1996

Meigu County Yi tone

Andy Eatough

SIL-UND

Follow this and additional works at: https://commons.und.edu/sil-work-papers

Recommended Citation

Eatough, Andy (1996) "Meigu County Yi tone," Work Papers of the Summer Institute of Linguistics, University of North Dakota Session: Vol. 40 , Article 3. Available at: https://commons.und.edu/sil-work-papers/vol40/iss1/3

This Article is brought to you for free and open access by UND Scholarly Commons. It has been accepted for inclusion in Work Papers of the Summer Institute of Linguistics, University of North Dakota Session by an authorized editor of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.
Meigu County Yi Tone

Andy Eatough

Meigu County,1 in the southern part of China's Sichuan Province, is primarily inhabited by people who are known in Chinese as Yi [ji35] or Yizu [ji35tsu35], and in their own language as Nosu [nQ33su33]. The dialects of the Yi are Tibeto-Burman, and belong to the Loloish subgroup of Lolo-Burmese. Those Loloish dialects which are spoken by people officially considered to be Yi are usually divided into 6 major dialect groupings. The northernmost of these 6 groupings is called Northern Yi or Liangshan Yi. The speech variety of Meigu County is classified as part of the zi3nQ33 dialect of Liangshan Yi.

The data was collected by the author in 1995 and 1996, primarily from a bilingual speaker in her 20s who grew up near the town of Bapu, the seat of government for Meigu County. She speaks Yi with some of her friends and with family members, some of whom are monolingual in Yi. A male speaker in his 20s from Bapu was also consulted.

The syllable structure is (C)V. The consonant and vowel inventories are given in Figure 1 and Figure 2 respectively.

There are three contrastive tones. One of these has three allophones, which are conditioned by the preceding tone. Tonal allophony is illustrated in the first data set.

There is also some tonal allomorphy. The second data set illustrates a rule which applies to nominal compounds and affects the tone of the first noun root. The third data set illustrates another rule which applies in number + classifier compounds and affects the tone of the classifier.2

\textit{Andy Eatough}

\textit{610 Palacia Ct.}
\textit{Turlock, CA 95380}

\begin{footnotesize}
\begin{enumerate}
\item Meigu County is in Liangshan Prefecture, and is one of the most inaccessible and traditional of the counties in Liangshan. More than 96\% of the county's population is Yi, according to official statistics. The County did not exist before liberation, since during the Republic of China period the only ethnic Chinese in the area were slaves of the Yi. Naturally, use of the Yi language is very vigorous among all ages in the Yi villages of the county, especially outside of the county seat, the town of Bapu.

\item Cross-dialectic comparison suggests that this rule may have a wider application than just number plus classifier compounds. Most nominal compounds which, based on cross-dialectic comparison, would be expected to have the tones 31 + 45, have 31 + 31, e.g. nQ33sji31 eye, rather than the expected nQ33sji45.
\end{enumerate}
\end{footnotesize}
Meigu County Yi Tone

(Sichuan, China)

Figure 1

<table>
<thead>
<tr>
<th></th>
<th>labial</th>
<th>alveolar</th>
<th>palatalized</th>
<th>flat</th>
<th>velar</th>
<th>glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>vl. stops</td>
<td>p</td>
<td>t</td>
<td></td>
<td></td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>vl. asp. stops</td>
<td>pʰ</td>
<td>tʰ</td>
<td></td>
<td></td>
<td>kʰ</td>
<td></td>
</tr>
<tr>
<td>vd. stops</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>prenasalized stops</td>
<td>mb</td>
<td>nd</td>
<td></td>
<td></td>
<td>ηŋ</td>
<td></td>
</tr>
<tr>
<td>vl. affricates</td>
<td>ts</td>
<td>tc</td>
<td>ts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vl. asp. affricates</td>
<td>tsʰ</td>
<td>tcʰ</td>
<td>tsʰ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vd. affricates</td>
<td>dz</td>
<td>dz</td>
<td>dz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prenasal. affricates</td>
<td>ndz</td>
<td>ndz</td>
<td>ndz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vl. fricatives</td>
<td>f</td>
<td>s</td>
<td>c</td>
<td>s</td>
<td>x</td>
<td>h</td>
</tr>
<tr>
<td>vd. fricatives</td>
<td>v</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td>vd. nasals</td>
<td>m</td>
<td>n</td>
<td>n</td>
<td></td>
<td>η</td>
<td></td>
</tr>
<tr>
<td>vl. nasals</td>
<td>m</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vd. lateral</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vl. lateral</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

<table>
<thead>
<tr>
<th></th>
<th>advanced tongue root</th>
<th>pharyngealized</th>
</tr>
</thead>
<tbody>
<tr>
<td>unrounded open-mid central vowels</td>
<td>u</td>
<td>e</td>
</tr>
<tr>
<td>unrounded mid front vowels</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>unrounded close near-front vowels</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>mid back vowels with compression rounding</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>close near-back vowels with compression rounding</td>
<td>u</td>
<td>u</td>
</tr>
</tbody>
</table>
Set 1

1. si\(^{33}\) ts\(^{h31}\) bo\(^{11}\) one tree
2. si\(^{33}\) ne\(^{31}\) bo\(^{11}\) two trees
3. si\(^{33}\) so\(^{33}\) bo\(^{33}\) three trees
4. si\(^{33}\) li\(^{33}\) bo\(^{33}\) four trees
5. si\(^{33}\) nga\(^{33}\) bo\(^{33}\) five trees
6. si\(^{33}\) fy\(^{45}\) bo\(^{44}\) six trees
7. si\(^{33}\) si\(^{33}\) bo\(^{33}\) seven trees
8. si\(^{33}\) he\(^{45}\) bo\(^{44}\) eight trees
9. si\(^{33}\) bo\(^{33}\) a tree
10. he\(^{33}\) me\(^{33}\) a mouse
11. he\(^{33}\) ts\(^{h31}\) me\(^{11}\) one mouse
12. he\(^{33}\) ne\(^{31}\) me\(^{11}\) two mice
13. he\(^{33}\) so\(^{33}\) me\(^{33}\) three mice
14. he\(^{33}\) li\(^{33}\) me\(^{33}\) four mice
15. he\(^{33}\) nga\(^{33}\) me\(^{33}\) five mice
16. he\(^{33}\) fy\(^{45}\) me\(^{44}\) six mice
17. he\(^{33}\) si\(^{31}\) me\(^{11}\) seven mice
18. ne\(^{33}\) ge\(^{33}\) te\(^{11}\) le\(^{33}\) Where are you coming from?
19. nga\(^{33}\) je\(^{33}\) ko\(^{33}\) te\(^{33}\) le\(^{33}\) I'm coming from home.
20. nga\(^{33}\) dzeg\(^{33}\) dze\(^{33}\) te\(^{33}\) le\(^{33}\) I'm coming from eating.
21. ts\(^{h3}\) ge\(^{11}\) le\(^{11}\) o\(^{33}\) He's not coming anymore.
22. ne\(^{33}\) ge\(^{33}\) ko\(^{11}\) bo\(^{33}\) Where are you going?
23. nga\(^{33}\) je\(^{33}\) ko\(^{33}\) bo\(^{33}\) I'm going home.
24. nga\(^{33}\) It is.
25. ge\(^{31}\) nga\(^{11}\) It isn't
Set 2

1. ŋge³³ buckwheat ŋge³³tu³³ sweet buckwheat
2. ŋge³³ buckwheat ŋge³³ŋê³³ bitter buckwheat
3. bu³³ bug bu³³de³³ earthworm
4. mu³³ horse mu³³pe³³ male horse
5. kʰê³³ mouth kʰê³³pê³³ mouth
6. jo³³ sheep jo³³mo³³ ewe
7. jo³³ sheep jo³³ze³³ lamb
8. le³³ musk deer le³³pu³³ male musk deer
9. le³³ musk deer le³³mo³³ female musk deer
10. ŋge³³ buckwheat ŋge³³fu³³ buckwheat bread
11. vô³³ chicken vô³³tu³³ chicken egg
12. mu³³ earth mu³³ê³³ sand

Set 3

1. tsʰi³³bu³³ one (drop)
2. je³³tu³³ two (drops)
3. so³³bu³³ three (drops)
4. li³³bu³³ four (drops)
5. ñô³³bu³³ five (drops)
6. fi³³bu³³ six (drops)
7. si³³tu³³ seven (drops)
8. he³³bu³³ eight (drops)
9. gu³³tu³³ nine (drops)
10. e³³tu³³ not good
11. mu³³tu³³ fire