5000	0.0059	18200	2/000	12000	6.28349	0.44175	-15.177	-4.8204	-0.7935	-2.8498	-15.809	10.7464	-29.276	2.08759	40.6702	Did Not Converge
2550000	2/000	285	33600	500	80000	0.0059	18800	27000	12000	-2.1256	0.12454	-9.2283	-10.577	-4.472	4.17511	-6.7683	7.60306	24.6521	-14.155	38.1858	Set Cp(vol)=1
2050000	27000	295	2000	500	20000	0.0050	10000	27000	10000	0.0000	0.00051	0 2055	0.0000	4 0000	0 75700	70	7 70400	10710	10 000	00 0000	
2050000	27000	205	20000	500	00000	0.0059	10000	27000	12000	-0.5303	0.09901	-9.2900	-5.5868	-4.0000	2.15/99	-7.3	1.12409	-12./13	-12.323	33.9832	Selectivity=2
1700000	27000	613	40000	267.0	42000	0.0009	16046	27000	12000	10.7051	0.05/69	-9.3982	-8.68	-4.6066	3.46425	-7.0815	7.622	-11.92	-12.326	34.4/62	Selectivity=1
3000000	27000	325	33600	500	63000	0.00535	18900	25000	12400	13.0003	-3.5/64	-19,491	-3.1/48	2.7035	2 00672	-1.1483	7.57211	-17.141	-9.0019	00.7529	No compression
3000000	27000	325	33600	500	63000	0.00535	18800	25000	12400	6 5000	0.07107	0.0702	7.0642	2 0207	2.00013	10.060	7 10004	12 044	0.0009	33.4282	No convergence
3000000	27000	325	33600	0	63000	0.00535	18900	25000	12400	9.40R4	0.07187	-9.6793	9 7902	5.4761	2.4507	7.2524	7.13204	-13.044	-3.9901	37.0453	Doors CC
		020	06089		00000	0.000000	10000	COUCO.	IL TOO	CONTROL OF	0.000.04	.3103	0,1000	0.4701	-0.01	1.2004	110001	- DC103-	10,100	214115	Dase UD

APPENDIX C

Box-Behnken Simulation Predictions

PERFORMANCE SUMMARY: F022

COAL FEED FLOW RATE	LB/HR	104136.
FIXED CARBON CONVERTED	8	97.2492
PEAK TEMPERATURE	F	2039.49
CONC. OF 02 IN RAW GAS (DRY)	MOL%	.152328E-97
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.382128
CONC. OF CO IN RAW GAS (DRY)	MOL%	.162457
CONC. OF CO2 IN RAW GAS (DRY)	MOL%	.312527
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.117244
RAW GAS MASS FLOW RATE (DRY)	LB/HR	118822.
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.188014E+07
FLOW OF WATER IN RAW GAS	LB/HR	92677.9
RAW GAS TEMPERATURE	F	420.342
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.718234E+07
MASS FLOW OF STEAM PRODUCED	LB/HR	9169.00
OUTLET STEAM TEMPERATURE	F	463.526
REACIOR STEAM UTILIZATION		.420231

PERFORMANCE SUMMARY: F021

COAL FEED FLOW RATE		LB/HR	105508.
FIXED CARBON CONVER	TED	8	97.2679
PEAK TEMPERATURE		F ·	2050.91
CONC. OF 02	N RAW GAS (DRY)	MOL%	.327221E-97
CONC. OF H2	N RAW GAS (DRY)	MOL% .	.381479
CONC. OF CO	N RAW GAS (DRY)	MOL%	.165399
CONC. OF CO2	N RAW GAS (DRY)	MOL%	.309854
CONC. OF CH4	N RAW GAS (DRY)	MOL%	.117672
RAW GAS MASS FLOW F	ATE (DRY)	LB/HR	119941.
RAW GAS VOLUME FLOW	RATE (DRY)	STD-CUFT/HR	.190068E+07
FLOW OF WATER IN RA	W GAS	LB/HR	92726.5
RAW GAS TEMPERATURE		F	416.408
HEAT TRANSFERRED TO	STEAM JACKET	BTU/HR	.721221E+07
MASS FLOW OF STEAM	PRODUCED	LB/HR	9169.00
OUTLET STEAM TEMPER	ATURE	F	470.470
REACTOR STEAM UTILI	ZATION		.425209

PERFORMANCE SUMMARY: F011

COAL FEED FLOW RATE	LB/HR	103173.	
FIXED CARBON CONVERTED	8	97.2511	
PEAK TEMPERATURE	F	1981.12	
CONC. OF 02 IN RAW GAS (DRY)	MOL%	.246535E-93	
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.395810	
CONC. OF CO IN RAW GAS (DRY)	MOL%	.144623	
CONC. OF CO2 IN RAW GAS (DRY)	MOL%	.322456	
CONC. OF CH4 IN RAW GAS (DRY)	MOLS	.112020	
RAW GAS MASS FLOW RATE (DRY)	LB/HR	119433.	
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	/HR 103173. 97.2511 1981.12 1981.12 .246535E-93 1% .395810 1% .395810 1% .144623 1% .12020 /HR 119433. 0-CUFT/HR .190285E+07 /HR 100891. /HR .707319E+07 /HR .3049.02 /HR .391232	
FLOW OF WATER IN RAW GAS	LB/HR	100891.	
RAW GAS TEMPERATURE	F	453.169	
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.707319E+0	
MASS FLOW OF STEAM PRODUCED	LB/HR	9049.02	
OUTLET STEAM TEMPERATURE	F	459.950	
REACTOR STEAM UTILIZATION		.391232	

PERFORMANCE SUMMARY: F012

COAL FEED FLOW RATE	LB/HR	101797.
FIXED CARBON CONVERTED	8	97.2078
PEAK TEMPERATURE	F	1968.96
CONC. OF 02 IN RAW GAS (DRY)	MOL%	.253852E-93
CONC. OF H2 IN RAW GAS (DRY)	MOLS	.396618
CONC. OF CO IN RAW GAS (DRY)	MOL%	.141837
CONC. OF CO2 IN RAW GAS (DRY)	MOL%	.325105
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.111325
RAW GAS MASS FLOW RATE (DRY)	LB/HR	118121.
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.187931E+07
FLOW OF WATER IN RAW GAS	LB/HR	100919.
RAW GAS TEMPERATURE	F	456.623
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.704469E+07
MASS FLOW OF STEAM PRODUCED	LB/HR	9012.56
OUTLET STEAM TEMPERATURE	F	459.950
REACTOR STEAM UTILIZATION		.385961

PERFORMANCE SUMMARY: F210

COAL FEED FLOW RATE	LB/HR	95101.0
FIXED CARBON CONVERTED	8	97.2264
PEAK TEMPERATURE	F	1971.33
CONC. OF 02 IN RAW GAS (DRY)	MOL &	.454034E-97
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.393031
CONC. OF CO IN RAW GAS (DRY)	MOL &	.142364
CONC. OF CO2 IN RAW GAS (DRY)	MOLS	.324789
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.114384
RAW GAS MASS FLOW RATE (DRY)	LB/HR	110060.
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.174567E+07
FLOW OF WATER IN RAW GAS	LB/HR	93145.6
RAW GAS TEMPERATURE	F	443.478
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.701833E+07
MASS FLOW OF STEAM PRODUCED	LB/HR	8978.83
OUTLET STEAM TEMPERATURE	F	459.950
REACTOR STEAM UTILIZATION		.391345
Contraction of the second s		

PERFORMANCE SUMMARY: F220

97292.1 LB/HR COAL FEED FLOW RATE 97.1397 FIXED CARBON CONVERTED 8 2040.92 PEAK TEMPERATURE F FLAN TEMPERATUREFCONC. OF 02IN RAW GAS (DRY) MOL%CONC. OF H2IN RAW GAS (DRY) MOL%CONC. OF COIN RAW GAS (DRY) MOL%CONC. OF CO2IN RAW GAS (DRY) MOL%CONC. OF CH4IN RAW GAS (DRY) MOL% .197304-101 .378463 .162801 .312376 .120335 CONC. OF CH4 IN RAW GAS (DRY) MOL& RAW GAS MASS FLOW RATE (DRY) LB/HR 110582. .174390E+07 RAW GAS VOLUME FLOW RATE (DRY) STD-CUFT/HR 85685.4 FLOW OF WATER IN RAW GAS LB/HR F 412.162 RAW GAS TEMPERATURE .715690E+07 BTU/HR HEAT TRANSFERRED TO STEAM JACKET MASS FLOW OF STEAM PRODUCED LB/HR 9156.11 459.950 F OUTLET STEAM TEMPERATURE REACTOR STEAM UTILIZATION .424898

112382. 97.2085 2049.39 .959069E-94 .384768 .164441 .310654 .114893 127955. .203285E+07 99785.1 421.827 .722778E+07 9169.00 474.088 .420293

PERFORMANCE SUMMARY: F120

COAL FEED FLOW RATE	LB/HR	
FIXED CARBON CONVERTED	8	
PEAK TEMPERATURE		F
CONC. OF 02 IN F	AW GAS (DRY)	MOL%
CONC. OF H2 IN F	AW GAS (DRY)	MOL%
CONC. OF CO IN F	AW GAS (DRY)	MOL%
CONC. OF CO2 IN F	AW GAS (DRY)	MOL%
CONC. OF CH4 IN F	AW GAS (DRY)	MOL%
RAW GAS MASS FLOW RATE	(DRY)	LB/HR
RAW GAS VOLUME FLOW RA	TE (DRY)	STD-CUFT/HR
FLOW OF WATER IN RAW O	AS	LB/HR
RAW GAS TEMPERATURE		F
HEAT TRANSFERRED TO ST	EAM JACKET	BTU/HR
MASS FLOW OF STEAM PRO	LB/HR	
OUTLET STEAM TEMPERATU	IRE	F
REACTOR STEAM UTILIZAT	ION	

PERFORMANCE SUMMARY: F110

COAL FEED FLOW RATE	LB/HR	109750.			
FIXED CARBON CONVERTED	8	97.2722			
PEAK TEMPERATURE	F	1978.55			
CONC. OF 02 IN RAW GAS (DRY)	MOL%	.189723E-90			
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.399051			
CONC. OF CO IN RAW GAS (DRY)	MOL%	.143983			
CONC. OF CO2 IN RAW GAS (DRY)	MOL%	.322995			
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.109196			
RAW GAS MASS FLOW RATE (DRY)	LB/HR	127375.			
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.203468E+07			
FLOW OF WATER IN RAW GAS	LB/HR	108632.			
RAW GAS TEMPERATURE	F	464.303			
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.709732E+07			
MASS FLOW OF STEAM PRODUCED	LB/HR	9079.89			
OUTLET STEAM TEMPERATURE	F 459.95				
REACTOR STEAM UTILIZATION		.386163			

PERFORMANCE SUMMARY: F202

COAL FEED FLOW RATE	LB/HR	95764.6					
FIXED CARBON CONVERTED	8	97.2180					
PEAK TEMPERATURE	F	1999.26					
CONC. OF 02 IN RAW GAS (DRY)	MOL%	.827046E-99					
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.386076					
CONC. OF CO IN RAW GAS (DRY)	MOL%	.151118					
CONC. OF CO2 IN RAW GAS (DRY)	MOL%	.319683					
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.117322					
RAW GAS MASS FLOW RATE (DRY)	LB/HR	110068.					
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.173983E+07					
FLOW OF WATER IN RAW GAS	LB/HR	89392.3					
RAW GAS TEMPERATURE	F	430.140					
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.707683E+07					
MASS FLOW OF STEAM PRODUCED	LB/HR	9053.68					
OUTLET STEAM TEMPERATURE	F	459.950					
REACTOR STEAM UTILIZATION		.405727					

96971.0 97.2178 2010.91 .171315E-99 .385354 .153473 .317539 .117880 111027. .175692E+07

89431.1 425.011 .709790E+07 9080.63 459.950 .410280

PERFORMANCE SUMMARY: F201

COAL FEED FLOW RAT	E				LB/HR
FIXED CARBON CONVE	RTE	ED			8
PEAK TEMPERATURE					F
CONC. OF 02	IN	RAW	GAS	(DRY)	MOL%
CONC. OF H2	IN	RAW	GAS	(DRY)	MOL%
CONC. OF CO	IN	RAW	GAS	(DRY)	MOL %
CONC. OF CO2	IN	RAW	GAS	(DRY)	MOL%
CONC. OF CH4	IN	RAW	GAS	(DRY)	MOL%
RAW GAS MASS FLOW	RAT	re (I	DRY)		LB/HR
RAW GAS VOLUME FLC	W	RATE	(DRY	()	STD-CUFT/HR
COAL FEED FLOW RATELB/HRTIXED CARBON CONVERTED%PEAK TEMPERATUREFCONC. OF 02IN RAW GAS (DRY) MOL%CONC. OF C2IN RAW GAS (DRY) MOL%CONC. OF C0IN RAW GAS (DRY) MOL%CONC. OF C02IN RAW GAS (DRY) MOL%CONC. OF C02IN RAW GAS (DRY) MOL%CONC. OF C44IN RAW GAS (DRY) MOL%CONC. OF CH4IN RAW GAS (DRY) MOL%CONC. OF CH4IN RAW GAS (DRY)CONC. OF CH4IN RAW GAS (DRY)CAW GAS TEMPERATUREFIEAT TRANSFERRED TO STEAM JACKETBTU/HRIASS FLOW OF STEAM PRODUCEDLB/HRCUTLET STEAM TEMPERATUREFCEACTOR STEAM UTILIZATIONF					
RAW GAS TEMPERATUR	E				F
HEAT TRANSFERRED 1	0	STEAN	1 JAC	KET	BTU/HR
MASS FLOW OF STEAM	1 PE	RODUC	CED		LB/HR
OUTLET STEAM TEMPE	RA	TURE			F
REACTOR STEAM UTIL	IZZ	ATION	1		

PERFORMANCE SUMMARY: F101

COAL FEED FLOW RATE		LB/HR	111954.
FIXED CARBON CONVERT.	ED	8	97.1994
PEAK TEMPERATURE		F	2018.94
CONC. OF 02 IN	RAW GAS (DRY)	MOL%	.579175E-92
CONC. OF H2 IN	RAW GAS (DRY)	MOL%	.391591
CONC. OF CO IN	RAW GAS (DRY)	MOL%	.155164
CONC. OF CO2 IN	RAW GAS (DRY)	MOL%	.315681
CONC. OF CH4 IN	RAW GAS (DRY)	MOL%	.112519
RAW GAS MASS FLOW RA	TE (DRY)	LB/HR	128510.
RAW GAS VOLUME FLOW	RATE (DRY)	STD-CUFT/HR	.204859E+07
FLOW OF WATER IN RAW	GAS	LB/HR	104219.
RAW GAS TEMPERATURE		F	441.360
OAL FEED FLOW RATEIXED CARBON CONVERTEDEAK TEMPERATUREONC. OF O2IN RAW GAS (DEONC. OF H2IN RAW GAS (DEONC. OF C0IN RAW GAS (DEONC. OF C02IN RAW GAS (DEONC. OF C02IN RAW GAS (DEONC. OF CH4IN RAW GAS (DEAW GAS MASS FLOW RATE (DRY)LOW OF WATER IN RAWGAS TEMPERATUREEAT TRANSFERRED TO STEAM JACKETASS FLOW OF STEAM PRODUCEDUTLET STEAM TEMPERATUREEACTOR STEAM UTILIZATION		BTU/HR	.717352E+07
MASS FLOW OF STEAM P	RODUCED	LB/HR	9169.00
OUTLET STEAM TEMPERA	TURE	F	461.474
REACTOR STEAM UTILIZ	ATION		.405373

PERFORMANCE SUMMARY: F102

COAL FEED FLOW RATE	LB/HR	110579.
FIXED CARBON CONVERTED	8	97.2784
PEAK TEMPERATURE	F	2006.99
CONC. OF O2 IN RAW GAS (DRY)	MOL%	.491504E-92
CONC. OF H2 IN RAW GAS (DRY)	MOL%	.392323
CONC. OF CO IN RAW GAS (DRY)	MOL%	.152866
CONC. OF CO2 IN RAW GAS (DRY)	MOL&	.317986
CONC. OF CH4 IN RAW GAS (DRY)	MOL%	.111838
RAW GAS MASS FLOW RATE (DRY)	LB/HR	127270.
RAW GAS VOLUME FLOW RATE (DRY)	STD-CUFT/HR	.202660E+07
FLOW OF WATER IN RAW GAS	LB/HR	104147.
RAW GAS TEMPERATURE	F	443.185
HEAT TRANSFERRED TO STEAM JACKET	BTU/HR	.715284E+07
MASS FLOW OF STEAM PRODUCED	LB/HR	9150.91
OUTLET STEAM TEMPERATURE	F	459.950
REACTOR STEAM UTILIZATION		.401228

PERFORMANCE SUMMARY: F000

COAL FEED FLOW F	ATE		LB/HR
FIXED CARBON CON	VERTED		8
PEAK TEMPERATURE			F
CONC. OF 02	IN RAW	GAS (DRY)	MOLS
CONC. OF H2	IN RAW	GAS (DRY)	MOL*
CONC. OF CO	IN RAW	GAS (DRY)	MOL &
CONC. OF CO2	IN RAW	GAS (DRY	MOL&
CONC. OF CH4	IN RAW	GAS (DRY)	MOL*
RAW GAS MASS FLC	W RATE (D	RY)	LB/HR
RAW GAS VOLUME F	LOW RATE	(DRY)	STD-CUFT/HR
FLOW OF WATER IN	DAL FEED FLOW RATE IXED CARBON CONVERTED DAK TEMPERATURE DNC. OF O2 IN RAW GAS (DRY DNC. OF H2 IN RAW GAS (DRY DNC. OF CO IN RAW GAS (DRY DNC. OF CO2 IN RAW GAS (DRY DNC. OF CC2 IN RAW GAS (DRY DNC. OF CH4 IN RAW GAS (DRY AW GAS MASS FLOW RATE (DRY) AW GAS VOLUME FLOW RATE (DRY) AW GAS VOLUME FLOW RATE (DRY) LOW OF WATER IN RAW GAS AW GAS TEMPERATURE EAT TRANSFERRED TO STEAM JACKET ASS FLOW OF STEAM PRODUCED JTLET STEAM TEMPERATURE EACTOR STEAM UTILIZATION		LB/HR
RAW GAS TEMPERAT	URE		F
HEAT TRANSFERRED	TO STEAM	JACKET	BTU/HR
MASS FLOW OF STE	AM PRODUC	ED	LB/HR
OUTLET STEAM TEM	PERATURE		F
REACTOR STEAM UT	ILIZATION		

103770. 97.1999 2009.22 .322287E-95 .389076 .153027 .317904 .114663 119129. .189131E+07 96780.6 433.397 .712296E+07 9112.69 459.950 .405459

APPENDIX D

Elemental Mole Balance on Volatile Matter

Elemental Mole	Balance UND	Case A	verage								UNDC	ase Aver	age											
Coal Flow =	13.2									Tar-rec Co	al Flow	=	0.019											
Proxanal = 35.96	46.3 44.2 9.5									Proxanal	13.58	12.96	12.35	74.69										
Ultanal = 9.52	65.7 4.52 0.88	0	0.96	18.4						Ultanal =	74.69	18.37	1.27	0.25	0	0.27	5.15							
											Fraction	Nolatile	Matter	Released	by Pyr	olysis =		1	Total N	lass Flow	V =	3.732	Kg/s	
											Mass F	raction o	f Pheno	in Volatik	e Matte	er =		0.039		Phenol		0.144	Kg/s	
											Mass F	raction o	Napht	na in Volat	ile Ma	tter =		0.019		Naphth	а	0.07	Kg/s	
Tab	le 1 - Composition o	f Volatik	es								Mass F	raction o	f Tar Oil	s in Volati	le Mat	ter =		0.122		Tar Oils		0.454	Kg/s	
	Actual Compositi	ons																						
		We	ight %				Elem	ents		Molecula	ar	Phenol	Naphth	Tar oils		Phenol	Naphth	Tar oil	MOL	ARFLO	WS	(Kg mol	/sec)	
COMPONENT	ALIAS	Phen	Naph	Tar	С	н	0	S	N	Weight		Weight	Weight	Weight		mol%	mol%	mol%	С	н	0	S	N	
methyl-mercantan	CHAS	• • • • • • • • • • • • • • • • • • • •	0.17							40 100			9.55.06				0.007		0.55.00	15.05				
mothanal	CHAO	0	0.17	0		4				40.103		0	3.02-00	0		0.000	0.207	0.000	2.02-00	12-00	0	2.02-00	0	
methato	COLONI	0	0.15	0	1	4	1			32.042		0	4.7E-05	0		0.000	0.381	0.000	3.3E-06	1.3E-05	3.3E-06	0	0	
acedinine	C2HA	0	0.11	0.01	2	3			1	41.052		0	2.7E-05	2.4E-06		0.000	0.218	0.032	6E-06	9E-06	0	0	3E-06	
eu lylerie	C2U4	0	0	U	2	4				28.004		0	0	0		0.000	0.000	0.000	0	0	0	0	0	
g ini di le	C2U40 1	0	0.15	•	2	4				60.114		0	2.58-05	0		0.000	0.203	0.000	3.5E-06	7E-06	0	1.8E-06	0	
attend marganetan	COLLES 1	0	02	0	2	4	1			44.053		0	4.58-05	0		0.000	0.369	0.000	6.42-06	1.3E-05	3.2E-06	0	0	
enty-mercapian	COLICE 1	0	0.28	0	2	5		1		52.129		0	4.5E-05	0		0.000	0.367	0.000	6.4E-06	1.9E-05	0	3.2E-06	0	
propyi-mercapian	02005-1	0	0.05	0.5	3	8		1		76.156		0	6.6E-06	6.6E-05		0.000	0.053	0.961	9.1E-05	0.0002	0	3E-05	0	
di-meinyi-suinde	C2H05-2	0	0	G	2	6		1		62.129		0	0	0		0.000	0.000	0.000	0	0	0	0	0	Ui,
di-meinyi-mercapia	an C2Hb5-2	0	0.11		2	7		1		63.137		0	1.7E-05	0		0.000	0.142	0.000	2.5E-06	8.6E-06	0	1.2E-06	0	
propionimie	COHON	0	0.2	0	3	5			1	55.079		0	3.6E-05	0		0.000	0.295	0.000	7.7E-06	1.3E-05	0	0	2.6E-06	
acetone	C3H6O-1	0.07	3.96	0.06	3	6	1			58.08		1.2E-05	0.0007	1E-05		0.111	5.545	0.136	0.0002	0.0003	5.4E-05	0	0	
thiophene	C4H4S	0	0.64	0	4	4		1		84.136		0	7.6E-05	0		0.000	0.619	0.000	2.1E-05	2.1E-05	0	5.4E-06	0	
pyrrole	C4H5N-2	0.1	0.08	0.1	4	5			1	67.09		1.5E-05	1.2E-05	1.5E-05		0.137	0.097	0.196	3.9E-05	4.9E-05	0	0	9.8E-06	
methyl-ethyl-keton	e C4H8O-3	0.02	4.53	0.1	4	8	1			72.107		2.8E-06	0.0006	1.4E-05		0.025	5.109	0.182	0.0002	0.0004	5.1E-05	0	0	
pyridine	C5H5N	0.3	0.03	0.02	5	5			1	79.101		3.8E-05	3.8E-6	2.5E-06		0.348	0.031	0.033	3.4E-05	3.4E-05	0	0	6.9E-06	
cyclopentadiene	C5H6	0	0.2	0	5	6				66.102		0	3E-05	0		0.000	0.246	0.000	1.1E-05	1.3E-05	0	0	C	
cyclopentene	C5H8-1	0	0.1	0	5	8				68.118		0	1.5E-05	0		0.000	0.119	0.000	5.2E-06	8.3E-06	0	0	0	
1,4-pentadiene	C5H8-4 0	0	0.2	0	5	8				68.118		0	2.9E-05	0		0.000	0.239	0.000	1E-05	1.7E-05	0	0	0	
cyclopentanone	C5H8O	0	0.5	0	5	8	1			84.118		0	5.9E-05	0		000.C	0.483	0.000	2.1E-05	3.4E-05	4.2E-06	C	0	
methyl-furan	* C5HEO	0	1	0.1	5	6		1		98.162		0	0.0001	1E-05		0.000	0.829	0.134	5.9E-05	7.1E-05	0	1.2E-05	0	
methyl-n-propyl-ke	tone C5H10O-2	0.09	0.6	0.1	5	10	1			86.133		1E-05	7E-05	1.2E-05		0.096	0.567	0.152	5.8E-05	0.0001	1.2E-05	0	0	
methyl-iso-propyl-l	ketone C5H10O-3	0	0	0	5	10	1			86.133		0	0	0		0.000	0.000	0.000	0	0	0	0	0	
methyl-butanone	* C5H10O-3	0	0.2	0.1	5	10	1			86.133		0	2.3E-05	1.2E-05		0.000	0.189	0.152	3.5E-05	6.9E-05	6.9E-06	C	0	
1-pentanethiol	C5H12S	0	0	0	5	12		1		104.21		0	0	0		0.000	0.000	0.000	0	0	0	0	0	
methyl-thiophene	*C5H12S	0	0.55	0.5	5	5		1		97.155		0	5.7E-05	5.1E-05		0.000	0.460	0.675	0.0001	0.0001	0	2.7E-05	0	
benzene	C6H6	0	43.7	0.5	6	6				78.113		0	0.0056	6.4E-05		0.000	45.499	0.840	0.0025	0.0025	0	0	0	
cvclohexadiene	* C6H6	0	0.3		6	8				80.129		0	3.7E-05	0		0.000	0.304	0.000	1.6E-05	2.1E-05	0	0	0	

Elemental Mole B	Balance																					
UND Case Average	ALLAS	We	ight %	Ter	0		Elen	ients		Molecular	Pheno	Napht	h Taroils	Phenol	Naphth	Tar oil	MOL	ARFLO	WS	(Kg ma	ol/sec)	
	ALIA5	Phen	Nabu	lar	0	н		5	N	weight	Weigh	t Weigh	t Weight		mol%	mol%	C	н	0	S	N	
phenyl-mercaptan	C6H6S	0	0	0	6	6		1		110.17	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
ethyl-thiophene '	C6H6S	0.12	0.07	0.1	6	7		1		111.18	1.1E-05	6.3E-0	6 9E-06	0.099	0.051	0.118	3.6E-05	4.3E-05	0	6.1E-0	5 0	
di-methyl-thiophene	* C6H6S	0.12	0.05	0.01	6	8		1		112.19	1.1E-05	5.3E-04	6 8.9E-07	0.098	0.043	0.012	1.4E-05	1.9E-05	0	2.3E-0	5 0	
phenol C6	SH6C	34.47	0	1.6	6	8	1			94.113	0.0037	0	0.0002	33.607	0.000	2.230	0.0036	0.0036	0.0006	0	0	
p-hydroquinone	C6H6O2	0	0	0	6	6	2			110.11	0	0	0	0.000	0.000	0.000	0	0	C	0	0	
catechol · Ca	6H6O2	2	0	0.01	6	6	2			110.11	0.0002	0	9.1E-07	1.667	0.000	0.012	0.0002	0.0002	5.3E-05	0	с	
aniline C&	H7N-1	0.05	0	0.1	6	7			1	93.128	5.4E-06	0	1.1E-05	0.049	0.000	0.141	3.4E-05	4E-05	0	0	5.6E-06	
4-methyl-pyndine	C6H7N-2	0.4	0.5	0.17	6	7			1	93.126	4.3E-05	5.4E-0	5 1.8E-05	0.394	0.437	0.239	0.0001	0.0001	0	0	1.8E-05	
cyclohexene	C6H10-2	0	0	0	6	10				82.145	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
hexadiene *(C6H10-2	0	0.5		6	10				82.145	0	6.1E-0	5 0	0.000	0.495	0.000	2.6E-05	4.3E-05	0	0	0	
cyclohexanone	C6H10O	0	0	0	6	10	1			98.144	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
di-methyl-furan .	C6H10O	0	0.5		6	8	1			96.129	0	5.2E-05	5 0	0.000	0.423	0.000	2.2E-05	2.9E-05	3.7E-06	0	0	
1-hexene C	C6H12-3	0	23	0	6	12				84.161	0	0.0003	0	0.000	2.223	0.000	0.0001	0.0002	o	0	0	
n-hexane C	C6H14-1	0	1.9	0	6	14				86.177	0	0.0002	0	0.000	1.793	0.000	9.3E-05	0.0002	0	0	0	
toluene C7	7H8	0.07	17.1	1.4	7	8				92.14	7.6E-06	0.0019	0.0002	0.070	15.094	1.993	0.0014	0.0016	0	0	0	
methyl-cyclohexadien	• C7H8	0	0.5		7	10				94.156	0	5.3E-05	5 0	0.000	0.432	0.000	2.6E-05	3.7E-05	0	0	0	
methyl-cyclohexene	· C7H8	0	0.6		7	12				96.172	0	6.2E-05	5 0	0.000	0.507	0.000	3.1E-05	5.3E-05	0	0	0	
methyl-hexadiene	· C7H8	0	0.5		7	12				96.172	0	5.2E-05	5 0	0.000	0.423	0.000	2.6E-05	4.4E-05	0	0	0	On
methyl-phenyl-ether	C7H8O-1	0	0	C	7	8	1			108.14	0	0	0	0.000	0.000	0.000	0	0	0	0	0	C.
anisole °C7	7H8O-1	0.07	0.2	0.01	7	8	1			108.14	6.5E-06	1.8E-05	5 9.2E-07	0.059	0.150	0.012	1.9E-05	2.1E-05	2.7E-06	0	0	
p-cresol C7	7H8O-5	21.3		3.8	7	8	1			106.14	0.002	0	0.0004	18.073	0.000	4.609	0.0031	0.0035	0.0004	0	0	
p-methoxy-phenol	C7H8O2	0	0	0	7	8	1			108.14	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
guaiacol 'C	7H8O2	1.35	0	0.21	7	8	2			124.14	0.0001	0	1.7E-05	0.998	0.000	0.222	0.0002	0.0002	4.7E-05	0	0	
methyl-catechol	*C7H8O2	9.5	0	1.1	7	8	2			124.14	0.0008	0	8.9E-05	7.022	0.000	1.162	0.0011	0.0012	0.0003	0	0	
methyl-phenyl-amine	C7H9N-5	0	0	0.14	7	9			1	107.15	0	0	1.3E-05	0.000	0.000	0.171	4.2E-05	5.3E-05	0	0	5.9E-06	
di-methyl-pyridine	C7H9N-5	0	0.2	0.21	7	9			1	107.15	0	1.9E-05	5 2E-05	0.000	0.152	0.257	7.1E-05	9.2E-05	0	0	1E-05	
2,6-di-methyl-pyridine	C7H9N-10	1	0	0	7	9			1	107.15	9.3E-05	0	0	0.856	0.000	0.000	9.4E-05	0.0001	0	0	1 3E-05	
ethyl-pyridine *(C7H9N-10	0	0	0.1	7	9			1	107.15	0	0	9.3E-06	0.000	0.000	0.122	3E-05	3.8E-05	0	0	4 2E-06	
methyl-cyclohexane	C7H14-6	0	1.1	0	7	14				98.138	0	0.0001	0	0.000	0.911	0.000	5.5E-05	0.0001	0	0	0	
1-heptene C	C7H14-7	0	14	0	7	14				98 188	0	0 0001	0	0,000	1 160	0,000	7E-05	0.0001	0	0	0	
heptadiene *	C7H14-7	0	0.21	•	7	12				96 172	0	2 2E-0	5 0	0.000	0.178	0.000	1 15-05	1.8E-05	0	0	0	
5-methyl-2-hexanone	C7H14O-10	0	09	01	7	14	1			114.19	0	795.04	5 8.8E-06	0.000	0.641	0 115	675.05	0.0001	9.55.00	0	0	
n-heptane (C7H16-1	0	23	0	7	16				100.2	0	0.0000	0	0.000	1.867	0.000	0.0001	0.0003	0	0	0	
di methowy benzenato	CRHRCC2	0	0	0		0	2			100.2		0.0002	0	0.000	0.000	0.000	0.0001	0.0005	0	0	0	
di methony benzone	· C8H802	0	0	1		10	2			130.13	0	0	705.05	0.000	0.000	0.000	0,0000	0,0000	0	0	0	
n toluis acid		0	0	1	8	0	2			138.17	5	0	1.22-05	0.000	0.000	0.949	0.0003	0.0003	0.62-05	0	0	
p-total acto C	*0002-3	0	0	0	8	8	2			136.15	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
or-meinyr-calection	001002-3	9.8			8	10	2			138.17	0.0007	C	0	6.508	0.000	0.000	0.0008	0.001	0.0002	0	0	

Elemental Mole	e Balance																				
UND Case Avera	ge	We	ight %				Eie	ments	S	Molecular	Pheno	Napht	Tar oils	Phenol	Naphth	Tar oil	MOL	ARFIO	WS	(Ko m	nl/sec)
COMPONENT	ALIAS	Phen	Naph	Tar	С	н	C	S	N	Weight	Weight	Weight	Weight	mol%	mol%	mol%	C	Н	0	S	N
xylene	C8H10-2	0.14	1.9	1.5	8	10				106.17	1.3E-05	0.0002	0.0001	0.121	1.455	1.853	0.0006	0.0008	0	0	0
ethyl-benzene	C8H10-4	0.07	4.34	0.7	8	10				106.17	6.6E-06	0.0004	6.6E-05	0.060	3.325	0.865	0.0005	0.0006	0	0	0
p-ethyl-phenol	C8H10O-3	2.6	0	0.8	8	10	1			122.17	0.0002	0	6.5E-05	1.953	0.000	0.859	0.0005	0.0006	6E-05	0	0
2,3-xyienol	C8H10O-5	7.4	0	3.18	8	10	1			122.17	0.0006	0	0.0003	5.558	0.000	3.414	0.0016	0.0021	0.0002	0	. 0
n,n-di-methyl-anilir	e C8H11N	0	0	0	8	11			1	121.18	0	0	0	0.000	0.000	0.000	0	0	0	0	0
C3-pyridines	*C8H11N	0	0.2	0.3	8	11			1	121.18	0	1.7E-05	2.5E-05	0.000	0.134	0.325	9.9E-05	0.0001	0	0	1.2E-05
ethyl-aniline	* C8H11N	0	0	0.14	8	11			1	121.18	0	0	1.2E-05	0.000	0.000	0.152	4.2E-05	5.8E-05	0	0	5.2E-06
di-methyl-cyclohex	ane C8H16-3	0	0.3	0	8	16				112.21	0	2.7E-05	0	0.000	0.217	0.000	1.5E-05	3E-05	0	0	0
n-octane	C8H18-1	0	1	0	8	18				114.23	0	8.8E-05	0	0.000	0.712	0.000	4.9E-05	0.0001	0	0	0
3-methyl-heptane	C8H18-3	0	0.2	0	8	:8				114.23	0	1.8E-05	0	0.000	0.142	0.000	9.9E-06	225-05	0	D	0
2,5-di-methyl-hexa	diene C8H18-5	0	0.5	0	8	18				114.23	0	4.4E-05	0	0.000	0.356	0.000	2.5E-05	5.6E-05	0	0	0
2.2-di-methyl-hexa	ne C8H18-8	0	0.3	0	8	18				114.23	0	2.6E-05	0	0.000	0.214	0.000	1.5E-05	3.35-05	0	0	0
iso-quinoline	C9H7N-1	0	0	0	9	7			1	129.16	0	0	0	0.000	0.000	0.000	0	0	0	0	0
C4-pyridines	* C9H7N-1	0	0	0.63	9	13			1	135.21	0	0	4.7E-05	0.000	0.000	0.611	0,0002	0 0003	0	0	215-05
tetra-hydro-quinon	e * C9H7:1-1	0	0	0.1	9	11			1	133.19	0	0	7.5E-06	0.000	0.000	0.098	3.1E-05	3.7E-05	0	0	34E-06
quinoline	C9H7N-2	0	0	1.42	9	7			1	129.16	0	0	0.0001	0.000	0.000	1.442	0.0004	0.0003	0	0	5E-05
alpha-methyd-styre	ne C9H10	0	0	0	9	10				118.18	0	0	0	0.000	0.000	0.000	0	0	0	0	0
indan .	C9H10	0	0	0.3	9	10				118.18	0	0	2.5E-05	0.000	0.000	0.333	0.0001	0 0001	0	0	0
ethyl-benzoate	C9H10O2	0	0	0	9	10	2			150.18	0	0	0	0.000	0.000	0.000	0	0	0	0	0
di-methyl-guaiacol	* C9H10O2	0	0	0.1	9	12	2			152.19	0	0	6.6E-06	0.000	0.000	0.086	2.7E-05	3.65.05	6E-06	0	0
n-propyl-benzene	C9H12-1	0	0.5	0	9	12				120.19	0	4.2E-05	0	0.000	0.338	0.000	2 6E-05	3.5E-05	0	0	0
1-methyl-2-ethyl-be	enzene C9H12-3	0	0.5	0.43	9	12				120.19	0	425-05	36E-05	0.000	0 338	0469	0.0002	0.0000	0	0	
1.2,4-tri-methyl-bei	nzene C9H12-7	0.1	0.4	0.2	9	12				120.19	8.3E-06	335-05	17E-05	0.076	0.271	0.218	15.04	0.0002	0	0	0
iso-phorone	C9H14O	0	0	0	9	14	1			136.21	0	0	0	0.000	0.000	0.000	0	0.0001	0	0	0
C3-phenols	* C9H14O	1.5	0	2.1	9	12	1			136 19	0.0001	0	0.0002	1.011	0.000	2 023	0 0000	0.001	0 00	0	0
nachthalene	C10H8	0.01	0.03	2.53	10	8	-			128 17	7.8E-07	235.06	0.0002	0.007	0.010	2 590	0.0000	0.001	0.02-03	0	0
m-divinyl-benzene	C10H10-1	0	0	0	10	10				130 19	0	0	0	0.000	0.000	0.000	0.0005	0.0007	0	0	0
di-methyl-benzo-tu	ran *C10H10-1	0	0	0.1	10	10	1			146.19	0	0	6.8E-06	0.000	0.000	0.000	3 1E-05	3 15.05	2 15 00	0	0
tetra-hydro-naphth	alene C10H12	0	0	0	10	12				132.2	0	0	0	0.000	0.000	0.000	0.12-00	3.12-05	J. 1E-00	2	0
methyl-indan	*C10H12	0	0	0.4	10	12				132.2	0	0	35-05	0.000	0.000	0.307	0.0001	0,0000	0	0	0
tetralin *	C10H12	0	0	0.8	10	12				1302	0	0	61E.05	0.000	0.000	0.704	0.0001	0.0002	0	0	0
sec-butvl-benzene	C10H14-3	0.1	0	0	10	14				134 22	75E-06	0	0	0.068	0.000	0.000	1 15.06	1.65.05	0	0	0
C4-benzene	*C10H14-3	0	0	1	10	14				134 22	0	0	75E-05	0.000	0.000	0.000	0.0000	0.0005	0	0	0
n-tert-butyl-nhenol	C10H14O	0	0	0	10	14				124.22	0	0	0	0.000	0.000	0.977	0.0005	0.0005	0	0	0
methyl-benzo-fura	* C10H140	0	0	03	9	8	1			132 16	0	0	225.05	0.000	0.000	0.000	0.05 00	0	15.05	0	0
C4-obenois	*C10H14O	0	0	0.3	10	14				150.22	0	0	ATENS	0.000	0.000	0.298	9.32-05	8.22-05	1E-05	0	0
n-tert-hutvl-catech	C10H1402	0	0	0.1	10	14	2			160.22	0	0	4.72-00	0.000	0.000	0.011	0.0002	0.0003	2112-05	0	0
p torroughodieun	01011402	U	v	U	10	14	2			100.22	0	0	0	0.000	0.000	0.000	0	0	0	0	0

UND Case Aven	age	We	hight %				Fk	eme	nts		Molecular	Phenol	Nanht	Taroils	Phonol	Nanhth	Tar oil			NAIC	ika a	
COMPONENT	ALIAS	Phen	Naph	Tar	С	н	(D	S	N	Weight	Weight	Weight	t Weight	mol%	mol%	mol%	C	H	0	S	N N
naphthol	*C10H14O2	1.1	0	0.5	10	8	1				144.17	7.6É-05	0	3.5E-05	0.700	0.000	0.455	0.0003	0.0002	2.7E-05		
methyl-naphthol	* C10H14O2	1.1			11	10	1				158.2	7E-05	0	0	0.638	0.000	0.000	0.0001	0.0001	1E-05	0	0
n-decane	C10H22-1	0	0.4	0	10	22					142.28	0	2.8E-05	5 0	0.000	0.229	0.000	2E-05	4.4E-05	0	0	0
n-decyl-amine	C10H23N	0	0	0	10	23			1	1	157.3	0	0	0	0.000	0.000	0.000	0	0	0	0	0
C5-pyridine	* C10H23N	0	0	0.16	10	15			1	1	149.24	0	0	1.1E-05	0.000	0.000	0.141	4 9E-05	7.3E-05	0	0	4 9E-04
methyl-quinoline	*C10H23N	0	0	1.03	9	7			1	1	129.16	0	0	8E-05	0.000	0.000	1.046	0.0003	0.0003	0	0	36E-04
1-methyl-naphtha	lene C11H10-1	0.1	0	0	11	10					142.2	7E-06	0	0	0.065	0.000	0.000	1.1E-05	1E-05	0	0	0
2-methyl-naphtha	lene C11H10-2	0	0	5	11	10					142.2	0	0	0.0004	0.000	0.000	4.612	0.0018	0.0016	0	0	0
p-tert-amyl-pheno	c11H16O	0	0	0	11	16	1				164.25	0	0	0	0.000	0.000	0.000	0	0	0	0	0
methyl-naphthol	·C11H16O	0	0	0.4	11	10	1				158.2	0	0	25E-05	0.000	0.000	0.332	0.0001	0.0001	1 15.05	0	0
hydroxy-C1-naphi	thalene *C11H16O	0	0	3.21	11	10	1				158.2	0	0	0.0002	0.000	0.000	2,662	0.001	0.0000	0.25.05	0	0
n-undecane	C11H24	0	0	0	11	24					156.31	0	0	0	0.000	0.000	0.000	0.001	0.0005	5.22-05	0	0
C5-benzene	·C11H24	0	0	0.2	11	16					148.25	0	0	1.3E-05	0.000	0.000	0 177	6 7E-05	9.8E-05	0	0	0
di-benzo-pyrole	C12H9N	0	0	0	12	9			1	1	167.21	0	0	0	0.000	0.000	0.000	0	0	0	0	0
tri-methyl-quinolin	·C12H9N	0	0	0.5	12	13			1		171.24	0	0	2.9E-05	0.000	0.000	0.383	0.0002	0.0002	0	0	1 25.05
indeno-pyridine	*C12H9N	0	0	0.1	12	9			1		167.21	0	0	6E-06	0.000	0.000	0.078	3 35.05	2 4E-05	0	0	275.06
di-phenyl	C12H10	0	0	1	12	10					154.21	0	0	6.5E-05	0.000	0.000	0.851	0.0004	0.0003	0	0	0
ace-naphthene	C12H10-2	0	0	0.95	12	10					154.21	0	0	6.2E-05	0.000	0.000	0.808	0.0003	0.0003	0	0	0
C2-naphthene	*C12H10-2	0	0	4.7	12	12					156.23	0	0	0.0003	0.000	0.000	3.946	0.0016	0.0016	0	0	0
di-phenyl-ether	C12H10O	0	0	0	12	10	1				170.21	0	0	0	0.000	0.000	0.000	0.0010	0.0010	0	0	0
di-benzo-furan	*C12H10O	0	0	2	12	8	1				168.19	0	0	0.0001	0.000	0.000	1.560	0.0006	0.0004	54E-05	0	0
di-phenyl-amine	C12H11N	0	0	0.16	12	11			1		169.23	0	0	9.5E-06	0,000	0.000	0 124	5 CE-05	4 75.05	0.42 00	0	4 25 00
di-methyl-quinolin	• C12H11N	0	0	0.6	11	11			1		157 21	0	0	3.8E-05	0.000	0.000	0.501	0.0000	4.72-00	0	0	4.30-00
phenyl-pyridine	*C12H11N	0	0	0.1	11	9			1	1	155.2	0	0	64E-06	0.000	0.000	0.085	2 25 05	D.COLE	0.	0	1.75-00
fluorene	C13H10	1	0	2	13	10					166.22	6E-05	0	0.0001	0.552	0.000	1 578	0.0009	0.0006	0	. 0	2.92-00
C1-aza-fluorene	*C13H10	0	0	0.1	13	11			1		181.24	0	0	5.5E-06	0.000	0.000	0.072	3.35.05	2.95.05	0	0	255 00
di-hydro-fluorene	*C13H10	0	0	3	13	16					172.27	0	0	0,0002	0.000	0.000	2 284	0.001	0.0012	0	0	2.52-00
benzo-phenone	C13H100	0	0	0	13	10	1				182.22	0	0	0	0.000	0.000	0,000	0.001	0.0013	0	0	0
hydroxy-fluorene	* C13H10O	0	0	2.9	13	10	1				182.22	0	0	0.0002	0,000	0.000	2 088	0,0000	0.0007	725.05	0	0
methyl-di-benzo-f	uran C13H10O	0	0	0.4	13	10	1				182.22	0	0	2.2E-05	0.000	0.000	0.288	0.0001	15.04	15.05	0	0
hydroxy-C2-naph	thalene *C13H10O	0	0	1.9	12	12	1				172.23	0	0	0.0001	0.000	0.000	1 447	0.0006	0,0006	55.05	0	0
di-phenyl-methan	e C13H12	0	0	0	13	12					168.24	0	0	0	0.000	0.000	0.000	0	0.0000	0	0	0
tri-methyl-naphtha	alene C13H12	0	0	2.74	13	14					170.25	0	0	0.0002	0.000	0.000	2 111	0,0000	0.001	0	0	0
anthracene	C14H10-1	01	0	05	14	10					178.23	5.6E.06	0	285.05	0.051	0.000	0.000	0.0003	0.001		0	0
phen-anthrene	C14H10-2	01	0	21	14	10					178.23	5.6E.00	0	00001	0.051	0.000	1.546	0.0002	0.0001	0	0	0
trans-stilhene	C14H12-2	0	0	0	14	12					180.25	0	0	0	0.001	0.000	0.000	0.0008	0.0005	0	0	0
methyl-fluorene	*C14H12-2	0	0	36	14	12					180.25	0	0	0,0002	0.000	0.000	2,620	00010	00011	0	0	0

Elemental Mole Balance

UND Case Avera	ge		Weigh	nt %				Elen	ients	N	<i>folecular</i>	Phenol	Naphth	Tar oils	Phenol	Naphth	Tar oil	MOL	ARFLO	WS	(Kg mo	/sec)	
COMPONENT	ALIAS	Ph	en N	laph	Tar	с	н	0	S	NV	Veight	Weight	Weight	Weight	mol%	mol%	mol%	С	н	0	S	N	
n-tetradecane	C14H30	(D	0	0.14	14	30			1	98.39	0	0	7.1E-06	0.000	0.000	0.093	4.5E-05	9.6E-05	0	0	0	
p-cumo-phenol	C15H16O	0	D	0	0	15	16	1		2	12.29	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
benzo-quinoline	* C15H18O	0	D	0	0.34	13	9			1 1	79.22	0	0	1.9E-05	0.000	0.000	0.249	0.0001	7.8E-05	0	0	8.6E-06	
n-pentadecane	C15H32	0	0	0	1	15	32			2	12.42	0	0	4.7E-05	0.000	0.000	0.618	0.0003	0.0007	0	0	0	
methyl-phenanthre	ne *C15H32	0.0	05	0	2.9	15	12			1	92.26	2.6E-06	0	0.0002	0.024	0.000	1.979	0.001	0.0008	0	0	0	
fluor-anthene	C16H10-1	C)	0	1	16	10			2	02.26	0	0	4.9E-05	0.000	0.000	0.649	0.0004	0.0002	0	0	0	
hene-icosane	* C16H10-1	c)	0	0.63	21	44			2	96.58	0	0	2.1E-05	0.000	0.000	0.279	0.0002	0.0004	0	0	0	
pyrene	C16H10-2	c)	0	0.1	16	10			2	02.26	0	0	4.9E-06	0.000	0.000	0.065	3.6E-05	2.2E-05	0	0	0	
n-decyl-benzene	C16H26	c	0	0	0	16	26			2	18.38	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
di-hydro-pyrene	* C16H26	0)	0	1.4	16	12			2	04.27	0	0	6.9E-05	0.000	0.000	0.899	0.0005	0.0004	0	0	0	
n-hexadecane	C16H34	0)	0	0.5	16	34			2	26.44	0	0	2.2E-05	0.000	0.000	0.290	0.0002	0.0003	0	0	0	
crysene	C18H12	C)	0	0.1	18	12			2	28.29	0	0	4.4E-06	0.000	0.000	0.057	3.6E-05	2.4E-05	0	0	0	
methyl-crysene	*C18H12	C)	0	0.6	19	14			2	42.32	0	0	2.5E-05	0.000	0.000	0.325	0.0002	0.0002	0	0	0	
o-terphenyl	C18H14-1	C)	0	0	18	14			2	30.31	0	0	0	0.000	0.000	0.000	0	0	0	0	0	
benzo-anthracene	*C18H14-1	c)	0	0.1	18	12			2	28.29	0	0	4.4E-06	0.000	0.000	0.057	3.6E-05	2.4E-05	0	0	0	
benzo-pyrene	* C18H14-1	C)	0	0.2	20	12			2	52.31	0	0	7.9E-06	0.000	0.000	0.104	7.2E-05	4 3E-05	0	0	0	
benzo-fluor-anthen	e *C18H14-1	0)	0	0.1	20	12			2	52.31	0	0	4E-06	0.000	0.000	0.052	3.6E-05	2 2E-05	0	0	0	
m-terphenyl	C18H14-2	0)	0	0	18	14			2	30.31	0	0	0	0.000	0.000	0.000	0	0	0	0	0	-
methyl-fluor-anther	e *C18H14-2	2 0)	0	21	17	12			2	17.72	0	0	9.6E-05	0,000	0.000	1 265	0.0007	0.0005	0	0	0	2
docosane	*C18H14-2	C)	0	12	22	46			3	10.61	0	0	0.0004	0.000	0.000	5.068	0.0009	0.0081	0	0	0	
tricosane	C18H14-2	c)	0	0.55	23	48			3	24.63	0	0	1.7E-05	0.000	0.000	0.222	0.0003	0.0004	0	0	0	
tetracosane	*C18H14-2	0	,	0	0.45	24	50				38.66	0	0	1 25.05	0.000	0.000	0.174	0.0002	0.0004	0	0	0	
n-octadecane	C18H38		1	0	0.64	18	38				254 5	0	0 -	3.5E A6	0.000	0.000	0.174	0.0001	0.0003	0	0	0	
n-nonadecane	C19H40			0	0.47	10	40				69.52	0	. 0	1.00 05	0.000	0.000	0.330	0.0002	0.0004	0	0	0	
n-eicosane	C20H42	0	, ,	0	0.46	20	42			-	82.55	0	0	1.65.05	0.000	0.000	0.230	0.0002	0.0003	0	0	0	
tetra-phenyl-ethyle	ne C26H20		5	0	0	26	20				32 44	0	0	0	0.000	0.000	0.000	0.0001	0.0003	0	0	0	
pentacosane	* C26H20		5	0	0.48	25	52				52.60	0	0	145.05	0.000	0.000	0.170	00000	0 0000	0	0	0	
hexacosane	· C26H20	0	, ,	0	0.33	26	54				66 71	0	0	05.06	0.000	0.000	0.1/9	0.0002	0.0003	0	0	0	
bectacosane	· C26H20			0	0.61	27	56				120.74	0	0	1 65.05	0.000	0.000	0.115	0.0001	0.0002	0	0	0	
octamsane	* C26H20		, ,	0	0.35	28	58				04 77	0	0	005.06	0.000	0.000	0.116	5000.0	0.0004	0	0	0	
nonacosane	* C26H20		5	0	0.01	20	60				08.70	0	0	0.9E-00	0.000	0.000	0.110	0.0001	0.0002	0	0	0	
	020120		·	•	0.01	~	~				00.75	0	U	2.40-07	0.000	0.000	0.003	3.2E-00	0./E-00	0	0	0	
TOTAL DRY	96.30	99. 96	.3 9	9.42	97.29																		
WATER	H2O 3.70	0 0. 3.	.7 0	0.58	2.71		2	1		1	8.015	0.0021	0.0003	0.0015	18.845	2.618	19.732	0	0.002	0.001	0	0	

RESULTS

ILOUL IO	MOLA	IN FLOW	S	(Kg mol/	sec)
	С	н	0	S	N
Condensable Volatile Molar Flows(Kg mol/s	0.046	0.056	0.0036	9E-05	0.000
Total Volatile Molar Flows (Kg mol/s)	0.136	0.379	0.0972	0.003	0.005
Non-Condesable Volatile Flows (Kgmol/s)	0.09	0.323	0.0937	0.002	0.005

1101

LB MOL/HR 717.4 2563 743.33 19.36 40.04

AD DI OLLIO

* NOTE: The molecular formulas indicated with an asterisk (*) are DIPPR alias' available in ASPEN/SP. The actual molecular formula can be determined from the Elements column.

	Mass Flow	1	Mol Flow
Component	LB/HR	WT%	LB MOL/HR
CH4	5754	19.451%	358.6
CO	5667	19.157%	202.3
CO2	2968	10.033%	67.43
C2H6	857.2	2.898%	28.51
C3H8	153.9	0.520%	3.491
H2	35.34	0.119%	17.53
H2S	659.6	2.230%	19.36
N2 · · .	560.9	1.896%	20.02
C2H4	130.6	0.441%	4.654
C3H6	171.4	0.579%	4.073
H2O	7317	24.737%	406.2
Coal gas (dry)	16957	57.326%	726
Phenol	1144	3.866%	
Naphtha	559.5	1.891%	
Tar Oil	3603	12.180%	
TOTAL Volatiles (wet 29579	100%	

Elemental	Mole E	Balance	ι	JND Ca	ase L	OW								1	UNDCa	ase Low													
Coal Flow =		12.63											Tar-re	c Coa	al Flow	=	0.0183												
Proxanal =	:	35.65	46.28	44.19	9.53								Proxa	nal	11.69	11.05	10.55	78.4											
Ultanal =		9.55	65.86	4.51	0.95	0	0.99	18					Ultana	al =	78.4	15.72	1.08	0.23	0	0.24	4.33								
														1	Fraction	Volatile	Matter F	Released	by Pyroh	sis =		1	T	otal N	Aass Fl	DW =		3.5932	Kg/s
														1	Mass Fr	action o	f Phenol	in Volatile	Matter	=		0.046			Pher	lor		0.1654	Kg/s
														1	Mass Fi	action o	f Naphth	a in Volati	le Matte	1=		0.0183			Naph	itha		0.0658	Kg/s
	Tab	le 1 - C	omposit	ion of V	/olatik	es								1	Mass Fi	raction o	f Tar Oils	in Volatil	e Matter	=		0.1039			Tar C)ils		0.3733	Kg/s
		Actu	al Comp	osition	IS																								
	DI	PPR P	henol N	aphtha	We	eight %										Phenol	Naphth	Tar oils		Phenol	Naphth	Tar oil		MOL	ARFL	OWS	;	(Kg mol	l/sec)
COMPON	IENT	A	LIAS	%wt	Pher	n Naph	Tar	C	: н	0	S	N				Weight	Weight	Weight		mol%	mol%	mol%		С	H	1	0	S	N
methyl-me:	rcaptan	Cł	445	0 1	0	0 17	0	1	4		1		48	103		0	3.5E-05	0		0.000	0.287	0.000	2	3E-0	6 9.3F	-06	0	2.3E-0	5 0
methanol	ouplet	CH4O		0.15	0	0.15	0	1	4	1	Ċ		32	042		õ	4.7E-05	0		0.000	0.381	0.000	3	1E-0	6 1.2E	05 3	1E-06	0	0
acetonitrile		C2H3N	1	0.11	0	0.11	0.01	1 2	3			1	41	052		0	2.7E-05	2.4E-06		0.000	0.218	0.032	5.	3E-0	6 8E-0)6	0	0	2.7E-06
-			-	-							••	-				-	-			-		-							
		-	-		-	-	-					•		-		*	-	-		-							-	-	**
	-	-	-	-	-	-	•		•	-		•		-		-	-	•		•	-	-		•	-		•	-	
heptacosar	ne	* C26	H20		0	0	0.61	1 27	56				38	0.74		0	0	1.6E-05		0.000	0.000	0.210	0	.0002	2 0.00	03	0	0	0
octacosane	e	* C26	120		0	0	0.35	5 28	58				39	4.77		0	0	8.9E-06		0.000	0.000	0.116	9.	3E-0	5 0.00	02	0	0	0
nonacosan	ne	• C26	H20		0	0	0.01	1 29	60				404	8.79		0	0	2.4E-07		0.000	0.000	0.003	2.	5E-06	6 5.5E-	06	0	0	0
TOTAL DE	RY .		96.30	99 42	96.3	3 99 4	97.3	3																					
WATER		H20	3.70	0.58	3.7	0.58	2.71	1	2	1			18.	.015		0.0021	0.0003	0.0015		18.845	2.618	19.732		0	0.00	18 0	.0009	0	0
TOTAL WE	ET		100.0	0 100.	100	100	100)			Ave	erag	e Mole	ecular	Weight	91.758	81.329	131.17		100	100	100		MOL	ARFL	ows	3	(Kg mol	l/sec)
																								С	۲	1	0	S	N
																		Condens	able Vo	latile Mo	lar Flows	Kg mol/s	s) 0	.040	€ 0.05	02 0	.0035	7.9E-05	5 0.0002
																		Total Vol	atile Mo	lar Flows	s (Ka mo	(/s)	0	132	3 0.36	38 0	.0922	0.0025	0.0055

Condensable volable molar Flows(Ng movs)	
Total Volatile Molar Flows (Kg mol/s)	
Non-Condesable Volatile Flows (Kgmol/s)	

NOTE: The molecular formulas indicated with an asterisk (*) are DIPPR alias' available in ASPEN/SP. The actual molecular formula can be determined from the Elements column.

LB MOL/HR

0.0914 0.3136 0.0886 0.0024 0.0053

163

725.64 2489.3 703.55 19.298 41.96

	Mass Flow		
Component	LB/HR	WT %	LB MOL/HR
CH4	5888.3	20.672%	367.04
CO	5802.3	20.370%	207.15
CO2	3038.9	10.668%	69.05
C2H6	837.3	2.939%	27.846
C3H8	150.35	0.528%	3.4097
H2	38.926	0.137%	19.311
H2S	657.59	2.309%	19.298
N2	587.73	2.063%	20.98
C2H4	111.6	0.392%	3.9779
C3H6	119.57	0.420%	2.8414
H2O	6454.9	22.661%	358.3
Coal gas (dry)	17233	60.498%	740.9
Phenol	1312.5	4.608%	
Naphtha	521.93	1.832%	
Tar Oil	2962.7	10.401%	
TOTAL Volatiles (wet)	28485	100 00%	

Elemental Mole B	alance		UND Ca	ase H	ligh								UNDCa	ise High											
Coai Flow = 13 Proxanal = Ultanal =	36.2 9.62	46.67 65.65	43.75 4.53	9.58 1	0	1.08	18				PU	ar-rec Co roxanal Itanal =	al Flow = 13.71 74.7 Fraction Mass Fr	13.06 18.37 Volatile action o	0.0198 12.24 1.27 Matter F f Phenol	74.7 0.28 leleased k in Volatile	0 by Pyroly Matter =	0.3 sis =	5.07	1 0.0375	Total Ma	ass Flow Phenol	=	3.7392 0.1403	Kg/s we
Tab	le 1 C Actu	omposi al Com	tion of V	/olatil Is	es								Mass Fr Mass Fr	action of action of	f Naphtha f Tar Oils	a in Volati in Volatik	e Matter Matter	=		0.0201 0.1333		Naphtha Tar Oils	1	0.075 0.4983	Kg/s we Kg/s we
COMPONENT	PPR P	henol N LIAS	Waphtha %wt	Phe	hight % Naph	Tar	С	н	0	s	N			Phenol Weight	Naphth Weight	Tar oils Weight		Phenol mol%	Naphth mol%	Tar oil mol%	MOL4 C	H FLOV	vs o	(Kg mo S	/sec) N
methyl-mercaptan	CH4O	14S	0.1	0	0.17	0	1	4	1	1		48.103		0	3.5E-05	0		0.000	0.287	0.000	2.6E-06	1.1E-05	0	2.6E-06	5 0
acetonitrile	C2H3N		0.11	õ	0.11	0.01	2	3	'		1	41.052		0	2.7E-05	24E-06		0.000	0.361	0.000	5.5E-00 6.4E-06	9.7E-06	3.5E-00	0	3 2E-06
	-		-						•												.42 00		-	-	
• •	-	-	-	•	-	•	•	-	•	-	• •	-		•	-	-		-	-	-		-	-	-	-
	•	-	*	-	-	-	*	-	•	•		*		•	-	-		-	-		•	-	-	-	•
heptacosane	• C26	H20		0	0	0.61	27	56				380.74		0	0	1.6E-05		0.000	0.000	0.210	0.0002	0.0004	0	0	0
octacosane	* C26ł	120		0	0	0.35	28	58				394.77		0	0	8.9E-06		0.000	0.000	0.116	0.0001	0.0003	0	0	0
nonacosane	· C26	H20		0	0	0.01	29	60				408.79		0	0	2.4E-07		0.000	0.000	0.003	3.5E-06	7.3E-06	0	0	0
TOTAL DRY		96.3	0 99.42	96.3	99.4	97.3	-																		
WATER	H2O	3.7	0 0.58	3.7	0.58	2.71		2	1			18.015		v.0021	0.0003	0.0015		18.845	2.618	19.732	0	0.0021	0.0011	0	0
TOTAL WET		100.0	00 100.	100	100	100			1	Aver	age	Molecula	r Weight	91.758	81.329	131.17		100	100	100	MOLA	RFLOW	<i>i</i> s o	(Kg mol	/sec)
																Condens	able Vola	atile Mo	ar Flows	(Ka mol/s)	0.0488	0.0601	0.0037	1F-04	0.0003
																Total Vola	atile Mola	ar Flows	Kg mo	Vs)	0.1348	0.3841	0.0968	0.0029	0.0061
																Non-Con	desable	Volatile	Flows (k	(gmol/s)	0.086	0.324	0.0931	0.0028	0.0058
• NOTE: The mole DIPPR alias' ava	ecular fo	ASPEN	indicate	ed with he ac	h an as tual mo	terisk lecula	(*) a ar for	ire muli	a											LB MOL/HR	682.74	2571.6	738.73	22.06	46.153

	Massriow		
Component	LB/HR	WT %	LB MOL/HR
CH4	5447.3	18.385%	339.55
CO	5117.5	17.272%	182.7
CO2	2680.2	9.046%	60.9
C2H6	905.79	3.057%	30.123
C3H8	243.98	0.823%	5.5329
H2	30.558	0.103%	15.159
H2S	751.71	2.537%	22.06
N2	646.47	2.182%	23.077
C2H4	137.97	0.466%	4.9181
C3H6	181.09	0.611%	4.3033
H2O	7822.8	26.403%	434.23
Coal gas (dry)	16142	54.484%	688.32
Phenol	1113.3	3.758%	
Naphtha	595.04	2.008%	
Tar Oil	3954.5	13.347%	
TOTAL Volatiles (wet)	29628	100.00%	

APPENDIX E

Differental Scanning Calorimeter Data Sets To: Dr. J. Erjavec

September 14, 1992

From: R. Timpe

RE: PDSC of GPGP lignite samples

Pressure Differential Scanning Calorimetry (PDSC) of GPGP Lignite

The samples of lignite analyzed (0200B, 1400G, 2200G, 1000N) were from a suite of six grab samples of lignite selected for a previous feed characterization study.

Method:

The tests were carried out in a DuPont PDSC cell under nitrogen gas at 900 psig. The temperature ramp was 10°C/min to 550°C (maximum temperature recommended for cell).

Data was collected from a blank, standard sapphire, and lignite.

09/02/92 16: 35: 43 Page 1

DSC Standard

File: A: ERJAV.005 Run Date: 27-Aug-92 09:03 Program: DSC V4.0B Run Number: 95 DuPont 2100 Thermal Analysis -- DSC Sample: SAPPHIRE FOR ERJAVEC'S PDSC Size: 21.2000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC Comment: SAPPHIRE FOR GREAT PLAIN COAL STUDY; A#4886

Peak	Start °C	Onset °C	Max °C	Stop °C	Area
	31.36	32.07	38.92	570.59	164.9 J/g
	37.06		529.78	566.52	23.15 J/g
	110.72	111.72	143.89	330.80	7.446 J/g

DSC Standard

09/04/92 10: 57: 58 Page 1

File: A: ERJAV. 105 Run Date: 4-Sep-92 08:29 Program: DSC V4.08 Run Number: 102 DuPont 2100 Thermal Analysis -- DSC Sample: PDSC OF GP 0200BAD 9/4/93 Size: 11.1000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC PDSC OF GP 0200BAD - ERJAVEC'S PDSC STUDY; A#4886 Comment:

Peak	Start °C	Onset °C	Max °C	Stop °C	Area
	21.96	21.97	261.74	579.65	1190. J/g
	26.40	206.25	262.76	566.52	524.3 J/g
	110.72	208.10	262.76	330.80	534.7 J/g

FIGURE 13b. Adjusted DSC Data.

. .

.

09/04/92 10: 35: 29 Page 1

File: A: ERJAV.103Run Date: 3-Sep-9212:19Program: DSC V4.0BRun Number: 100

DuPont 2100 Thermal Analysis -- DSC

Sample: PDSC OF GP 1000N 9/3/92 Size: 11.5000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC Comment: PDSC OF GP 1000N FOR ERJAVEC'S PDSC STUDY; A#4686

Peak	Start °C	Onset °C	Max °C	Stop °C	Area	
	31.99	32.89	262.38	577.55	1043. J/g	
	37.35	209.22	263.40	566.52	616.6 J/g	
	110.72	211.70	263.40	330.80	560.4 J/g	

FIGURE 14 b Adjusted DSC Data.

09/02/92 16: 27: 49 Page 1

File:A: ERJAV.006Run Date:27-Aug-9210:33Program:DSC V4.0BRun Number:96

DuPont 2100 Thermal Analysis -- DSC

Sample: PDSC OF GP 1600N Size: 10.4000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC Comment: PDSC OF GREAT PLAINS'1600N FOR ERJAVEC; A#4886

Peak	Start °C	Onset °C	Max °C	Stop °C	Area
	30.36	30.66	259.80	576.90	963.5 J/g
	37.06	207.26	259.80	566.52	486.1 J/g
	110.72	208.75	259.80	330.80	503.8 J/g

FIGURE 15b. Adjusted DSC Data.

FIGURE 15c. Modified TGA.

09/04/92 10: 49: 09 Page 1

File: A: ERJAV.104Run Date: 3-Sep-9213:43Program: DSC V4.0BRun Number: 101

DuPont 2100 Thermal Analysis -- DSC

Sample: PDSC OF GP 1400G 9/3/92 Size: 11.7000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC Comment: PDSC OF GP 1400G FOR ERJAVEC'S PDSC STUDY; A#4886

Peak	Start °C	Onset °C	Max "C	Stop °C	Area
	31.48	32.28	263.64	578.80	964.8 J/g
	38.40	213.29	263.64	566.52	573.1 J/g
	110.72	215.59	263.64	330.80	524.7 J/g

FIGURE 16 b. Adjusted DSC Data.

FIGURE 16c. Modified TGA.

09/04/92 10: 44: 48 Page 1

File: A: ERJAV.102Run Date: 3-Sep-9210:43Program: DSC V4.0BRun Number: 99

DuPont 2100 Thermal Analysis -- DSC

Sample: PDSC OF GP 2200G 9/3/92 Size: 12.4000 mg Cell Constant: 1.2013 Operator: KULAS Method: DSC Comment: PDSC OF GP 2200G FOR ERJAVEC'S PDSC STUDY; A#4886

Peak	Start °C	Onset °C	Max °C	Stop °C	Area
	32.42	32.59	268.38	579.74	1125. J/g
	37.06	232.44	268.38	566.52	599.4 J/g
	110.72	234.04	268.38	330.80	507.6 J/a

Adjusted DSC Results - Sample 2200G

FIGURE 17 b. Adjusted DSC Data.

FIGURE 17c. Proximate TGA.

FIGURE 17c. Modified TGA.

LIST OF REFERENCES

1. Anthony, Donald B. and Jack B. Howard, "Coal Devolatilization and Gasification," *AIChE Journal*, Vol. 22, July 1976, p. 637.

2. Benjamin, Bruce, "Great Plains ASPEN Model Development: Gasifier Model, Documentation, and Experimental Verification," DOE/MC/21377-2155 (DE86014073), July 1986.

3. B. Benjamin, Appendix C.

4. Erjavec. J.; Cisney, S., "GPGP Gasifier Optimization II Task 3.1, Mechanistic Modeling of Gasifier Operations," June 4, 1992.

5. Denn, Morton; Wei, J.; Yu, W.-C.; Cwiklinski, R. "Detailed Simulation of a Moving-Bed Gasifier," AP-2576, Research Project 1268-1, September 1982 (for EPRI).

6. Ginnings, C. Defoe and G.T. Furukawa, *Journal American Chemical Society*, vol. 75, February 5, 1953, p. 525

7. Hottel, H.C., and J.B. Howard, New Energy Technology, pp.103-5, MIT Press, Cambridge, MA, 1971.

8. Johnson, James Lee, "Kinetics of Coal Gasification," John Wiley & Sons, 1979, p. 62.

9. J. L. Johnson, p. 10.

10. J. L. Johnson, p. 66.

11. J. L. Johnson, p. 17-18.

12. Lavrov, N.V., V.V. Korobov, and V.I. Filippova, *The Thermodynamics of Gasification* and *Gas-Synthesis Reactions*, The MacMillon Company, New York, 1963.

13. Mahajan, Om P.; Akira Tomita and Philip L. Walker, Jr. "Differential Scanning Calorimetry Studies on Coal. 1.Pyrolysis in an inert atmosphere," *FUEL*, January 1976, Vol 55, p. 63-69.

14. Nowacki, Perry, ed., "Coal Gasification Processes," Energy Technology Review No.70, Noyes Data Corporation, 1981

15. Parent, J.D., and S. Katz, "Equilibrium Compositions and Enthalpy Changes for the Reactions of Carbon, Oxygen and Steam," *IGT Research Bulletin*, Jan. 1948.

16. Perry's Chemical Engineers Handbook, 6th ed., p. 3-243.

17. Ringard, I.H., and B.W. Benjamin, "Great Plains ASPEN Model Development: Gasifier Model, Literature Review and Model Specification" DOE/MC/19163-1782 (DE85003388), January 1985.

18. I. H. Ringard, et. al., p. 9.

19. I. H. Ringard, et. al., p. 14.

20. Sear's, R.; Willson, W.; Shockey, R.,; Cisney, S.; Erjavec, J.; Gruber, G.; Johnson, D.; Birk, B., "Great Plains Gasification Plant, Gasifier Optimization," DOE Contract DE-FC21-86MC10637, January 31, 1989.

21. Stefano, J. M., "Evaluation of the WEN II and DEN-1D Steady State, Fixed-Bed Gasifier Models," Technical Note, DOE/METC-85/4014 (DE86001019), May 1985.

22. U.S. News & World Report, August 13 1979, p. 32

23. Valenti, Michael, "Coal Gasifiaction: An Alternative Energy Source is Coming of AGE," *Mechanical Engineering*, January 1992, p. 39-43 24. Wen, C.Y., "Moving-Bed Coal Gasifier Modeling," Coal Gasification Workshop Proceedings, Ghate, M., and Martin, J.W., Eds., U.S. Department of Energy, Morgantown, West Virginia, 1982, pp. 375-390.

25. Wilde, Douglass J. "Optimum Seeking Methods," Prentice Hall 1964. pp. 145-50.

26. Yoon, Heeyoung, James Wei and Morton Denn, "A Model For Moving-Bed Coal Gasification Reactors,"