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ABSTRACT

In the field of energy generation, coal gasification is one of the burgeoning 

technologies that are becoming an attractive alternative to conventional coal conversion. 

This study will provide valuable data to aid in optimizing and understanding this type of 

technology, in particular the char reactions of a transport coal gasifier that utilizes the M. 

W. Kellogg process. It has been very difficult to develop an accurate model for this 

process due to the lack of kinetic/equilibrium data of the coal char re-bum reaction and 

its effects on the gasification process.

Char reaction data on carbon monoxide (CO) and carbon dioxide (CO2) 

production as well as kinetic equations were developed as a function of the primary 

control variables: oxygen-to-carbon ratios, temperature, coal type, and water content. 

Bench scale tests were preformed using a pressurized fluidized bed reactor (PFBR) to 

simulate the conditions of a transport gasifier. From these experiments qualitative data 

on CO and CO2 production of the coal chars have been generated as a function of 

temperature, oxygen-to-carbon ratios, and fuel types. Also quantitative tests were 

preformed using a thermogravimetric analyzer (TGA) to generate kinetic equations as 

well as analyze the effects of steam injection. Utilizing these two analysis techniques, a 

better understanding of the gasification process as it relates to the interaction with the 

coal char re-burn was developed.
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CHAPTER 1

INTRODUCTION

T.c; purpose of this chapter is to give a quick overview of the process of 

gasification, including its advantages, its challenges, and industry trends. Knowledge of 

this process is essential before an in-depth analysis of the topic proposed in this thesis can 

be understood.

1.1 Overview of Gasification

As the demand and cost for energy increases and natural gas supplies become 

depleted. Technologies that utilize plentiful, low cost fuels in an efficient and 

environmentally friendly manner become increasingly attractive. One of these 

technologies is a process known as gasification. Gasification is a process that converts 

any carbon containing material into light gases, condensable vapors, and tars. Solid 

products may also be formed during gasification in the presence of reactive gases. 

However most applications involving gasification are primarily concerned with the 

reaction of solid and/or liquid material to gaseous products. Materials that are chiefly 

used in gasification include coal, fuel oil, crude oil, petroleum coke, dense gases, or 

waste materials generated as by-products from other fossil or biomass fuel processing 

methods [1]. For the purpose of this thesis, gasification will focus solely on coal and 

petroleum coke as the reactive media.

Because of the natural abundance of coal in the United States the utilization of 

this resource must be tapped. Gasification can offer a supplemental fuel source for 

natural gas, propane, and other light combustible gasses. This aids to insure an adequate 

energy supply by providing high-energy gas products that can be utilized in the energy

1
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and industrial sectors. The major product of gasification is referred to as synthesis gas or 

syngas. Syngas is composed mainly of hydrogen and carbon monoxide. This provides a 

reliable fuel for energy generation and is often referred to as a substitute natural gas 

(SNG). Other uses for syngas can include being a reactant gas that can be converted to 

other chemical products or used as an on-site fuel for power generation.

According to a recent study by the Energy Information Agency (EIA) [2] there 

are over 160 gasification plants operating in 28 countries throughout the world. These 

plants have the capacity to produce a substantial amount of syngas that rivals the output 

of the oil industry in terms of energy capacity. Within the next five years, growth within 

the gasification industry is expected to increase by nearly 50 percent throughout the 

world (see Figures 1-1 and 1-2). [2] This will lead to increased production capacity and 

greater product diversity (see Figure 1-3). Note the shift in focus in the gasification 

industry to power generation.
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1.2 Gasification Process

Coal is gasified by destructive distillation. This is accomplished by reacting coal 

with steam and oxygen at elevated temperature and pressure. In order for coal to gasify 

oxygen must be fed at sub-stoichometric levels. This insures that the combustion 

reaction will not dominate (producing primarily carbon dioxide) and high levels of 

carbon monoxide will be produced. Proper reaction conditions will produce a syngas that 

can be used as SNG. The syngas formed in most cases will consist of 85% carbon 

monoxide and hydrogen, with the balance being mainly carbon dioxide and methane 

along with small quantities of various volatile gases and water vapor [1,3].

1.2,1 Chemistry of Gasification

Gasification is a very complex process. Numerous chemical reactions can take 

place during the procedure. The main chemical reactions governing the process involve 

the conversion of organic constituents into product gases. The five most predominate 

reactions of gasification are the combustion, Boudouard, partial combustion, carbon- 

steam, and the gas-water shift reactions. These reactions occur in varying combinations 

and degree depending upon the physical parameters of the gasifier and the reactivity of 

the coal [4,5].

The combustion reaction is the classic reaction involving the conversion of 

organic fuels to carbon dioxide and water, as illustrated in Equation 1-1. This reaction 

takes place when there is sufficient oxygen supply and the reaction does not form carbon 

monoxide as a by-product.

c xh y +
2X + Y 0 2_heat_>XC 02 + YH20 Eq. 1-1
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This equation can be simplified to be concerned only with the carbon available in the 

coal. Yielding Equation 1-2.

C + 0 2 —02 > C02 Eq. 1-2

The Boudouard reaction involves the conversion of carbon dioxide to carbon monoxide. 

This reaction is one of the goals of coal gasification and is accomplished by adding an 

insufficient supply of oxygen in comparison to the amount of coal fed. This produces 

one of the desired products of gasification; it is illustrated in Equation 1-3.

C + C02 ----> 2CO Eq. 1-3

The partial combustion reaction, which is essentially the combination of Equations 1-2 

end 1-3, is considered an undesirable by-product of combustion. This is not the case in 

gasification. Like the Boudouard reaction it also requires an insufficient oxygen supply 

coupled with excess carbon to produce carbon monoxide as the product gas. This reaction 

is shown in Equation 1-4.

2C + 0 2----- > 2CO Eq. 1-4

The carbon-steam reaction is one of the most important reactions in the gasification 

process. It produces the most desirable products. It is shown in Equation 1-5

C + H20<--- >CO + H2 Eq. 1-5

The water-gas shift reaction generally takes place following the combustion reactions. 

This reaction converts the carbon monoxide in the flue gas to carbon dioxide and 

hydrogen upon the addition of steam, as seen in Equation 1-6

C0 + H20<---- >C02 + H2 Eq. 1-6

Another reaction that may occur at very high temperatures and increased pressure 

is carbon-hydrogenation. This reaction forms methane from hydrogen liberated in the
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carbon-steam or gas-water shift reactions. The concentration of methane is generally low 

in gasification and is extent its usually determined by the amount of volatile matter in the 

coal feed. It is illustrated in Equation 1-7.

C + 2H2<---- >CH4 Eq. 1-7

Due to the heterogeneous nature of the coal feed, side reactions also occur 

involving inorganic constituents. These reactions are often undesirable and can cause 

numerous problems during operation. This is not ilways the case however; some 

gasification processes will concentrate and sell the inorganic material within the raw coal 

such as trace metals. The inert material created during gasification also has commercial 

value. Slag, tar, and ash all have value in the construction and contracting industries. 

These reactions and occurrences, while important in the study of coal conversion 

systems, were not considered as part of this study.

1.2.2 Formation of Char

The main focus of this thesis is the role coal char has on the gasification process. 

The study of char reaction kinetics is relatively easy compared to the initial coal feed 

reactions. This is due to the fact that the composition of the feed gas reacting with the 

coal char generally known. In most gasification systems and in particular the one studied 

for this thesis, unreacted char is recycled and rebumed then reintroduced into the raw 

coal feed in a mixing zone. The feed gas reacting with the initial coal feed often contains 

gases formed by these char reactions. This gas composition can vary depending upon coal 

rank and physical conditions. This is why studying the effects of coal char are of 

importance. A better understanding of the char/coal feed interaction in their mixing zone
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should lead to a more accurate gasification model. This can lead to better reactor designs 

for new facilities and increased efficiencies of existing plants.

Char is created following the initial heating of the feed coal (coal cracking). 

Char is often defined as coal with the volatile components and moisture removed. A 

more conventional definition is that it is simply the residues left following heat treatment 

of coal [6]. The properties of char are slightly different then the original coal feed. The 

reactivity is greatly decreased and gasification of char proceeds at a much slower rate. It 

often requires several passes through the reactor to complete the process. A more 

detailed description of the char reaction process is given in the subsequent chapters.

1.3 Brief History of Gasification

Coal gasification is not a relatively new or a revolutionary concept in the field of 

fuel processing or energy generation. The fundamental process itself has been 

understood for over 150 years. Gasification plants have been in operation in England and 

other European countries since the 1860s [3, 4]. However gasification offers advantages 

in its versatility and also its appeal concerning environmental issues, and not until the 

latter part of the twentieth century has research to improve this process based on 

thermodynamics, physics, and chemical kinetics been investigated [6].

The firsts gasifiers were designed by K. W. Siemens. They were essentially brick 

combustion chambers that gravity fed coal along an angled baffle where it was combined 

with air at the bottom and off gases collected at the top. The gas generated from this 

early process is known as producer-gas. Producer-gas is a product of incomplete 

combustion and has a relatively low heat value compared to syngas. It contains 

approximately 33% carbon monoxide, with the balance as nitrogen and carbon dioxide
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[3, 4], As demand for high-energy gas grew, new gasifiers were constructed to produce 

what is known as water-gas. The process developed by Gaillard, du Motay, and Lowe in 

the late ninetieth century injected steam into the gasification process along with air as 

seen in Equation 1-5. This yielded a gas that, for the most part, was carbon monoxide 

and hydrogen. The advantage of water-gas was that it contained double the heat content 

of producer-gas. By the 1920s gasifiers had evolved and became much more efficient. 

They were able to be run independently without an outside fuel source for steam 

generation, allowed for ash and slag recoveiy, were capable of handling a high 

throughput of gas, and could be operated at pressure. In 1936 the Lurgi gasifier was 

introduced and produced a high quality syngas for the first time [7, 8, 9, 10]. Continuing 

improvements being made to gasification equipment led to what is known as second- 

generation gasifiers. These modem day gasifiers were capable of running at high 

temperatures and pressures, could handle very high throughputs, introduced catalysts to 

the process, and produced very high quality syngas which could perform as SNG.

A pilot scale second-generation gasifiers is located at the University of North 

Dakota’s (UND) Energy and Environmental Research Center (EERC). It is a transport 

gasifier that utilizes the M. W. Kellogg process for gasification. Generating accurate 

kinetic data that could be used in modeling this gasifier is one of the main objectives of 

this research. Details about this reactor and its process will be discussed in the following 

chapters.



CHAPTER 2

BACKGROUND

The purpose of this research was to determine the prof erties of coal char reactions 

as they relate to the gasification process; in particular the kinetics of char re-bum in 

combination with raw coal feed in the mixing zone of a transport reactor. To accomplish 

this goal two separate sets of experimental data were obtained. Bench scale tests were 

run on coal chars using a pressurized fluid-bed reactor (PFBR) and adding air to simulate 

conditions of a full-scale transport gasifier iike the Transport Reactor Development Unit 

(TRDU) located at the EERC. Kinetic data on coal char reactions were also obtained 

using thermogravimetry.

This chapter gives background information on the operation and process of the 

TRDU and how it will benefit from the research presented in this thesis. Also 

information will be presented on thermogravimetry and the bench scale tests of the 

PFBR.

2.1 The TRDU and Transport Gasification

The TRDU is a pilot scale pressurized circulating fluidized bed staged coal-processing 

unit. It is capable of operation in both combustion and gasification modes. The latter is 

the basis for the topic of this thesis. The TRDU makes use of the Kellogg process of 

operation. This process utilizes the thermal and transportation effects that calcium 

carbonate (CaCC>3) have on transport gasification. The gasification of coal is aided in 

this process by recirculating CaCC>3 with steam at elevated pressure and temperature. 

The CaCC>3 helps in transporting the unreacted char and ash through the reactor while 

maintaining heat generated by the initial coal cracking. The char/CaCC>3 mixture is

9
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recycled and re-burned prior to being combined with the raw coal feed. This assists in 

providing heat to the reactor and converting the more complex hydrocarbons. [4, 11]

Primary
Cyclone

Disengager

Coal Feed 
Hopper

Air
Preheater

Standpipe

Steam
Superheater

Riser

Quench 
System

Hydrogen 
Separation 

brane

Hot-Gas 
Filter Vessel 

and
Ash Hopper

Mixing Zone

J-Leg

Figure 2-1. Illustration of the TRDU

A schematic of the TRDU is illustrated in Figure 2-1. The initial gasification 

takes place in the riser. The standpipe contains the ungasified char formed from the 

initial coal cracking. The riser and standpipe are connected by the J-leg where steam and

10
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air are injected in the char flow prior to entering the mixing zone. While the volatile 

matter and some of the char formed from the original coal feed is gasified rapidly, the 

gasification of the more refractory char proceeds at a slower rate requiring recirculating 

through the TRDU. Most of the recirculated char is partially combusted in the bottom of 

the mixing zone to provide heat necessary for gasification. The design parameters of 

gasification systems are largely dependent upon the reaction rates of the coal char. 

Therefore it is of great importance that the kinetics and reactivity of coal chars are 

studied in order to obtain accurate models for equipment manufacturing.

The reactions pertaining to coal chars are the same as the ones presented in 

Equations 1-1 thru 1-5; only the char reactions proceed at a slower rate then reactions of 

the initial raw coal feed. While these reactions pertaining to coal chars have been studied 

at length, the majority of the experiments conducted to obtain kinetic data have been 

done using fixed-bed flowing gas systems [6]. The study proposed in this thesis will also 

include data obtained using a fluidized-bed system. To determine the effects of char re

bum on the overall reaction kinetics of the transport reactor.

Thermogravimetry, a fixed-bed system was used to determine the rates at which 

three different chars react. The TGA experiments analyzed the effects of varying gas 

composition, temperature, and steam effects as they relate to char reaction kinetics. The 

second set of experiments using a fluidized-bed system; the PFBR was used to determine 

the carbon monoxide/carbon dioxide production rates of two different char types. The 

combination of these two experimental sets provided a good indication of the properties

of the char reactions.
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2.2 Thermogravimetry and the TGA

The first sets of experiments utilize thermogravimetry in order to study the 

reaction rates of the coal chars created during previous TRDU runs at the EERC. The 

three different types of coal chars studied were Freedom (a lignite from western North 

Dakota), Illinois #6 (a bituminous from Illinois), and a petroleum coke from Alabama 

[ 11].

Thermogravimetry is a type of thermal analysis and involves studying the change 

in the reacting species mass on a time basis. The type of thermogravimetry used for this 

research was known as isothermal thermogravimetry. This type of thermal analysis 

measures the mass change of the reactant at a constant temperature as a function of time. 

This particular technique is useful in determining rate constants of a reaction, which is 

what was hoped to be accomplished with this thesis. The basic premise behind this 

technique is that a small amount of a reacting sample is placed on a balance. The sample 

pan is then heated to the desired temperature and a fixed gas composition is passed over 

the sample. Next the percent loss of mass is recorded over a set period of time, where 

upon implementation of data analysis techniques a rate constant can be determined for 

that particular set of physical conditions.

Determination of kinetic parameters for char-rebum in a transport gasifier can 

easily be found using the thermal analysis previously mentioned. This technique has 

been used in prior experiments [6, 12, 13] in order to assist in the determination of char 

kinetics. Previous works have shown that in general the carbon-steam reaction, Equation 

1-5, of coal chars often is the most dominant reaction at these conditions [14, 5], This 

reaction and its potential interaction with other gasses present during char gasification
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will be the basis of the work to be done using the TGA equipment. It is hoped that 

general kinetic data involving the carbon-steam reaction of the chars mentioned will 

provide a good indication of the reaction rates within the TRDU under varying physical 

conditions.

The generation of kinetic data using isothermal thermogravimetry is relatively 

straightforward. Weight loss versus time curves are generated using a TGA and are fit to 

the differential kinetic equation.

-  —  = kCn Eq. 2-1
dt

Where:

__E_
k = Ae RT (rate constant) Eq. 2-2 (Arrhenius Equation)

T = Temperature

C = Concentration of reactant remaining at temperature T 

n = order of reaction 

E = Activation energy 

A = Pre-exponential factor 

R = Universal gas constant 

t = time

A detailed description of the process used to determine the rate constants for this thesis 

are illustrated in the subsequent chapter.

2.3 Fluidized Bed Technology

The second method used to determine the properties of coal char during 

gasification analyzed the carbon monoxide and carbon dioxide production with varying
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physical conditions in a fluidized-bed reactor. The goal of these experiments was meant 

to simulate the conditions of the J-leg and mixing zone in the TRDU to investigate the 

effects of temperature and oxygen-carbon ratios on the carbon monoxide/carbon dioxide 

production of the char reaction, best illustrated in Equations 1-2 through 1-4. This was to 

be accomplished using the EERC’s bench scale reactor the PFBR.

Fluidized beds are a relatively complex unit operation. Truly understanding them 

and there properties is beyond the scope of this thesis. A brief description of this type of 

system will be presented in this section in order to understand their usefulness and 

operation.

A fluidized bed reactor such as the PFBR is generated by passing a reacting gas 

through the bottom of a fixed bed of ln:e particles. If the velocity of the gas (fluidizing 

velocity {Vf}) is high enough the particles will become suspended in the flowing gas to 

where the pressure drop across the bed is equal to the weight of the reacting solids. 

When this phenomenon occurs the velocity of the gas has reached the minimum 

fluidization velocity (Vmf). This type bed is said to be incipiently fluidized [6]. The 

relationship between the minimum fluidizing velocity and fluidizing velocity is illustrated 

in Equation 2-3.

Vf = Eq. 2-3

Where e mf is the average void fraction in the bed at Vmf.

When the fluidization velocity becomes greater than Vmf bubble regions will form 

creating two separate regions within the bed, the emulsion of solids and bubble voids. 

The regions around these bubble voids cause a good deal of mixing and insure relatively 

homogenous physical conditions such as temperature and pressure drop. These bubble
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voids also insure that there will be a good deal of mass transfer between the solid and gas 

phase, thus increasing reaction rates.

The use of a fluidized bed in coal gasification is very efficient and has been done 

previously on numerous occasions [15 - 18]. Fluidized beds offer several advantages in 

the field of gasification. They insure a good heat transfer rate, a relatively uniform 

temperature distribution, and as mentioned before a good mass transfer rate. This results 

in high conversion rates, simplified controlling, and supports a variety of reaction 

conditions. For large-scale systems this type of technology makes controlling the process 

relatively easy due to the suspension of fine particles that can act as a flowing,system [6].

While the use of fluidized bed reactors have become relatively common in coal 

conversion systems it should be noted problems might occur. The difficulties are that in 

order to achieve an efficient fluidized bed, gas velocities must not become too low or 

high; also the size distribution of solid particles cannot vary greatly. These problems 

could result in agglomeration, gas back-mixing, gas bypass, and particle carry-through.

The PFBR illustrated in Figure 2-2; was originally designed as a small-scale 

fluidized bed combustion reactor. Fuel material is fed to a 55-in. tall 3-in. vertical reactor 

pipe through a variable speed rpm controlled auger. The feed material is then passed 

over an air and/or air-nitrogen gas combination that is controlled independently to the 

desired flow rate and can be preheated to a desired temperature. The feed material enters 

approximately 22-in. above the bottom of the pipe. The reactant gas is injected through 

the bottom of the pipe where it fluidizes the feed material as it reacts. Temperature is 

controlled through three ceramic heaters placed along the reacting pipe. The hot cyclone
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Figure 2-2. Schematic of the EERC’s PFBR
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removes ash and other fine particulates from the flue gas prior to being sent to gas 

analyzers.

This system is capable of measuring temperature along the reactor; with 11 

thermocouples at varying heights, pressure drop across the reactor, superficial gas 

velocity, and emissions. All of these parameters can be sent to a computerized data 

acquisition program for further analysis [19].

A study similar to the one presented for the PFBR was conducted to analyze the 

properties of a Pittsburgh seam coal [16]. It utilized a bench scale fluidized bed reactor 

to study exit gases, temperature, pressure, and a variety of reaction parameters. This 

study was used to determine optimal operating conditions for coal gasification, as was 

proposed by tests in the PFBR. The results obtained in this study, especially the carbon 

monoxide-to-carbon dioxide ratios were hoped to parallel the experiments in this thesis. 

This experiment showed that bench scale fluidized bed reactors are successful in 

determining operating conditions for the gasification of coal in an air/steam system. 

However the bench scale experiments in this thesis will deal with char in pure air.

2.3.1 Problems with current PFBR

The PFBR as previously mentioned works very well as a model for combustion 

systems. However when gasification was required of the system, numerous problems 

were encountered that were unanticipated. The first problem encountered was that the 

coal-char feed was too fine for the current auger’s gear system. Even at the lowest rpm 

setting, the char feed was too high to allow time for data collection. This was remedied 

by replacing the original small auger gear with a larger one. This resulted in char feed 

rates that could allow for sufficient data collection time. The next problem to be dealt
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with was the low velocity of the fluidizing gas. While the velocity itself was capable of 

fluidizing the coal-char, the flue gas was too low of volume to produce much more than 

0.5 SCFH to the gas analyzers. This resulted in a possible error in the readings of the 

analyzers. The original sample pump was replaced, however low flow rates were 

common with these PFBR tests. The results obtained appeared to be consistent even 

though flow rates were lower than recommended for the analyzers. It is felt that the 

readings for oxygen, carbon monoxide, and carbon dioxide gas compositions were still 

relatively accurate.

Even with the problems previously described of the PFBR some good results were 

obtained. A detailed description of the process used and the results are described in the 

subsequent chapter.



CHAPTER 3

EXPERIMENTAL

The data collected as part of this research project was obtained through two 

separate experimental methods. One, a quantitative set of laboratory experiments, was 

run to determine the kinetic rate data of the coal-chars previously mentioned. Using the 

TGA located at the EERC. The other set was done using a bench-scale reactor, the PFBR 

in order to determine the effects that temperature and oxygen/carbon ratios had on carbon 

monoxide and carbon dioxide production of the coal-chars. The goal of these sets of 

experiments was to generate data that could be used to aid in generating more accurate 

models of the TRDU mixing zone.

This chapter will briefly describe the equipment used, detail the experimental 

procedure including problems encountered during test runs, and define the test matrices 

for both experimental procedures. In addition proposed results of the test sequences will 

be briefly described, this includes modifications made during test sequences due to 

procedural and equipment problems. Knowledge of the equipment used and the process 

implemented will aid in comprehending the results obtained and the conclusions drawn 

presented in the following chapter.

3.1 TGA

The TGA located at the EERC utilizes the principle of thermogravimetry 

presented in Chapter 2. The purpose of the experiments run using this equipment was to 

determine kinetic data, in particular the rate constant k, presented in Equation 2-2. The

19
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data obtained from the TGA will analyze the effects temperature, steam content, and the 

carbon dioxide/carbon monoxide split has on the rate of reaction for a specific coal type.

3.1.1 Equipment Description

The EERC’s TGA is a Dupont 951 interfaced with a 1090 thermal analyzer 

control unit and data processor. The TGA contains a highly sensitive electronic balance 

connected to a 100-mg capacity platinum sample pan that records weight loss of the 

reacting species. Typical sample sizes usually are in the range of 10 to 40 mg. It 

contains a furnace capable of operating at temperatures up to 1200 °C (2192 °F) with a 

maximum heating rate of 100 °C/min [19]. The TGA is illustrated in Figure 3-1.

Gas
Taut-Band Meter |n|et

Figure 3-1. Schematic of the Dupont 951 TGA 

Operation of the TGA is relatively straightforward. A user defined gas mixture 

flows over the sample pan, which is suspended by a horizontal quartz beam in the center 

of the furnace. The temperature of the reacting species located in the sample pan is 

determined by a chromel-alumel thermocouple located approximately 1-mm above the 

center of the sample pan. Temperature, time, sample weight loss percentages, and time 

based weight loss percentages (derivative weight loss) data is electronically collected for 

further analysis.
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The three controlled variables in the TGA experimental test matrix were coal-char 

type, temperature, and gas composition. Experiments were set up in four separate 

experimental blocks in order to estimate the effects these variables had on the rate 

constant.

The first variable, char type was determined on the basis that samples with a 

broad range of reactivity be represented. Petroleum coke, lignite, and bituminous chars 

were tested to determine the effects of char type on kinetic data. These three fuels were 

chosen since char samples from previous TRDU runs were readily available. The chars 

were obtained from sample ports in the J-leg of the TRDU. The J-leg samples contained 

a char/limestone mixture from the standpipe in the TRDU. Each sample was classified 

through a 30-mesh Tyler screen removing the fine limestone particles. Next pure carbon 

char particles were removed from the ash by hand until approximately 500-mg of pure 

carbon char was obtained. The char particles were then crushed into a fine powder before 

they were used in the TGA.

The petroleum coke, from the Hunt Oil Refinery in Tuscaloosa, Alabama; was 

obtained from TRDU run P061 in March 7 -  11, 1999. Lignite, from the Freedom mine 

in North Dakota; came from TRDU run P065 during February 2000. Bituminous was 

represented by an Illinois No. 6, obtained from Seam 6 of the Baldwin mine in Baldwin, 

Illinois; from the P063 run during August 28 -  September 2, 1999 [11]. Originally there 

were seven different coal types that would be tested, however due to lack of funding the 

test matrix was scaled down to test the three types mentioned.

3.1.2 TGA test matrix
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Temperature, the second variable was determined based on previous TRDU runs 

with these particular fuels as well as knowledge gained from other runs using the same 

coal types from different locations and mines. Temperature effects are studied in the first 

block of experiments in the TGA test matrix. The data collected from this block was 

used to generate Arrhenius plots that directly relate rates of reaction as a function of 

temperature for each separate coal type.

The final variable, gas composition, was more difficult to determine since very 

little previous knowledge or literature was available on these types of experiments. The 

problem was that in most TGA experiments there is usually only one reacting gas 

coupled with an inert such as a noble gas or nitrogen that is passed over the sample. The 

experimental matrix proposed for this research used a gas mixture of five gasses in order 

to better simulate the conditions of the TRDU during char re-bums. The gas mixture 

contained nitrogen, steam, carbon dioxide, carbon monoxide, and hydrogen. The goal 

was to determine the effects of the carbon-steam reaction when other gasses are present. 

The interactions and reactions proposed in these experiments will be presented in detail 

in the following chapter.

A reasonably representative gas composition was chosen based on gas 

compositions from previous TRDU runs [11].
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Table 3-1. Experimental Test Matrix for TGA Runs

Block 1-Temperature & Char Type

Gas Composition (Weight %)

Run Fuel Coal Type Temp (°F) n 2 H20 CO c o 2 h 2

1 Illinois No. 6 Bituminous 1600 55 15 10 10 10
2 Freedom Lignite 1500 55 15 10 10 10

3 Pet Coke Petroleum Coke 1750 55 15 10 10 10
4 Illinois No. 6 Bituminous 1850 55 15 10 10 10

5 Freedom Lignite 1750 55 15 10 10 10

6 Pet Coke Petroleum Coke 2000 55 15 10 10 10

Block 2-Steam Composition

Gas Composition (Weight %)

Run Fuel Coal Type Temp (°F) n 2 h 2o CO c o 2 h 2

7 Freedom Lignite 1500 95 5 0 0 0
8 Illinois No. 6 Bituminous 1850 95 5 0 0 0
9 Pet Coke Petroleum Coke 2000 95 5 0 0 0
10 Freedom Lignite 1500 85 15 0 0 0
11 Illinois No. 6 Bituminous 1850 85 15 0 0 0
12 Pet Coke Petroleum Coke 2000 85 15 0 0 0

13 Freedom Lignite 1500 50 50 0 0 0

14 Illinois No. 6 Bituminous 1850 50 50 0 0 0
15 Pet Coke Petroleum Coke 2000 50 50 0 0 0
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Table 3-1 (cont.)

Block 3-C0/C02 (Isolated effects)

Gas Composition (Weight %)

Run Fuel Coal Type Temp (°F) n 2 H20 CO c o 2 h 2

16 Freedom Lignite 1500 55 15 20 0 10

17 Illinois No. 6 Bituminous 1850 55 15 20 0 10

18 Freedom Lignite 1500 55 15 0 20 10
19 Illinois No. 6 Bituminous 1850 55 15 0 20 10

Block 4-C0/C02 (Interaction Effects)

Gas Composition (Weight %)

Run Fuel Coal Type Temp (°F) n 2 H20 CO c o 2 h 2

20 Freedom Lignite 1500 45 15 20 10 10
21 Illinois No. 6 Bituminous 1850 45 15 20 10 10

22 Freedom Lignite 1500 60 15 5 10 10
23 Illinois No. 6 Bituminous 1850 60 15 5 10 10

3.1.3 Experimental procedure for TGA runs 

Approximately 40 -  50 mg of the char samples previously described were placed 

in the sample pan. The TGA furnace was heated at a rate of 100 °C/min until the desired 

temperature was reached. Simultaneously the defined gas mixture was passed over the 

sample during the heat up and continuous operation. The data collection began as soon 

as the gas mixture was passed over the sample. The TGA collected data until the 

gasification of the char was complete. Once it appeared that the gasification reaction(s) 

had reached the limit, the amount of ash left in the sample was determined by burning off 

remaining carbon in pure air until weight loss leveled off.
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3.1.4 Proposed Results of the TGA Experiments

The TGA experiments previously described were designed to illustrate the effects 

of temperature, steam content, and carbon dioxide/carbon monoxide ratios had on char 

reactivity. It was hoped that the four individual experimental blocks would give a 

distinct correlation between the proposed reaction(s) and the variable(s) studied, as well 

as give some overlap between experimental blocks for comparison of different reaction 

system(s).

Block one (from Table 3-1) was designed to show the effect of temperature on the 

carbon-steam reaction. Temperature ranges were representative temperatures based on 

maximum and minimum values run on previous TRDU runs described earlier. The data 

obtained from this block should give a direct relationship between temperature and char 

reactivity. This will aid in determining the optimum temperature for char-rebum in the 

TRDU.

Block two (from Table 3-1) shows the effect varying steam composition has on 

the carbon-steam reaction. This experimental block contains only two gasses, nitrogen 

and steam, to exclusively study the carbon-steam reaction of the particular char type. 

Temperatures for this block were determined from the optimum temperature settings 

obtained during previous TRDU runs. Analysis of this experimental block should give a 

good indication of char reactivity values based on steam content.

Blocks three and four (from Table 3-1) are designed to illustrate the effects of 

carbon monoxide and carbon dioxide concentrations on the reactivity of the carbon-steam 

reaction of two chars. Temperatures were determined by the same method as Block two. 

Block three analyzes the impact of each gas separately, while Block four has both gasses
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present. Data analysis of these two experimental blocks should show the effects the gas- 

water shift (Eq. 1-6), carbon-steam (Eq. 1-5), and Boudouard (Eq. 1-3) reactions have on 

char reactivity. Post test analysis indicated that all three reactions were occurring, but the 

design of the experimental matrix did not provide adequate data to determine the extent 

of these reactions relative to one another therefore, these two experimental blocks will be 

difficult to interpret. Hence further experiments will be needed in order to accurately 

describe the system. The results that will be obtained in this research will only show the 

effects these gasses have on the overall char reactivity and not propose a reaction system. 

The results and proposed reactions of the TGA experiments will be discussed in the 

following chapter.

3.2 PFBR

The second type of experiments were performed on the EERC’s PFBR. The 

PFBR as described before is a fluidized bed reactor. These experiments were intended to 

simulate the conditions of the TRDU during char re-bum to provide an analysis of the 

products gasses when burned in substoichiometric air. Data obtained from these 

experiments were proposed to aid in determine the rate of carbon monoxide production 

from chars from previous TRDU runs.

3.2.1 Equipment description

The major components of the PFBR were described in the previous chapter. It 

was originally designed to study the properties of a combustion reaction under well- 

controlled conditions. Most of the system is designed to be controlled electronically 

through a single computer interface program. This includes nitrogen and air flow rates, 

PID controlled to a desired set point. Coal feed rate and temperature are the only two
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variables that require manual control. The system is connected to a computerized data 

acquisition package that is capable of logging temperature at 11 locations along the 

reactor, including cyclone and entering fluidizing gas temperature:-; bed pressure; 

emissions; and gas velocity on 30-second intervals. Typical operating conditions are 

shown in Table 3-2.

Table 3-2. Normal PFBR Operating Conditions

Reactor Diameter 2.875-in. ID

Temperature 1400- 1700 °F

Pressure 0 -1 5 0  psig

Gas Flow Rate 1 -3 0  scfm

Coal Feed Rate 1 -  8 lbs/hr

Velocities 1 -  10 ft/sec

Cyclone Exit Temperature Max. 1600 °F

Particulate Loading 200 -  9000 ppm

3.2.2 Initial Problems of the PFBR

Upon inspection of the typical operating conditions of the PFBR it should be 

noted that while this will work well for combustion and other fluidized bed reactions, it is 

probably not the best for gasification. Temperature ranges needed to be approximately 

1500 -  2000 °F, gas flow rates around 0.2 -  2 scfm, and coal feed rates near one pound 

per hour. The remaining variables presented were not considered since they were not a 

controlled variable in the work proposed in this thesis for the PFBR. However since no 

previous work done on the PFBR suggested that these operating conditions were



28

unattainable, exploratory research into the viability of this system as a small-scale 

gasifier was done.

Since the PFBR was the only suitable piece of equipment that was readily 

available for this type of research it was determined that this was the best option. The 

PFBR equipment was designed to match the operating conditions proposed, even though 

previous experiments had not yet been run at these settings. However the high 

temperature and low gas flow rates were at the controllable limit and careful 

consideration had to be taken in order to prevent equipment failure or inaccurate data. 

After the initial literature investigation of the PFBR equipment, shakedown experiments 

with petroleum coke char were performed.

3,2.3 Results of the Shakedown Experiments 

3.2.3.1 Operating procedure

The first shakedown experiments preformed on the PFBR were performed using 

the following procedure. Before an experiment was run, equipment was tested to insure 

correct operation. This included a visual inspection of the equipment to insure no 

obvious problems were noted. Also the thermocouples were checked to see if they were 

giving an accurate reading; air flow rates were checked to insure proper operation; the 

char feed auger was tested; and the computerized data acquisition system was checked to 

see if it was in working order. The gas analyzers were zeroed with nitrogen and 

calibrated using a known span gas (16 % CO2, 45% CO, and 5 % O2). To begin the test 

1000-g of petroleum coke char was placed into the feed hopper. The unit was heated to 

the desired temperature. Air flow was started once the temperature was reached. Next
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char feed was started and data collection began. This particular experimental set up was 

used for six runs.

3.2.3.2 Shakedown Number 1

The first experiment differed from the other five experiments in that a 500-g bed 

of petroleum coke was added initially to the reactor then 500 additional grams was added 

continuously at 1.3 pounds per hour approximately 30 minutes after start up. 

Temperature was set at 1500 °F ± 25 °F nitrogen flow was set at 1.75 scfm and air flow 

set at 0.75 scfm.

This experiment did not produce any measurable carbon monoxide 

concentrations.

3.2.3.3 Shakedown Number 2

The second shakedown test was similar to the first except that 1000-g was 

continually added at the rate of 1.3 lbs/hr instead of the initial 500-g start up. The 

conditions and the results are the same as in shakedown number one.

3.2.3.4 Shakedown Number 3

The purpose of this experiment was to see if changing the air flow rates affected 

the production of carbon monoxide. Also a slightly higher temperature was tried, since it 

was postulated that carbon monoxide production is more favorable at higher 

temperatures. A quantity of 1000-g of petroleum coke was added at a rate of 1.3 lbs/hr 

and the temperature was set at 1600 °F ± 25 °F. Nitrogen flow was set at 1.5 scfm and 

air was added at 0.2, 0.3, and 0.7 scfm changed at 30-minute intervals.

The results of this experiment showed that, for this particular run, changing the air 

flow rate did not significantly affect the rate of carbon monoxide production.
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3.2.3.5 Shakedown Number 4

This shakedown test was run to determine the amount of air that could be added 

to the coal feed until oxygen breakthrough occurred. This was done to determine the 

stoichiometric amount of air required for complete combustion. Once this was known it 

was possible to define a reference point for the system and determine and adjust 

accordingly.

The same experimental procedure in shakedown Experiments 2 and 3 was used 

for this run. No nitrogen was added to the system and air was added in increments of 0.2 

scfin starting at a rate of 1.3 scfin. Oxygen breakthrough was found at approximately 

1.85 scfin. Air flow was then backed off to 1, 0.8, and 0.5 scfin. There was a slight 

increase in carbon monoxide production at the initial reduction but none was noted for 

the following decreases.

3.2.3.6 Shakedown Numbers 5 & 6

Once the stoichiometric air flow rate was determined, two additional runs were 

performed to see if there would be a significant amount of carbon monoxide production 

in the petroleum coke char. Shakedowns 2 - 4  experimental operating procedure was 

used for these two runs. Air flow was set at 0.3 and 0.7 scfin for experiments 5 and 6 

respectfully.

The results of these two experiments were similar to the ones previously run. No 

significant carbon monoxide production was shown.

With the results of the first six experiments unable to produce carbon monoxide in 

quantities that suggested gasification was occurring, the validity of this experimental 

approach was questioned. Upon investigation of the PFBR and the shakedown
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experiments it was determined that perhaps a different char would produce better results 

since the reactivity of petroleum coke is generally low. Also for future runs using the 

petroleum coke it was found that perhaps significantly higher temperatures were needed, 

under the presumption that carbon monoxide production is temperature sensitive.

3.2.4 Initial PFBR Experiments with P065 Lignite

A lignite char from the EERC’s TRDU run P065 was run through a 30-mesh 

Tyler screen and prepared for experiments in the PFBR. Due to the change in density of 

the lignite char only 600-g of test material was needed to produce a similar volume to the 

petroleum coke char. The experimental procedure was the same as in the petroleum coke 

shakedown Experiments 2 - 6 .  The reaction conditions were set at a feed rate of 0.7 

lbs/hr, temperature was set at 1550 °F ± 25 °F, and air flow at 0.3 scfrn with no nitrogen 

flow.

The results of this initial experiment produced a nearly 50:50 split of carbon 

monoxide and carbon dioxide. This showed that gasification conditions could be reached 

using the PFBR. Therefore an experimental test matrix was created and run.

3.2,5 Test Matrix for PFBR

The test matrix used for the PFBR set of experiments contained two controlled 

variables, temperature and air flow. The goal of this test matrix was to determine the 

effects of these variables on the production of carbon monoxide and carbon dioxide in a 

simulated gasification atmosphere. Two char types were tested in this matrix, P065 

lignite and P061 petroleum coke. P063 Illinois No. 6 was not tested due to the lack of

char material.
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Temperature values were determined from previous TRDU runs and literature 

values for gasification temperatures for each particular fuel [11]. Air flow rates were 

determined as follows. The high flow values were one-half of the oxygen breakthrough 

flow rate of each fuel. Low flow values for lignite were the lowest possible controllable 

value that could be attained from the PFBR. The low flow value for the petroleum coke 

char was determined on the basis of density differences between char types times the low 

flow value of the lignite char as given by Equation 3-1. The experimental test matrix is 

shown in Tables 3-3 and 3-4.

Y
PetroleumCoke Eq. 3-1

Table 3-3. PFBR Test Matrix for P065 Lignite Char

Temperature (± 25 °F) Air Flow Rate (scfm)

1500 0.3
1500 0.5
1750 0.3
1750 0.5

Table 3-4. PFBR Test Matrix for P061 Petroleum Coke Char

Temperature (± 25 °F) 
1900 
1900 
1850 
1850

± 25 °F) Air Flow Rate (scfm)

0.5
1.1

0.5
1.1



34

results of these experiments were evaluated in a qualitative, rather than a quantitative

manner.



CHAPTER 4

RESULTS AND DISCUSSION

This chapter will present the results obtained from the TGA and PFBR test 

matrices, as well as a discussion of the results and some of the possible conclusions 

drawn from the data analysis. Also included in this chapter will be some of the problems 

that occurred in the PFBR runs and the modifications made to the previously presented 

test matrix.

4.1 Determination of Kinetic Data from TGA Test Matrices

The test matrices presented in the previous chapter were run as presented. 

Complete summaries of all TGA experiments are presented in Appendix A.

The reaction process in the TGA took place in three distinct steps de

volatilization, char gasification, and final bum. The de-volatilization took place within 

the first 9 —15 minutes of the process during heat up. This is illustrated by the irregular 

curve seen in the beginning of the reaction noted in Figure 4-1. The second stage, char 

gasification took place immediately following de-volatilization. This usually took 40 -  

200 minutes depending upon the reactivity of the char and reaction conditions. It is noted 

by the smooth weight loss curve during the majority of the reaction. The final bum takes 

place at the end of the reaction when gasification has appeared to reach a limit. A sample 

test sequence is illustrated in Figure 4-1.

35
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Figure 4-1. Typical Thermogram of a TGA Test Run

The de-volatilization stage removes the strait chain aliphatic, un-branched 

aromatic, and volatile hydrocarbons from the char. Since the test matrices involve only 

coal-char this stage is generally small. The initial coal cracking takes place in the TRDU 

and removes most of the easily gasified compounds. Gasification takes place following 

de-volatilization and involves the char reactions presented in Equations 1-2 thru 1-7. It 

usually involves the conversion of more complex hydrocarbons. The final bum is done 

in pure air to determine the amount of ash material in the char. The data analysis for this 

thesis was performed on the gasification stage of the reaction. De-volatilization and final 

bum data are truncated and not included in determining the kinetic data for char 

gasification.

4.1.1 Initial Calculations

To develop kinetic values from the data collected they first must be converted into 

a usable form. The TGA records data as a percentage weight loss of the total sample



37

mass. These values must be converted into molar concentrations of pure carbon in order 

to apply to the equations previously presented (Eq. 2-1 and 2-2). To accomplish this the 

fractional loss of material is multiplied by the total sample weight at the beginning of the 

experiment, then the amount of ash remaining in the TGA is subtracted and converted to 

a normalized molar basis and expressed in terms of fractional conversion. To accomplish 

this Equation 2-1 is expressed in temis of fractional conversion in accordance to Equation 

4-1. This process is illustrated in Equations 4-2 to 4-6.

c3II1 Eq. 4-1

MT( t ) = Wt%(,).M 0TW 10Q Eq. 4-2

Mc(t) = MT( t) -M uh Eq. 4-3

N c ( t)= Mc(t)
MWC

Eq. 4-4

Nc(t) = g c (t)
Nc(0)

Eq. 4-5

X(t) = 1 -N c(t) Eq. 4-6

Where:

X = Fraction of carbon reacted (from 0 to 1)

MT(t) = Mass of total sample at time t (mg)

wt%(t) = Weight loss percent as recorded by the TGA (%)

M0 = Mass of initial sample (mg)

Mc(t) = Mass of carbon at time t (mg)

Mash = Mass of ash remaining at the end of the experiment (mg)
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Nc (t) -  Number of moles of carbon at time t (millimoles)

Nc (0) = Initial moles of carbon present at the beginning of the experiment
(millimoles)

Nc(t) = Number of moles of carbon at time t normalized (millimoles)

MWc = Molecular weight of carbon (mg/millimole)

C(t) Normalized molar concentration of carbon at time t (millimoles)

X(t) Normalized molar concentration based on fractional conversion of 
carbon at time t (millimoles)

For each experiment conducted using the TGA a reaction order (n) and rate 

constant (k) were calculated from the data collected. To generate these values the natural 

log of Equation 2-2 was solved symbolically. Then values were obtained from the data 

collected and a plot was made of the natural log of the concentration derivative versus the 

natural log of concentration as seen in Equation 4-7.

The values for k and n are easily determined by plotting a regression line through 

the manipulated data. The rate constant is simply the anti-log of the intercept and the 

reaction order is the slope of the line. A sample regression analysis is shown in Figure 4-

lnf = In k + n • In X(t)
l  dt J

Eq. 4-7

2.
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T3

C

- 2.1 - 1.6 - 1.1 - 0.6 - 0.1
ln(X(t))

Figure 4-2. Illustration of IGA Regression Analysis (TGA Run #2)

For this particular example the slope of the line generated and the y-intercept are 0.9463 

and -3.7415 respectively. With these values the rate constant would he e(‘3 7415) or 

approximately 0.0237 min'1 with a reaction order of 0.9463. The same approach 

presented in this example was used for all TGA experiments to generate the kinetic data. 

The results are summarized in Table 4-1.

Table 4-1 Summaries of TGA Reaction Data

Block 1

Run Fuel Name Fuel Type Temp. (°F) k* n n (apparent)
1 Illinois No. 6 Bituminous 1600 0.0045 3.99 4
2 Freedom Lignite 1500 0.0237 0.95 1
3 Pet Coke Petroleum Coke 1750 0.0006 -1.16 1
4 Illinois No. 6 Bituminous 1850 0.0283 1.18 1
5 Freedom Lignite 1750 0.1822 0.87 1
6 Pet Coke Petroleum Coke 2000 0.0123 1.00 1

B ock 2
7 Freedom Lignite 1500 0.0174 0.05 0
8 Illinois No. 6 Bituminous 1850 0.0326 0.62 0.5
9 Pet Coke Petroleum Coke 2000 0.0102 0.68 0.5
10 Freedom Lignite 1500 0.0238 0.38 0.5
11 Illinois No. 6 Bituminous 1850 0.0351 0.54 0.5
12 Pet Coke Petroleum Coke 2000 0.0183 0.53 0.5
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Table 4-1 (cont.)

Block 2 (cont.)

Run Fuel Name Fuel Type Temp. (°F) k* n n (apparent)
13 Freedom Lignite 1500 0.0809 0.72 0.5 or 1
14 Illinois No. 6 Bituminous 1850 0.1027 0.96 1
15 Pet Coke Petroleum Coke 2000 0.0256 0.50 0 "

B ock 3
16 Freedom Lignite 1500 0.0029 0.32 0.5
17 Illinois No. 6 Bituminous 1850 0.0113 1.72 1.5 or 2
18 Freedom Lignite 1500 0.0632 0.77 1
19 Illinois No. 6 Bituminous 1850 0.0382 1.10 1

B ock 4
20 Freedom Lignite 1500 0.0122 0.79 1
21 Illinois No. 6 Bituminous 1850 0.0284 1.36 1.5 or 1
22 Freedom Lignite 1500 0.0214 0.90 1
23 Illinois No. 6 Bituminous 1850 0.0341 1.14 1

*Rate constant based on fractional conversion.

4.1.2 Reactions Studied in TGA Test Matrices

4.1.2.1 Block 1

The purpose of the experiments run in Block one of the TGA test matrix was to 

study the temperature effects of char reactivity and determine activation energies. To 

accomplish this the Arrhenius Equation (Equation 2-2) was solved using the rate data 

generated with respect to temperature. A linear regression was performed by taking the 

natural log of Equation 2-2 forming Equation 4-8.

Ink = In A —— Eq. 4-8
RT

The y-intercept of a plot of the natural log of the rate constant versus reciprocal 

temperature determined the pre-exponential factor (A); the slope of the line is (E/R). 

With the pre-exponential factor known Equation 2-2 was solved to determine the
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activation energy for each experimental run in Block one. The results of the analysis are 

summarized in Table 4-2 and Figure 4-3

Table 4-2. Summaries of TGA Block 1 Reaction Data

Run Fuel Name Fuel Type Temp
(°F)

Temp
(°R)

k A E
(Btu/lb-

mol)
1 Illinois No. 6 Bituminous 1600 2060 0.00454 1.01E+05 6.51E+04

2 Freedom Lignite 1500 1960 0.02372 1.59E+06 4.63E+04

3 Pet Coke Pet Coke 1750 2210 0.00055 1.05E+10 1.09E+05

4 Illinois No. 6 Bituminous 1850 2310 0.02835 1.01E+05 6.46E+04

5 Freedom Lignite 1750 2210 0.18223 1.59E+06 4.32E+04

6 Pet Coke Pet Coke 2000 2460 0.01231 1.05E+10 1.06E+05

Ink =-35318(°R'1) + 14.281

4  Illinois #6 
H Freedom 
a Pet Coke

4-____ ___“-*-11
~ •^ .* 4 n k j=  -34850(°R-‘) + 11.525

"  *
Ŝ v 4 n k  = -67570(°R"1) + 23.074

4.00E-04 4.25E-04 4.50E-04 4.75E-04 5.00E-04

Reciprocal Temperature (°R_1)

Figure 4-3. Block 1 Temperature Effects Based on Arrhenius Equations
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Numerous studies have taken place that support the results obtained in Block one 

of these TGA experiments [6, 20]. These experiments as well as the ones presented in 

this research show similar slopes (activation energies) based on similar char types as the 

ones presented in Figure 4-3. Results from previous studies did not match the reaction 

conditions of this research exactly since most of the previous work done was analyzed 

using a less complex reaction gas composition (N2/inert with H20). However the results 

and findings are very similar to the ones discovered in this research. The general 

conclusion that can be drawn from this and previous research is that the reactivity of char 

will increase with elevated temperatures. Differences in reactivity between the chars 

tested are also obvious with the lignite being the most reactive, and the petroleum coke 

being the least reactive.

4.1.2.2 Block 2

Block two was designed to study the effects that varying steam concentration has 

on the rate of the carbon-steam reaction Equation 1-5. This particular block of 

experiments was designed to isolate the effects of this reaction by performing the test in 

an atmosphere that contains only steam and nitrogen.

C + H20<---- >CO + H2 Eq. 1-5

The generally accepted rate expression used to describe the carbon-steam reaction 

based on carbon monoxide production is shown in Equation 4-9. [18, 21]

Ratec0 =
l + k ,P raH, + k,P,3A H,0

Eq. 4-9

Where:

ki, k2, k3, m = Individual kinetic parameters based on the forward and

reverse reaction rates of the carbon-steam reaction.
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Ph20, Ph2 -  Partial pressure of steam and hydrogen respectively.

The derivation and comprehension of this equation is not necessary to explain the basic 

principles it represents. The key point to notice when interpreting this equation is to see 

that as the amount of steam present in the reaction system increases so does the rate. It 

also shows that the rate of gasification is inhibited by the presence of hydrogen almost 

exclusively, since k3 is generally assumed to be negligible. [18]

The analysis of the data generated from these TGA experiments is relatively 

predictable and coincides with the rate expression presented in Equation 4-8. As 

expected the experiments with higher steam concentrations gives a larger rate constant. 

The increase in steam will drive the equilibrium reaction to the right causing a higher 

yield in products (CO and H2). The results are summarized in Figure 4-4.

M

1.20E-01

1.00E-01 - 1H

8.00E-02 - A

6.00E-02 -

V

4.00E-02 -
H

2.00E-02 - . f  A

0.00E+00 -
1 1

0 10 20 30 40 50 60

^  Lignite 
I  Bituminous 

Pet Coke

Steam Content (%)

Figure 4-4. Summaries of TGA Block 2 Experiments
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The tendency when interpreting the data illustrated in Figure 4-4 is to fit 

polynomial curves to formulate trends. However the reactivity most likely will not 

continue this exponential increase, but will tend to level off at steam percentages higher 

than the ones tested in these experiments. This appears to be the case when looking at the 

petroleum coke trend. This probably occurs since the number of active carbon sites will 

eventually reach a maximum in relation to the amount of steam in the system. Previous 

studies conducted have shown that increasing steam concentrations produce higher rate 

constants [6, 18, 21] and will most likely reach a maximum value, which is consistent 

with the findings in TGA Block two. These previous experiments were done primarily to 

study the effects of hydrogen inhibition on the carbon-steam reaction. While the TGA 

experiments conducted for this research lowered steam concentrations independently, the 

previous studies decreased the effect of steam concentrations by increasing the amount of 

hydrogen fed to the system.

4.1.2.3 Blocks 3 &4

The final two blocks of experiments performed on the TGA were designed to 

study the effects that carbon monoxide and carbon dioxide had on the carbon steam 

reactions as well as look at some of the char reactions involved with these compounds. 

Block three looked at the individual affects each compound (CO and CO2) had on the 

reaction process. This was accomplished by running an experiment with only one of the 

gases (CO or CO2) present. Block four experiments contained both gases in varying 

concentrations. The combination of the data obtained from both Blocks 3 and 4 coupled 

with data from Block one were used to analyze the effects of carbon monoxide and 

carbon dioxide on char reactivity in steam.
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The analysis of the data for the CO/CO2 effect was more difficult express than the 

previous two phenomenons. For this analysis the rate constants are compared as they 

relate to the carbon monoxide ratio. This ratio is defined as the moles of carbon 

monoxide divided by the moles of carbon monoxide plus the moles of carbon dioxide on 

a basis of mole percentages. The results are summarized in Figure 4-5.

Figure 4-5. Summary of CO/CO2 Effects of TGA Experiments 

The most obvious effect noted from this interpretation of the data is that as the 

amount of CO increases, the rate constant decreases. This implies that in the presence of 

CO, the gas-water shift reaction (Eq. 1-6) favors products to the right of the equilibrium. 

This decreases the amount of steam available for the carbon steam reaction in proportion 

to the amount of CO present.

CO + H20<---- >C02 + H2 Eq. 1-6
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The Boudouard reaction also plays a role in the changing rate constant. Presented 

earlier the Boudouard reaction involves the conversion of carbon to carbon monoxide 

upon the addition of carbon dioxide as seen in Equation 1-3. This is apparent

C + C02 ----- » 2CO Eq. 1-3

when data from Block two which contains only steam and nitrogen is compared with data 

in Block three with carbon dioxide present. In Runs 10 and 11 from the TGA test matrix 

the composition of the reacting gas contained 15 percent steam and the balance of 

nitrogen. When the rate data obtained from these two experiments is compared to Runs 

18 and 19 which contains 20 percent carbon dioxide along with 15 percent steam; a 

significant increase in reactivity is noted (see Figure 4-6).

6.00E-02

0  5.00E-02 .

1  4.00E-02 _
•Mg
c3 3.00E-02.
a>
2  2.00E-02. 

1.00E-02. 

0.00E+00

g  Steam Only 
H Steam and C02

Freedom Illinois No. 6

Figure 4-6. Comparison of Char Reactivity in Steam/Steam-C02 Gas Systems 

The water gas shift reaction shows that carbon monoxide in the system will 

reduce the amount of steam, however in the presence of carbon dioxide an equal amount 

of steam is generated. Therefore the total reactant gases (CO2 and H2O) are the same.
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The decreasing rate constant with increasing carbon monoxide indicates that the char- 

steam reaction dominates the reaction kinetics more than the Boudouard reaction.

Most studies done that looked at reaction data in this type of system usually show 

a slight parabolic curve that reaches a minimum value sharply as carbon monoxide 

concentrations are increased [22, 23, 24]. Results from the lignite testing mimic that 

trend while the bituminous results appear to be linear. The reason for this deviation is 

unclear at this point.

A number of different studies have been performed that look at gasification in a 

carbon monoxide-carbon dioxide system and tend to agree with the results obtained in 

this thesis [25, 26]. These studies showed that gasific ation rates with carbon dioxide 

present tend to proceed slower with increasing carbon monoxide concentrations. The 

equation generally used to describe this type of system is presented in Equation 4-10 [6],

Rate(CO) =
k P•̂ĈCO;

 ̂+ ̂ c.l^CO + -̂0.2̂ 00,
Eq. 4-10

Where:

kc, Kc,i,Kc,2 = Individual kinetic parameters

Pco, Pco2 = Partial pressures of carbon monoxide and carbon dioxide respectively

While the derivation and understanding of this equation is beyond the scope of 

this thesis; the most important observation should be noted that as the amount of carbon 

monoxide is increased in the reaction system the rate expression would decrease. While 

Equation 4-10 is not the only rate expression derived that describes gasification in a 

carbon monoxide carbon dioxide system [26, 27]. However, the relationships formulated 

in previous studies support the claim that carbon monoxide tends to slow the reactivity.
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When compared with Equation 4-10 and previous studies, the results obtained in this 

research are consistent with these findings.

4.1.3 Summary and Discussion of the TGA Test Matrices 

Predictably, the reaction rates for all chars were higher with increased temperature 

and steam contents. The regression analysis of these first two sets of TGA experiments 

can be used to aid in the modeling of char characteristics for the TRDU. The carbon 

monoxide/carbon dioxide effects were dependent upon the amount of each reacting 

species their effect on the gas-water shift and Boudouard reactions.

The correlations concerning temperature, steam content, and carbon monoxide- 

carbon dioxide contents made based on the four experimental test blocks were supported 

by literature on previous experiments at similar reaction conditions. Another comparison 

that was not explored in previous sections was how char types varied based on reactivity. 

The trend noted seemed to show that the Illinois No. 6 char tended to exhibit higher 

reaction orders. The Freedom char exhibited greater reactivity based on the Arrhenius 

relationship compared to the Illinois No. 6 and petroleum coke chars. This is also 

supported by previous experiments [5, 6, 28, 29, 30]. As was the case in most of the 

literature searched the reaction conditions did not exactly match the conditions in this 

research but did agree with the conclusions drawn.

When comparing previous research with the TGA work done in this thesis few 

experiments have been done that involve a full mix of gases (N2, CO, C02, H20  and H2). 

Some however have looked at this situation and have developed some models that can be 

used to compare with the work done in this research. One of the most comprehensive 

studies was conducted by Johnson that looked at char gasification rates in hydrogen-
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methane, hydrogen-steam, and carbon monoxide-carbon dioxide-hydrogen-steam- 

methane systems using thermal analysis. In these experiments a wide variety of 

bituminous chars were tested under varying temperatures and pressures [31]. The results 

found in these experiments relevant to this research tend to support the findings of this 

research. The correlation between high temperatures, increased steam and carbon 

dioxide concentrations tending to increase reactivity were all findings supported in the 

work by Johnson and others [6],

The equation that generally is used to describe the kinetics of a gasification 

system using a full mix of gases is presented in Equation 4-11 [6].

[ l— ( ^ P hjPco /P h2o) ]+ ^3n tPco2 [ l— (k 4P co /P Co2)]Rate = Eq. 4-11
1 + ksPco, + k6Pco + k 7PH2 + kgPH20 

Equation 4-10 has been extremely simplified from its original version. The kinetic 

parameters ki through kg are complex constants based on the forward and reverse 

reaction rates of the carbon-steam and Boudouard reactions and their complexes. These 

constants can vary depending upon the reaction conditions and the char type. The term nt 

is the concentration of active carbon sites plus oxygen-carbon complexes. While 

understanding these terms is beyond the scope of the research presented in this thesis the 

relationships between the partial pressures of the gas concentrations is of importance. 

This equation shows that the overall reaction rate is in general, the sum of the carbon- 

steam (first term in the numerator) and Boudouard (second term in the numerator) 

reactions. This equation supports the data generated in the TGA experiments conducted 

in this research in particular the carbon dioxide effects presented earlier that showed that 

the addition of carbon dioxide to a steam-char gasification system increases the 

reactivity. Equation 4-11 is not the only relationship that has been developed that
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describes a char gasification system involving a full gas composition. However most 

other models generated seem to agree with the relationships presented in Equation 4-i 1 

[32].

The kinetic data generated from these TGA experiments can be used to aid in 

creating a better model of the TRDU mixing zone. Higher temperatures coupled with 

increased steam concentration seem to produce optimal char reaction conditions. Also it 

appears that maximizing the amount of carbon dioxide relative to carbon monoxide will 

produce the most favorable kinetic conditions in the TRDU mixing zone.

4.2 Bench Scale PFBR Experiments

The previously presented test matrices for the PFBR were not completely run as 

presented due to unforeseeable difficulties during operation. The matrices presented for 

the Freedom lignite were run as presented and replicated to give two data sets per 

experiment. In addition two fully charged bed experiments of the lignite char were run. 

However problems arose with the petroleum coke experiments and only two tests were 

run. The complications will be discussed later in this chapter. Complete summaries of 

the PFBR tests are presented in Appendix B.

4.2.1 Determination of Carbon Monoxide/Carbon Dioxide Production Using the PFBR

4.2.1.1 Assumptions

Since previously generated coal-char was used for these experiments the 

following assumptions were made in order to better describe the effects. The first 

assumption made was that the char was free of water vapor and volatiles. The char was 

assumed to contain only carbon and ash. Second, only the combustion and partial 

combustion reactions (Equations 1-2 and 1-4) were considered part of the process. The
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final assumption made was that all oxygen fed to the system was converted to either 

carbon monoxide, carbon dioxide, or left as unreacted free oxygen.

While these assumptions are not completely true they are valid for the semi- 

qualitative analysis presented in this section.

4.2.2 Freedom Tests

The tests run on the Freedom lignite produced the most useful data for analysis. 

Ten total tests, the four original experiments and replicates, plus two fully charged runs 

were performed using this char type. A typical reaction sequence is illustrated in Figure 

4-7.

Figure 4-7. Typical Data Obtained from PFRB Experiments (T = 1500 °F & Air Flow =
0.3 SCFM)

Notably, the reaction sequence does not come to a steady state value for any 

appreciable amount of time. Generally this was the case for nearly all tests with the 

Freedom char. This phenomenon was not expected when the original test matrix was 

created. The plan was to obtain steady state values for carbon monoxide and carbon
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dioxide production upon the addition of air. It was hoped that varying air flow rates and 

reaction temperatures would produce distinct carbon monoxide-carbon dioxide ratios. 

From this data it was proposed that these ratios would help in determining temperatures 

and air flow rates for the J-leg rebum of the TRDU char. Unfortunately this was not the 

case and more inventive ways of interpreting the data was investigated.

4.2.2.1 Initial Interpretation of the PFBR Experiments

It was determined that the reason a steady state value could not be attained was 

that the sub-stoichiometric air flow rates produced a build up of carbon in the reactor. As 

seen in Figure 4-7, the pressure increase in the reactor shows a build up of material in the 

reactor. Since the rate of air flow was insufficient to convert all incoming carbon to ash 

and stack gases the material build up within the reactor must contain some amounts of 

unreacted carbon. Since oxygen was fed at a constant rate this would change the 

oxygen/carbon ratio during the reaction. From this observation it was determined that the 

best way to analyze the data generated from the PFBR was to study the effects the 

oxygen/carbon ratio had on the tests ran. This proved to be an unsuccessful way of 

interoperating the data. However, this type of analysis showed promise and its failure 

was probably due to incorrect assumptions and lack of steady state values. While this 

analysis technique was inconclusive, its results and procedure will be presented in the 

next section to serve as reference for future research/researchers dealing with this topic.

4.2.2.2 Attempted PFBR Analysis Method of Oxygen-to-Carbon Ratios

The data gathered from the Freedom runs was converted into molar 

concentrations of carbon, oxygen, carbon dioxide, and carbon monoxide. This was done 

by doing a material balance of the system over 30-second time intervals. It was assumed
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that the air feed contained 21 percent oxygen, and was fed at a constant rate defined by 

the experimental matrix. As stated earlier it was assumed that all oxygen fed to the 

system was converted into carbon monoxide or carbon dioxide by the combustion or 

partial combustion reactions. Therefore the composition of the stack gas was assumed to 

contain only carbon monoxide, carbon dioxide, and nitrogen. The moles of carbon 

monoxide and carbon dioxide were then calculated by the volume fraction obtained from 

the gas analyzers at a given time. The molar amount of carbon build-up within the 

reactor was calculated using the previously determined carbon content of the char and 

was assumed to be homogeneous and fed at a continuous rate. The moles of carbon in 

the reactor were calculated as the moles of carbon fed minus the moles of carbon leaving 

as carbon monoxide and/or carbon dioxide. Since the number of moles of carbon leaving 

the reactor as carbon monoxide and carbon dioxide was less than the amount fed, there 

was an accumulation of carbon within the reactor, this lead to a decrease in the molar 

oxygen-to-carbon ratio within the reactor over time.

To determine whether a correlation exists between carbon monoxide/carbon dioxide 

production and the oxygen-carbon ratio, a graphical analysis was performed from the 

previously presented test runs. The data gathered was plotted as molar ratios of carbon 

monoxide-to-carbon dioxide production versus the oxygen-to-carbon ratio within the 

reactor. The results of this analysis technique for the experiment shown in Figure 4-7 are 

illustrated in Figure 4-8.

The overall trend depicted in Figure 4-8 is that carbon accumulates within the 

reactor decreasing the oxygen-carbon ratio, the production of carbon monoxide is favored



54

and the partial combustion reaction begins to dominate. This was the overall trend noted 

in nearly all cases of the Freedom experiments.

Figure 4-8. Typical Analysis of PFBR Carbon Monoxide/Carbon Dioxide Production
Based on Oxygen-to-Carbon Ratios

4.2.3 Petroleum Coke Tests

4.2.3.1 Difficulties in Petroleum Coke Experiments

The test matrix designed for Petroleum Coke in the PFBR was not completed as 

presented. Two major problems arose during this test sequence: agglomeration and 

insufficient heat up capacity.

The first problem, agglomeration was not expected and was probably the result of 

the mixing of the inert materials from the residual Freedom ash coupled with the elevated 

temperature. Agglomeration deposits within the reactor caused the entire reactor to seize 

and lose it fluidizing characteristics. The only remedy to this problem was to run an 

experiment until agglomeration occurred and then manually clean the reactor afterwards.
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The other problem was due to inadequate equipment. The heaters on the ?FBR were 

incapable of producing the desired reaction temperatures. These two problems caused a 

great deal of mechanical and procedural problems, so due to lack of equipment 

availability and resources only two petroleum coke experiments could be completed.

4.2.3.2 Experiments Run

The two experiments ran on the PFBR with the petroleum coke char are defined 

in Table 4-3.

Table 4-3. Petroleum Coke PFBR Test Matrix as Ran

Run Average Temperature (±25 °F) Air Flow (SCFM)
1 1900 1.1
2 _____________HS20_________________ 05_______

The choice of this test sequence was entirely due to the limitations of the equipment and 

time. However, even though only two tests were run the results obtained using the 

previously mentioned analysis technique were consistent with the Freedom tests and 

produced some usable data. The analysis of the two petroleum coke experiments is 

illustrated in Figure 4-9.
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Figure 4-9 Analysis Summary of PFBR Petroleum Coke Experiments 

4.2.3.3 A Qualitative Interpretation of the PFBR Tests

Quantitatively the analysis of the data obtained from the PFBR based on carbon 

monoxide carbon dioxide production rates as they relate to the oxygen-to-carbon ratio is 

a good way to summarize the experiments analytically. However, a qualitative look at 

the raw data can also be done to determine if some of the original hypothesis hold true. 

To accomplish this, the raw carbon monoxide and carbon dioxide percentage data 

(Figures B-l to B-12) was analyzed to see if any reliable steady state values of 40 

minutes to one hour could be gathered. From these assumed steady state values, molar 

ratios based on carbon monoxide concentrations were compared with their corresponding 

temperature and air flow. The results are summarized in Table 4-4 and Figure 4-10.
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Table 4-4. Qualitative Summary of the PFBR Experiments.

PFBR Freedom Tests
Temp
(°F)

Air Flow 
(SCFM)

CO (% at 
Steady 
State)

C02 (% at 
Steady 
State)

CO ratio* Steady
State

Acheived

Comment

1750 0.5 7.5 15 0.33 Yes Reasonable
1750-R 0.5 6 16 0.27 Yes Questionable

1750 0.3 30 2 0.94 Yes End Value
1750-R 0.3 27 3 0.90 No

1500 0.5 9 15 0.38 No Opposite
1500-R 0.5 11 13 0.46 No Trends ?
1500 0.3 13 10 0.57 No

1500-R 0.3 15 12 0.56 Yes Questionable
Full Bed PFRB Freedom Tests

1750 0.3 15.5 5 0.76 Yes l sl Hour
1500 0.3 11 8 0.58 Yes l51 Hour

PFBR Petroleum Coke Tests
1900 1.1 12 10 0.55 Yes End of test
1820 0.5 6 14 0.30 Yes Middle

*CO ratio is defined as % CO/(% CO + % CO2) at steady state

1

1500 °F 1750 °F

Figure 4-10. Qualitative Summary of PFBR Freedom Experiments 

The results obtained from a qualitative look at the PFBR did show that some of 

the original hypothesis held true, while some did not. The Full bed and 0.3 SCFM test
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seem to agree with the assumption that higher temperatures produced more carbon 

monoxide, however the test ran at 0.5 SCFM did not exhibit this same trend. Lower air 

flow rates seemed to produce higher carbon monoxide ratios as was expected.

The interpretation of this qualitative analysis for the most part reinforced some of 

the initial predictions. However the inconsistency with the test performed at 0.5 SCFM 

are of concern. This could be due in part by the inconsistent data at 1500 °F. Therefore 

no conclusive findings can accurately by presented with this type of analysis.

4.2.4 Summary of PFBR Tests

The general and expected trend noted from the PFBR tests is that as the oxygen to 

carbon ratio decreased there was a tendency for the incomplete combustion reaction to 

dominate. This would produce elevated levels of carbon monoxide in the exit flue gas.

The data generated from these experiments will aid in determining carbon 

monoxide-carbon dioxide ratios for the char rebum as it enters the mixing zone. 

However the most valuable information gained from the PFBR experiments in this thesis 

is the information gained on using this equipment for future work. Basically this 

equipment can serve as a gasifier, but for more accurate data collection further 

modifications or process improvements should be made. This will insure proper 

gasification conditions are met and the data collected accurate.

As far as using this data for mixing zone model(s) or equipment settings the 

results obtained are somewhat inconclusive. Typical oxygen to carbon ratios in the 

mixing zone range from 0.152 to 0.0084 (mole/mole). The original assumption made 

when designing these PFBR experiments was to determine the effects temperature and air 

flow rates have on carbon monoxide and carbon dioxide production. It was hoped that
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equations could be formulated and general trends determined. However when looking at 

the data collected from these experiments it is difficult to generalize any patterns or 

trends, and future experimentation must be done before useable data can be acquired. 

The analysis of the data collected from the PFBR experiments at typical mixing zone 

oxygen/carbon ratios is illustrated in Figure 4-11 (F designates Freedom char, F2 

designates a replicate).

_*_F-1750 °F & 0.5 SCFM _*_F-1750 °F & 0.3 SCFM 
_«_F-1500 °F & 0.5 SCFM _,*_F-1500 °F & 0.3 SCFM 
_®_F2-1750 °F & 0.5 SCFM _*_F2-1750 °F & 0.3 SCFM
_I_F2-1500 °F & 0.5 SCFM _$_F2-1500 °F & 0.3 SCFM
_Q_ 1900 °F Pet C. 1820 °F Pet C.

Figure 4-11. Summary of PFBR Data at Typical TRDU Mixing Zone Oxygen-to-Carbon
Ratios
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4.2.4.1 Failure of the PFBR Analysis Method of Oxygen-to-Carbon Ratios

While the results shown in Figure 4-8 showed promise, overall the results 

obtained were irreproducible and no conclusive results could be drawn from the data 

using this analysis technique (as seen in Figure 4-11). No conclusive evidence was found 

that could relate air flow rates and temperature to carbon monoxide carbon dioxide 

production of the coal-chars tested using the PFBR. Some possible explanations as to the 

failure of these experiments could be do to incorrect assumptions, lack of flow to the gas 

analyzers, inconsistent carbon content of the feed material due to density segregation, 

lack of steady state values, inaccurate measurements, as well as other numerous issues 

that are unexplainable at this point.

4.2.4.2 Discussion of PFBR Results

The initial hypothesis for this type of data was to assume that carbon monoxide 

would be favored at higher temperatures and lower air flow rates. However this was not 

the case from the data collected in the PFBR for mixing zone oxygen to carbon ratios 

using the analysis procedure displayed in Figure 4-11. In some cases lower temperatures 

produced greater amounts of carbon monoxide as well as did higher air flow rates. Also 

replicated data did not coincide with each other very well. In order to derive any type of 

conclusions from this type of experiment more data needs to be collected and replicated 

with accuracy. A small gasification system should be set up that could produce these 

oxygen-to-carbon ratios for an extended period of time. This could be accomplished by 

having a continuous drain that would prevent the build-up of carbon over time. Then air 

flow and temperature could be studied and more accurate effects could be noted. The
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data collected from the PFBR in this thesis did show that char gasification conditions 

could be done under these reaction parameters. However the validity of the assumptions 

used and equipment accuracy must be explored before future experiments with coal-char 

are tested using the PFBR.

These test runs will serve as a good starting point for more detailed future 

experiments. This data will better explain and define trends from varying temperature 

and air flow rates as they relate to carbon monoxide and carbon dioxide ratios from char 

gasification.

4.3.4 PFBR Experimental Difficulties

The fluctuating and erratic data gathered from the PFBR in this thesis may be due 

to some of the problems that were encountered during these experiments. While the 

correction of these problems may produce more accurate results the general trends noted 

from the original PFBR experiments should hold true. However these issues must be 

addressed before conclusive results on these bench scale tests are obtained. One of the 

major problems encountered during these bench scale tests was due to the low air flow 

rates through the PFBR. This caused a limited amount of flow to the exit gas analyzers. 

While these analyzers were consistent throughout these experiments the low flow rates 

may have resulted in inaccurate readings. Also the fine char particles would often clog 

the sample lines sent to the analyzers resulting in a loss of flow. In order to return flow 

these lines had to be broke and cleared in order to free the trapped debris. This process 

would lead to zero percent readings until the analyzer lines were repaired. Another 

problem that may have occurred was that the carbon content of the char feed might be 

inconsistent. Carbon analysis of both chars were performed and assumed to consistent
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throughout the entire experiment. However in the feed hopper there may have been 

sections were the carbon content of the incoming char may have varied from the original 

analysis. This would result in oxygen to carbon ratios different than assumed. This 

might have favored different reactions under these conditions resulting in varying carbon 

monoxide carbon dioxide production rates. Problems with temperature control also may 

have effected the results. Since the PFBR heaters are not controlled to handle the heat 

effects of the reaction process, temperatures would often fluctuate within 25 degrees 

Fahrenheit. These temperature fluctuations while only slight may have had an effect on 

the results obtained.

Suggestions for future experiments and remedies to these problems discussed will 

be presented in the following chapter.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The results presented in this thesis can be generalized into three distinct sections 

for a succinct synopsis; these include the background and literature information, the TGA 

experiments, and the bench scale PFBR tests. The significant information gained from 

these three research methods will be summarized in this chapter. Also some 

recommendations will be presented for future work on this thesis as well as offer some 

information on remedies to the problems encountered during experiments run for this 

research.

5.1 Summary of Literature Review

• Gasification is a successful alternative method to convert carbon-containing 

material into light gases, condensable vapors, and tars.

• The products generated from gasification can be used as a substitute natural gas. 

This will aid in generating energy when conventional fuels become scarce. The 

syngas generated from gasification can replace or supplement fuels such as 

natural gas, propane, and other light hydrocarbon gases.

• Over the next five years the gasification industry is expected to grow by nearly 50 

percent. The general trend in the gasification industry is to shift most of its focus 

to the field of energy generation.

• Char is generated following the initial cracking of coal. The reactivity of char is 

generally much lower than that of raw coal and requires recirculating and 

recycling to a great extent in order to gasify. Studying char reactions and
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• reactivity in a gasification system will aid in generating models and designing 

equipment.

• Thermogravimetry is a successful technique used to determine kinetic data for 

solid/gas systems. It is capable of operating under a wide range of physical 

conditions and is easily controlled.

• Fluidized bed technology offers a useful reaction system for coal processing and 

gasification systems. They assert a good heat transfer rate, a relatively uniform 

temperature distribution, and an excellent mass transfer rate. This produces high 

conversions and facilitates control in gasification systems.

• Higher temperatures tend to produce elevated reaction rates with the three chars 

tested in this research.

• The presence of carbon monoxide tends to inhibit the carbon/char steam reaction, 

while the presence of carbon dioxide tends to increase the overall reaction rate of 

the carbon/char steam reaction system.

• An increase in steam within the reactor tends to increase char reaction rate 

constants.

5.2 Summary of TGA Work

• The EERC’s TGA was successful in producing reliable kinetic data of the chars 

tested.

• The designed TGA test matrix produced the results desired. The use of the four- 

block test matrix was successful in isolating the effects each variable had on char 

reactivity. The results obtained from these experimental blocks were consistent 

with previous experiments and hypothesis.
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• The solution to the Arrhenius equation was generated using the data in 

experimental Block one. From this, activation energies were found and used to 

relate rate data to temperature for each char type.

• The trend noted from Block one was that an increase in temperature produced 

higher reactivity.

• Higher steam concentrations produced greater char reactivity. Excess steam tends 

to drive the carbon-steam reaction (Equatic 1-5) equilibrium to the right.

• The carbon monoxide carbon dioxide ratios in TGA experimental Blocks three 

and four showed that in creasing carbon monoxide in the system tended to 

decrease reactivity. This was probably due to the gas-water shift reaction 

(Equation 1-6) reducing the total amount of steam in the system and the 

retardation of the Boudouard reaction (Equation 1-3) noted in Equation 4-8.

• The kinetic data obtained from the TGA experimental matrix can be used to aid in 

generating models for the EERC’s TRDU.

• The difference in reactivity of different char types proved consistent with 

previous studies. The three chars tested had the following progression (starting 

with the lowest): petroleum coke, Illinois No. 6, and Freedom.

• Optimal reaction conditions within the mixing zone should be accomplished by 

maximizing steam concentrations while minimizing the presence of carbon

monoxide.
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5.3 Summary of PFBR Experiments

• The retrofitted PFBR was capable of producing data that described the complete 

and incomplete combustion reactions (Equations 1-2 and 1-4 respectively) for 

Freedom and petroleum coke chars.

• For the PFBR experiments the analysis of the oxygen-to-carbon ratio and the 

carbon monoxide/carbon dioxide production rates, while inconclusive showed 

promise in relating those parameters to one and other.

• The general trend discovered from the PFBR test matrix was that as the oxygen- 

to-carbon ratio decreases, the incomplete combustion reaction tends to dominate 

producing more carbon monoxide.

• The qualitative analysis showed that in some cases the hypothesis that higher 

temperatures would increase carbon monoxide production held true. However, no 

conclusive evidence was found that would support this claim.

• Analysis of the PFBR test data at parameters typically found in the TRDU mixing 

zone proved erratic and further testing is required,

5.4 Recommendations

5.4.1 TGA Testing

• The results obtained from the TGA test matrix proved to be sufficient for the 

work of this thesis. Running more data points and replicates should be explored 

in order to validate the work completed in this research. The new data points 

could include variable values at higher and lower settings as well as midpoint
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values. Tests of other char types might be explored to s -■£ how they compare to 

the chars tested in this research.

5.4.2 PFBR Testing

• A good deal more data is required using this particular technique before 

conclusive results are obtained. The major obstac' ŝ encountered during these 

tests were:

a) The lack of equipment availability because of prior PFBR commitment at 

the EERC.

b) Inadequate equipment.

A complete maintenance of the EERC’s PFBR should be done to insure all 

equipment is operating properly. Also additional experiments should be done 

without major time constraints.

• With a properly running PFBR, additional data should be obtained using the 

techniques presented in this thesis. Data gathered should be replicated until 

consistent results are obtained.



APPENDIX A

SUMMARIES OF TGA EXPERIMENTS

This section contains summaries graphical summaries of the thermograms generated from 

the TGA.
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Figure A -l. Raw Data of TGA Run Number 1

Figure A-2. Raw Data of TGA Run Number 2
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Figure A-3. Raw Data of TGA Run Number 3

Figure A-4. Raw Data of TGA Run Number 4
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Run Time (min)

Figure A-5. Raw Data of TGA Run Number 5

Figure A-6. Raw Data of TGA Run Number 6
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Figure A-7. Raw Data of TGA Run Number 7

Figure A-8. Raw Data of TGA Rim Number 8
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Figure A-9. Raw Data of TGA Run Number 9

Figure A-10. Raw Data of TGA Run Number 10
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Figure A-l 1. Raw Data of TGA Run Number 11

Figure A-12. Raw Data of TGA Run Number 12
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Figure A-13. Raw Data of TGA Run Number 13

Figure A-14. Raw Data of TGA Run Number 14



Sa
m

pl
e 

W
ei

gh
t P

er
ce

nt
 

Sa
m

pl
e W

ei
gh

t P
er

ce
nt

76

Figure A-15. Raw Data of TGA Run Number 15

Figure A-16. Raw Data of TGA Run Number 16
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Figure A-17. Raw Data of TGA Run Number 17

Figure A-18. Raw Data of TGA Run Number 18
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Figure A-19. Raw Data of TGA Run Number 19

Figure A-20. Raw Data of TGA Run Number 20
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Figure A-21. Raw Data of TGA Run Number 21

Figure A-22. Raw Data of TGA Run Number 22
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Figure A-23. Raw Data of TGA Run Number 23



APPENDIX B

PFBR DATA SHEETS AND ANALYSES

This section contains graphical representations of the raw data obtained from the 

PFBR’s data acquisition software. Temperatures reported for each run are within ± 25 

°F. Notes are given with each illustration as to where agglomeration and loss of flow 

phenomenon occurred. Also included in this section are illustrations of the carbon 

monoxide carbon dioxide molar production ratios compared to the oxygen-to-carbon 

ratios in the PFBR reactor.
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Reaction Time (min)

Figure B-l. Raw Data of PFBR Freedom Char Run at 1750 °F & 0.5 SCFM
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Figure B-2. Raw Data of PFBR Freedom Char Replicate Run at 1750 °F & 0.5 SCFM 
Note: Analyzer flow restricted until approximately 70 minutes into the test
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Figure B-3. Raw Data of PFBR Freedom Char Run at 1750 °F & 0.3 SCFM 
Note: Analyzer flow restricted until approximately 70 minutes into the test

Figure B-4. Raw Data of PFBR Freedom Char Replicate Run at 1750 °F & 0.3 SCFM
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gure B-5. Raw Data of PFBR Freedom Char Rim at 1500 °F & 0.5

Reaction Time (min)

Figure B-6. Raw Data of PFBR Freedom Char Replicate Run at 1500 °F & 0.5 SCFM

Pr
es

su
re

 D
ro

p 
(In

. H
20

) 
3

 
Pr

es
su

re
 D

ro
p 

(In
. H

20
)



Ex
it 

Fl
ue

 G
as

 (P
er

ce
nt

 o
f T

ot
al

) 
Ex

it 
Fl

ue
 G

as
 (P

er
ce

nt
 o

f T
ot

al
)

85

Reaction Time (min)

Figure B-7. Raw Data of PFBR Freedom Char Run at 1500 °F & 0.3 SCFM

Reaction Time (min)

Figure B-8. Raw Data of PFBR Freedom Char Replicate Run at 1500 °F & 0.3 SCFM
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Figure B-9. Full Bed Lignite Char Test at 1500 °F & 0.3 SCFM 
Note: Problems occurred during this test with char agglomeration

Figure B-10. Full Bed Lignite Char Test at 1750 °F & 0.3 SCFM 
Note: Problems occurred during this test with char agglomeration
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Figure B-l 1. Raw Data of PFBR Petroleum Coke Char Run at 1900 °F & 1.1 SCFM

Figure B-12. Raw Data of PFBR Petroleum Coke Char Run at 1820 °F & 0.5 SCFM
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?ure B-12. Oxygen-Carbon Analysis of PFBR Freedom Char Run at 1750 °F & 0.5
SCFM

Figure B-13. Oxygen-Carbon Analysis of PFBR Freedom Char Replicate Run at 1750 °F
& 0.5 SCFM
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jure B-13. Oxygen-Carbon Analysis of PFBR Freedom Char Run at 1750 °F & 0.3
SCFM

Figure B-14. Oxygen-Carbon Analysis of PFBR Freedom Char Replicate Run at 1750 °F
& 0.3 SCFM
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Figure B-15. Oxygen-Carbon Analysis of PFBR Freedom Char Run at 1500 °F & 0.5
SCFM

Figure B-16. Oxygen-Carbon Analysis of PFBR Freedom Char Replicate Run at 1500 °F
& 0.5 SCFM
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;ure B-17. Oxygen-Carbon Analysis of PFBR Freedom Char Run at 1500 °F & 0.3 
SCFM

Figure B-18. Oxygen-Carbon Analysis of PFBR Freedom Char Replicate Run at 1500 °F
& 0.3 SCFM
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G2/C (mole/mole)

Figure B-19. Oxygen-Carbon Analysis of PFBR Freedom Char Full Bed Run at 1500 °F
& 0.3 SCFM*

Oz/C (mole/mole)

Figure B-20. Oxygen-Carbon Analysis of PFBR Freedom Char Full Bed Run at 1750 °F
& 0.3 SCFM*

* Note: The x-axis scale is much lower than the other analysis of the freedom char
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