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ABSTRACT

The phosphorylation and desensitization of G-protein coupled receptors 

involve several protein kinases. Two of the major ones are protein kinase A (PKA) and 

protein kinase C (PKC). It has been reported that gravin, an A-kinase anchoring protein, 

plays a role in regulating p2-adrenergic receptor desensitization, resensitization, and 

internalization by recruiting both PKA and PKC, phosphatase, |3-arrestin, and clathrin to 

the receptor. Similarities between the regulation of p-opioid receptor and p2-adrenergic 

receptor suggest that a similar complex involving gravin may play a role in regulating p- 

opioid receptor signal transduction. To investigate this possibility, the current study 

examined the distribution of gravin, p-opioid receptor and p2-adrenergic receptor in SH- 

SY5Y cells as well as in AN3 CA cells cotrans fected with gravin and p-opioid receptor 

or p2-adrenergic receptor vector constructs. This study also examined the distribution of 

gravin, p-opioid receptor and p2-adrenergic receptor transgene in transfected AN3 CA 

cells after the agonist stimulation. Our data showed that gravin is distributed along the 

membrane of SH-SY5Y cells and partially colocalized with the p-opioid receptor and the 

p2-adrenergic receptor. The gravin transgene was also concentrated along the membrane 

of AN3 CA cells. Immunofluorescent microscopy showed extensive colocalization of 

gravin and either the p-opioid receptor transgene or the p2-adrenergic receptor transgene 

before agonist treatment. However, after agonist treatment, the p-opioid receptor and p2- 

adrenergic receptor transgenes translocated from plasma membrane to a perinuclear 

location, but there was no redistribution of grav in. The current study provided evidence 

that the recombinant gravin and the receptor proteins were expressed and distributed in a 

similar way as the native proteins. This validated their use in studying p-opioid receptor

IX



and p2-adrenergic receptor signal transduction and the role of gravin in regulating the 

function of these receptors. The current study also provided evidence that gravin might 

not interact with the receptors during the internalization of the receptors.
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CHAPTER I

INTRODUCTION

The transduction of signals from the plasma membrane to specific subcellular 

compartments is a complex and highly regulated series of events. In eukaryotes, protein 

phosphorylation plays a crucial role in regulating these signaling events by modulating 

the activity of specific signaling proteins. The i'amily of enzymes catalyzing the 

phosphorylation of proteins, the protein kinases, represents a diverse group of proteins. 

To date, more than 300 protein kinases have been found to play key roles in cellular 

control and Hunter (1994) estimated that there are as many as 2000 conventional protein 

kinase genes in the human genome. Within this structurely diverse family of intracellular 

enzymes, the best understood is the cAMP-dependent protein kinase or protein kinase A. 

Studies of cAMP-dependent protein kinase (PKA) activity provided the first clues about 

the role of protein phosphorylation in the regulation of signal transduction (Walsh and 

Van Patten, 1994).

The PKA holoenzyme is a heterotetramer composed of a regulatory (R) subunit 

dimer that maintains two catalytic (C) subunits in a dormant state. Binding of cAMP to 

tandom sites in each R subunit releases the active C subunits, which are then free to 

phosphorylate substrates on serine or threonine residues. As the prototypic model of 

intracellular kinases, PKA is a multifunctional enzyme with broad substrate specificity 

(Taylor et al., 1990). Given that PKA is a soluble cytoplasmic enzyme and involved in 

numerous signaling events, understanding the functional complexities of how the kinase

1
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is activated in the right place and at the right time inside the cell is important. This 

specificity is achieved, in part, through the compartmentalization of PKA at different 

subcellular locations through interactions with A-kinase anchoring proteins (AKAPs). 

Compartmentalization of PKA was first shown in 1974, shortly after PKA was initially 

purified and characterized (Beavor et al., 1974).

Eukaryotic cells express multiple forms of PKA regulatory and catalytic subunits, 

which are termed RIa, Rip, Rlla, RIip, Ca, C|3, and Cy. These different subunits 

assemble together as different PKA isoforms. The catalytic subunits show common 

kinetic features and substrate specificity and therefore the characteristics of the PKA 

holoenzymes are largely determined by the structure and properties of their regulatory 

subunits. The R subunits are differentially distributed in mammalian tissues. RIa and 

Rlla are ubiquitous, whereas Rip and RIip are expressed predominantly in endocrine, 

brain, fat and reproductive tissues (Taylor et ah, 1992). The results of several studies 

suggested that RI is predominantly in the soluble fraction, where as the majority of RII is 

associated with the plasma membrane, cytoskeletal, secretory granule, Golgi, and nuclear 

fractions (Joachim et ah, 1990; Pariset et ah, 1989; De Camilli et ah, 1986). In addition to 

their distinctive expression and distribution, R subunits differ in their regulation and 

biochemical properties. The binding affinity to cAMP of RIip in vivo is lower relative to 

Rlla and much lower compared to RIa (Taylor et ah, 1992). These data imply that 

holoenzymes containing RI subunits or RII subunits (PKAI and PKAII) decode cAMP 

signals that differ in duration and intensity: PKM is activated transiently by weak cAMP 

signals, whereas PKAII responds to high and persistent cAMP stimulation. The 

composition and specific biochemical properties of PKA isoenzymes account, in part, for
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differential cellular responses to discrete extracellular signals that activate adenylate 

cyclase.

PKA Anchoring Proteins

It is now generally believed that PKA II is concentrated in particular subcellular 

compartments through interactions with a family of A-kinase anchoring proteins 

(AKAPs). AKAPs immobilize PKAII isoforms at specific intracellular locations by 

binding RII subunits. Although most AKAPs preferentially bind to RII, several AKAPs 

also bind to RI (Huang et al., 1997). The first PJI-binding proteins were identified as 

contaminating proteins by co-purification with RII after affinity chromatography on 

cAMP-Sepharose (Sarkar et ah, 1984). Currently, the standard method for detection of 

AKAPs is an overlay assay which is a modification of the Western blot procedure (Carr 

et ah, 1992). This assay is based on the observation that many, if not all, AKAPs retain 

their ability to bind RII after they have been transferred to nitrocellulose (Lohmann et ah, 

1984). Using this technique, a family of AKAPs ranging in size from 15 to 300 kDa has 

been detected in a variety of tissues and cells (Carr et ah, 1992). A common feature of 

AKAPs is that each anchoring protein contains two classes of binding sites: a conserved 

“anchoring motif’ which binds to the RII subunit of PKA and a “target domain” which 

directs the subcellular localization of the “PKA-AKAP” complex through association 

with structural proteins, membranes, or cellular organelles (Coghlan et al, 1993). Herberg 

et ah (2000) showed by using surface plasmon resonance (SPR) that some AKAPs, such 

as AKAP 79 and AKAP 84, bound both RII alpha and RII beta of PKA; however, the 

affinity of the AKAPs for different R subunit isoforms differed.
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The PKA-AKAP complex model implies that AKAPs must contain a unique 

targeting site that is responsible for association with subcellular structure. The targeting 

domain is an essential feature of each AKAP because it determines specificity by 

targeting the anchored PKA complex to particular organelles. So far, immuno­

fluorescence microscopy and subcellular fractionation techniques have identified AKAPs 

localized to centrosomes (AKAP 350) (Schmidt et al., 1999), the actin cytoskeleton 

(AKAP 250, and AKAP 75/79/150) (Nauert et al., 1997; Coghlan et al., 1995), the 

endoplasmic reticulum (AKAP 100) (McCartney et al., 1995), the Golgi (AKAP 85) 

(Keryer et al., 1993), microtubules (MAP2) (Davare et al., 1999), mitochondria (sAKAP 

84) (Lin et al., 1995), the nuclear matrix (AKAP 95) (Coghlan et al., 1994), the plasma 

membrane (AKAP 15) (Tibbs et al., 1998), and peroxisomes (AKAP 220) (Schillace and 

Scott, 1999). Although the proposed function of many AKAPs is to target PKA, several 

AKAPs have been found to serve as scaffolds which simultaneously bind more than one 

signaling protein and form a signaling complex consisting of enzymes with opposing 

actions, such as kinases and phosphatases. For example, in neurons, AKAP 79 binds to 

PKA, protein kinase C (PKC), and the protein phosphatase 2B (PP-2B) (Klauck et al., 

1996; Coghlan et al., 1995). The scaffold of AKAP 79 with PKA, PKC, and PP-2B 

allows AKAP 79 to control the localization of two broad-specificity kinases and a 

phosphatase. As distinct activation signals are presented at postsynaptic densities of 

neurons, AKAP 79 might provide a point of convergence for multiple second-messenger 

signals, such as cAMP, Ca2+, and phospholipids (Faux et al., 1996). Similarly, AKAP 220 

has been shown to bind to protein phosphatase 1 (PP1) in addition to PKA (Schillace et 

al., 1999), suggesting it functions to regulate kinase as well as phosphatase activity.
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Gravin

Gravin, also referred to as AKAP 250, is a kinase scaffold protein which binds to 

both PICA and PKC. The carboxy-terminal fragment of gravin was originally identified as 

a cytoplasmic antigen recognized by serum from a patient with myasthenia gravis 

(Gordon et al., 1992). A series of in vitro binding experiments showed that the residues 

1526-1780 of gravin bind to PKA with high affinity. Structural analysis of this region 

indicated that it contained an amphipathic helical region similar to that found in other 

AKAPs. The first 1000 residues of gravin are 69% identical to a murine mitogenic 

regulatory gene, Src-supresssed C kinase substrate (SSeCKS)/ clone 72, which is a PKC 

binding protein (Chapline et al., 1996), indicating that gravin may also be a PKC-binding 

protein. This hypothesis was confirmed by Nauert et al. (1997), who demonstrated that 

residues 265-556 of gravin bind to PKC in a pbosphatidylserine-dependent manner.

Gravin is expressed in many tissue and cell types. It is found in fibroblasts, and 

smooth muscle cells in vivo, as well as in endothelial cells and several adherent tumor 

cell lines in vitro (Grove et al., 1994). In human erythroleukemia cells, phorbol ester can 

induce gravin expression. Gravin is also widely expressed in the nervous system. It has 

been reported to be expressed in the cerebral cortex, in the molecular and granular layers 

of cerebellum, in nerve bundles, in peripheral ganglia, and in sensory organs, such as 

nerve fibers on the tip of the tongue and taste buds (Grove et al., 1994). Comparable to 

gravin, SSeCKS is also widely distributed in the nervous system. Immunolabeling of 

SSeCKS was found in the primary sensory neurons in the dorsal root ganglia, the dorsal 

horn of the spinal cord, sensory ganglia, medulla, and the molecular layer of cerebellum. 

This distribution is similar to that described for gravin in the nervous system (Siegel et
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al., 2001). Based on the observation that graviri is expressed in the nervous system and 

evidence that this protein is a multivalent scaffold protein in signal transduction, it is 

predictable that gravin might play a role in modulating the signaling events in the nervous 

system.

Immunolocalization studies show that gravin is concentrated at the cell periphery 

and is enriched in filopodia of erythroleukemia cells (Grove et al., 1994; Nauert et al., 

1997; Grove et al., 2001). In cultured human endothelial cells, gravin was not found to be 

a component of stress fibers, microtubules or intermediate filaments, but associated with 

the cell cortex, suggesting that gravin may be functionally related to either the plasma 

membrane or the membrane skeleton (Grove et al., 2001). The wide distribution of gravin 

further indicates that it is a multifunctional protein and regulates cellular events that 

involve plasma membrane, possibly by anchoring PKA and PKC to specific sites at the 

plasma membrane and coordinating phosphorylation and dephosphorylation in signal 

transduction pathways. A recent study has shown that gravin and PKA forms a dynamic 

complex with (32-adrenergic receptors (Shih et al., 1999). The gravin/receptor complex 

includes PKC, protein phosphatases 2A and 2B, G protein coupled receptor kinase-2, P- 

arrestin and clathrin (Lin et al., 2000). These complexes may be physiologically 

important, since gravin deficiency has been reported to inhibit agonist-induced 

internalization and resensitization of P2-adrenergic receptors (Shih et al., 1999).

G protein-Coupled Receptors

It is well accepted that neurons communicate by secreting neurotransmitters that 

bind to specific receptors on postsynaptic cells. A major group of receptors involved in 

neuronal signaling are the G-protein coupled receptors (GPCRs). More than a thousand
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members of this receptor family have been identified. A broad spectrum of extracellular 

signals, including hormones, neurotransmitters, odorants and light, are detected by G- 

protein coupled receptor family.

All GPCRs possess seven putative transmembrane domains, and convert 

extracellular signals into intracellular signals by activating heterotrimeric G-proteins, a 

protein complex consisting of an a-subunit which carries the guanine-nucleotide binding 

site, and P- and y-subunits which form a tightly' bound dimer. In response to ligand 

binding, GPCRs are converted into an active form which functions as a GDP/GTP 

exchange factor and promotes the exchange of GDP for GTP on the a-subunit. This leads 

to dissociation of the a-subunit from the GPy-dimer, and subsequent activation of G- 

protein effectors such as ion channels, adenylyl cyclase, or phospholipase C. There are 

three major types of GPCRs, based on the type of a  G-protein they are coupled to and 

their effect on second messenger signaling. One type of GPCR, (e.g. a-adrenergic 

receptor) couples to an inhibitory Ga protein and inhibits adenylyl cyclase activity. This 

results in a decrease in cAMP level and a decrease in PKA activity. Another type of 

GPCR, (e.g. P2-adrenergic receptor) couples to a stimulatory Ga protein and activates 

adenylyl cyclase. This results in increased cAMP levels and enhanced PKA activity. The 

third group of GPCRs couple to Ga proteins which activate phospholipase C and in turn 

activate PKC.

Chronic stimulation of GPCRs provokes attenuation of the receptor-mediated 

signal, or desensitization. Desensitization is an adaptive mechanism in biological systems 

thought to facilitate responsiveness of the cell to successive multiple extracellular stimuli. 

For GPCRs, desensitization is a multistep process. The receptor is first uncoupled from
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the G-protein and receptor function is attenuated (Lohse et al., 1995). This step involves 

phosphorylation of the receptor by several kinases, such as PKA, PKC, or G-protein 

coupled receptor kinases. The phosphorylated receptor is then sequestered from the 

plasma membrane to an intracellular compartment, where the receptor is 

dephosphorylated by specific phosphatases and resensitized (Pitcher et al., 1995). When 

the stimulation is chronically persistent, the receptor is down-regulated through protein 

degradation and decreased transcription leading to a decrease in receptor number 

(Handcock et al., 1988).

Two major patterns of rapid desensitization have been characterized. Agonist- 

specific or homologous desensitization refers to the situation in which receptor activation 

by the agonist leads to desensitization of the same receptor type. This type of 

desensitization involves mainly G-protein coupled receptor kinases (Inglese et al., 1993). 

Heterologous desensitization refers to the situation in which receptor stimulation by the 

agonist attenuates the response of other receptor types. Heterologous desensitization is 

believed to result from activation of PICA and PKC, which in turn phosphorylates the 

heterologous receptors.

Role of Gravin in Regulating G-protein Coupled Receptor Function 

The desensitization of GPCRs has been particularly well studied in the 02- 

adrenergic receptor/ PKA system. Exposure of 02-adrenergic receptors to the 

catecholamines epinephrine or norepinehrine causes rapid desensitization of the receptor- 

stimulated adenylyl cyclase response. Phosphoiylation of the receptor is the first step in 

desensitization and occurs over a few minutes after agonist exposure (Benovic et al., 

1988). Primarily two kinase activities have been implicated in this agonist-induced
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phosphorylation: PKA (Clark et ah, 1989) and (32-adrenergic receptor kinase (Lohse et 

al., 1990). Early studies on phosphorylation of P2-adrenergic receptor also indicated that 

P-arrestin is an essential cofactor of P2-adrenergic receptor kinase (Loshe et al., 1990). 

Interestingly, in A431 cells, although suppression of PKC has been reported to potentiate 

rather than to attenuate agonist-induced desensitization (Shih et al., 1994), PKC is 

required for the association of PKA and P-arrestin with the p2-adrenergic receptor (Shih 

et al., 1999; Lin et al., 2000). This suggests that PKC might also play a role in P2- 

adrenergic receptor desensitization, but in a manner that differs from that for PKA and 

P2-adrenergic receptor kinase, which directly phosphorylate the receptor.

Although the mechanism of desensitization of P2-adrenergic receptor has been 

well studied, the desensitization of another important group of GPCRs, the opioid 

receptor family, is still controversial. Three major types of opioid receptors, p, 8 and k , 

have been identified by selective radioactive ligand studies (Chang et al., 1979). Through 

the use of cloning techniques, the molecular events involved in regulating the activity of 

these 3 opioid receptor types have been studied in detail. Although each of these 

receptors has a distinct regional distribution within the brain and unique pharmacological 

and physiological properties, the primary structures of these receptors show a 65-70% 

homology with each other (Chen et al., 1993a). All of the three types preferentially 

activate inhibitory G-proteins (Johnson et al., 1994; Law et al., 1994; Xie et al., 1994), 

and are capable of regulating the same second messengers. Activation of these receptors 

also increases phospholipase C activity (Ueda et al., 1995), causes a transient increase in 

the levels of intracellular Ca2+ (Spencer et al., 1997), activates inwardly rectifying K
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channels (Henry et al., 1995), and stimulates the mitogen-activated protein kinases Erk-1 

and Erk-2 (Fukuda et al., 1996).

Like (32-adrenergic receptor, the activities of the opioid receptors are attenuated by 

chronic agonist treatment. Several researchers have reported agonist-induced opioid 

receptor phosphorylation (Arden et al., 1995; Pei et al., 1995), with some suggesting that 

phosphorylation correlates with agonist-induced receptor desensitization. This is 

supported by site-specific mutagenesis studies. Replacement of Thr393 by Ala was 

shown to blunt DAMGO-induced p-opioid receptor desensitization (Pak et al., 1997), 

while El Kouhen and coworkers found phosphorylation on Ser363, Thr370, and Ser375 at 

the COOH-terminus plays a role in modulating agonist-induced internalization of the p- 

opioid receptor (El Kouhen et al., 2001). Phosphorylation by PKA is unlikely the 

mechanism of agonist-induced desensitization because the opioid receptor mediates 

inhibition of cAMP formation. On the other hand, it has been reported that 

phosphorylation by PKC modulates desensitization of the 5-opioid receptor (Ueda et al., 

1995) in a Xenopus expression system, whereas phosphorylation by PKC Ca2+ / 

calmodulin-dependent protein kinase II (CaM kinase II) (Mestek et al., 1995), and 

mitogen-activated protein kinase (Polakiewicz et al., 1998) modulates desensitization of 

the p-opioid receptor. Studies on dominant negative mutants suggest that desensitization 

of the 5-opioid receptor may also involve phosphorylation of the receptor by one or more 

G protein-coupled receptor kinases (Pei et al., 1995). Other studies have been unable to 

establish a causal relationship between receptor phosphorylation and desensitization. Loh 

and coworkers compared the rate of p-opioid receptor phosphorylation and the rate of 

DAMGO-induced receptor desensitization and they found that agonist-induced receptor
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phosphorylation occurred within minutes, whereas the desensitization of the receptor 

took hours (Kouhen et al., 1999). The absence of correlation between receptor 

phosphorylation and desensitization was further demonstrated by using p-opioid receptor 

mutants in which all the putative phosphorylation sites were removed and receptor 

phosphorylation was completely abolished. Interestingly, these receptor mutants could 

still be desensitized by chronic exposure to agonist (Capeyrou et al., 1997). Thus, these 

experiments suggest that receptor phosphorylation is not a prerequisite for 

desensitization.

Receptor internalization is another mechanism for regulating the receptor. Rapid 

internalization has been demonstrated in both the P2-adrenergic receptor system and the 

opioid receptor system. Internalization of the receptor involves clathrin-dependent 

endocytosis and happens rapidly after agonist stimulation (Gagnon et al., 1998). In the P- 

adrenergic receptor system, the P2-adrenergic receptor kinase was found to colocalize 

with the receptor several minutes after agonist stimulation, indicating its role in agonist- 

induced receptor internalization (Ruiz-Gomez et al., 1997). Internalization of the receptor 

has also been reported to involve translocation of phosphoinositide 3-kinase to the plasma 

membrane, and this process is mediated by P-adrenergic receptor kinase in an agonist- 

dependent manner (Sathyamangla et al., 2001), suggesting phosphorylation may play a 

role in the P2-adrenergic receptor internalization. P-Arrestin, a cytoplasmic cofactor of 

p2-adrenergic receptor kinase, acts as an adapter protein which binds to clathrin (Lin et 

al., 1997) and plays a role in targeting the receptors to clathrin-coated pits (Krupnick et 

al., 1997).
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Phosphorylation may play a role in agonist-induced opioid receptor 

internalization. Truncation of a Ser/Thr-rich domain unique to the C-terminus of p-opioid 

receptor results in a significant inhibition of internalization and recycling of the receptor 

(Segredo et al., 1997), suggesting the importance of phosphorylation at the C-terminus in 

opioid receptor internalization. In addition, the rapid internalization of human 8-opioid 

receptor could be blocked by a G protein-coupled receptor kinase inhibitor (Hasbi et ah, 

2000). In vitro studies involving the use of either mutant receptors or kinase inhibitors 

have found that phosphorylation by PKC regulates internalization of both p-opioid 

receptor (Ueda et ah, 2001) and 8-opioid receptor (Xiang et ah, 2001). These 

observations indicate the importance of G protein-coupled receptor kinase and PKC in 

modulating internalization of opioid receptors. As in P2-adrenergic receptor trafficking, 

internalization of opioid receptor is (3-arrestin-clependent and clathrin-dependent (Zhang 

et ah, 1999; Xiang et ah, 2000), suggesting the similarities between the mechanism of P2- 

adrenergic and opioid receptor internalization.

Recent studies have revealed that members of the AKAP family may play a role 

in the regulation of GPCR function by recruiting various protein kinases, phosphatases, 

and other proteins such as p-arrestin or clathrin to the receptor. Fraser et ah (2000) 

reported that AKAP79 enhances down-stream activity of the MAP kinase pathway by 

facilitating cAMP-induced phosphorylation of p2-adrenergic receptor following agonist 

stimulation. A recent study has also reported that AKAP79 regulates the ability of G- 

protein coupled receptor kinase 2 to phosphorylate the agonist-occupied receptors (Cong 

et ah, 2001). Besides AKAP79, Malbon and his group have demonstrated that gravin may 

serve a role as a kinase scaffolding protein that regulates p2-adrenergic receptor
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signaling. Gravin binds to both PKA and PKC, and associates with P2-adrenergic receptor 

(Shih et al., 1999), suggesting that gravin is involved in desensitization of the receptor. 

This complex also includes protein phosphatase 2B, which suggests that gravin is 

involved in resensitization of the receptor (Shih et ah, 1999). Further investigation 

indicated that gravin was essential to the organ ization of the signaling complexes 

composed of the receptor, protein kinases / phosphatases, p-arrestin, and clathrin (Lin et 

ah, 2000). Suppression of the expression of gravin by antisense oligodeoxynucleotides 

blocked the association of the p2-adrenergic receptor with these proteins and the 

sequestration and resensitization of p2-adrenergic receptor. Fan et ah (2001) have further 

reported that the cytoplasmic C-terminus of the P2-adrenergic receptor contains the 

gravin binding site and the interaction of gravin with the P2-adrenergic receptor is 

maintained as the receptor is internalized. These observations suggest that gravin is 

essential for desensitization of P2-adrenergic receptor by mediating phosphorylation and 

internalization of the receptor.
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Statement of Problems

The cellular response to hormone or neurotransmitter application via G protein- 

coupled receptors is a highly regulated event and has been well studied in the p2- 

adrenergic receptor system. The formation of a macromolecular complex composed of 

gravin, p2-adrenergic receptor, several protein kinases/phosphatases, P-arrestin, and 

clathrin suggests that gravin plays an important role as a scaffold for these protein-protein 

interactions in p2-adrenergic receptor signal transduction. Studies on desensitization and 

resensitization of the p-opioid receptor also provide evidence that p-opioid receptor 

signaling is regulated by protein kinases and displays arrestin- and clathrin-dependent 

internalization in response to agonist exposure. This raises the possibility that a complex 

similar to that associated with p2-adrenergic receptor may associate with p-opioid 

receptor after a signaling molecule binds. Gravin has been found widely distributed in the 

sensory nervous system, where large amounts of opioid receptor are expressed.

Therefore, it is possible that gravin may play a role in regulating p-opioid receptor 

signals in the nervous system. Based on this information, my hypothesis is that gravin 

interacts with p-opioid receptor during agonist-induced internalization of the receptor. To 

investigate this hypothesis, the first aim was to determine if gravin codistributed with p- 

opioid receptor. This aim was pursued by examining gravin expression and distribution in 

SH-SY5Y cells, a neuroblastoma cell line that expresses p-opioid receptor when treated 

with phorbol esters or retinoic acid (Pahlman el al., 1981 & 1984; Zadina et ah, 1993) 

and in AN3 CA cells cotransfected with gravin and p-opioid receptor vector constructs. 

The second aim of this study was to determine if agonist-induced internalization was 

accompanied by redistribution of gravin. This aim was pursued by 1) generating full-
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length gravin and p-opioid receptor expression vectors and expressing these constructs in 

AN3 CA cells, a cell line that does not express gravin or p-opioid receptors and 2) 

examining the distribution of the gravin and p-opioid receptor transgenes after the cells 

were treated with specific agonist.



CHAPTER II

MATERIALS AND METHODS 

Materials

Eukaryotic and Bacterial Cell Culture

Eukaryotic Cell Lines

Human neuroblastoma cell line (SH-SY5Y) was a generous gift from Dr. Sandra 

Roerig; human endometrial carcinoma cell line (AN3 CA) was obtained from ATCC 

(American Type Culture Collection), Manassas, VA.

Eukaryotic Cell Culture and Transfection

Dulbecco’s modified Eagle’s medium (DMEM) containing L-glutamine, 

lipofectAMINE (2 pg/ml) reagent and Opti-MEM reduced serum medium from Gibco 

BRL, Life Technologies, Gaithersburg, MD. Fetal bovine serum (FBS) from Atlanta 

Biological, Atlanta, GA. Penicillin-streptomycin, trypsin-EDTA (0.05% trypsin), all- 

trans retinoic acid (RA), isoproterenol, Tyr-D-Ala-Gly-MePhe-Gly(ol)-enkephalin 

(DAMGO) from Sigma Chemical Company, St. Louis, MO.

Bacterial Cell Line

E. coli strain TOP 10F’ used to maintain and propagate plasmid vectors from 

Invitrogen, Carlsbad, CA. SOC medium was included in the kit.

16
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Bacterial Cell Culture and Transformation

Bacto™ Yeast Extract and Tryptone Peptone from Becton Dickinson, Sparks, MD. 

Selected agar from Gibco BRL, Life Technologies. Ampicillin (sodium salt) from Sigma 

Chemical Company, St. Louis, MO.

Oligonucleotides

The primers used to perform RT-PCR reactions were designed by Dr. Bryon 

Grove and purchased from Genosys, St. Louis, MO. The sequences of these 

oligonucleotides are shown in Table 1.

Vectors

pcDNA 3.1.V5/His-A and pCR.2.1 from Invitrogen. Expression vector GR81- 

5534 (gravin expression vector) was designed by Dr. Bryon Grove and constructed by 

Magdalena Walkiewicz. This expression vector' was generated by inserting a full-length 

gravin sequence (nt 81to 5534) into the multiple cloning site of the pcDNA 3.1.V5/His-A 

vector in frame with the V5 and polyhistidine tags. Expression vector 

pcDNA3.1.V5.TGA was designed by Dr. Bryon Grove and constructed by inserting an 

18 base pair linker containing a stop codon (TGA) into the Age I site of the pcDNA 

3.1.V5/His-A vector.

Enzymes

The restriction endonucleases and other enzymes used in this study include: Age I, 

BamH I, BstB I, BstE II, Dde I, EcoR I, EcoR V, Hind III, Kpn I, Nhe I, Not I, Sty I, Xba 

I, T4 DNA ligase from New England Biolabs, Beverly, MA. Advantage-GC cDNA 

polymerase from Clontech, Palo Alto, CA. PfuTurbo DNA polymerase from Stratagene, 

La Jolla, CA. AMY reverse transcriptase from Promega, Madison, WI.



Table 1. Oligonucleotides Used for Cloning Techniques.

Oligonucleotide Sequence Additional Restriction 
Enzyme Sites for Cloning

Desired Function

M O R 4 T A A T G G T A C C T C C G C C T G A C G C T C C T C T C Kpn 1 Forward Primer for M O R  clone

M O R 2 A A A A T C T A G A G G G G C A A C G G A G C A G T T T C T G Xba 1 Reverse Primer for M O R  clone

M O R 3 C A G A G T G G C C A G A G A G G A A A G A G G T R T  Primer for M O R  clone

betaadrenol A A G G G G T A C C A C A C C A C A G C C G C T G A A Kpn 1 Forward Primer for p 2-A R  clone

h g f o o H r o n r v Q G  C  C  C  I C T A G A T A .G  C  A G T G  A G T C  A T T T G T A C T Y K o  1/ \ L / U  1 Reverse Prim eri for p 2-A R  cione

betaadreno3 C T G C T C C T C A A A T C C C T G C C R T  Primer for p 2-A R  clone

Betaadreno5 C T G T T T A G T G T T C T G T T G G G C G G G G G G Reverse Primer2 for p 2-A R  clone
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Reverse Transcription and Polymerase Chain Reaction

RNA STAT-60™ kit used to purify mRNA from cultured cells from TEL-TEST, 

Inc., Friendswood, TX. RNase inhibitor from Promega, Madison, WI. Deoxynucleotide 

Mix (dNTPs) from Brinkmann Instruments, Inc., Westbury, NY. All polymerase chain 

reactions were performed on a Thermal Cycler from Perkin-Elmer Corp., Foster City, 

CA.

DNA purification

DNA fragments were purified from 1% agarose gel using a QIAquick Gel 

Extraction Kit from Qiagen, Inc., Valencia, CA. Circular DNA from small bacterial 

cultures was purified using either a Plasmid Mini Kit from Qiagen, or phenol-chloroform 

purification including phenol, chloroform, isopropanol from Sigma and isoamyl alcohol 

from Fisher Scientific Company, Fairlawn, NJ. Circular DNA from large bacterial 

cultures was purified using an EndoFree Maxi Kit from Qiagen, Inc. DNA and RNA 

concentration was measured on a UV spectrophotometer from Dr. Ann Flower.

Gel Electrophoresis

Agarose and ethidium bromide from Gibco BRL, Life Technologies.

Acrylamide, bis-acrylamide and sodium dodecyl sulfate (SDS) from Bio-RAD 

Laboratory, Hercules, CA. Ammonium persulfate (APS), bromophenol blue, N,N,N’,N’- 

tetramethylethylenediamine (TEMED) from Si gma. Gel documentation included 

capturing image of the gel using a UVP High Performance Ultraviolet Transilluminator 

from Ultra Violet Products, Upland CA.
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Immunoblotting and Protein Assays

Protease inhibitors used to lyse cells include: aprotinin, calpain inhibitor, 

ethylenediamine-tetraacetic acid (EDTA) disodium salt, pepstatin A, and 

phenylmethylsulfonyl fluoride (PMSF) from Sigma.

BCA protein assay kit from Pierce, Rockford, IL.

Nitrocellulose membrane from Bio-RAD. Proteins immobilized on membrane 

were detected using the CDP-Sta/5 detection system from Applied Biosystems, Bedford, 

MA. This kit includes I-Block™ reagent and 0.25mM Chemiluminescent Substrate.

Immunofluorescence and Confocal Microscopy

Paraformaldehyde was purchased from Polysciences, Inc., Warrington, PA. 

Normal goat serum and digitonin were purchased from Sigma. FITC-guard mounting 

medium was purchased from Testog Inc., Chicago, IL. The slides were observed on 

either a Nikon TE 300 inverted Epi-fluorescence Microscope (Filters: ex580 nm and 

em620 nm for Cy3, ex480 nm and em535 nm for FITC; Dichroic mirror: 595 nm for Cy3 

and 505 nm for FITC) equipped with Hamamatsu “ORCA” digital camera from Dr. 

Mickael Atkinson or a Fluoview 300 laser scanning confocal system coupled to a 1X70 

Olympus inverted Epi-fluorescence microscope equipped with Argon laser for FITC and 

“HeNe” laser for Cy3 from Dept, of Anatomy & Cell Biology.

Antibodies

Monoclonal mouse anti-gravin antibody 2B3-1.1 and polyclonal rabbit anti- 

gravin antibody Rb7753 were obtained from Dr. Bryon Grove. Monoclonal mouse anti- 

V5 antibody was obtained from Invitrogen Coloration, Carlsbad, CA. Polyclonal rabbit 

anti-(32-adrenergic receptor antibody was obtained from Santa Cruz Company, Santa
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Cruz, CA. Polyclonal rabbit anti-p-opioid receptor antibody was from Neuromics, 

Minneapolis, MN. Cy3-conjugated Donkey anti-mouse IgG antibody and FITC- 

conjugated Donkey anti-rabbit IgG antibody were obtained from Jackson 

ImmunoResearch Laboratories, Inc.. Alkaline phosphatase (AP)-conjugated anti-mouse 

IgG and AP-conjugated anti-rabbit IgG were obtained from Sigma.

Other Chemicals

Bis [2-hydroxyethyl] imino-tris [hydroxymethyljmethane (Bis-Tris), benzamidine 

hydrochloride, bovine serum albumin (BSA), calcium chloride (CaCh), dimethyl 

sulfoxide (DMSO), glycerol, magnesium chloride (MgCh), (3-mercaptoethanol, 

potassium phosphate, sodium chloride (NaCl), sodium phosphate (dibasic) (Na2HP0 4 ), 

sodium phosphate (monobasic, anhydrous) (NaH2P0 4 ), Tris (hydroxymethyl)- 

aminomethane (Trizma Base), Triton X-100 from Sigma Chemical Company, St. Louis, 

MO. Sodium hydroxide (NaOH), hydrochloric acid (HC1) from Fisher Scientific 

Company, Fairlawn, NJ. Tween-20 from Bio-RAD Laboratory, Hercules, CA. Imidazole 

from Acros Organics, NJ. Reagent grade water was generated using a Milli-Q water 

purification system, Millipore Corporation, Bedford, MA.

Methods

Eukaryotic Cell Culture

Human SH-SY5Y cells and human AN3 CA cells were maintained in minimum 

essential DMEM containing 10% fetal bovine serum, 100 units/ml penicillin, and 100 

pg/ml streptomycin in a humidified 5% CO2 incubator at 37 °C. Fresh medium was 

added to the culture every 2-3 days and the cells were passaged when confluent.

Retinoic Acid Treatment

SH-SY5Y cells were incubated until the cells were 70-80% confluent. Ten pM
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all-trans retinoic acid was added to the culture medium and cells were incubated for 6 

days before staining or lysing.

Agonist Treatment

AN3 CA cells seeded on glass covers! ips were either co-transfected with GR81- 

5534/pcDNA3.1.MORl.V5 or transfected with GR81-5534 or pcDNA3.1.MORl.V5 

alone. The cells were then subject to 5 pM DAMGO for 30 min.

For isoproterenol treatment, AN3 CA cells were either co-transfected with 

GR81-5534/pcDNA3.1.p2-AR.V5 (or pcDNA3.1. P2-AR) or transfected with GR81-5534 

or pcDNA3.1.p2-AR.V5 (or pcDNA3.1. p2-AR) alone. The cells were exposed to 10 pM 

isoproterenol for 30 min.

Cloning Techniques

Generating PCR Product

Generating Diethvlpvrocarbonate (DEPC1 Water. 500pl of DEPC was mixed 

with 500 ml of Milli-Q water by shaking thoroughly. The DEPC mixed water was stored 

at RT overnight and then autoclaved for 20 minutes in a liquid cycle.

Purification of mRNA from retinoic acid treated SH-SY5Y cells. Following 

treatment with retinoic acid (lOpM) for 6 days, SH-SY5Y cells grown in monolayer in 

25cm2 flasks were lysed in the culture dish by adding 2 ml of the RNA STAT-60™ and 

passing the cell lysate several times through a pipette. The homogenate was stored at RT 

for 5 minutes to permit the complete dissociation of nucleoprotein complexes, then 

transferred to a microcentrifuge tube and mixed vigorously with 0.4 ml chloroform. 

Following incubation at RT for 2 min, the mixture was centrifuged at 12,000x g for 15 

minutes at 4°C and the upper aqueous phase was collected into a fresh tube. To
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precipitate the mRNA, 1 ml of isopropanol was added to the collected phase. The sample 

was stored at RT for 10 minutes, and then centrifuged at 12,000x g for 10 minutes at 4°C. 

The RNA pellet was washed with 1 ml of 75% ethanol, air dried and dissolved in 50 pi of 

DEPC water.

Reverse Transcription. Reverse transcription was performed on 1 pg of mRNA 

using 10 nM of each of the reverse transcription primer (MOR3, corresponding to the 3’ 

non-coding region of the published human MORI; or betaadreno3, corresponding to the 

published human p2-adrenergic receptor). For each reaction, 1 pg of mRNA and 1 pi (10 

nM) of the primers were mixed in 3 pi DEPC EEO, heated in a water bath at 72 °C for 5 

minutes, and then incubated on ice for 5 minutes. The mixture was combined with 0.5 pi 

(20 U) AMV reverse transcriptase, 0.25 pi (20 U) RNase inhibitor, 1 pi dNTP, and 2 pi 

5X AMV reverse transcriptase buffer, and then the desired amount of DEPC H2O was 

added to the mixture to bring the volume to 10 ul. The reaction was performed in a water 

bath at 45 °C for one hour.

Polymerase Chain Reaction. PCR reactions were performed in thin-walled 

500 pi micro-reaction tubes in a Perkin-Elmer thermal cycler. The components of each 

reaction in a 50 pi volume are listed in Table 2. Reaction mixtures were overlaid with one 

drop of mineral oil to reduce refluxing. The program used for all PCR reaction was as 

follows: (1) 94 °C for 30 seconds; (2) 35 cycles in which each cycle consisted of a 1 

minute 94 °C denaturation step and a 3 minute 6 8  °C (70 °C for the second p2-AR clone) 

annealing and elongation step; (3) 3 minute 6 8  °C (70 °C for the second p2-AR clone) 

extension step. Following amplification, 10 pi of the PCR products was analyzed by 

submerged agarose gel electrophoresis using a 1% agarose gel.



Table 2. PCR Reactions* Performed in Cloning Technique.

Sequence to 
be Amplified

Template Forward
Primer

Reverse
Primer

Polymerase Desired Product

M O R I R T  p ro d u c t p rim ed  
w ith  M O R 3

M O R 4 
(10  nM )

M O R 2 
(10  nM )

A dv an tag e-G C  cD N A  
p o lym erase

w ith  supp lied  5X  bu ffe r
A  1381 bp  fragm en t fro m  hum an  M O R  sequence

P2 -A R R T  product p rim ed  
w ith  betaadreno3

b e taad ren o l 
(10  nM )

betaadreno2  
(10  nM )

P fuT urbo  D N A  
po lym erase**  

w ith  supp lied  10X bu ffe r
A  1358 bp  fragm en t from  hum an  p 2-A R  sequence

P2-A R R T  p ro d u c t p rim ed  
w ith  betaadreno3

b e taad ren o l 
(10  nM  )

betaadreno5  
(10  nM )

A d van tage-G C  cD N A  
p o lym erase

w ith  sup p lied  5X  buffe r
A  1422 bp  fragm en t from  hum an  p 2-A R  sequence

* All reactions were performed in the presence of lpl of template, lpl of each primer, lpl of polymerase, 
and 1 pi of dNTP in a 50pl volume.

** PfuTurbo DNA polymerase was supplemented with 1 pi of DMSO in this reaction.
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Generating Recombinant Protein Expression Vectors

Restriction Endonuclease Digestion. To generate the required overhangs for 

ligation, the pcDNA3.1.V5.TGA vector and the MOR and the first P2-AR PCR products 

were digested by Kpn I and Xba I (See Table 1). The reactions were performed using the 

PCR product or 1 pg of pcDNA3.1.V5.TGA vector, 1 pi of Kpn I, 1 pi of Xba I, 1 pi of 

10X NEBuffer 2, 1 pi of 1 mg/ml BSA in a 37 °C water bath for one hour. The second 

p2-AR PCR was ligated into the pCR2.1 vector by TA cloning first, and then digested by 

EcoR I. The pcDNA3.1.V5/Ehs was also digested by EcoR I to generate the overhangs 

for ligation.

Gel Purification. To purify the appropriate DNA fragments, the digestion 

products were separated electrophoretically on a 1 % agarose gel. The bands at the 

appropriate sizes were excised using a clean razor blade and the DNA was purified from 

the gel using a Q'lAquick Gel Purification Kit. Briefly, 3 volumes of Buffer QG 

(solubilization buffer) was added to 1 volume cf gel and incubated at 50 °C until the gel 

was dissolved. One volume of isopropanol was then added to the gel mixture and mixed. 

The mixture was then applied onto a QIA quick spin column and centrifuged at 10,000x g 

for one minute. After the flow through was discarded, 750 pi of Buffer PE (washing 

buffer) was placed onto the column and centrifuged at 10,000x g for 1 min. Prior to 

collecting the DNA, the flow through was discarded and the column was centrifuged for 

an additional 1 min at 12,000x g. Thirty microliters of Milli-Q water was added onto the 

column, the column was incubated with the water at RT for 1 min, and then the column 

was centrifuged at 12,000x g for 1 min. The eluted DNA was collected in a clean 1.5 ml

microcentrifuge tube.
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Ligation. Following digestion, the MORI and the first P2-AR PCR products were 

ligated into pcDMA3.1.V5.TGA using standard, procedures. The ligation reaction was 

performed in a clean 1.5 ml microcentrifuge tube containing 1 pi of T4 DNA Ligase,

200 ng of the digested pcDNA3.1.V5.TGA vector, 40 ng of the digested PCR product, 2 

pi of 10X T4 DN A Ligase buffer. The total volume of the reaction was brought up to 20 

pi by Milli-Q water. The mixture was allowed to incubate in a waterbath at 14 °C 

overnight. The second P2-AR insert sequence, which was excised from the pCR2.1 vector 

(see above), was ligated into pcDNA3.1V5/His vector.

Analysis of Clones

Transformation of Competent Bacterial Cells

Frozen competent TOP 10F’ cells (50 pi) were thawed on ice, mixed gently with 

3 pi of the ligation product and incubated on ice for 30 minutes. Following incubation, 

the mixture was heated to 42 °C for 30 seconds before 250 pi SOC medium was added, 

and the mixture was shaken at 225 rpm at 37 °C for one hour. For each transformation,

50 pi and 200 pi of the mixture were spread over the entire surface of 2 LB agar plates 

containing 50 pg/ml ampicillin using a sterile, bent glass rod. The plates were then 

inverted and incubated at 37 °C for 12-18 hours or until colonies appeared.

Selection of Colonies

Several 2. ml cultures containing LB broth and 50 pg/ml ampicillin were 

inoculated with single colonies from the agar plate. The cultures were allowed to grow 8 

hours or overnight at 37 °C while shaking at 225 rpm.
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Plasmid DNA Purification by Phenol-Chloroform

One and one-half ml of each of the ove rnight cultures was transferred to a 

microcentrifuge tube and centrifuged at l,500x g for 10 min to pellet the cells. Following 

centrifugation, the supernatant was discarded and each of the pellets was resuspended in 

100 pi of solution I (50 mM glucose, 25 nM Tiis-Cl, 10 mM EDTA, pH 8.0). The 

suspensions were then mixed by inversion with 200 pi of solution II (0.2 N NaOH, 1% 

SDS) and incubated on ice for 5 min. One hundred and fifty pi of solution III (3 M 

potassium acetate, 11.5 % glacial acetic acid) was then added to each mixture and the 

solution were mixed by inverting the tube 4-5 times, placed on ice for 5 min, and 

centrifuged at 12,000x g for 5 min. After centrifugation, the supernatants were transferred 

to microcentrifuge tubes containing 500 pi phenol/chloroform solution (pH 8.0), mixed 

by vortexing, and the mixtures were centrifuged for 2 min at 12,000x g. The upper 

aqueous phases were transferred to microcentrifuge tubes containing 300 pi isopropanol, 

mixed by vortexing, and centrifuged at 16,000x g for 15 min to pellet the DNA. The 

supernatants were discarded and the pellets were washed with 1 ml of 75% ethanol by 

centrifugation at 12,000x g for 5 min. The pellets were then air dried and dissolved in 50 

pi Milli-Q water.

Screening for Positive Clones

Positive clones were screened for the presence of specific restriction enzyme sites. 

For pcDNA3.1.MORl.V5, the restriction enzymes were EcoR I and Kpn I/Xba I. For 

pcDNA3 .1 .p2-AR.V5 , the restriction enzymes used to screen for positive clones were 

BstE II, EcoRV, and Kpn I/Xba I. For pcDNA3.1 .P2-AR, the restriction enzyme used was 

EcoR I. Restriction endonuclease digestion was performed in a water bath at the
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appropriate temperature for 1 hour in a 10 pi volume containing 2 pi of DNA of the clone 

to be analyzed, 0.25 pi of each restriction enzyme, and 1 pi of the appropriatelOX 

NEBuffer with or without 1 pi of 10X BSA. The sample was then analyzed by 

submerged agarose gel electrophoresis using 1% agarose gel. Positive clones were 

identified by the number of bands and their sizes.

Generating High-quality DNA Used for Diagnostic Analysis

Clones selected for further analysis were cultured overnight at 37 °C in 3 ml of 

LB broth containing 50 pg/ml ampicillin while shaking at 225 rpm. The plasmid DNA 

was purified using a QIAgen Plasmid Mini Kit to generate high-quality DNA. The 

culture was centrifuged at l,500x g for 10 minutes and the bacterial pellet was 

resuspended in 0.3 ml of Buffer PI (50 mM Tris-Cl, 10 mM EDTA, 100 pg/ml RNase A, 

pH 8.0). After resuspension, the culture was mixed gently with 0.3 ml of Buffer P2 (200 

mM NaOH, 1 % SDS) and incubated at RT for 5 min. 0.3 ml of Buffer P3 (3.0 M 

potassium acetate, pH 5.5) was pre-chilled, then mixed immediately with the culture and 

incubated on ice for 5 min. After incubation, the mixture was centrifuged at 16,000x g for 

10 min. The supernatant was removed promptly, applied to a QIAGEN-tip 20, which was 

equilibrated by 1 ml Buffer QBT (750 mM NaCl, 50 mM MOPS, 15 % isopropanol, 0.15 

% Triton X-100), and allowed to enter the resin by gravity flow. The QIAGEN-tip 20 

was then washed 4 times with 1 ml of Buffer QC (1.0 M NaCl, 50 mM MOPS, 15 % 

isopropanol). The plasmid DNA bound to the resin was eluted by 0.8 ml of Buffer QF 

(1.25 M NaCl, 50 mM Tris-Cl, 15 % isopropanol), and precipitated with 0.56 ml of 

isopropanol by centrifugation at 16,000x g for 30 min. The DNA pellet was then washed
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with 1 ml of 75 % ethanol by centrifugation at 12,000x g for 5 min, air-dried for 5 min 

and redissolved in 30 gtl of Milli-Q water.

Diagnostic restriction analysis

To confirm the presence and the orient ation of the insert DNA, diagnostic 

restriction analysis was performed in a water bath at the appropriate temperature in 1 0  pi 

of reaction containing 2 pi of purified plasmid DNA, 1 pi of the appropriate restriction 

enzymes and 1 pi of 10X NEBuffer with or without 1 pi of 10X BSA for one hour. The 

restriction enzymes used for analyzing pcDNA3.1.MORl.V5 were BamHl, BstB I, 

Hindlll/EcoR I, and Kpn I/Xba I. The restriction enzymes used for analyzing 

pcDNA3.1.p2-AR.V5 were BstE II, Dde I, Sty 1, and Hind III/EcoR V. The restriction 

enzymes used for analyzing pcDNA3.1 .P2-AR were EcoR V and Not I/BstE II. The 

reaction products were then subjected to agarose gel electrophoresis using a 1 % agarose 

gel.

DNA Maxi Prep

One hundred ml of LB broth with 100 pg/ml ampicillin was inoculated with 60 pi 

of a fresh overnight culture of the selected clone and incubated in 37 °C for 12 hours 

while shaking at 225 rpm. The bacterial cells were then harvested by centrifugation at 

2,500x g for 15 min. The pellet was resuspended in 10 ml of Buffer PI (50 mM Tris-Cl, 

10 mM EDTA, 100 pg/ml RNase A, pH 8.0), followed by gentle mixing with 10 ml of 

Buffer P2 (200 mM NaOH, 1 % SDS) and incubation at RT for 5 min. Ten ml of pre­

chilled Buffer P3 (3.0 M potassium acetate, pH 5.5) was then added to the lysate and 

mixed by inverting the tube 4-6 times. The lysate was poured into the barrel of a 

QIAfilter Cartridge and incubated at RT for 10 min. After the cap was removed from the
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QIAfilter outlet nozzle, the plunger was gently inserted into the QIAfilter Cartridge and 

the cell lysate was filtered into a 50 ml tube. The filtered cell lysate was then mixed with 

2.5 ml of Buffer ER and incubated at RT for 30 min. The solution was then applied to a 

QIAGEN-tip 50, which was equilibrated by 10 ml of Buffer QBT (750 mM NaCl, 50 

mM MOPS, 15 % isopropanol, 0.15 % TritonX-100), and allowed to enter the resin by 

gravity flow. The QIAGEN-tip 50 was washed twice with 30 ml of Buffer QC (1.0 M 

NaCl, 50 mM MOPS, 15 % isopropanol) and plasmid DNA was eluted with 15 ml of 

Buffer QN (1.6 M NaCl, 50 mM MOPS, 15 % isopropanol). After elution, DNA was 

precipitated by mixing with 10.5 ml isopropanol and centrifuging the mixture 

immediately at 16,000x g for 30 min in a 50 ml endotoxin-free tube. The DNA pellet was 

washed with 2.5 ml of endotoxin-free 75 % ethanol by centrifugation at 16,000x g for 10 

min. The supernatant was removed and the pellet air dried and redissolved in 30 pi of 

endotoxin-free Buffer TE (10 mM Tris-Cl, 1 mM EDTA). DNA concentration was 

determined by UV spectrophotometry.

Transient Transfection

AN3 CA cells were seeded onto glass coverslips in an 8 -well plate at 2 x 105 

cells/well and incubated for 18-24 hours in growth medium containing serum. For each 

transfection, 1 pg of the vector DNA was mixed with 10 pg of lipofectAMINE™ reagent 

in 195 pi of Opti-MEM reduced serum medium at RT for 30 minutes. While incubating 

the mixture, the cells were rinsed 3 times with Opti-MEM medium. The DNA mixture 

was then mixed with 800 pi Opti-MEM and applied to one well of an 8 -well plate. The 

cells were incubated with the DNA/ LipofectAMINE complex at 37 °C for 5 hours. At 

the end of the incubation, the DNA/ LipofectAMINE complex in Opti-MEM was
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replaced with complete growth medium containing serum and the cells were incubated at 

37 °C for 45-48 hours.

Immunofluorescence Microscopy

Cells on glass coverslips were fixed with 3.7 % paraformaldehyde in PBS (58 

mM Na2HPC>4 , 17 mM Nat^PCVKhO, 6 8  mM NaCl, pH 7.2) for 10 min, washed twice 

with PBS 10 min per wash, permiablized with 62 pg/ml digitonin in PBS for 10 minutes, 

and washed once more with PBS for 10 min. Following this, the cells were incubated in 

5%NGS/0.1%BSA/PBS at RT for 30 min and then exposed to primary antibody diluted 

in 1%NGS/0.1%BSA/PBS for one hour at 37 °C. After exposure to the primary antibody, 

the cells were washed 3 times in PBS and incubated for one hour at 37 °C in secondary 

antibody diluted in 0.1%BSA/PBS. The cells were then rinsed with PBS and the 

coverslips were mounted on glass slides with FITC-guard and observed with either a 

Nikon TE 300 inverted Epi-fluorescence microscope or a Fluoview 300 laser scanning 

confocal system. For Nikon TE 300 inverted Epi-fluorescence microscope, the images 

were collected with Matrox frame capture and analyzed with Metamorph software from 

Universal Imaging Corp. For Fluoview 300 laser scanning confocal system, the images 

were collected with photo multiplier tube (PMT) and analyzed with Fluoview software.

Cell Lvsis and Immncblotting Analysis 

Preparation of Cell Lysate

Cells grown in 8 -well plates or 25 cm2 flasks were harvested by scraping and 

washed twice by resuspending in PBS ( 6 8  mM NaCl, 58 mM Na2HP0 4, and 17 mM 

NaH2P0 4 , pH 7.2) and centrifuging at 1,500 rpm for 10 min. The cell pellet was 

resuspended in lysis buffer (150 mM NaCl, 20 mM Tris base, 0.01 M EDTA disodium
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salt, 10 mM Benzamidine HCL, 1% Triton X-100, and 0.05% Tween-20, pH 7.4) 

containing 100 pg/ml leupeptin and 1 mM PMSF and incubated on ice for 10 min. The 

extract was then centrifuged at 16,000x g for 10 min at 4 °C and the supernatant was 

collected.

BCA Protein Assay

The protein concentration in the cell lysate was determined using a BCA 

(bicinchoninic acid) assay. The protein standard for the assay was prepared by mixing 

200 pi of lysis buffer containing 5 mg/ml of bovine serum albumin (BSA) with 200 pi of 

lysis buffer containing 10 pg/ml leupeptin to make a 2.5 mg/ml of BSA solution. The 2.5 

mg/ml BSA solution was then diluted 8 times by serial dilution into 1.5 ml 

microcentrifuge tubes containing 200 pi of lysis buffer with 10 pg/ml leupeptin. Samples 

were prepared by mixing 5 pi of cell lysate with 45 pi of lysis buffer. Ten pi of each 

mixture was then loaded into a 96-well plate by triplicate, mixed with 200pl of BCA 

solution from the BCA protein assay kit. The sample and BCA reagent was allowed to 

react for one hour at 60 °C. The absorption of each sample was measured at X5eo on a 

plate reader and protein concentrations were calculated from the protein standard. 

Western Blotting

After the amount of protein in the cell lysate was determined by the BCA 

protein assay, cells lysates were mixed with appropriate volumes of sample buffer (0.5 M 

Tris, 10 % SDS, glycerol, P-mercaptoethanol, bromophenol blue) to ensure that the total 

protein in each sample was the same. Samples were then electrophoresed on 5% SDS- 

polyacrylamide gels using 20 mA constant current for 1-1.5 hour and transferred 

electrophoretically to a nitrocellulose paper usingl50 mA constant current for 2 hours in
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transfer buffer (192 mM glycine, 25 mM Tris, 20 % methanol). After 1 hour to overnight 

incubation in the blocking buffer (0.2 % I-Block™ Reagent, 0.1 % Tween®-20, PBS), 

the blot was incubated with either an anti-V5 antibody diluted 1:5000 or a polyclonal 

anti-gravin antibody diluted 1:1000 at RT for 1 hour. The blot was then washed with PBS 

4 times for 5 minutes and incubated with an alkaline phosphatase conjugated secondary 

antibody diluted 1:100,000 at RT for 1 hour, followed by washing with PBS 4 times for 5 

minutes. All antibodies were diluted in blocking buffer. For detection, the blot was rinsed 

in IX Assay buffer (20 mM Tris, 1 mM MgCk, pH 9.8) twice for several seconds and 

exposed to substrate solution (CDP-,Sta/'s> substrate) for 5 min. The blot was then exposed 

to a standard X-ray film for 1-5 min and the film was developed in a MOHRpro 8 

processor.



CHAPTER III

RESULTS

Expression and Distribution of Gravin in SH-SY5Y Cells 

Western blot and immunofluorescent microscopy revealed that treatment of SH- 

SY5Y cells by retinoic acid significantly increased gravin expression. As shown in 

Figure 1, anti-gravin antiserum strongly detected a -300 kDa band on immunoblots of 

extracts from cells treated with 10 mM retinoic acid (RA) for 8 days, but did not detect a 

band in extracts from untreated cells and only v/eakly detected a band in extracts from 

cells treated with ethanol, the solvent used to dissolve the retinoic acid. The -300 kDa 

band in the RA treated cells was consistent with the molecular mass of gravin previously 

found (Grove et al., 1994). The band at -250 kDa was likely a proteolytic fragment of 

gravin. Because the protein concentration in the cell extracts was determined by BCA 

protein assay and an equal amount of protein was loaded into each lane, differences in the 

density of the bands indicated that the cells treated by RA for 8 days expressed higher 

levels of gravin than untreated cells and ethanol control cells. Figure 2 illustrates the 

results of a time course experiment in which SF1-SY5Y cells were exposed to RA for 

various times before they were harvested and equal amounts of total protein were 

subjected to SDS-PAGE. According to Figure 2, gravin level in the cells started to 

increase after 4 days of treatment with RA, reached the highest level after 6  and 8 days of 

treatment and then decreased at 1 0  and 1 2  days of treatment.

34
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The effect of RA on gravin expression was confirmed by immunofluorescence 

microscopy. Cells treated with RA showed a higher level of fluorescent staining than 

observed in untreated cells (Fig 3). Immunofluorescence microscopy also revealed that 

gravin was localized primarily at the surface of the cell bodies and the cellular processes 

(Fig 4). The RA treated cells were also double labeled for gravin and p-opioid receptor 

(MOR) and observed using confocal microscopy. Both the anti-MOR antiserum and the 

anti-gravin antibody detected not only membrane staining, but also partial cytoplasmic 

staining; however, the anti-gravin antibody detected primarily membrane staining. By 

image merging, there was partial colocalization of gravin and MOR (Fig 5A). Similarly, 

in cells double labeled with anti-P2-adrenergic receptor (P2-AR) and anti-gravin 

antibodies, the anti-P2-AR antibody detected both membrane staining and cytoplasmic 

staining, and image merging showed partial colocalization of gravin and P2-AR (Fig 5B).

In order to investigate whether the agon ist-induced internalization of the MOR or 

P2-AR was accompanied by redistribution of gravin, SH-SY5Y cells were treated with 

either DAMGO for 60 min or isoproterenol for 30 min. There was no redistribution of 

either the receptors or gravin in these cells (data not shown).

Characterization of Receptor Expression Vectors 

To investigate the interaction of gravin and recombinant MOR and P2-AR in 

transfected AN3 CA cells, the expression vectors, pcDNA3.1.MORl.V5, pcDNA3 .1 .p2- 

AR.V5, and pcDNA3.1.p2-AR were generated by inserting MOR and P2-AR sequences 

into either pcDNA3.1.V5/His or a modified pcDNA3.1.V5.TGA vector.
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Characterization of PCR products

Agarose gel electrophoresis of PCR products generated using receptor specific 

primers revealed the presence of DNA fragments which corresponded in size to the 

predicted size of 1381, 1358 and 1422 bp for the MOR insert, the first p2-AR insert and 

the second p2-AR insert, respectively (Fig 6 ). These bands were excised from the gel and 

ligated into either pcDNA3.1.V5/His or pcDNA3.1.V5.TGA.

Identification of Recombinants

Following ligation and transformation of the ligation products, the appropriate 

clones were identified by restriction enzyme analysis. Schematic drawings of the 

pcDNA3.1.MORl ,V5, pcDNA3 .1 .p2-AR.V5 and pcDNA3 .1 .p2-AR vectors illustrating 

the restriction enzyme sites used in the analysis are shown in Figure 7.

Clones for pcDNA3.1.MORl.V5 were identified initially by two criteria: the 

presence of a unique EcoR I site in the insert DNA and the DNA fragment pattern 

resulting from double digestion with Kpn I and Xba I. pcDNA3.1.MORl.V5 linearized 

by EcoR I digestion was expected to be 6809 bp, 1,381 bp longer than the linearized 

pcDNA3.1.V5.TGA, due to the presence of the insert DNA. Digestion of 

pcDNA3.1MORl.V5 with Kpn I an Xba I was expected to yield two fragments, one 5446 

bp in size, the other 1363 bp in size. Of the 6  colonies tested, all were found to meet these 

criteria and colony 5 was selected for further analysis (Fig 8 ).

Clones for pcDNA3 .1 .p2-AR.V5 were initially identified by the presence of a 

unique BstE II site, the presence of a unique EcoR V site and the pattern of fragments 

obtained by double digestion with Kpn I and Xba I. Of the 20 colonies selected, only 

colony 12 yielded a single band at the predicted size of 6800 bp after BstE II digestion
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(Fig 9A). Digestion of plasma DNA from this colony with EcoR V also yielded a single 

fragment at 6800 bp while double digestion with Kpn I and Xba I yielded a 5446 base 

pair fragment and a 1358 bp fragment, corresponding in size to the PCR product (Fig 

9B).

Clones for pcDNA3 .1 -P2-AR were initially identified by the presence of a 1438 bp 

fragment (corresponding to the insert DNA) after EcoR I digestion. All of the 10 colonies 

selected yielded a 5500 bp fragment and a 1438 bp fragment at predicted sizes (Fig 10).

Diagnostic Restriction Enzyme Analysis

The selected recombinants were further analyzed by restriction enzyme digestions 

to confirm that the insert DNA was ligated in the forward orientation. Digestion of 

pcDNA3.1.MORl.V5 with BamHI, BstB I, Hind III/EcoR I and Kpn I/Xba I yielded 

fragments which were consistent with the insert DNA having the correct sequence and 

orientation (Fig 11). Similarly, digestion of pcDNA3.1.p2-AR.V5 with BstE II, Sty I, and 

Hind III/EcoR V yielded fragments which were consistent with the insert DNA having 

the correct sequence and orientation (Fig 12). Digestion of pcDNA3 .1 .p2-AR with EcoR 

V and BstE II/Not I yielded fragments which were consistent with the insert DNA having 

the correct sequence and orientation (Fig 13).

Expression of Recombinant Proteins in AN3 CA Cells 

AN3 CA cells are a human endometrial carcinoma cell line which was 

originally derived from an undifferentiated metastatic endometrial carcinoma (Fogh et al. 

1977). Morphologically, cultured AN3 CA cells display an epithelial-like appearance 

under the light microscope. Under standard culturing conditions, the efficiency of
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transient transfection could reach 30-40%. Preliminary data in our lab has shown that 

AN3 CA cells do not express endogenous gravin.

To confirm that GR81-5534 was transcribed in AN3 CA cells, cells transfected 

with GR81-5534 were stained with either an and-V5 antibody or with monoclonal anti- 

gravin antibody Mab2B3-l.l and observed using a confocal microscope. Both antibodies 

revealed strong signals at the membrane of those cells expressing the transgene (Fig 14). 

In addition, both the anti-V5 antibody and a polyclonal anti-gravin antibody detected a 

~300kDa band on western blots of the transfected cells (Fig 15, lane 1, 2). The molecular 

weight of the bands was similar to that of the endogenous gravin detected in extracts 

from SH-SY5Y cells (Fig 15, lane 3).

The epitope-tagged MOR and p2-AR were initially detected by staining with the 

anti-V5 antibody. The fluorescent signal was localized at the surface of the transfected 

cells in both cases (Fig 16). To further confirm that the full-length receptor transgenes 

were transcribed, AN3 CA cells transfected with either the V5-tagged MOR or the V5- 

tagged p2-adrenergic receptor vectors were double labeled using the anti-V5 monoclonal 

antibody and either a polyclonal anti-MOR antibody or a polyclonal anti-p2-adrenergic 

receptor antibody (Fig 17 & 18). The fluorescent labeling by the anti-V5 and anti­

receptor antibodies showed extensive colocalization and this colocalization was 

confirmed by image merging.

Although the anti-V5 antibody displayed primarily plasma membrane staining, 

the anti-MOR and the anti-p2-AR antibodies revealed membrane staining and some 

cytoplasmic staining. To test whether this cytoplasmic staining represented expression of 

the transgene or endogenous expression of the receptors, non-transfected AN3 CA cells
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were stained using either the anti-MOR antibody, the anti-p2-AR antibody, or the anti- 

gravin antibody. Both the anti-MOR and the anti-p2-AR antibodies detected weak 

cytoplasmic staining, indicating either non-specific staining by the polyclonal antibody or 

a low level of endogenous expression of these receptors in AN3 CA cells (Fig 19A, B). 

The non-transfected cells did not label for gravin (Fig 19C).

Coexpression of Gravin and Receptor Transgenes 

To determine whether gravin would colocalize with MOR in AN3 CA cells, cells 

co-transfected with GR81-5534 and pcDNA3.1.MORl.V5 were double labeled with the 

anti-gravin antibody and the polyclonal anti-MOR antibody. Both antibodies displayed 

strong membrane staining and the staining of gravin and MOR showed extensive 

colocalization (Fig 20, A and B). This colocalization was further confirmed by image 

merging. To confirm that overexpression of either one of these two proteins did not 

induce the expression of the other, and to confirm that the antibodies did not cross-react 

with the recombinant proteins, cells transfected with either GR-81-5534 alone or 

pcDNA3.1.MORl.V5 alone were double labeled by both anti-gravin and anti-MOR 

antibodies. In Figure 20C and D, the cells transfected with only pcDNA3.1.MORl.V5 

showed only anti-MOR reactivity. There was no detectable anti-gravin reactivity in these 

cells. In Figure 20E and F, the cells transfected with only GR81-5534 reacted with the 

anti-gravin antibody, but not with the anti-MOR antibody.

In experiments in which AN3 CA cells were co-transfected with GR81-5534 

and pcDNA3.1.p2-AR.V5, and double labeled with anti-gravin and anti-p2AR antibodies, 

both antibodies labeled the membrane and displayed extensive colocalization (Fig 21, A 

and B). In the cells transfected with pcDNA3.1.p2-AR.V5 only and double labeled with
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both the anti-gravin and the anti-p2-AR antibodies, the anti-p2-AR antibody labeled the 

membrane but anti-gravin labeling was negative (Fig 21, C and D). In cells transfected 

with GR81-5534 and double labeled with both antibodies, only the anti-gravin antibody 

showed positive staining (Fig 21, E and F).

Effect of Agonist Treatment on Gravin and Receptor Distribution 

To determine if agonist mediated internalization of the V5-tagged MOR was 

accompanied by redistribution of gravin, AN3 CA cells cotransfected with MOR and 

gravin vector constructs were treated with DAMGO and double labeled with anti-MOR 

and anti-gravin antibodies. Before agonist treatment, anti-gravin and anti-MOR antibody 

labeling colocalized at the plasma membrane (Fig 22, A-D). After 30 min DAMGO 

treatment, anti-MOR antibody labeling displayed a distinct punctate pattern of 

fluorescence in the perinuclear region of the cell (Fig 22, E and G). This change in anti- 

MOR labeling occurred in both co-transfected cells and cells transfected only with the 

MOR vector. On the other hand, the majority of anti-gravin labeling remained at the cell 

membrane after agonist treatment, and there was no detectable colocalization between the 

anti-gravin and the anti-MOR labeling (Fig 22, E, F, and H)

To determine whether redistribution of gravin occurs during agonist induced 

internalization of the V5-tagged p2-AR, AN3 CA cells cotransfected with both gravin and 

p2-adrenergic receptor vector constructs were treated with isoproterenol and double 

labeled with anti-p2-AR and anti-gravin antibodies. In cells either co-transfected with 

GR81-5534 and pcDNA3.1.p2-AR.V5 vectors or transfected with pcDNA3.1.p2-AR.V5 

alone, anti-p2-AR labeling showed a distinct punctate pattern of fluorescence at the 

perinuclear region after 30 min of isoproterenol treatment (Fig 23, E and G). In the
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cotransfected cells and the cells transfected with GR81-5534 alone, the anti-gravin 

antibody detected primarily membrane staining before and after isoproterenol treatment, 

indicating no change in gravin distribution in response to isoproterenol (Fig 23, F and H). 

No detectable colocalization of antibody labeling was revealed in cells co-transfected 

with GR81-5534 and pcDNA3 .LP2-AR.V5 after isoproterenol treatment (Fig 23, E and 

F).

To examine the possibility that the V5-epitope fused to the C-terminus of the p2- 

AR might affect protein-protein interaction between gravin and the receptors, AN3 CA 

cells cotransfected with the gravin construct and a p2-AR construct lacking the V5- 

epitope were either treated with isoproterenol for 30 min or not treated and double 

labeled with anti-gravin and anti-p2-AR antibodies. As can be been in Figure 24, the anti- 

gravin and anti-p2-AR labeling colocalized in the absence of isoproterenol (Fig 24, A-D). 

After isoproterenol treatment, anti-P2-AR labeling was concentrated in a region adjacent 

to the nucleus (Fig 24, E), while gravin labeling remained on the cell membrane (Fig 24, 

F). Control cells transfected with the P2-adrenergic receptor construct alone displayed 

redistribution of p2-adrenergic receptor after isoproterenol treatment (Fig 24, G), while 

there was no redistribution of gravin in the cells transfected with the gravin construct 

alone (Fig 24, H).
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Figure 1: Effect of retinoic acid on gravin expression in SH-SY5Y cells Western blot 

analysis of gravin expression in SH-SY5Y cells treated with either 10 pM retinoic acid 

(RA) or ethanol for 6  days, or no treatment. Gravin expression was detected by a 

polyclonal anti-gravin antibody.
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Figure 2: Duration of retinoic acid treatment Western blot analysis of gravin 

expression in SH-SY5Y cells treated with 10 pM retinoic acid for 0, 4, 6, 8 , 10, and 12 

days. Gravin expression was detected by a polyclonal anti-gravin antibody.
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Figure 3: Effect of retinoic acid on gravin expression in SH-SY5Y cells

Immunofluorescent analysis (The magnification of the images is 280X) of gravin (a) 

without and (b) with 10 pM retinoic acid for 6  days. Gravin expression was detected by a 

monoclonal anti-gravin antibody and stained by Cy3-conjugated secondary antibody.
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Figure 4: Gravin distribution in SH-SY5Y cells treated with retinoic acid for 6 days

Immunofluorescent image showing gravin distribution in SH-SY5Y cells treated with 

retinoic acid for 6  days, (a, b): immuno fluorescent dye tends to be distributed along 

margins of cell bodies (arrows) (1200X). (c): immuno fluorescent dye reveals puntate 

staining at cell margins and the edges of neurites (arrows) (950X). (d): 

immunofluorescent dye reveals puntate staining at the edges of neurites (arrows) 

(2400X); insert showing more detail at higher magnification (5600X).
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Figure 5: Gravin and MOR or p2-AR double labeling in SH-SY5Y cells I. SH-SY5Y 

cells were double labeled with (A) anti-MOR antibody and (B) anti-gravin antibody, and 

the images were merged in (C). The distribution of the antigens was analyzed by confocal 

microscopy. The green channel reflects MOR stained by FITC (A), while the red channel 

reflects gravin stained by Cy3 (B). Note that there was both membrane staining and 

cytoplasmic staining for MOR and there was partial co localization of gravin and MOR at 

the cell margins. II. SH-SY5Y cells were double labeled with (A) anti-p2-AR antibody 

and (B) anti-gravin antibody, and the images were merged in (C). The distribution of the 

antigens was analyzed by confocal microscopy. The green channel reflects p2-AR stained 

by FITC (A), while the red channel reflects gravin stained by Cy3 (B). Note that there 

was both membrane staining and cytoplasmic staining for p2-AR and there was partial 

colocalization of gravin and p2-AR at the cell margins. Bar=25jum
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Figure 6: DNA sequences amplified by PCR DNA sequence encoding human p-opioid 

receptor and (32-adrenergic receptor was PCR amplified from messenger RNA isolated 

from SH-SY5Y cells that: had been treated with retinoic acid for 6 days. The PCR product 

was separated on a 1% agarose gel. The presence of the band at 1381 base pairs, 1358 

base pairs and 1422 base pairs indicated the presence of the amplified p-opioid receptor 

and two P2-adrenergic receptor sequences, respectively.
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Figure 7: Schematic drawing of (A) pcDNA3.1.MORl.V5, (B) pcDNA3.1.p2-AR.V5 

and (C) pcDNA3.1.p2-AR including restriction enzyme sites.
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Figure 8: Screening for positive clones for pcDNA3.1.MORl.V5 DNA samples from 6 

colonies were digested by either EcoR I or Kpn I/Xba I, and separated on 1% agarose gel 

to screen the positive clones. The presence of one band at 6809 base pairs by EcoR I 

digestion and two bands at 1363 base pairs and 5446 base pairs by Kpn I/Xba I digestion 

indicated a positive clone.
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Figure 9: Screening for positive clones for pcDNA3.1.p2-AR.V5

(A) : DNA samples from 20 colonies (1-20) were digested by BstE II and separated on a 

1% agarose gel. The presence of one band at ~6800 base pairs suggested a positive clone.

(B) : Colony 12 was further selected and digested by BstE II, EcoR V and Kpn I/Xba I. 

The presence of one band at 6804 base pairs by EcoR V digestion, 1358 base pair larger 

than the fragment of pcDNA3.1V5.TGA digested by EcoR V, and two bands at 1358 

base pairs and 5446 base pairs by Kpn I/Xba I digestion confirmed the presence of the 

insert DNA.

Lane 1: Molecular weight marker

Lane 2: BstE II digestion

Lane 3: EcoR V digestion

Lane 4: Kpn 1/ Xba I digestion

Lane 5: pcDNA3.1V5.TGA digested by EcoR V
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Figure 10: Screening for positive clones for pcDNA3.1.p2-AR DNA samples from 10 

colonies (1-10) were digested by EcoR I and separated on a 1% agarose gel. The presence 

of the band at 1438 base pairs suggested positive clones.
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Figure 11: Identification and orientation of insert DNA for pcDNA3.1.MORl.V5

DNA sample was digested by BamHI, BstBI, Hind III/EcoR I, and Kpn I/Xba I to 

confirm the presence of the insert DNA and the orientation of the insert. The existance of 

the band at 1363 base pairs by Kpn I/Xba I digestion, which is the same size as the band 

obtained from the PCR product digested by Kpn I/Xba I, confirmed the presence of the 

insert. The 6809 base pair fragment by BamHI digestion, 1363 base pairs larger than the 

fragment of pcDNA3.1V5.TGA digested by BamHI, also confirmed the presence of the 

insert. The smaller band at 383 base pair by BstBI digestion and the smaller band at 1272 

base pairs by Hind III/EcoR I digestion indicated the right orientation of the insert DNA. 

Lane 1: Molecular weight marker 

Lane 2: BamHI digestion 

Lane 3: BstBI digestion 

Lane 4: Hindlll/EcoR I digestion 

Lane 5: Kpn I/Xba I digestion 

Lane 6: undigested supercoiled pcDNA3.1.MORl.V5 

Lane 7: pcDNA3.1V5.TGA digested by BamHI 

Lane 8: PCR amplified MORI sequence digested by Kpn I/Xba I
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Figure 12: Identification and orientation of insert DNA for pcDNA3.1. p2-AR.V5 The

presence of the insert DNA was already confirmed by EcoR V and Kpn I/Xba I digestion. 

The full-length recombinant DNA is 6804 base pairs, according to BstE II digestion. The 

smaller band at 1224 base pairs by Hind III/EcorR V digestion and the migration pattern 

of the Dde I and Sty I digestion fragments indicated the right orientation of the insert 

DNA.

Lane 1: Molecular weight marker

Lane 2: Bst Eli digestion

Lane 3: Dde I digestion

Lane 4: Sty I digestion

Lane 5: Hind III/EcoR V digestion

Lane 6: undigested supercoiled pcDNA3.1. p2-AR.V5
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Figure 13 Identification and orientation of insert DNA for pcDNA3.1. p2-AR DNA

sample was digested by EcoR V and Not 1/ BstE II to confirm the presence of the insert 

DNA and the orientation of the insert. The presence of the band at 217 base pairs by 

EcoR V digestion and the presence of the band at 1130 base pairs by Not 1/ BstE II 

digestion confirmed the presence and the right orientation of the insert DNA.

HMWM: High molecular weight marker 

LMWM: Low molecular weight marker
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Figure 14: Immunofluorescence microscopy showing expression of the gravin fusion 

protein in AN3 CA cells AN3 CA cells grown on glass coverslips were transiently 

transfected with GR81-5534. The expression of gravin was identified by (A) anti-V5 

antibody and (B) anti-gravin antibody. The distribution of gravin was analyzed by 

confocal microscopy. Both anti-V5 and anti-gravin antibodies revealed strong 

fluorescence at the cell margins. Bar=7.5^m
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Figure 15: Western blot analysis showing expression of gravin fusion protein in AN3

CA cells AN3 CA cells were transiently transfected with GR81-5534. The cells were 

lysed and the expression of the gravin fusion protein was detected by either an anti-V5 

antibody (lane 1) or a polyclonal anti-gravin antibody (lane 2) using enhanced 

chemiluminnescence. The control experiment included cell lysate from SH-SY5Y cells 

treated with retinoic acid for 6 days, and immunoblotted with the anti-gravin antibody 

(lane 3).
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Figure 16: Immunofluorescence microscopy showing expression of MORI and p2- 

adrenergic receptor fusion protein in AN3 CA cells AN3 CA cells grown on glass 

coverslips were transiently transfected with (A) pcDNA3.1.MORl.V5 or (B) 

pcDNA3.LP2-AR.V5. The expression and distribution of MOR or p2-AR were detected 

by anti-V5 antibody and analyzed by confocal microscopy. The anti-V5 antibody 

detected both fusion proteins at the membrane of the transfected cells. Bar=25/jm
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Figure 17: Immunofluoresence microscopy showing expression of the 

pcDNA3.1.MORl.V5 transgene in AN3 CA cells AN3 CA cells grown on glass 

coverslips were transiently transfected with pcDNA3.1.MORl.V5 and double labeled 

with (A) an anti-MOR antibody and (B) an anti-V5 antibody, and the images were 

merged in (C). The anti-MOR was detected by an FITC-conjugated secondary antibody 

and revealed as green fluorescence under confocal microscopy (A). The anti-V5 antibody 

was detected by a Cy3-conjugated secondary antibody and revealed as red fluorescence 

under confocal microscopy (B). Both anti-V5 and anti-MOR antibodies revealed 

membrane staining and image merging showed overlap of MORI and the V5-epitope

(C). Bar=25jum
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Figure 18: Immunofluoresence microscopy showing expression of the pcDNA3.1.p2- 

AR.V5 transgene in AN3 CA cells AN3 CA cells grown on glass coverslips were 

transiently transfected with pcDNA3.1. p2-AR.V5 and double labeled with (A) an anti- 

P2-AR antibody and (B) an anti-V5 antibody, and the images were merged in (C). The 

anti-p2-AR antibody was detected by an FITC-conjugated secondary antibody and 

revealed as green fluorescence under confocal microscopy (A). The anti-V5 antibody was 

detected by a Cy3-conjugated secondary antibody and revealed as red fluorescence under 

confocal microscopy (B). Both anti-V5 and anti-p2-AR antibodies revealed membrane 

staining and image merging showed overlap of p2-AR and the V5-epitope (C).

Bar=25/Mn
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Figure 19: Immunofluorescence microscopy of anti-MOR, anti-p2-AR, and anti- 

gravin labeling in non-transfected AN3 CA cells AN3 CA cells were labeled with (A) 

anti-MOR, (B) anti-p2-AR, or (C) anti-gravin antibodies and analyzed under confocal 

microscopy. Bar=25jum
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Figure 20: Immunofluorescence microscopy showing colocalization of gravin and

MOR in AN3 CA cells AN3 CA cells were co-transfected with GR81-5534/ 

pcDNA3.1.MORl.V5 (A, B), transfected with pcDNA3.1.MORl.V5 alone (C, D), or 

transfected with GR81-5534 alone (E, F). All the transfectants were double labeled with 

anti-gravin and anti-MOR antibodies. The distribution of the antigens was analyzed by 

confocal microscopy. The green channel reflects MORI stained by FITC (A, C, E), while 

the red channel reflects gravin stained by Cy3 (B, D, F). Note the colocalization of gravin 

and MORI at the cell margins. Bar=25jum
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Figure 21: Immunofluorescence microscopy showing colocalization of gravin and p2- 

adrenergic receptor in AN3 CA cells AN3 CA cells were co-transfected with GR81- 

5534/ pcDNA3.1.p2-AR.V5 (A, B), transfected with pcDNA3.1 .P2-AR.V5 alone (C, D), 

or transfected with GR81-5534 alone (E, F). All the transfectants were double labeled 

with anti-gravin and anti-p2-AR antibodies. The distribution of the antigens was analyzed 

by confocal microscopy. The green channel reflects P2-AR stained by FITC (A, C, E), 

while the red channel reflects gravin stained by Cy3 (B, D, F). Note the colocalization of 

gravin and p2-adrenergic receptor at the cell margins. Bar=25jUm
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Figure 22: Immunofluorescence microscopy showing the effect of DAMGO 

treatment on MOR and gravin distribution in AN3 CA cells AN3 CA cells were co­

transfected with GR81-5534/ pcDNA3.1.MORl.V5 (A, B, E, F), transfected with 

pcDNA3.1.MORl.V5 alone (C, G), or transfected with GR81-5534 alone (D, H). The 

cells were double labeled with anti-gravin and anti-MOR antibody before (A-D) and after 

(E-H) 10 pM DAMGO stimulation for 30 min. The distribution of the antigens was 

analyzed by confocal microscopy. The green channel reflects MOR stained by FITC (A, 

C, E, G), while the red channel reflects gravin stained by Cy3 (B, D, F, FI). Note the 

translocation of MOR, but not gravin, after DAMGO stimulation. Bar=25/Mn
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Figure 23: Immunofluorescence microscopy showing the effect of isoproterenol on 

P2 -AR and gravin distribution in AN3 CA cells AN3 CA cells were co-transfected with 

GR81-5534/ pcDNA3.1.p2-AR.V5 (A, B, E, F), transfected with pcDNA3.1 .p2-AR.V5 

alone (C, G), or transfected with GR81-5534 alone (D, H). The cells were double labeled 

with anti-gravin and anti~p2-AR antibody before (A-D) and after (E-H) 10 pM 

isoproterenol stimulation for 30 min. The distribution of the antigens was analyzed by 

confocal microscopy. The green channel reflects p2-AR stained by FITC (A, C, E, G), 

while the red channel reflects gravin stained by Cy3 (B, D, F, H). Note the translocation 

of p2-adrenergic receptor, but not gravin, after isoproterenol stimulation. Bar=25/.m
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Figure 24: Immunofluorescence microscopy showing the effect of isoproterenol on 

untagged p2-AR and gravin distribution in AN3 CA cells AN3 CA cells were co­

transfected with GR81-5534/ pcDNA3.1.p2-AR (A, B, E, F), transfected with 

pcDNA3.1.p2-AR alone (C, G), or transfected with GR81-5534 alone (D, H). The cells 

were double labeled with anti-gravin and anti-P2-AR antibody before (A-D) and after (E- 

H) 10 pM isoproterenol stimulation for 30 min. The distribution of the antigens was 

analyzed by confocal microscopy. The green channel reflects P2-AR stained by FITC (A, 

C, E, G), while the red channel reflects gravin stained by Cy3 (B, D, F, H). Note the 

translocation of p2-adrenergic receptor, but not gravin, after isoproterenol stimulation. 

Bar=25/uin
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CHAPTER IV

DISCUSSION

The present study investigated the hypothesis that gravin interacts with p-opioid 

receptors and (32-adrenergic receptors during agonist-induced receptor internalization. 

Immunofluorescent microscopy and immunoblotting data showed that gravin was 

upregulated by retinoic acid in SH-SY5Y cells and that gravin was localized at the cell 

membrane. The present study, the first to describe the distribution of p-opioid receptor in 

SH-SY5Y cells using immunofluorescent staining and the first to describe the expression 

and distribution of P2-adrenergic receptor in SH-SY5Y cells, also revealed that gravin 

partially colocalized with p-opioid receptor and P2-adrenergic receptor in these cells. 

Recombinant gravin, p-opioid receptor, and p2-adrenergic receptor expressed in AN3 CA 

cells also localized to the membrane of the transfected cells. Extensive colocalization of 

gravin and p-opioid receptor or P2-adrenergic receptor was observed in each of the 

cotransfected cells. Although the recombinant receptors underwent internalization after 

agonist treatment, this was not accompanied by gravin redistribution.

The pattern of gravin expression in SH-SY5Y cells corresponded with that of p- 

opioid receptor. Western blot analysis and immunofluorescence microscopy revealed that 

gravin expression was upregulated by retinoic acid treatment. Increased gravin 

expression was observed after 4 days of retinoic acid treatment and reached the highest 

levels at 6 to 8 days of treatment. This pattern of expression in response to retinoic acid

90
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was similar to that reported for p-opioid receptor in SH-SY5Y cells. It has been reported 

that either retinoic acid or phorbol ester treatment resulted in a significant increase in the 

number of p-opioid receptor without affecting the affinity of agonist binding in SH- 

SY5Y cells (Zadina et al., 1993). Six days of retinoic acid treatment resulted in a -175% 

increase in p-opioid receptor expression (Zadina et ah, 1994). Because of the large 

amount of expression of p-opioid receptor in this cell line, SH-SY5Y cells have proven 

useful as a model system for studying p-opioid receptor in terms of the acute action of 

opiates, or desensitization, resensitization, or down-regulation of the receptor. The 

similarity of the expression pattern between gravin and p-opioid receptor in response to 

retinoic acid is consistent with the hypothesis that gravin interacts with p-opioid 

receptors and provided the possibility to study gravin and p-opioid receptor interaction in 

SH-SY5Y cells.

The distribution of gravin in retinoic acid treated SH-SY5Y cells is also 

consistent with the hypothesis that gravin may regulate p-opioid receptor activity. 

Immunofluorescence microscopy revealed that in addition to being present in the 

cytoplasmic compartment, gravin was localized at the membrane of the cell bodies and 

the neurites, consistent with the localization of gravin at the cell membrane in HEL and 

human umbilical vein endothelial cells (Nauert et al., 1997; Grove et al., 2001). Given 

that gravin is known to bind PKA and PKC, the membrane localization of this protein 

suggests that it may be involved in membrane associated PKA and PKC signaling events. 

At present, the specific PKA and PKC signaling events in which gravin might participate 

are unknown. However, several studies indicate that p-opioid receptor activity is 

regulated by PKA and PKC. For instance, Smart and Lambert (1995) reported that
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desensitization of p-opioid receptor in SH-SY5Y cells involved both PKA and PKC. In 

addition, Kramer et al. (1999) showed that exposure of SH-SY5Y cells to DAMGO 

elicited a pronounced translocation of PKC from cytosol to plasma membrane. Studies on 

other cell lines have also indicated that phosphorylation by PKC is required for 

desensitization and internalization of p-opioid receptor (Mestek, et al., 1995; Ueda et al., 

2001). The involvement of PKA and PKC in regulating p-opioid receptor, together with 

the membrane localization of gravin in SH-SY5Y cells supports the hypothesis that 

gravin might play a role in regulating p-opioid receptor function by recruiting both PKA 

and PKC to the receptor.

Data arising from the colabeling of SH-SY5Y cells for gravin and p-opioid 

receptors is also consistent with the idea that gravin may interact with p-opioid receptors. 

Immunofluorescence microscopy of cells double labeled with anti-gravin and anti-MOR 

antibodies revealed partial colocalization of gravin and p-opioid receptors at the cell 

surface and in the cytoplasm. Immunofluorescence microscopy of colabeled cells 

revealed two populations of p-opioid receptor labeling, one at the cell surface, and the 

other within the cytoplasm. Several studies have demonstrated that p-opioid receptors are 

localized at the cell membrane in different cell lines (Ueda et al., 2001; Stemini et al., 

1996; Ruiz-Gomez et al., 1997; Gagnon et al., 1998). However, immunofluorescence 

microscopy data has not yet been published for SH-SY5Y cells. While the cytoplasmic p- 

opioid receptor labeling may represent non-specific antibody labeling, it may also 

represent receptors undergoing intracellular trafficking.

Gravin also colocalized partially with [^-adrenergic receptors in retinoic acid 

treated SH-SY5Y cells. Immunofluorescence microscopy showed anti-fVAR antibody
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labeling both at the membrane and in the cytoplasm. In addition, anti-p2-AR labeling 

partially codistributed with the anti-gravin labeling. SH-SY5Y cells were colabeled for 

gravin and (32-adrenergic receptor because recent reports indicating that gravin may 

interact with p2-adrenergic receptor (Shih et al., 1999) raised the possibility that gravin 

expression in these cells may be linked to p2-adrenergic receptor expression as well. 

However, p2-adrenergic receptor had not been reported to be expressed in SH-SY5Y 

cells. The presence of positive anti-P2-AR labeling in the cells and the fact that p2- 

adrenergic receptor cDNAs were amplified by RT-PCR from SH-SY5Y mRNA in the 

present study confirmed that P2-adrenergic receptor is expressed in SH-SY5Y cells. 

Partial colocalization of the anti-P2-AR and anti-gravin label is consistent with previous 

reports of gravin-P2-AR interactions (Shih et al., 1999) and suggests that any interactions 

between gravin and GPCRs expressed in SH-SY5Y cells may involve P2-adrenergic 

receptor as well as p-opioid receptor.

The interaction between gravin and p-opioid receptor or p2-adrenergic receptor 

was also investigated in AN3 CA cells transfected with gravin and the receptor 

constructs. Initial characterization of the transfected cells confirmed that the transgenes 

were expressed. Not only did the protein specific antibodies react specifically with the 

transgene, but the gravin, p-opioid receptor and p2-adrenergic receptor transgenes 

expressed in the AN3 CA cells displayed membrane localization, consistent with the 

distribution pattern in SH-SY5Y cells or other cell lines (Grove and Bruchey, 2001; Ueda 

et al., 2001; Ruiz-Gomez et al., 1997). In the case of the gravin transgene, both the anti- 

gravin and the anti-V5 antibody labeling revealed concentration of the transgene at the 

cell membrane. In addition, western blotting with both the anti-gravin antibody and the
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anti-V5 antibody detected bands in transfected AN3 CA cell extracts which were 

approximately the same molecular weight as the endogenous gravin from SH-SY5Y 

cells. In case of the p-opioid receptor and p2-adrenergic receptor transgenes, 

immunofluorescence microscopy of transfected cells double labeled with the anti-V5 

antibody and the receptor-specific antibodies showed colocalization of the epitope tag 

and receptor labeling. These validate the use of these fusion proteins in the current study.

Extensive colocalization of gravin and p-opioid receptor or p2-adrenergic 

receptor at the cell membrane was revealed in the cells cotransfected with both gravin 

and the receptor protein vectors. This colocalization was not due to cross-reactivity of the 

antibodies, because cells transfected with either one of the vectors were not recognized 

by the antibody against the other protein. Studies of p2-adrenergic receptor regulation 

demonstrated the involvement of gravin in the phosphorylation and internalization of the 

p2-adrenergic receptor and suggested that gravin may act as a scaffold which recruits the 

receptor, protein kinases, P-arrestin, and clathrin (Lin et al., 2000). The finding in the 

current study that gravin and p2-adrenergic receptor colocalized is consistent with these 

observations. It has been also reported that internalization of p-opioid receptor is P- 

arrestin-dependent: and clathrin-dependent (Xiang et al., 2000), and involves 

phosphorylation of the receptor by PKC (Ueda et al., 2001). This suggests that gravin 

may be involved in this event, a hypothesis which is supported by the colocalization of 

gravin and the p-opioid receptor.

Although gravin appeared to colocalized with the p-opioid receptor and p2- 

adrenergic receptor transgenes in untreated cotransfected cells, agonist induced receptor 

internalization was not accompanied by gravin internalization. After agonist treatment,
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the p-opioid receptor and p2-adrenergic receptor transgenes displayed significant 

translocation from the cell membrane to the perinuclear location, indicating that the 

receptors were responsive to the agonist and that the epitope did not affect receptor 

trafficking. However, the majority of gravin remained on the cell membrane and no 

detectable colocalization between gravin and the internalized receptors was observed.

The rapid internalization of p-opioid receptor and p2-adrenergic receptor has been 

reported in other cell lines (Ueda et al., 2001; Stemini et al., 1996; Ruiz-Gomez et al., 

1997; Gagnon et al., 1998). The consistency between the current data and the data from 

these other studies indicated that the receptors were functioning appropriately in the 

cotransfected AN3 CA cells. The use of a p2-adrenergic receptor transgene lacking the 

epitope tag ruled out the possibility that the epitope tag at the C-terminus of the receptor, 

where the gravin binding site is located (Fan et al., 2001), might have disrupted protein- 

protein interaction. Although the possibility still exists that the epitope tag at the C- 

terminus of gravin may have interfered with gravin binding to the receptor and that use of 

an untagged gravin transgene might lead to an alternative result, the current data suggests 

that the internalization of the receptors is not accompanied by gravin redistribution. In 

addition, the finding that the receptors in the cells transfected with only the receptor 

protein vectors still underwent significant internalization upon agonist stimulation 

suggests that gravin might not be crucial for internalization of the receptors.

Although gravin did not colocalize with the p-opioid receptor or p2-adrenergic 

receptor after agonist treatment, the possibility still exists that gravin may be functionally 

related to the receptors during the internalization procedure. It has been reported that the 

internalization of the receptor is a rapid event that happens within minutes after the
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agonist stimulation (Gagnon et al., 1998). If gravin interacts with the receptors either 

prior to or immediately after agonist stimulation, but the interaction is not retained during 

the internalization event, approaches other than immunofluorescent staining would be 

necessary to investigate gravin-receptor interaction. For example, one approach would be 

to use fluorescence resonance energy transfer (FRET) microscopy, a technique to study 

the protein-protein interaction within the living cells (Periasamy A, 2001). Another 

approach to study gravin-receptor interaction might include immunoprecipitation, which 

has been used in other studies to successfully identify a gravin-P2-adrenergic receptor 

interaction (Shih et al., 1999). A third approach might include two-hybrid system, which 

has also proved to be a successful way to identify protein-protein interaction in other 

studies (Li et al., 2001).

On the other hand, the lack of colocalization between gravin and p-opioid receptor 

after agonist treatment could indicate that gravin may not interact with p-opioid receptor. 

Such a conclusion would be consistent with the view of some investigators that PKA and 

PKC may not play a primary role in regulating p-opioid receptor activity. For instance, 

the initial effect of p-opioid receptor activation is to decrease cAMP level and decrease 

PKA activity. Therefore, it is understandable that PKA may not be the initial kinase that 

phosphorylates the receptor. Consistent with this is the finding by one group of 

researchers that forskolin did not stimulate 8-opioid receptor phosphorylation in 293 cells 

(Pei et al., 1995). This group also found that down-regulation of PKC expression failed to 

affect agonist-induced receptor phosphorylation, indicating PKC did not play a primary 

role in opioid receptor phosphorylation after agonist treatment (Pei et al., 1995). In 

addition, although PKC has been shown to translocate from the cytosol to the cell
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membrane after DAMGO stimulation in SH-SY5Y cells, this translocation occured 2-6 

hours after DAMGO treatment and PKC was postulated to contribute to the down- 

regulation of the p-opioid receptor expression (Kramer et al., 1999). Another study on p- 

opioid receptor also indicated that the effect of PKC in regulating p-opioid receptor was a 

long-term effect, which affected the mRNA level of the p-opioid receptor, rather than a 

short-term effect, which affected the process of desensitization or internalization by 

phosphorylation (Gies et ah, 1997). Given that receptor phosphorylation is the initial step 

after the agonist stimulation and leads to the internalization of the receptor, a lack of PKA 

and PKC involvement in this event could account for the finding in the current study that 

gravin was not required for the internalization of the receptor. However, the role of PKA 

and PKC in regulating opioid receptor desensitization and internalization remains 

controversial and further studies will be required to resolve the role of these kinases in 

receptor regulation.

The finding in the current study that gravin did not colocalize with the P2- 

adrenergic receptor after the agonist treatment differs from what has been reported by 

others. Through a series of studies, Malbon and colleagues have reported that gravin is 

associate with P2-adrenergic receptor and plays a role in phosphorylation and 

internalization of P2-adrenergic receptor after agonist treatment in A431 cells (Shih et al., 

1999; Lin et al., 2000). In part, the results in the current study may differ from those 

reported by others because of differences between A431 cells and transfected AN3 CA 

cells. It is well known that phosphorylation of P2-adrenergic receptors requires several 

different kinase activities, including PKA and PKC activity. It has been reported that 

there are 2 different isoforms of PKA and 10 different isoforms of PKC. To date, it is not
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clear which isoform(s) of PKA or PKC are responsible for p2-adrenergic receptor 

phosphorylation in A431 cells. It is possible that different sets of protein kinase iso forms 

may be expressed in different cell lines and those responsible for p2-adrenergic receptor 

phosphorylation in A431 cells may not be expressed in AN3 CA cells to an appropriate 

level. It is not clear whether the binding between gravin and PKA or PKC is isoform- 

specific and therefore the lack of specific isoform(s) of PKA or PKC may interfere with 

the formation of a gravin-mediated p2-adrenergic receptor signal complex after agonist 

stimulation. This possibility may be confirmed by identifying the PKA or PKC isoforms 

expressed in A431 cells and comparing them to those expressed in AN3 CA cells.

Although it has been postulated that gravin may be a component of the 

internalization mechanism for p2-adrenergic receptor (Lin et al., 2000), gravin was not 

required for p2-adrenergic receptor internalization in the current study. This difference in 

results may in part be due to diversity in the internalization mechanism among different 

cell lines. For example, catalytically inactive G-protein coupled receptor kinase 2 

dominant-negative mutants blocked m2 muscarinic acetylcholine receptor (m2 mAChR) 

internalization in COS7 cells, but had no effect on m2 mAChR internalization in BHK-21 

and HEK 293 cells (Tsuga et ah, 1994; Pals-Rylaarsdam et ah, 1995). Experiments 

testing the effects of P-arrestin and dynamin dominant-negative mutants on the 

internalization of the p2-adrenergic receptor indicated that P-arrestins specifically target 

p2-adrenergic receptor for endocytosis via clathrin-coated vesicles (Zhang et ah, 1996). 

However, whereas the p2-adrenergic receptors underwent rapid internalization in HEK 

293 cells, they internalized poorly in COS7 cells even after overexpression of P-arrestin 

(Zhang et ah, 1996). Menard et ah (1997) also found that the maximal extent of p2-
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adrenergic receptor internalization in response to agonist activation was markedly lower 

in COS7 cells than in HEK 293. These observations indicate the internalization of the Pa- 

adrenergic receptor is regulated by the cellular environment in which the receptor is 

expressed. Given these observations, it is possible that the internalization mechanisms in 

A431 cells differ from those in AN3 CA cells so that gravin is required in one situation 

but not in the other.

Although the current study did not identify the functional interaction of gravin 

and p-opioid receptor and P2-adrenergic receptor, the recombinant protein system used in 

AN3 CA cells provided a good model to further pursue this hypothesis due to the 

appropriate recombinant protein distribution, expression, and receptor trafficking 

observed in the transfected cells. Future studies may include the use of different 

techniques, or possibly different cell lines to further identify gravin-receptor interaction 

or other aspects of the receptor functions.
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