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ABSTRACT

Purpose/Background: Foot positioning during a single leg landing may affect the
muscles above the ankle joint and promote positions of increased vulnerability to ACL
injury. The purpose of the study was to analyze muscle activity of six muscles in the
lower extremity during completion of a single leg squat on the subject’s dominant leg

with the subtalar joint in 5 different positions.

Methods: Seventeen healthy males and females (ages 18-30) performed five single leg
squats in five foot positions: neutral, five degrees and ten degrees of declination, and
five degrees and ten degrees of inclination. Electromyography data was collected from
electrodes placed over each muscle. The declination mimicked pronation while the

inclination mimicked supination of the foot/subtalar joint.

Results: The ten degree angle of pronation had the highest % MVC in four of the six
muscles including anterior tibialis, lateral gastrocnemius, gluteus maximus and gluteus
medius. With the high variability and large standard deviations, we are unable to make
certain of our results. On average, the gluteus maximus muscle had the highest % MVC

for all foot positions while the anterior tibialis had the lowest % MVC at 60.22. Lateral

vii



gastrocnemius, biceps femoris and gluteus maximus were the three muscles showing
statistically significance using Friendman’s. Friedman’s was chosen as our study violated
assumptions which prevented us from running a parametric test.

Conclusions: Pronation caused the highest % MVC which makes us suspect that the
distal joint of the ankle can impact the degree of muscle activation above that joint.

This also could be a position of vulnerability as it causes the muscles to contract more
which could be secondary to instability, malalignment, or some other factor. More

research is needed to study the effect of pronation as our study had several limitations.
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CHAPTER |

INTRODUCTION

The purpose of our study was to determine whether different foot positions
altered muscle activity of the lower extremity during a single leg squat (SLS). Our study
explored the influence of foot positioning on lower extremity muscle activity and what
positions may place the knee joint susceptible to injury. Research has indicated
overpronation of the subtalar joint may place the anterior cruciate ligament (ACL) at
increased risk of injury.! Electromyogram (EMG) data was collected for six different
muscles on five different inclines, including pronation, supination, and neutral. ACL
injuries tend to occur when the knee joint is extended, in valgus alignment, and in tibial
internal rotation.? Our research question was whether the foot positioning would have

an effect on the above stated positions and result in a change of muscle activation.

Several factors are under study to assess the cause of altered movement
patterns and vulnerable knee positions which place the ACL at increased risk of injury.
These factors include environmental (shoes, playing surfaces), biomechanical,
neuromuscular, anatomical, and hormonal factors, with current research focusing more
on the areas of neuromuscular and biomechanical factors because of their

modifiability.>* Intrinsic and extrinsic factors are also under study. Intrinsic factors are
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more gender specific and include joint laxity, limb alignment, intercondylar notch size
and shape, ligament size and strength, hormonal levels, and foot abnormalities as well
as age and maturation.> Some of these factors may be the reason for the gender
difference; however, some males may exhibit similar characteristics as females do and
place them at increased risk as well.6 Physical maturation impacts all of these risk
factors. An athlete’s past family history is important since several risk factors have a
genetic link.® Extrinsic factors include conditioning levels, body movement and
positioning, muscular strength and neuromuscular coordination/performance, and shoe
wear/shoe surface interface. Overuse from performing the same activity for long
periods of time is a concern for athletes as well and may result in ACL injury. Even as
these risk factors have been identified and increased research has been done on the
prevalence of ACL tears, the rate of injury remains stable,° signifying an area for
continued research. Included is an analysis of the current literature and a comparison

to our research results to better understand why ACL injuries occur.



CHAPTER I
REVIEW OF THE LITERATURE

The anterior cruciate ligament is known for its susceptibility to injury during
vigorous athletic activities. Extensive research is being done as to the cause of ACL
injuries and why females are 2 to 10 times more likely to suffer from ACL tears than
males.21%11 A majority of ACL tears are noncontact (70%)3 and occur when a sudden
compression force is placed on the knee in combination with increased valgus and
internal tibial rotation moments.’* These injuries usually occur in athletes and physically
active individuals. A large percentage of sports injuries are knee injuries> and these
injuries have short term as well as the potential for long-term consequences which may
include an earlier onset of degenerative osteoarthritic changes.'®'”'8 These injuries
also can have a psychosocial impact on a person’s well-being and may affect his/her
lifestyle.’® ACL ruptures can be costly and when treated with surgery and rehabilitation can

cost around $17,000 to $25,000 per injury not including the amount lost in scholarship funding,

sports participation, long term disability, and osteoarthritis.*?

Several research studies are being conducted to identify why ACL tears occur
more often in females. Recent evidence has pointed to a gender difference in
neuromuscular response (of lower extremity muscle groups) during lower extremity

landing positions as a likely cause. Females tend to land with more knee extension and



with a more valgus alignment (“knocked knee” position), which causes increased
anterior tibial translation, placing increased strain on the ACL. Females may be more at
risk due to anatomical, hormonal, and neuromuscular factors. The ACL provides 86% of
the resistance to anterior tibial translation, so when excess force stresses the knee, the
muscles around the knee must contract effectively in order to enhance joint
stability.2%2122 Posterior kinetic chain muscles, which are especially important for lower
extremity control, include the gluteals, hamstrings, gastrocnemius, and soleus. By
cocontracting the quadriceps and hamstrings during jump landings, pivoting, cutting,
and other maneuvers, the individual can reduce the amount of loading on the ACL,
decreasing injury potential. This cocontraction can be trained by neuromuscular
programs and is critical in protecting the ACL.?! Research appears to focus mainly on
seven different areas of lower extremity alighment including pelvic angle, hip anteversion, Q-
angle, genu recurvatum, tibial torsion, navicular drop (foot pronation), and rearfoot angle.
Many researchers have looked at the causes of ACL injury from a top down approach, meaning
poor control at the more proximal joints can position the more distal joints/ligaments/muscles
of the lower extremity in a vulnerable position for ACL injury. This hypothesis has merit but
research also supports malpositioning of the foot as a promoter of ACL tears, which is a bottom-
up approach. Understanding these risk factors and knowing which ones are significant and

modifiable will allow prevention efforts and training programs to be instituted to lower the

prevalence of ACL tears, especially in females.

Females have excess variability in their movement patterns, a characteristic

which could be detrimental. Biomechanical factors which differ in females include
4



increased knee valgus angles, decreased hip flexion angles, and increased knee
extension during dynamic movements. All of these can be influenced by alighment.®
Females are more likely to have nutritional issues which include a diet low in calcium or

carbohydrates or they have disordered eating habits so their body is not adequately

nourished to withstand the stress of activity and therefore more at risk for injury.?3242>

Another issue with high school females is sleep deprivation; not getting enough sleep
impacts fatigue level, alertness, and overall performance.?627.2829 Females are also
impacted more by stress which can cause depression and anxiety; depression and low
self-esteem have been linked to sports trauma.3® Females also generate less torque

overall in all muscle groups.3!

Current research points to females as being the highest risk athletes, especially
those who play basketball or soccer.!! Several risk factors have been identified but research
conflicts as to the contribution of each factor. Certain factors receive more attention than
others, but it is clear the entire kinetic chain (from trunk to foot) should be examined since ACL
tears appear to be multifactorial. Foot alighment has been found to possibly correlate with hip

t.3> Asymmetry, from side to side, should

joint dysfunction and increased stress at the knee join
be looked at in athletes, as imbalances in muscle size, length, and recruitment can increase the
risk of injury. Several studies show proximal tibial anterior shear force, valgus/varus moment,
and internal/external rotation moments as three possible ACL loading mechanisms. In vivo

studies show that ACL loading decreases as knee flexion angle increases, and they also suggest

that proximal tibia anterior shear force stresses the ACL the most.



Seven key variables were looked at in one study (and seem to be the focus of most
research on ACL tears) to assess the correlation between static postural faults and the number
of noncontact ACL injury in females.®® The seven variables included standing pelvic position, hip
position, standing sagittal knee position, standing frontal knee position, hamstring length, prone
subtalar joint position, and navicular drop test. Three of these were significant when comparing
ACL injured females to age-matched healthy individuals: knee recurvatum, excess navicular
drop, and excess subtalar joint pronation.>* Abnormal lower extremity biomechanical control
mechanisms are related to knee pathologies. Females have different static postural faults than
males, impacting dynamic movements and increasing ACL stress. These differences include
anterior pelvic tilt, anteverted hips (increased internal femoral rotation), tight hamstrings, genu
recurvatum, and subtalar joint pronation, all of which can cause increased knee hyperextension
and internal tibial rotation (shown to be vulnerable positions for the ACL).! During dynamic
movements, female athletes have greater navicular drop, larger Q-angles, weaker hamstring

strength, and stronger quadriceps contraction (relative to hamstring contraction) than males.33

Three female-specific risk factors include (1) the preovulatory phase of the menstrual
cycle, (2) decreased intercondylar notch width on plain radiography, and (3) increased knee

abduction moment during jump landings.* The anterior intercondylar notch height is higher
and the notch angle is smaller in females.* Norwood and Cross3? found the anterior
intercondylar notch impinges the ACL during full knee extension. Females land in more
knee extension which would tend to impinge the ACL more than when males land in

more knee flexion which would cause less damage.



Females use different cutting, landing, and single leg squatting techniques than males
do. During dynamic movements, a female’s knee tends to move into a valgus alignment while
males tend to move into a more neutral alignment. Postural stability during dynamic
movements is influenced by the strength of the hip abductors, external rotators, quadratus
lumborum, abdominal muscles, and back extensors. Females tend to lack control which may
play a role in the gender bias.3>*® Females are more likely to have hyperlaxity especially at the
knee joint. They tend to have more than 10 degrees of knee hyperextension (genu recurvatum)
which is a risk factor for overuse injuries. Ligament remodeling can play a role in the gender
disparity as male and female hormones/genes are expressed differently and female ACLs usually

have a smaller cross sectional area.

Neuromuscular control may be influenced by estrogen receptors in the skeletal muscle.
Estrogen levels can change throughout the menstrual cycle and appear to be elevated during
the ovulation phase. Estrogen affects how women respond to demands of exercise and
competition.?” Higher levels of estrogen increase connective tissue extensibility and decrease
neuromuscular control. Women utilized a different neuromuscular control pattern during a
drop jump sequence when their estrogen levels were high versus when they were low (luteal vs
early follicular phases, respectively).3® Estrogen seems to affect foot dynamics the most;
increase in endogenous estrogen level may increase ligament extensibility and result in a more
pronated position of the talocalcaneonavicular and transverse tarsal joints, both statically and
dynamically. During ovulation, females may have a loss of postural control which can shift their

center of mass (COM) and thus affect their foot center of pressure.



Maturation can have an important consequence on risk of ACL injury. During puberty,
females show a significant increase in their angle of knee abduction, whereas males show no
change. These knee abduction moments are greatest immediately after a growth spurt.?%4142

More than half of all ACL injuries occur between the ages of 15 and 25, possibly due to
maturation and timing of gender differentiation.*® Females have musculoskeletal
growth during puberty but lack corresponding neuromuscular adaptations, a deficiency

which can develop into intrinsic ACL injury risk factors.*%44

Knee valgus is a position of increased stress on the knee joint. Knee valgus has several
component motions including femoral internal rotation and adduction, tibial abduction, and
ankle pronation (eversion).>* Females are mainly quadriceps dominant and when their
guadriceps contract more than their hamstrings or gluteals do, the knee goes into a position of
valgus collapse.*” Maximum knee valgus occurs during the first 50 ms of initial contact, which

would be during initial muscle contraction.

Subtalar pronation is another risk factor assessed in research studies. The ACL becomes
taut with coupling motions of pronation in the frontal plane and internal tibial rotation in the
transverse plane.® Pronation and internal rotation increase anterior joint laxity, which allows for
maximal anterior tibial translation and increases stress on the ACL.*® Research looking at the
relationship between subtalar joint alignment and ACL tears has mixed results. Foot pronation
is measured by navicular drop and calcaneal stance and can be caused by a varus forefoot
alignment.*” Navicular drop is the distance the navicular tuberosity travels while standing when
the subtalar joint moves from a neutral to a relaxed position.! Studies have found excess
subtalar joint pronation to contribute to ACL injury®® while other studies found hyperpronation

8



did not predict ACL injury and would not be a contributing factor.*’” Males and females may
show similar foot structure which means even if pronation is a factor, it may not be a cause of
the gender disparity.'* When comparing ACL injured to non-injured individuals, ACL injured

individuals have greater navicular drop test scores.®

Anterior tibial translation (ATT) occurs when the quadriceps contract more than the
hamstrings.®® ATT can be limited by increasing medial hamstring activity during initial contact.
ACL rupture can occur with excess tibiofemoral compression which occurs during axial tibial
loading as an anterior tibial shear force is placed on the proximal lateral tibial plateau. Anterior
shift may be more likely to occur in individuals with an increased posterior tibial slope (PTS) due
to its effects on knee kinematics and kinetics.”°%>>3 Sagittal plane trunk position during landing
can affect the amount of ATT that occurs at the knee. Landing with a vertical trunk causes the
greatest amount of tibial shear and greater ground reaction forces compared to landing with a
forward lean. Increasing trunk control may decrease the amount of anterior tibial translation

(also called sagittal plane shear stiffness) and thus decrease the amount of ACL tension.>*

ACL injuries are most likely to occur while the individual (either gender) is landing from a
jump (and usually while on one leg) so it is important to know the positions which increase the
likelihood of a tear and should be altered by training. Dynamic movement patterns must be
coordinated with proper proximal muscle firing patterns in order to prepare for a safe landing.

A gender discrepancy exists at the proximal and distal joints during dynamic movements. A few
of the specific vulnerable positions found in females during jump landings will be discussed.
These positions usually include increased knee extension, valgus alignment, and ankle

pronation, all of which cause a wider landing stance.! Landing with a flat foot (pronation) may



reduce the ability of the calf muscles to dampen the ground reaction forces before they reach
the knee.>® Females tend to lean laterally which shifts their center of mass outside their base of
support thus increasing forces at the knee joint.>” Males usually land asymmetrically with toes-
out and heel contact first. A univariate analysis demonstrated low BMI, increased Q-angle, and
poor gluteus medius strength can predict poor landing technique in males. Only lower BMI and
weak hip internal rotation strength significantly contributed during this analysis. This suggests
even if an athlete’s alignment, BMI, or muscle strength is changed, it may not directly improve

his or her movement patterns.>’

Five groups of errors may identify patterns which cause poor body alignment/muscle
activation, these include: 1) decreased sagittal trunk, hip and knee flexion at initial ground
contact; 2) valgus knee and wide stance at initial contact; 3) toes out and knees flexed at initial
contact; 4) heel strike landing and asymmetric foot strike landing; 5) less sagittal flexion over the
landing phase. Females tend to land with an upright trunk, more hip and knee extension and
more internal hip rotation, tibial rotation, and knee valgus than males.® Knee motion and knee
loading during landing tasks can predict the likelihood of an ACL injury. Females should be
screened for increased dynamic valgus and high abduction loads, as they could benefit from

targeted interventions to decrease this risk.**

Impaired neuromuscular control may contribute to the increased frequency of
noncontact ACL injuries especially when combined with lack of experience and poor
neuromuscular mechanics.3**” Females have less neuromuscular control during dynamic
landings than males. Lower extremity muscle premotor times were examined from stimulus

presentation until initial muscle EMG activity in order to determine if a difference existed on
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knee abduction loads during anticipated and unanticipated single leg landings for the dominant
and nondominant foot. Peak knee abduction and internal rotation moments were significantly
larger during unanticipated compared to anticipated landings (twice as high)* and were
correlated with medial gastrocnemius and medial hamstring premotor times. These findings
were significant for both legs. The medial hamstring and medial gastrocnemius were proven to
be critical in stabilizing the knee against extreme dynamic load stresses. It may be important to
strengthen these muscles and improve their ability to sense and prepare for unanticipated

events.”?

Females have altered muscle timing patterns and imbalanced quadriceps to hamstrings
activation.3**®> Weaker hamstrings and decreased hamstring/quadriceps (H/Q) strength
combined with increased valgus knee motion is found in women.>® A stronger quadriceps
contraction with insufficient hamstrings cocontraction can cause decreased knee flexion during
single leg landing. Sufficient cocontraction is beneficial as it decreases the load on the ACL by
unloading the knee ligaments and increasing dynamic joint stability. Decreased hip muscle

control may also be a cause for frontal plane knee movement.

Trunk control has received more focus lately to study how core strength and trunk
movements affect lower extremity alignment. Greater lateral trunk positioning has been found
more often in females than males. The neuromuscular system must respond when the COM
goes outside an individual’s base of support. A greater abduction angle correlates with a lateral
trunk lean. When the trunk leans forward, a greater plantar flexor moment occurs and a

minimal knee extensor moment occurs, which decreases quadriceps contraction and increases
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hamstring contraction, decreasing tension on the ACL. Trunk position and the body’s response

to this trunk movement can increase or decrease the risk of ACL injury.>

The hip joint and surrounding muscles may also influence knee vulnerability. One
study®? assessed gluteus medius strength and the relevance of hip abduction fatigue to ACL
tears. This study found the lower extremity mechanisms below the hip can be altered by hip
abduction fatigue due to the inability to maintain proper alignment, especially during drop
jumps and cutting maneuvers. Women are routinely shown to have more knee valgus during a
squat or jump landings which correlate with weak hip abductors. Weak hip abductors
(especially gluteus medius) may predispose the person to land with hip adduction and internal
rotation, which can increase knee abduction angles and result in anterior tibiofemoral shear
forces. The effect of hip abduction fatigue is controversial since some studies found it did affect
the likelihood of ACL tears®® while other studies disagree. Along with core stability, athletes
should have adequate strength of the hip abductors and rotators to control/stabilize the pelvis
and maintain symmetry. The hip external rotators are a stabilizing component for the core and
for the lower extremity.®* Some studies concluded weak hip external rotator strength can

predict injury status in female athletes.

When video sequence is done on the knee, four common motor performance
components are found to occur. The four neuromuscular imbalances that occur during
movement include ligament dominance, quadriceps dominance, leg dominance, and trunk
dominance. Neuromuscular factors such as muscle timing and activation patterns (quadriceps,
t'4'63

hamstrings, gastrocnemius) during anticipated and unanticipated tasks may be importan

Ligament dominance is dependence on the ligaments to absorb high amounts of force, since the
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muscles are not able to do so sufficiently. This places the ligaments at increased risk of rupture
due to the inability to control lower extremity frontal plane motion. Females rely on ligament
dominance because they have delayed muscular activation.® Quadriceps dominance is an
imbalance between knee extensor and flexor strength, recruitment, and coordination which
causes females to land with less knee flexion than males. Females activate their quadriceps first
and rely on their quadriceps to stabilize, causing knee joint extension and pulling the tibia
forward to increase ACL strain. Males activate their hamstrings first, pulling the tibia posteriorly
to decrease ACL strain.%* Leg dominance is an imbalance between the two lower extremities in
strength, coordination, flexibility, and control. Females tend to favor one leg over the other.
When a female tears her ACL, most of her weight is on one leg while males tend to have
symmetrical strength, coordination, flexibility, and recruitment in their lower extremities and
land on both legs.®* Both legs may be at risk for injury since the weaker leg is compromised in its
ability to handle the forces while the stronger limb may experience higher forces and require
greater stability.® The last neuromuscular control deficit observed is trunk dominance which is
an imbalance between inertial demands and the trunk control and coordination to resist those
demands; females tend to have excess trunk motion. Athletes, typically women, have a difficult
time sensing the position of their trunk in space, tend to have more trunk movement, which
increases risk of injury. The ground reaction force (GRF) is directed toward the COM so it is
important to control trunk motion so COM remains within the base of support. If the trunk
moves laterally, the COM moves laterally as well and shifts over one knee, creating a valgus
alignment on that side. By training trunk muscular control, lateral movement can be
decreased.®*%> A good way to assess female athletes for any of these neuromuscular flaws is

having them complete a tuck jump and identifying whether any of these occur.
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The frontal plane is used to study valgus alignment and is associated with anticipated
lower extremity and trunk movements.* In order to have a thorough understanding of what
happens in the frontal plane at the knee, we must also consider forefoot alignment (ankle
eversion) and hip joint alignment (femoral internal rotation and adduction). It is very unlikely
ACL injuries occur solely in one plane but rather in multiple planes (frontal, sagittal, and

transverse), so muscles controlling movement in all planes deserve attention.%®

One of the goals of ACL research is to identify specific risk factors at which prevention
programs can be aimed to decrease the frequency of ACL injuries. No universally accepted ACL
injury prevention program yet exists, but the program will likely need to be diverse and focus on
all planes of movement since ACL injuries are multifactorial. These programs can be critical for
individuals found to be at risk, especially female athletes, and may be most important when

females are experiencing their growth spurts during adolescence.

Research has indicated that overpronation of the subtalar joint may place the ACL at risk
for injury. We studied the influence of foot positioning on muscular control of the lower
extremity and the possibility of creating at risk positions. We hypothesized foot positioning
away from a more neutral subtalar position can promote ACL tears by altering muscle activity of
the more proximal lower extremity joints, including the hip and knee. This approach would
hypothesize the injury is caused from a bottom-up approach. The top-down approach
hypothesizes that poor motor control at the more proximal joints, like the hip, positions the rest
of the lower extremity (knee, ankle, foot) at a more vulnerable position for an ACL injury. We

looked to see if a change in foot position does in fact change the muscle activity above that

14



joint, thereby implying that the knee would assume greater forces when muscle activity

changes.
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CHAPTER 11l

MATERIALS AND METHODS

Subjects

Seventeen healthy subjects with no current leg injury volunteered to participate in our
study. These subjects did not have to be physically active but did have to be between 18-30
years old (average age 23.7 years old, SD 1.947). Both males and females were included in the
subject pool. The subjects had an average height of 169.55 cm (SD 8.298) and average weight of
67.7 kg (SD 14.060). All subjects were left leg dominant as described below except for one.

Exclusion criteria included any acute lower extremity injuries or pregnancy.

Subject Preparation

Prior to the test, each subject completed a questionnaire listing prior injuries/surgeries
in the lower extremities, date these occurred, and on which side of the body. They were also
asked if they were pregnant and the day their most recent menstrual cycle began (if applicable).
Other anthropometric data collected included height, weight, age, and various lower extremity
segment lengths. Informed written consent was obtained from each participant prior to start of
the study in accordance with the university’s institutional review board. Subjects were required
to wear shorts and remove their socks and shoes. We wanted the squat to be completed on the
dominant lower extremity. To determine this, we rolled a ball toward the subject and instructed

him/her to kick it. The dominant leg was the leg spontaneously chosen to stand on when the
16



ball was kicked. We had the subjects kick the ball three times and chose the stance leg they

used on the best of 3 trials (Shultz et al Sports Health 2009).

We used surface electrodes to measure the electrical activity for six different dominant
leg muscles during the single leg squat. For each participant we measured and marked locations
for surface electrodes to be placed on the dominant leg for each muscle using the landmarks
described in Eleanor Criswell’s book.®” Electrodes for the muscles examined were positioned as
follows: gluteus maximus - midpoint of a line running from the inferior lateral angle of the
sacrum to the great trochanter; gluteus medius - proximal third of the distance from the iliac
crest to the greater trochanter; biceps femoris - midpoint of a line from the ischial tuberosity to
the lateral femoral condyle; rectus femoris - midpoint of a line from the ischial tuberosity to the
lateral femoral condyle; gastrocnemius - one third of the distance from the fibular head to
calcaneus; anterior tibialis - one third of the distance from the inferior patellar pole to the
lateral malleolus; ground electrode — over the fibular head on the dominant leg. An electric
goniometer was placed on the dominant lateral knee to measure the squatting angle. Thorough
skin preparation was then completed to prepare the area for electrode placement. In order to
minimize skin impedance, we removed any excess hair using an electric razor, abraded the skin
gently with sand paper, and then wiped the area with rubbing alcohol. EMG electrodes were
placed with one inch between their centers, making sure the markers did not touch each other,
in order to pick up higher frequencies and reduce the amplitude of EMG signal. Once the EMG
electrodes were in place, we checked each area with a Noraxon electrode impedance checker;
impedance needed to be below 5 Kohms. If impedance was not below 5 kohms, electrode
placement was adjusted and rechecked. Each participant had to contract each muscle

individually to check if the electrodes were recording muscle activity correctly.
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Experimental Design
The study used a repeated measures design examining the effect of five different foot
inclines on muscle activation. Repeated measures design is more powerful because it reduces

error by decreasing variability. Each participant completed the squat on all five inclines.

Data Collection

All research was conducted in the Physical Therapy Department located in the UND
School of Medicine and Health Sciences building. EMG data was captured using “MyoResearch
XP Master Edition” version 1.08.17. The developer is Noraxon USA. Inc, Scottsdale AZ.
Comparisons of muscle activity among different foot positions were made to draw inferences
regarding foot position influence on motor control in the lower extremity. The investigators and

participants were not blinded to the purposes of this study.

We collected electromyography (EMG) data for six different lower extremity muscles
during a single leg squat on five different inclines to analyze muscle activity changes. The six
muscles included gluteus maximus, gluteus medius, quadriceps femoris, hamstrings, anterior
tibialis, and gastrocnemius. Our five incline surfaces included five degrees declination, ten
degrees declination, neutral, five degrees inclination, and ten degrees inclination. The
declination mimicked pronation while the inclination mimicked supination of the foot/subtalar
joint. Each participant was barefoot and instructed to stand on the middle of the wooden
surface for all five positions (surface was covered with a towel). EMG activity was recorded
during the lowering (eccentric) and the raising (concentric) phases of the single leg squat for five

repetitions for each of the five foot positions. Participants had to complete the squat without
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holding onto anything for support. We used the EMG activity from the second, third, and fourth

squats at each position and discarded the first and fifth squat data.

Neutral (standard) was the first foot position used for all subjects. EMG activity for each
muscle was compared to an average maximal voluntary contraction for the specific muscle. The
remaining order of inclines were determined by drawing from four cards. This random order
helped control effects of fatigue as well as practice effects which could occur by the time they
completed the fifth position. Subjects performed a few squats on the flat surface to check the
connection between the electrodes and the computer program. All squats were performed in
time with a metronome set at 60 Hz, with one squat cycle comprising 2 seconds each, with each

subject descending on the tone and ascending on the subsequent tone.

MyoResearch XP Master Edition recorded the data for each muscle throughout the
entire squat, with baseline recordings before and after the squat. Subject means were
calculated for each muscle group during each of the five inclines. The average maximal
voluntary capacity was used to compare all data to in order to normalize the results. The
subjects were allowed to practice 4 to 5 squats before data was collected. The ideal goal was
for each subject to squat to a 50 to 60 degree angle of knee flexion. The subjects had a rest
interval of approximately 30 seconds between inclines. After the patient completed all foot
positions, electrodes were removed, discarded, and the subject’s skin was wiped with rubbing
alcohol. Little risk is associated with our study and only moderate physical effort is needed. A
loss of balance during the squat may be an issue but a spotter was present to assist if needed.

Skin reactions could occur due to the electrode adhesive but would resolve spontaneously.
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Statistical Analysis

A repeated measures ANOVA using a two way ANOVA design was utilized to test our
hypothesis. The same subject completed the squats on each surface making it a repeated
measure (within-subject independent variable) statistical design. Each muscle was analyzed
separately across positions. At each position, a percent of the maximal voluntary contraction (%
MVC) was found by comparing muscle activation to the average maximal voluntary contraction
(MVC) value of participants in a preceding study. Alpha for all statistical tests was .05. EMG
data for each muscle was compared across the 5 positions. Friedman’s Test, a nonparametric
repeated measures statistical test, was initially chosen to analyze our data due to our EMG data
not being normally distributed. The post hoc comparisons of a repeated measures ANOVA
determined significant EMG differences between positions. This was justified as decisions
relative to the null hypotheses were identical for all muscle groups using the Friedman’s Test
and the RM ANOVA. The independent variables were foot positioning and the six muscles
assessed. The dependent variable was the amount of muscle activity of each muscle at each

foot position.
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CHAPTER IV
RESULTS

Muscle activation of the lateral gastrocnemius, rectus femoris, biceps femoris, gluteus
medius, gluteus maximus, and tibialis anterior was monitored and recorded during a single leg
squat in 5 different foot positions. The mean and standard deviation for each foot position is
listed in Tables 2.1 to 2.6 (p. 23-25). Results from Friedman’s tests is listed in Table 1 (p.23), and
the RM ANOVA tests are presented in Tables 3.1 to 3.6 (appendix). Pronation was found to
cause significant changes in muscle activation above the ankle joint. This can impact the
functional capacity of the lower extremity and may place the knee in a less than optimal

position.

Tibialis Anterior, Rectus Femoris, and Gluteus Medius

Muscle activity of the tibialis anterior, rectus femoris, and gluteus medius was not
statistically significant among foot positions according to Friedman’s (p=.692), (p=.263), (p=.193)
respectively. The change in foot position did not change the amount of muscle contraction for

these muscles to a significant degree.

Lateral Gastrocnemius
Muscle activity of the lateral gastrocnemius was found to be statistically significant with
changing foot position (P=.014; p <.05). According to the post hoc analysis there is a significant
difference in lateral gastrocnemius muscle activity between the following positions: neutral foot

position and 5 degrees pronation (P=.050); 5 degrees supination and 10 degrees pronation
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(p=.035); 10 degrees supination and 5 degrees pronation (P=.020); 10 degrees supination and 10
degrees pronation (P=.035). The change in foot position did affect the amount of muscle

contraction for this muscle.

Biceps Femoris

Muscle activity of the biceps femoris was found to be statistically significant with
changing foot position (P=.046) According to the post hoc analysis there is a significant
difference in biceps femoris muscle activity between the following foot positions: neutral foot
position and 5 degrees pronation (P=.010); neutral foot position and 10 degrees pronation

(p=.008). During pronation is when the most muscle activity was fired in this muscle.

Gluteus Maximus
Muscle activity of the gluteus maximus was found to be statistically significant with
changing foot position (P=.000). Follow up pairwise comparisons test showed there was
significant difference in gluteus maximus muscle activity between means for the following foot
positions: neutral foot position and 5 degrees supination (P=.021); neutral and 10 degrees
supination (P=.023); neutral and 5 degrees pronation (P=.002); neutral and 10 degrees
pronation (P=.001); 5 degrees supination and 10 degrees pronation (P=.003); 5 degrees

pronation and 10 degrees pronation (P=.036).

During the single leg squat, regardless of foot position, the gluteus maximus had the
largest %MVC (86.220) with gluteus medius have the second largest % MVC (83.840) on average
for all positions. The anterior tibialias having the smallest % MVC on average for all positions
(60.224). The anterior tibialis had the highest %MVC at 10 degrees of pronation (64.920), lateral

gastrocnemius had the highest at 10 degrees pronation (88.490), rectus femoris was highest at 5
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degrees supination (74.120), biceps femoris greatest at 10 degrees supination (87.690), gluteus

maximus greatest at 10 degrees pronation (101.480).

Table 1

Muscle N Chi-square df P
Anterior Tibialis 10 2.240 4 0.692
Lateral Gastrocnemius (10 12.56 4 0.014*
Rectus Femoris 10 5.246 4 0.263
Biceps Femoris 10 9.680 4 0.046*
Gluteus Medius 10 6.080 4 0.193
Gluteus Maximus 10 22.81 4 < .001**

Table 2 — 1: Means and Standard Deviations for Anterior Tibialis in Each Position
Position Mean Standard Deviation
Standard 62.4500 11.05976

5 degrees supination 55.1500 17.38162

10 degrees supination 58.2500 10.97788

5 degrees pronation 60.3500 14.35752

10 degrees pronation 64.9200 19.27686




Table 2-2: Means and Standard Deviations for Lateral Gastrocnemius in Each Position

Position Mean Standard Deviation
Standard 74.1600 7.02032

5 degrees supination 76.9700 22.38859

10 degrees supination 74.2200 13.29969
5degrees pronation 82.9200 11.43871

10 degrees pronation 88.4900 20.72038

Mean and standard deviation values for RM ANOVA of the lateral gastrocnemius in each foot position.
The mean is expressed as % MVC.

Table 2-3: Means and Standard Deviations for Rectus Femoris in Each Position

Position Mean Standard Deviation
Standard 66.8400 8.87170

5 degrees supination 74.1200 31.97064

10 degrees supination 72.4800 31.55605

5 degrees pronation 70.9500 28.14227

10 degrees pronation 70.1200 33.81334

Mean and standard deviation values for RM ANOVA of the rectus femoris in each foot position. The
mean is expressed as % MVC.

Table 2-4: Means and Standard Deviations for Biceps Femoris in Each Position

Position Mean Standard Deviation
Standard 68.4000 7.14967

5 degrees supination 76.4000 26.53446

10 degrees supination 87.6900 29.47422

5 degrees pronation 81.8100 16.66890

10 degrees pronation 87.1100 20.43828

Mean and standard deviation values for RM ANOVA of the biceps femoris in each foot position. The
mean is expressed as % MVC.
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Table 2-5: Means and Standard Deviations for Gluteus Medius in Each Position

Position Mean Standard deviation
Standard 75.73 8.275
5 degrees supination 82.02 18.36
10 degrees supination 85.80 17.67
5 degrees pronation 86.91 13.53
10 degrees pronation 88.74 14.34

Mean and standard deviation values for RM ANOVA of the gluteus medius in each foot position. The
mean is expressed as % MVC.

Table 2-6: Means and Standard Deviations for Gluteus Maximus

Position Mean Standard Deviation
Standard 68.6700 5.41542

5 degrees supination 81.7700 16.31421

10 degrees supination 91.9700 29.94955

5 degrees pronation 87.2100 16.35240

10 degrees pronation 101.4800 22.43251

Mean and standard deviation values for RM ANOVA of the glut max in each foot position. The mean is
expressed as % MVC.
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CHAPTER V

DISCUSSION

Our research focused on the subtalar joint and if muscle activity changed in supination,
pronation or neutral (standard). We could analyze the effect of distal joint positioning on
proximal muscle activity. Muscle activity tended to vary the most during the pronated foot
positions as compared to activity in the neutral position. Ten degrees pronation, on average,
had the highest % MVC for four of the six muscles including anterior tibialis, lateral
gastrocnemius, gluteus medius, and gluteus maximus. The standard foot position had the
lowest % MVC for all of the muscles except anterior tibialis which had the lowest % MVC at 5
degrees supination. Muscle activity is highest in the pronated foot position. This could be due
to poor foot positioning which requires the muscles above the subtalar joint to fire more for
stabilization. The joints, muscles, and ligaments could all experience increased stress. This may
support that pronation is a less optimal foot position and requires greater muscle contraction
for stability. If an athlete has poor strength, he or she may not be able to produce a strong
enough muscle contraction to stabilize the proximal joints which may place the ACL vulnerable

to injury.

The researchers investigated the effect of foot position on muscle activity above the
joint to speculate if foot position could increase or decrease the risk of ACL injury. The % MVC

at each position for each muscle was compared to an average MVC value. The foot positions
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with large variability in data collected could be due to subject’s difficulty to maintain balance in
these positions or from the subject using compensation patterns to complete the single leg
squat. A learning curve could have occurred. The subjects completed at least 10 single leg
squats at each foot position and thus would have time to figure out the surface, adjust their
body accordingly, and prevent testing in the true targeted foot position. The % MVC did
increase for the pronated foot positions and certain muscles showed dominance but due to the

high variability and small sample size, this may not be accurate.

A couple limitations existed in our study. We did not control how deeply each subject
squatted so ROM was variable among subjects and within subjects as well which likely affected
muscle activity and body positioning. ROM was not controlled for but the ideal is between 50-
60 degrees as based on previous studies. Our hope is that our subjects were in this ideal zone
for a majority of the squats. Fatigue could also impact the quality of the squat and thus the
data, especially for the last incline (random incline order should minimize the overall impact on
our data) or for the fourth and fifth squats in each position. Trunk lean and pelvis positioning
could have influenced the magnitude of muscle activation. Subjects were allowed to change
their body position in order to maintain balance and not all subjects leaned the same way or at
all. This variable could be more controlled in the future. A metronome may also have limited
our study because it is likely not the speed used to complete daily activities and thus may not be
applicable to the sports setting; however, it offers control for our study as simulating true
movement speed would be difficult. A large number of researchers (8 people) were involved
with project set up, which could impact error as well. Most ACL injuries occur during a jump

landing or a cutting maneuver and our study looked at muscle activity with the foot already
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firmly planted. This may limit the ability to relate our study to a dynamic movement injury but is

good to see the change in muscle activity with different foot positions.

Component movements below the joint which contribute to knee valgus include tibial
internal rotation and foot pronation. Our study supports the hypothesis that pronation does
impact the muscle activity above the subtalar joint. This helps to explains why an orthotic
device, if used correctly and when needed, can help decrease risk of injury at the knee. A
medially-posted orthotic device can decrease both tibial internal rotation and foot pronation
which would decrease knee valgus, making the knee less susceptible to ACL stress. In a study
assessing the use of an orthosis, significant differences were found in knee and ankle measures
at both initial contact and maximum position when the orthosis was worn with no differences
between dominant and nondominant sides.! When a five degree medial post was placed in the
shoe, knee valgus angles decreased. Since knee valgus is a key position seen with ACL injuries, |
find this to be of benefit for athletes who pronate. Females may be at a higher risk due to
anatomical differences in body structures, changes in hormones, decreased strength in key
muscle areas, and poor neuromuscular control. Females should focus on having a balanced
hamstring/quadriceps contraction which may help a female land with more knee flexion and

less valgus alignment.

Due to a high prevalence of ACL injuries, action needs to be taken to decrease the risk
and occurrence of injuries, especially females. Posture screenings should be conducted in all
athletes; those who display genu recurvatum with subtalar joint overpronation may be at
increased risk of injury during dynamic movements.'® Other factors which should be screened in

female athletes include prior ipsilateral ankle sprain, greater generalized laxity in the lower
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extremity, and decreased iliotibial band flexibility, as these can increase risk of ACL injury.3?
Squat strength does not appear to be a good screening tool; however, measuring hip abductor
strength or external rotator strength may be a good screening tool to identify at-risk athletes
and should be done.”® If these muscles are weak, they should be the target for an athlete’s

strengthening program.

During sidestep cutting maneuvers, athletes want to focus 0N cutting with small knee
valgus angles, minimal ankle pronation, and a narrow stance (particularly for cuts that are
performed with high approach speed and sharp direction changes) in order to optimize
performance and prevent injury.”® An agility training program focused on increasing
neuromuscular hamstring strength and activity for a balanced quadriceps/hamstring contraction
could protect the ACL. It is important for females to strengthen both their gluteal maximus and
medius and their hamstrings to minimize quadriceps dominance and a knee valgus position.
Impaired neuromuscular control can contribute to ACL injury, training programs should include
and emphasize neuromuscular control as well as proprioceptive training.>*>33%° Training
programs should address the four dysfunctional movement patterns mentioned earlier,
including ligament, quadriceps, leg, and trunk dominance.®* A prevention program focusing on
strengthening, balance, jump-landing techniques, and basketball skills with instruction to avoid
excess lumbar lordosis, rear axial weight bearing, hip adduction, and knee valgus can improve
alignment and decrease strain on the ACL .”?> Essential components of a prevention program, as
identified by Bien,'® were hip and hamstring training, core stabilization, plyometrics, balance,
agility, neuromuscular training, and stretching. Agility programs can increase medial hamstring

activity as well.*®
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ACL deficient patients exhibit gait changes and make biomechanical adaptations in order
to complete their daily activities. By losing their ACL, individuals exhibit anteroposterior knee
instability as well as rotatory knee instability and adapt to a pivot-shift avoidance gait. By
changing their gait they can prevent anterolateral rotatory knee instability, reducing internal
knee joint rotation especially during terminal stance. The relationship between strength and
injury is not fully understood but decreased strength in particular muscle groups may place the
individual prone to certain injuries.” Athletes who tear their ACL one time, are at increased risk
of another tear and need to be educated on prevention. They should be evaluated for risk
factors which could have placed them at a higher risk of their first tear and then be placed on a

prevention program to prevent reoccurrence.

Based on reviewing the literature and the results of our study, foot position does impact
muscle activity and can change joint alignment above the foot. Several risk factors exist for ACL
injury and measures should be taken to try to limit/control these as much as possible.
Relationship between foot and knee frontal plane motion during both static and dynamic tasks

should be investigated further.
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CHAPTER VI

CONCLUSION

Muscle activity changes regarding foot positions were statistically significant for the
lateral gastrocnemius, biceps femoris, and gluteus maximus but not found to be significant for
the tibialis anterior, rectus femoris, or gluteus medius. These results have both skew and
kurtosis data and the differences may be due to the large variability in our study versus actual
statistical significance. Muscle activity tended to vary the most during the pronated foot
positions as compared to activity in the neutral position. Increased muscle activity seen in
pronation may be needed to increase stability due to increased forces on the knee in this
position. This current study may help explain why orthotic devices can improve muscle
performance and prevent lower extremity injuries (including at the knee). We had large
variability in our results and future studies should focus on larger sample size, specific age
groups, and a standardized procedure. Foot position may change the muscle activity above that
joint and could impact the risk of ACL, but future studies are needed to confirm the significance

of this finding.
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APPENDIX

Tables 3: Repeated Measures ANOVA . Results for Comparison of EMG Activity Between

Positions, for Each of 6 Muscles.

Table 3-1 RM ANOVA Results: Anterior Tibialis

Type 1l Sum |df Mean Square  |F P Power
of Squares
Factor I: 566.655 4 141.664 .827 517 238
Position
Error 6165.513 36 171.264
Mauchley’s Test of Sphericity demonstrating non-significance (p=.517>.05)
Table 3-2 RM ANOVA Results: Lateral Gastrocnemius
Type lll sum |df Mean square F P Power
of squares
Factor I: 1552.019 4 388.005 3.060 .029 .751
Position
Error 4564.565 36 126.793
Mauchley’s Test of Sphericity demonstrating significance (p=.029<.05)
Table 3-3 RM ANOVA Results: Rectus Femoris
Type Il Sum |df Mean square F P Power
of Squares
Factor I: 299.593 4 74.898 .335 .853 .689
Position
Error 8053.567 36 223.710

Mauchley’s Test of Sphericity demonstrating non-significance (p=.852>.05)
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Table 3-4 RM ANOVA Results: Biceps Femoris

Type Il Sum |df Mean Square F P Power
of Squares
Factor I: 2600.867 4 650.217 2.727 .044 .695
Position
Error 8582.189 36 238.394
Mauchley’s Test of Sphericity demonstrating significance (p=.044<.05)
Table 3-5 RM ANOVA Results: Gluteus Medius
Type lll sum (df Mean square F P Power
of squares
Factor I: 1063.610 @4 265.903 2.695 .046 .687
Position
Error 3551.358 [36 98.649
Mauchley’s Test of Sphericity demonstrating significance (p=.046<.05)
Table 3-6 RM ANOVA Results: Gluteus Maximus
Type Il sum [df Mean square F P Power
of squares
Factor I: 5947.152 4 1486.788 8.696 <.001 997
Position
Error 6155.176 36 170.977

Mauchley’s Test of Sphericity demonstrating significance (p=.001<.05)
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