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ABSTRACT 

Purpose:  There is a high prevalence of ACL injury in the athletic populations, which 

can carry out short and long term debilitative effects. Most ACL injuries involve minimal 

to no contact and female athletes sustain a two to eightfold greater rate of injury than 

male athletes. Not much research has been conducted to see if foot position directly 

affects the lower extremity muscles, which could result in altered biomechanics at the 

knee. 

Methods:  Twelve subjects 18-30 years old participated in the study.  EMG analysis 

measured differences of muscle contractions for the gluteus maximus, gluteus medius, 

biceps femoris, rectus femoris, lateral gastrocnemius and anterior tibialis muscles in 

varied foot positions to include: neutral (control), pronation 5o, pronation 10o, supination 

5o, and supination 10o. 

Results:  When comparing the baseline single leg squat to each of the four test positions 

(pronation 5o, pronation 10o, supination 5o, and supination 10o) the only significance 

found was in the anterior tibialis muscle (p< 0.05). No significant difference was found in 

the gluteus maximus, gluteus medius, biceps femoris, rectus femoris, or lateral 

gastrocnemius muscles in the tested foot positions.  

Conclusions:  Results of this study show that only the anterior tibialis muscle is affected 

according to foot position during a single-leg squat.  This study suggests that foot 

position may not have an effect on muscles of the lower extremity and does not play a 
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major role in non-contact ACL injuries. Many other elements may have affected the 

results and should be investigated more thoroughly with larger numbers of participants to 

be more confident of foot position’s influence on muscle activity in the lower extremity 

and role as a possible cause of ACL injury. 
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CHAPTER I 

INTRODUCTION 

 
Lower extremity muscle activity influenced by foot position may alter the 

position of the knee, thus altering stresses on the anterior cruciate ligament.  There is a 

high prevalence of ACL injury in the athletic populations, which can carry out short and 

long term debilitative effects. Most ACL injuries involve minimal to no contact and 

female athletes sustain a two- to eightfold greater rate of injury than male athletes.1 Most 

ACL injuries result from low velocity, noncontact, deceleration injuries and contact 

injuries with a rotational component.2 There has been a huge focus on noncontact ACL 

injuries in team sports, but the mechanism of ACL injuries remains unclear.3,4 Common 

situations that lead to non-contact injuries include: change of direction or cutting 

maneuvers combined with deceleration, landing from a jump in or near full extension, 

and pivoting with knee near full extension on a planted foot.5 A number of the reasons 

thought to lead to the ACL’s susceptibility to injury include anatomical, biomechanical, 

hormonal, and neurophysiological, as well as many others. Through varying foot 

positions during a single leg squat, this study explored a possible component to the 

mechanism of ACL injuries. This will benefit athletes and those working with the athletic 

population to prevent ACL injury through interventions that reduce the risk of sustaining 

such an injury. 
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CHAPTER II 

LITERATURE REVIEW 

According to the literature there may be numerous contributors to ACL injuries 

and the mechanism of these injuries is not well understood. A large extent of the current 

literature is evaluating the neuromuscular effects that may contribute to ACL injury 

and/or risk.  Although females are at a much higher risk of attaining an ACL injury, many 

of the researchers can’t agree as to why this may be. However, researchers do agree that 

women are typically found to land with greater peak knee abduction angles than males.6 

Since an increase in the knee abduction angle increases the load on the ACL, it would be 

reasonable to conclude that this contributing factor could be more of an influence in 

females in comparison to males. Also, multiple studies have investigated to see if the 

gender difference in an ACL injury is caused by differences in knee and hip flexion in 

landings. The differences in muscle strength between genders could result in different 

landing patterns, thus subjecting the athlete to force differences across the knee joint.7-11  

In a video analysis study of ACL injuries in basketball players, female players 

landed with significantly less knee and hip flexion and had a 5.3 times higher relative risk 

than males of sustaining a valgus collapse.8 The valgus collapse posture typically 

included a contralateral pelvic drop, femoral adduction and femoral internal rotation.10 

The study also concluded that women are likely more prone to the anterior quadriceps 

drawer mechanism upon landing than are men, inducing more stress upon the ACL.8 This 
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may be attributed to decreased knee flexion, which doesn’t allow the hamstrings to be in 

an effective position to control the anterior drawer mechanism.12 In return, it may suggest 

that the smaller knee and hip flexion angles will increase the risk of noncontact ACL 

injury.8 Other studies have investigated if the gender difference in ACL injury incidence 

is caused by differences in knee and hip flexion in landings, with the rationale that 

women are more extended at the hip and knee during landing, perhaps because of weaker 

musculature, than are men.9,10,13,14 Females demonstrate lesser hamstring stiffness 

compared to males in response to standardized loading conditions, indicating a 

compromised ability to resist changes in length associated with joint perturbation, and 

potentially contributing to the higher female ACL injury risk.10 Boden et al15 

hypothesized that a vigorous quadriceps contraction on an extended knee was the main 

cause of the excessive ACL force. Although several laboratory studies have supported 

this theory,7,14 some studies also found no differences.13 

In studies pertaining to landing techniques and foot positioning, it was found that 

a rear-foot landing technique created more ankle dorsiflexion and less knee flexion than 

did the other techniques such as forefoot landing. A decreased knee flexion angle 

combined with the knee abductor moment, during the rearfoot landing technique, can 

create higher stress and strain on the ACL.16 There was a lack of gender differences in 

these studies, which may suggest that ACL injuries might not be related solely to gender 

but may instead be associated with the landing technique used and, as a result, the way 

each individual absorbs jump-landing energy.16,17 In a study conducted by Chappell et 

al,18 it was found that knee and hip motion patterns as well as quadriceps and hamstring 

activation patterns exhibited significant gender differences. They concluded that lower 



4 
 

extremity motion patterns during landing of the stop-jump task are preprogrammed 

before landing. Female subjects prepared for landing with decreased hip and knee flexion 

at landing, increased quadriceps activation, and decreased hamstring activation, which 

may result in increased ACL loading during the landing of the stop-jump task and the risk 

for noncontact ACL injury.18 

Anatomy of the lower extremity is also thought to play a major factor in ACL 

injury. The ACL controls anterior movement of the tibia and inhibits extreme ranges of 

tibial rotation. The ACL consists of 2 major bundles, the posterolateral bundle (PL) and 

the anteromedial bundle (AM). The component ACL bundles are named based on their 

tibial insertion.19 Forces transmitted through ACL bundles vary with knee-joint position. 

In a cadaveric study, the greatest forces transmitted through the AM bundle were at 60 

and 90 degrees of flexion. The force was greatest for the PL bundle at full 

extension.20Another study using cadaveric knees found that the PL bundle handled more 

force overall than the AM bundle in response to anterior tibial loads, whereas the in situ 

forces in the AM bundle remained relatively constant and unaffected by the changes in 

flexion angle and anterior tibial load force.21 In addition, intercondylar notch width was 

found to be a predictor of ACL injury. Notchwidth index (NWI) is a ratio of 

intercondylar notch width to femoral condyle width.22, 23 A study conducted by Lund-

Hanssen et al, 24 calculated NWI from measurements taken from x-ray films in a 

unilateral ACL deficient sample and found NWI to be typically smaller in the injured 

knee compared to the non-injured knee.22, 23 However, it has been argued that it is the 

ACL size rather than notch size that is the important risk factor for ACL injury.25 
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Joint laxity has been a common anatomical feature related to ACL rupture 

incidences. Clear laxity differences have been observed between males and females, with 

females often displaying greater genu recurvatum,26,27 anterior knee laxity,28-32 and 

general joint laxity.33-35 Females are also reported to have 25% to 30% greater frontal-

plane and transverse-plane laxity36-39 and less torsional stiffness36,40,41 than males. A 

number of factors contribute to knee joint laxity including hormones, neuromuscular 

control, and other anatomical structures. Of particular interest here is the role of other 

structures surrounding the knee. A cadaveric study retrieved the effects of the iliotibial 

band, capsular ligaments and the medial and lateral collateral ligaments on passive knee 

joint laxity.22,42 It showed that the ACL provided most resistance against anterior tibial 

translation, and those surrounding structures acted as secondary restraints.22,42 However, 

the relative contribution of each of those secondary restraints did not differ significantly 

among each other, and the individual contribution of each structure was minimal.22 Also, 

sex hormone (eg, estrogen, testosterone, relaxin) receptors have been found on the human 

ACL as well as in skeletal muscle, suggesting that hormone signaling may influence ACL 

susceptibility to injury.43-46 It has been found that the likelihood of suffering an ACL 

injury is not evenly distributed across the menstrual cycle in women; instead, the risk of 

suffering an ACL disruption is greater during the preovulatory phase of the cycle than 

during the postovulatory phase.47-52 During the preovulatory phase, hormone levels 

change dramatically, falling to their lowest levels with the onset of menses and rising 

rapidly near ovulation. This large hormone swing might contribute to the increase of 

sustaining an ACL injury during that time period.47  
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Approximately 80% of all ACL tears are noncontact injuries, which may suggest 

that a high percentage of tears could be avoided through prevention programs.24,53,54 

Randomized controlled studies have shown that proprioceptive training can improve 

landing mechanics.22,55,56 Additionally, prospective cohort studies have revealed lower 

ACL injury rates in cohorts that have undergone proprioception training.22,57,58 ACL 

injury prevention programs usually target high-risk groups, such as young female 

athletes, and aim to improve dangerous motion patterns.24 There is strong evidence in 

support of a significant effect of ACL injury prevention programs. Sadoghi et al,24 found 

a 52% reduction in the risk of an ACL tear in female athletes but an 85% reduction in 

male athletes; however, there are no specific types of prevention programs that are more 

beneficial than others at this time according to literature.24 

In a study looking at how foot placement modifies kinematics and kinetics during 

drop jumping, it was found that foot placement while landing during a drop jump clearly 

modifies the magnitude and distribution of power production. It was found that torque 

was increased in the ankle, knee, and hip joint, which could also be responsible for the 

greater power production in forefoot landing when compared with that in heel toe 

landing.59 Power production will elicit greater muscle activity at the knee and may 

contribute to ACL injury if a muscle imbalance is present. Muscle fatigue has also been 

an attributed factor to increased risk for ACL injury. One study found a significant 

increase in initial contact hip extension and internal rotation motion, and in peak stance 

knee abduction and internal rotation and ankle supination angles. They also found that 

fatigue-induced increases in initial contact hip rotations and in peak knee abduction 

angles were also significantly more pronounced during unanticipated compared to 
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anticipated landings.60 With limited research on the foot position effect on an ACL injury, 

our study may be pertinent to providing more potential causes of the mechanism of 

injury. 
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CHAPTER III 

METHODS 

This study is designed to examine the relationship between frontal plane foot 

position and lower extremity muscle activation in people while performing a single leg 

squat. This study will determine if foot position influences muscle activation in the lower 

extremity, and, therefore, may contribute to the risk of ACL injury.  The activity of the 

lower extremity muscles in various foot positions during a single-leg squat will be 

measured using EMG analysis of the muscles influencing the knee. To start, the 

paticipants filled out a data sheet that stated their previous injury/surgery profile, height, 

weight, and current stage of menstrual cycle (if applicable), all of which addressed 

possible links to ACL injury risk.  After obtaining the participant’s  history, instructions 

were given to kick a ball with whichever leg was instinctual. This was done three times 

and the stance leg that was used while kicking determined the leg used to collect data for 

the single leg squat.  

To collect the data for the single leg squat, disposable electrodes were placed on 

the skin over each of the subject's lower extremity muscles being tested. The six muscles 

tested included gluteus maximus, gluteus medius, quadriceps femoris, biceps femoris, 

anterior tibialis, and lateral gastrocnemius.  The skin over which the electrodes were 
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placed was prepared by shaving any hair from the area, lightly abrading the skin with fine 

sandpaper, and then cleaned with rubbing alcohol. The skin preperation was done to 

ensure best electrical conductance from muscle to the electromyographic (EMG) 

equipment. Once the electrodes were in place and the subject was connected to the 

wireless EMG analysis equipment, instrucutions were given on how to do various LE 

movements to ensure proper EMG readings. The EMG recording device measures the 

electrical activity of the muscles during muscle action.  Subjects performed a barefoot 

single-leg squat (45 to 60 degrees knee flexion) on the dominant stance leg 5 times, then 

returned to standing erect while weight bearing as EMG activity was recorded for each of 

5 different foot positions.  

After explaining the procedure to the subject, participants were told to choose at 

random four cards. Each card had a specified foot position associated with it in which the 

subject would perform in the order that the card was picked. Randomnization was done in 

this regard to make sure each participant’s data wasn’t biased due to fatigue or muscle 

adaptation, which may have occurred with sequencing the postions in a certain order. 

This allowed for a radomized and variable sequence in which the participants performed 

each position for the single leg squat. Before recording data for each position, 

participants were instructed to practice everytime positions were changed.  The subjects 

performed 5 repetitons in each position, with data collection resetting after each position. 

Muscle activity was reported as a percentage of a single leg stance position on a flat 

(neutral) board. This was used as our reference measure and then we were able to 

compare data from the inclines against the EMG activity while on the neutral board. The 

foot positions tested included a flat surface with the foot in a relaxed position, promoting 
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a neutral foot position; standing on a 5- and 10-degree medial to lateral incline, 

promoting a pronated foot position (foot arch height lowered); and standing on a 5- and 

10-degree lateral to medial incline, promoting a supinated foot position (foot arch height 

elevated).   

Data analysis of the muscles was performed using SPSS. An alpha level of p≤0.05 

was set to determine significance for all statistical tests. A Repeated Measures ANOVA 

was used to identify differences among groups. Mauchly’s Test of Sphericity was 

assessed to see if the assumption of sphericity had been violated, allowing us to choose 

sphericity assumed or lower-bound according to epsilon. Following that, post hoc 

analysis was performed with pairwise comparisons. 
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CHAPTER IV 

RESULTS 

Data analysis was performed on each of the six muscle groups (gluteus maximus, 

gluteus medius, biceps femoris, rectus femoris, lateral gastrocnemius, and anterior 

tibialis) comparing the baseline single leg squat to each of the four test positions 

(pronation 5o, pronation 10o, supination 5o, and supination 10o). See Figure 1. 

 

 

 

Figure 1.Comparison of muscles means in respective foot positions. 
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Data analysis shows that there is no significant difference (p > 0.05) between the baseline 

muscle activity and five of the muscles tested: gluteus maximus, gluteus medius, biceps 

femoris, rectus femoris, lateral gastrocnemius. See Table 1. The only significant 

difference (p < 0.05) found was in the anterior tibialis muscle. See Table 1 and 2. 

Table 1. Results of statistical inferences of muscles between neutral and tested foot 
positions. 

 
Muscle Mauchly’s 

Test of 
Sphericity 

Type III 
Sum of 
Squares 

df Mean 
Square 

F Sig Partial 
Eta 

Squared 

Observed 
Power 

Anterior 
Tibialis 

Sphericity 
Assumed 

2033.991 4 508.498 3.600 .013 .247 .835 

Lateral 
Gastroc 

Sphericity 
Assumed 

1409.529 4 352.382 1.865 .134 .145 .520 

Rectus 
Femoris 

Lower-
bound 

1198.213 1 1198.213 .936 .354 .078 .143 

Biceps 
Femoris 

Sphericity 
Assumed 

1234.722 4 308.681 2.282 .076 .172 .617 

Gluteus 
Medius 

Sphericity 
Assumed 

451.759 4 112.940 .655 .627 .056 .197 

Gluteus 
Maximus 

Lower-
bound 

800.261 1 800.261 1.247 .293 .122 .170 

The rectus femoris and gluteus maximus muscles used a lower-bounds statistic as the assumption 
of Mauchly’s sphericity was violated (p <0.05).The anterior tibialis, lateral gastrocnemius, 
biceps femoris and gluteus medius muscles did not violate Mauchly’s sphericity (p > 0.05); 
therefore, the sphericity assumed statistic was used.  

 

Table 2. Statistical analyisis of the anterior tibialis muscle between foot positions. 

Muscle Position Mean SD N 

Anterior Tibialis Neutral (control) 81.158 12.013 12 

Anterior Tibialis Supination (5 degrees) 68.508 13.032 12 

Anterior Tibialis Supination (10 degrees) 68.542 23.007 12 

Anterior Tibialis Pronation (5 degrees) 68.567 21.123 12 

Anterior Tibialis Pronation (10 degrees) 63.783 22.673 12 
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CHAPTER V 

DISCUSSION 

 The results of the study showed that all of the muscle groups, except for anterior 

tibialis, had no significant variation in muscle contraction between foot positions during 

the single-leg squat. Many factors could attribute to the non-significance of the study. 

One factor that may have influenced our results is that the squatting technique was not 

standardized among subjects. For example, participants were allowed to squat with their 

non-weight bearing leg either in front of them or behind them as long as it was not 

assisting their squat. This could have altered the biomechanics by having the trunk more 

forward with the non-weight bearing leg posterior or by having the trunk more in line 

with the weight bearing leg and the non-weight bearing leg more forward. These 

observed techniques may have allowed for various neuromuscular control tendencies 

throughout participants. One study showed that single-leg squats performed with a 

moderate forward trunk lean (~40°) can minimize ACL loads. Also, a moderate vs. 

minimal forward trunk lean can produce 35% higher hamstring forces throughout the 

majority of the squat, but only lowers quadriceps forces at knee flexion angles greater 

than 65°.61 

 Another aspect that wasn’t incorporated into our study was the difference between 

genders. There could be numerous differences between genders that could have 

influenced the results. Neuromuscular, biomechanical, hormonal, muscular, and joint 
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laxity differences were not taken into effect. Since all of these could influence the results 

significantly51,52, future studies should incorporate these factors to see if there is an 

influence. Studies could also compare each gender respectively to see if there is a 

possible link to lower extremity muscular difference in foot position related to either 

gender. 

 Furthermore, our study did not look into any biomechanical/structural differences 

between participants. We did not measure any anteversion/ retroversion at the hip, 

valgus/varus at the knee, or rearfoot and forefoot varus/valgus, all which could feature 

different biomechanics of the single leg squat and altered activation of certain muscles in 

the lower extremity. Females have greater mean anterior pelvic tilt, hip anteversion, 

quadriceps angles, tibiofemoral angles, and genu recurvatum than males, which could 

influence the muscles in control of those joints and other joint stabilizers.52 The 

participant’s muscular strength and endurance was not tested prior to the study, which 

may have led to compensatory muscular activation of the muscles tested as a result of 

weakness or fatigue of certain similar activated muscles. On the other hand, the muscles 

that were being tested may have been compensated for by other muscles that weren’t 

included in the study.  

 Another problematic issue we ran into during the study was in the preparatory 

stages with each participant. After the electrodes were placed on the participant according 

to landmarks on the body, conductance of the electrodes was not always optimal. This 

was especially noted in the gluteus medius and gluteus maximus muscles. This could 

have been attributable to the area being harder to shave and clean because of clothing 
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covering the areas. Also, electrical noise in that area caused by the clothing could have 

influenced the EMG readings as well. 

 This study would benefit by incorporating a greater number of participants. It is 

difficult to get good insight and statistical significance with low numbers of subjects (12). 

Our observed power was very low for all of the muscles except anterior tibialis. See 

Table 1. This may be attributable to the low sample size and high variance that our study 

displayed.  We also had to remove two gluteus maximus data sets before calculating 

statistics due to the outliers that they produced. This again may be attributed to the 

possible noise from the electrodes and cords being bunched under clothing or not having 

the proper conductance of the electrodes.  

Although these factors could have played a role in the muscles activation not 

being influenced by foot position, the results may also show true insignificance. The 

muscles that were tested may indeed not be influenced by foot positioning. With so many 

influences to non-contact ACL injuries, foot positioning may not be a major factor 

contributing to ACL injury incidence.  
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CHAPTER VI 

CONCLUSION 

Data for12 subjects aged 18 to 30 years of age was gathered. The data was 

derived from the means of the gluteus maximus, gluteus medius, biceps femoris, rectus 

femoris, lateral gastrocnemius, and anterior tibialis muscle contraction differences 

between a control foot position (neutral) and the 4 other foot postions (pronation 5 

degrees, pronation 10 degrees, supination 5 degrees, supination 10 degrees).  There was a 

significant difference found in the anterior tibialis muscle activity between foot positions. 

This study reports no significant difference among gluteus maximus, gluteus medius, 

biceps femoris, rectus femoris, and lateral gastrocnemius muscles in the various foot 

positions. 

 Research has demonstrated many influences that may attribute to non-contact 

ACL injury, but our study has found no significance of foot positioning affecting the 

activation of muscles in the lower extremity. Future research is recommended using a 

more accurate and less variable measurement for the EMG analysis between muscles as 

well as a larger sample size. Further investigation into gender and other biomechanical 

factors within the single-leg squat and foot positioning should be evaluated.  
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