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ABSTRACT

th Century Galois developed a method for determining

In the 19
whether an equation is solvable. It relied on the close relationship
between fields and their automorphism group. This paper is a survey
of the techniques of Galois theory. After presenting the main results
of elementary Galois theory and some useful facts about factorization,

I develop the important methods of calculating the Galois group and

give a proof of the Chebotarev densiily theorem.

vii




1 is the identity automorphism.

|G| is the order of the group G.

lo] is the order of the element.c.

[K:F] s the degree of the field K over the field F.
G(K:F) 1is the Galois group of K over F.

G(f,F) is the Galois group of f(x) over F.

F[x] is the ring of polynomials with coefficients from F.
[g] is the degree of the polynomial g(x).

Q is the field of rational numbers.

Z is the ring of rational integers.

C is the field of complex numbers.

F(a) is the finite extension of F formed by adjoining the element a.
N means "is isomorphic to."

Zn is the group of integers modulo n.

GF(p™) s the Galois field containing p™ elements.
i(G:H) dis the index of H in G.

Sn is the symmetric group of degree n.

An is the alternating group of degree n.

IF is the ring of integers of the field F.

NK(U) is the norm in K of the ideal U.

GP is the decomposition group of the prime P.

NOTATION

qP=(Eé£) is the Frobenius automorphism of P.

1




(Eéf) is the Artin symbol at p.
C(o) is the centralizer of the element o.

;F(s) js the Dedikind zeta function.
I(F) is the group of ideals of F whose prime factors are unramified

in the finite extension K of F.

X is a group character.
Xo is the trivial character.
G* is the group of characters of G.

L(s,x;K/F) 1is an abelian L-function.
d(A) is the Dirichlet density of the set A.
f(P/p) 1is the relative degree of P over p.

<g> is the cyclic group generated by o,




INTRODUCTION

The theory of Galois groups arose from the problem of trying
to calculate the roots of a polynomial equation from the coefficients.
If we can write the roots of an equation as a function of its co-
efficients using addition, subtraction, multiplication, division and
extraction of roots, then we say that the equation is solvable by
radicals.

0f course, equations of the first degree are always solvable
_b.

a

by radicals. If ax+b=0, then x = For quadratic equations, the

solution was known several centruies B.C. and is given by the quadratic

b:/b2~4ac 2

formula x = :——75;-———— where ax +bx+c = 0.

Cardan's formulas (Uspensky, 1948, pp. 84-89) give the solution

of equations of degree three and four by radicals. For ax3+bx2+cx+d=0,

we let =—c—:-- b2 =A3_3..__b_,c_+g A=%9—+ QE.J-E.E an
P=3a > 4 3732 2 oY Tt

d
3a 27a 3
B = ;7{ 9. QE.+ EE. Then the solutions are x = A+B, - S35 + A-B.73
2 4 27" ’ 2 ; ’
- ﬂ%ﬁ__ A%E_chz when ax? + bx% + o + dx + e = 0, Tet f(x) = x°

]
()

a

/2 2 3

b c 3b 2 2¢ bc 2d . b

Put R = -t Y. IfR#0, let D =]/{“7?- RS =& & - S e
4a a 4a a azR aR 43R

2 2
- g-xz + (5%-— ﬂg) X - %;§-+ &%f-- S?-and y be a root of f(x)




the roots of the quartic equation are x = i%—+ %-i g-and

-b th

X = These formulas were discovered in the 16~ Century.

nojm

—~2R-i

&1

Such a formula for equations of degree greater than four was

sought until the 19N

Century when it was shown by means of Galois
theory that no such formula exists.

Galois theory associates with each polynomial equation a group
G called the Galois group. G is said to be solvable provided we can
form a finite chain of subgroups G, C Gy € - CGs with G, = G,
Gn the identity group, G1+] normal in Gi and‘Gi/Gi+1:abe1ian for~
i=20,1,...,n-1. It can be shown that an equation is solvable by
radicals if and only if its Galois group is solvable. Thus, if we can
calculate this group, the problem is reduced to determining whether
the Galois group is solvable.

This paper is a survey of elementary Galois theory and the
techniques used in calculating the Galois group. Chapter 1 deals
with the basic concepts of Galois theory. Chapter 2 discusses
techniques for factoring polynomials over the rational numbers.
Chapter 3 demonstrates some of the methods of calculating the Galois
group, while in Chapter 4 I give a proof of the Chebotarev density

thoerem and show how it can be used to aid in the calculation of

the Galois group.
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Some facts concerning the theory of groups and the theory
of fields are assumed. This material can be found in any algebra
text of the caliber of Herstein (1975). In the discussion of the
Zassenhaus Method and the Chebotarev density theorem, I also assume
some knowledge of algebraic number theory (Pollard and Diamond,

1975).




CHAPTER I

GALOIS THEORY

A. Basic Concepts
Definition: Let K be a field. A 1-1 function o from K onto

K is an automorphism provided o(a+b) = o(a) + o(b) and o(ab) =

o(a)o(b) for all a,b e K.
It is clear that the set of all automorphisms of K forms a
group under the operation of composition of functions. We are

interested in certain subgroups of this group.

Definition: Let G be a group of automorphisms on K (that is
a subgroup of the set of all automorphisms on K). The fixed field
of G is the set F = {a € K: o(a) = a for all ¢ ¢ G}.

By the definition of automorphism, if a,b ¢ F then a+b and ab
are in F. Also 0,1 ¢ F since for any automorphism o, ¢(0) = 0 and
o(1) = 1. Finally, if a ¢ F then a ! = (c(a))'] = o(a"]) for each

o e G. So the fixed field is actually a subfield of K.

Definition: Let K be a field and F a subfield of K. The set
of automorphisms of K leaving each element of F fixed is called the

Galois group of K over F and is denoted by G(K:F).

To see that G(K:F) is a group, we first note that the identity

automorphism is in G(K:F). If o,p e G(K:F), then o(p(a)) = o(a) = a

6
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for all ac F. Also if o"'(a) = b and a ¢ F, then o(b)

so that a = b. Hence op and c'] are in G(K:F) whenever ¢ and o are.

lemma 1.1: Any set of distinct automorphism of a field K
is 1inearly independent over K.

Proof: Let {a .,ok} be distinct automorphisms of K.

'I’ LN J
Suppose that there is a set {a],...,ak} of elements of K such that at
k

least one of the ¥ is nonzero and 2
i=1

aigi(u) =0 for all u ¢ K.

Consider all such sets and pick the one with the fewest nonzero

elements. Call this set {ByseeesByd and rearrange the B; SO that

r

{B]""’Br} are the nonzero Bs - Then ¥ Bioi(u) = 0 for each u ¢ K.
i=1

Note that r # 1, because if r = 1,then-c](u) = 0 for all u ¢ K which

cannot happen. Find ¢ ¢ K such that o, (¢) # o.(c). Such a ¢ must

exist since 1 and o are distinct. Now 0 =

fte~1=s =
—
™w
[y
Q
-
—
O
o
~
1

E B;o;(c)os(u) for all u e K. Also 0 = o](c).§ 8.0.(u) =
'I:

2 By0q(c )c (u) for all u ¢ K. By subtracting these two sums we get
i=

that 2] B (o (C)-o](c))c (u) = 0 and by setting v; = Bj(ci(c)~0](c))
;2
r
we have that 7§ Y505 (u) = 0. But the set {YZ""’Yr} is a smaller
i=2

set than {81""’8r}’ and Y # 0 since By # 0. This is a contradiction
of the choice of the B; and therefore the set {c],...,ok} must be

linearly independent. //
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We now wish to find an upper bound for | G(K:F)].

Theorem 1.2: Let F be a field and K a finite extension of F,
Then |G(K:F)| < [K:F].

Proof: Suppose |G(K:F)| > [K:F] = n, then there are n+]
distinct automorphisms in G(K:F). Let Wy s e e be a basis for K over
F, and Opse++30n41 be distinct elements of G(K:F). Now consider the

system of n equations in the n+1 unknowns XyseosXpgpt

xqaq(eg) + xpoplug) + oo 4 Xpyqopgq{eg) = 0

X109{up) + Xpop(wp) + oo+ Xy oy lup) = 0

xpoq(wn) + Xpoplug) + wee # Xpyqoyyq{on) = 0.

This system must have a nontrivial solution, say I FRRRFL

n+l n
Then 2 0505 (w )=0fork=1,...,n. IfuekK,thenu= ) B.u,; .

n+1 n+1 n
with 8, € F. Hence § a.0.(u) = }
! i1 iz

n+l n n+l

oL ) w )1 = 2 B [ 2 “ici(wj)] = 0. This contradicts

Lemma 1.1 so that (G(K:F)[ < [K:FI. 7/
Under certain conditions we can determine precisely the order
of G(K:F).

Definition: Lel K be a finite extension of the rational

numbers and F a subfield of K. If for every u e K-F there exists
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o € G(K:F) such that o(u) # u, then K is said to be a normal extension

of F or normal over F. (That is, K is normal over F if F is the fixed

field of G(K:F).)

Theorem 1.3: Let G be a group of automorphisms of the field
K and let F be the fixed field of G where K is a finite extension of
Q. Then |G| = [K:F].

Proof: By the definition of fixed field, we must have that K
is normal over F. Theorem 1.2 implies that |G| < [K:F] since G must
be a subgroup of G(K:F). Suppose that |G| < [K:F]. Let G =
{ogs--050 ) and wpseeisu be a basis for K over F where [K:F] = r.
The system

xpoqlug) * oee * X0y logyg) = 0

: : : (1)

Xpoplog) + oo+ X qop{up,) =0
of n equations in n+1 unknowns must have a nontrivial solution.

From the set of all solutions pick one {a],...,ak,O,...,O} with the
fewest number of nonzero elements SEERRRLOR (We rearrange the ws if
necessary so that the nonzero elements appear first.) Assume that

o1 is the identity automorphism.

If k =1, then o (w]) =0 form=1,...,n. This implies

1%m
that a]c1(w]) = oqug = 0 so that o = 0. But the solution was

supposed to be nontrivial, hence k > 1. Also we note that not all of

the o, are in F, for if a; € F for each i, then 0 = a.o](w.) =

] 1 1

I o~1]

i

k
) RN This contradicts the linear independence of the w; over F.
i1
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Without Toss of generality, we may assume that o = 1 and ay € K-F.

For any fixed m = 1,2,...,n we have,

a1om(w]) + eee + ak_]cm(wk_]) + 0 (wk) = 0. (2)

Since K is normal over F, there is o such that cj(a]) # oy

Pick oy such that jSi = o Now

o
1

= oj(a]ci(w]) +oeee + ak_1ci(wk_1) + Oi(wk))

Oj(a])oj(ci(w])) o t Oj(ak-])oj(oi(wk-])) + Gj(QT(wk))

= cj(a])om(w1) + oeee + Oj(ak-1)om(wk—]) + cm(wk).
Subtracting this from Equation (2) we get that
(a]‘Gj(a]))Um(w]) oo + (ak_]‘oj(ak_]))cm(wk_]) = 0.

This can be done for each m. If we Tet g, = ai—oj(ai) for

i=1,....k-1, then {g;,...,8, _,0,...,0} is a nontrivial solution of
the system (1) with fewer nonzero elements. This follows from the
fact that we chose F such that g, = a]—cj(a]) # 0. So we have a

contradiction of the choice of the o and we must have that

|G| = [K:F]. //

Note that this theorem implies that if G has fixed field F
then G = G(K:F) since |G| < [G(K:F)| < [K:F] = |G].
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Corollary 1.4: Let K and F be finite extensions of Q. K is

a normal extension of F if and only if |G(K:F)| = [K:F].
Proof: Theorem 1.3 shows that if K is a normal extension of
F,then |G(K:F)| = [K:F]. Suppose now that |G(K:F)| = [K:F] and let

F. be the fixed field of G(K:F). Since F is fixed by G(K:F), we

1
have that F C F]. Now [K:F] = [K:F]][F]:F] and G(K:F) = G(K:F]).

K is normal over F], so by Theorem 1.3, [G(K:F1)| = [K:F]]. Thus we
have |G(K:F)| = [K:F] = [K:F]][F1:F] = lG(K:Fﬂl[F]:F] = IG(K:F)l[F]:F],

and [F]:F] = 1. Therefore F = F] and K is normal over F. //

Another characterization of normal extensions is the following.

Theorem 1.5: Let K and F be finite extensions of Q. Then
K is normal over F if and only if any polynomial with coefficients
from F, which is irreducible over F and has one root in K, has all of
its roots in K.

Proof: First Tet K be a normal extension of F and f(x) e F[x]
be irreducible with root « & K. Let G(K:F) = {og5.0050,) and

Gpseees0 be the distinct values of 0](a),...,an(a). Suppose that

m . m .
aix1, then 0 = 6(0) = o(f(a)) = of § a1a1) = ) aic(“)1
0 i= -

1358 =

f(x) =
;

for each o ¢ G(K:F). Thus o(a) is a root of f(x) for each o ¢ G(K:F).

(X"“i)' Then g(x) ¢ F[x]; indeed if u ¢ K and ¢ ¢ G(K:F),
1

= -

Let g(x) =
5
then o(g(u)) = o( 1 (u-a;)) =

1 O(u'“i) =

(o(u)-o(ay)). Since

==
—
= -s
—
== ]
—

i i

o is one-to-one, the values o(a]),...,o(ar) exhausts the set



g(o(u)) and the coefficients

r
{a1,...,ar}. So o(g(u)) = E (o(u)-c.)

of g(x) must remain fixed by o. That is g(x) ¢ F[x]. Now g|f
because every root of g(x) is a root of f(x). Hence g(x) = f(x)
since f(x) is irreducible. Finally g(x) has all of its roots in K
and so f(x) has all of its roots in K.

Next suppose that any irreducible polynomial in F[x], which
has a root in K, has all of its roots in K. Let [K:F] = n and
K = F(a). Suppose that f(x) is the minimal polynomial of o over F
and f(x) has roots Opseeesdy where o = oy f(x) must have all of its
roots in K by our hypothesis, so that ay € K for each i. Any element
o ¢ G(K:F) must have the property that o(a) = o, for some
i=1,...,n. Also {1,a,...,an-]} is a basis for K over F so that the
way o acts on o actually determines its value for all elements of K.
Define oi(a) =a; fori=1,...,n and extend o, to all of K in a

natural way using {1,a,...,an']} as a basis for K. Each o5 € G(K:F)

so that n < |G(K:F)| < [K:F] = n. Therefore K is normal over F. //

The next theorem illustrates the important relationship between
the fields which 1lie "between" K and F and the normal subgroups of

G(K:F). It is called the Fundamental Theorem of Galois Theory.

Theorem 1.6: Let K be a normal extension of F. If FC L CK
then K is a normal extension of L and G(K:L) € G(K:F). Furthermore,
L is a normal extension of F if and only if G(K:L) is a normal sub-

group of G(K:F). In that case G(L:F) ~ G(K:F)/G(K:L).
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Proof: First we show that K is a normal extension of L
wheneyer FCL CK and K is normal over F. Let g(x) e L[x] be
irreducible over L with root o ¢ K, and f(x) ¢ F[x] be a's minimal
polynomial over F, In L we have g|f and, by Theorem 1.5, f(x) must
have all of its roots in K. Hence g{x) must have all of its roots
in K and, again by Theorem 1.5, K is normal over L. Clearly
G(K:L) C GZK;F).

Now assume that L is normal over F. L is a finite extension
of F, so L = F(a) for some a ¢ L. Let g(x) € F[x] be a's minimal
polynomial over F and suppose [g] = m. Now for each o e G(K:F), o(a)
is a root of g(x). Since {l,a,...,am']} is a basis for L and the
roots of g(x) are in L, we have ¢ mapping L onto L. So o|L is an
automorphism of L for each ¢ ¢ G(K:F). Define a group homomorphism h
from G(K:F) to G(L:F) by h(o) = o|L. Clearly the kernel of h is G(K:L)
since h(o) = 1 (the identity in G(L:F)) implies that o Teaves L
fixed. Therefore G(K:L) is a normal subgroup of G(K:F). Also
|G(L:F)] = [L:F] = [K:F]/[K:L] = |G(K:F)|/|G(K:L)| so that h is onto.
Hence G(L:F) ~ G(K:F)/G(K:L).

Finally suppose that G(K:L) is a normal subgroup of G(K:F).
Now [K:F] = [K:LJ[L:F] so [L:F] = [K:F]/[K:L]. Since K is normal over
both L and F, we can apply Corollary 1.4 to get that [L:F] = [K:F1/[K:L]
= |G(K:F)|/|G(K:L)] = |G(L:F)|. Corollary 1.4 implies that L is

normal over F. //

B. The Galois Group of a Polynomial

Definition: Let f(x) ¢ F[x], where F is a finite extension of
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the rational numbers. By the fundamental theorem of algebra, we can

n=as

write f(x) = (x-ai) where the o, are complex numbers. The splitting

i=]
field of f(x) over F is the field K = F(a],...,an). If f(x) has all

of its roots in some field L, we say f(x) splits in L.

Definition: Let f(x) ¢ F[x], where F is a finite extension
of the rational numbers. If K is the splitting field of f(x) over F,

then the Galois group of f(x) over F is the group G(K:F) and is

denoted by G(f,F).

Theorem 1.7: Let f(x) e F[x] have distinct roots Oy sen sl
Then G(f,F) can be embedded in Sn where Sn is the symmetric group
of degree n. Therefore |[G(f,F)| < n!.

Proof: We may assume that f(x) has no repeated roots since
they can be divided out without changing the Galois group. If

e. N
f(x) = (x-a;) T where e; > 1, then f(x) =

i

n=33s
—_—
[ =1
—

T (x-a;) e Fx].
1

This is true because the coefficients of %(x) are symmetric‘functions

of the roots of f(x) and hence in F,

n n .
So f(x) = T (x-a;). Write f(x) = ] a,x and let o ¢ G(f,F);
i=] 1 i=0
h 0 £ - v i i
then o = ¢(0) = of (aj)) = O(izo a1aj) = izo aic(aj) . Thus c(aj) is

a root of f(x), say c(aj) = o . Then c|{c],...,on} e S and

G(f,F) can be embedded in S,- Clearly if 0|(u],...,u ) = Tl(a],...,un),

n
then o = 1 because automorphisms of G(f,F) are determined by how they

act on the roots of f(x). So the embedding is 1-1. //
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This theorem also tells use that o ¢ G(f,F) is completely
determined by how it behaves on the roots of f. If u is in the
splitting field of f(x) over F, then u = h(a],...,an) where
Gpseresa, are the roots of f(x) and h is a rational function in n
variables with coefficients in F. So o(u) = h(c(a1),...,0(an)).

Thus we have three ways of describing G(f,F): (1) the automorphism
group of the splitting field of f(x) fixing F; (2) a permutation group
of the roots of f(x); and (3) a subgroup of the symmetric group of

degree n.

Theorem 1.8: Let f(x) ¢ F[x] be irreducible over F with

n
splitting field K. If f(x) = I (x—ui) in K[x], then there is an
i=1

automorphism o € G(K:F) such that o(a]) =a
Proof: First it is clear that F(a1) ;:F(an) by the isomorphism

) whigh holds F fixed and has w(a]) = . This is true since

{],u],...,a?-]} is a basis for F(a])‘and {1,an,...,a2']} is a basis

for F(an).

We'will construct an extension of ¢y inductively. Suppose we

have extended ¢ to Vo an isomorphism of F(a],...,a onto F(B],...,e )

m) m

with the following properties:

(]) B'I = O(-n:
(2) {81,---,3m}_c_ {a],---sun}’

(3) wm(ai) = g; fori=1,....m

We assume that, for i > m, o ¢ F(a],...,am). For if

as € F(a1,...,am),then U would actually be an isomorphism of

F(a],...,am,ai) onto F(B1,...,3m,¢m(ai)). Factor f(x) over
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m
F(a],...,dm)[x] as f(x) = g1(x)---gk(x)i§](x-ai) where the gi(x) are

irreducible and of degree greater than one. Let o be a root of

+1
g1(x), and h](x) be the image of g](x) under o . h](x) must be
irreducible in F(s],...,sm)[x], since if h](x) = h(x)g(x), then the
inverse images of h(x) and g(x) would beé. in F(a],...,am)[x] and
would divide g](x). Let Bl be a root of h](x) and define Yo
from F(a],...,am+]) onto F(B1""’Bm+1) by ¢m+1(am+1) = Byl and

wm+](u) = wm(u) ifue F(a],...,an). Vet 1S AN isomorphism because

Lg,]1-1

1478 . .

{]’am+1""’am+1 } is a basis for F(a],...,am+]) over F(aT""’am)’
[h]]—l

{]’Bm+1""’8m+1 } is a basis for F(61""’8m+1) over F(Bl""’sm)

and [g]] = [h]]. Vogp 2150 satisfies our 3 conditions. We use this
process at most n times to arrive at an automorphism ¢ from
K = F(a],...,an) onto F(B1""’Bn) = K. Finally we have c(a1) = o

as required, //

Definition: A subgroup G of Sn is said to be transitive

proyided for each i,j ¢ {1,...,n} there is ¢ € G such that o(i) = j.

Corollary 1.9: The Galois group of an irreducible polynomial

is transitive.

Corollary 1.10: Let f(x) e F[x] and Tet p(x) be an

irreducible factor of f(x) in F[x]. If ays0y are roots of p(x), then
there is ¢ e G(f,F) such that d(a]) = A,

Proof: Let K be the splitting field of p(x) over F. By
Theorem 1.8, there is ¢ ¢ G(K]:F) such that w(a]) = ay. Let q(x) be
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an irreducible factor of f(x) over K]. By the method of the proof of
Theorem 1.8, we can extend v to ¢, an automorphism of q's splitting
field. Proceeding by induction, we can extend ¢ to an automorphism
o € G(K:F) such that c(a]) = a,, where K is the splitting field of
f(x). //

Theorem 1.11: Let K and F be finite extensions of Q. K is

a normal extension of F if and only if K is the splitting field of
some polynomial over F.

Proof: First suppose that K is a normal extension of F, then
K = F(a) for some o ¢ K. Let p(x) be a's minimal polynomial over F.
Then by Theorem 1.5 p(x) must split in K. Hence F(a) C F(a],...,an)
CK = F(a), where Gpseees0 A the roots of p(x), and K is p's
splitting field.

Next assume that K is the splitting field of f(x) over F. We
proceed by induction on [K:F]. If [K:F] =1, then K = F and so K is
normal over F. Now suppose that [K:F] = n > 1, and whenever K],F] are
fields such that [k]:F]] < n and K] is the splitting field of some
polynomial over F], then K] is normal over F1.

Since [K:F] > 1, f(x) must have an irreducible factor p(x)

m
with degree greater than 1. Lel p(x) = = (X'ai)' Now [K:F(a])] <n

i=1
and f(x) ¢ F(a])[x] has splitting field K over F(a]). Therefore K
is normal over F(a]) be our induction hypothesis.

Let u ¢ K be such that o(u) = u for all o ¢ G(K:F). We will
show that u ¢ F. Since G(K:F(a1)) C G(K:F), u is left fixed by each




automorphism of K fixing F(a]). By the normality of K over F(a]),

ue F(a]). {1,a .,a?']} js a basis for F(a]) over F so that

10"

m-1

u:

_ a.a) with a; e F. By Corollary 1.10, there is o5 € G(K:F)
i

il

e~

0
such that oj(a]) = o for j = 1,...,m. We have that u = oj(u) =
1 . om-1

(T ol =T agagleg)t = T agel (T age
o, a:0q) = a;0.(a = a.o. and so a:a;) - U
3450 1] j=o 191 j=o 1Y E

n
o

m-1 .
for j =1,...,m. Let g(x) = (ao-u) + ) aix1, then g(x) has m roots,
i=1

namely PPPRPL NS This can happen only if g(x) is identically zero.
In particular a,~u=20,s0u= a, € F. Therefore, if u ¢ K and o(u) = u

for each o ¢ F(K:F), u e F. Thus K is normal over F. //

This theorem is very important in the calculation of the Galois
group of a polynomial, because it tells us that any element of K-F
must be moved by some o.e G(f,F), where K is the splitting field of
f(x) over F. So if we can find u ¢ K-F such that u is moved by no
element of the automorphism group G on K, then G musi not be all of
G(f,F).

A couple of special polynomials have Galois groups which are

relatively easy to calculate.

th

Theorem 1.12: If F contains a primitive n” root of unity

and f(x) = x"-a, where a is a nonzero element of F, then G(f,F) is
abe1ian.'

Proof: Let o be a root of f(x) and & a primitive nth root



E
of unity. Then a,ag,...,agn'] are the distinct roots of x"-a. If A
o ¢ G(f,F), then o is a permutation of the roots of f, so ¢ is
determined by how it acts on o. Suppose o,p ¢ G(f,F) with
o(a) = at® and o(a) = ae™. Then o(o(a)) = o(ag™ = o(a)o(c™) =

+ : g
agke™ = g™ and p(o(a)) = p(ag¥) = p(a)o(gX) = g™k = oM. ;

n

Hence po = op and G(f,F) is abelian. // ;i

Theorem 1.13: Let F be a subfield of the real nubmers and

f(x) € F[x] be irreducible over F with prime degree p. If f(x) has

exactly 2 nonreal roots, then G(f,F) = Sp. gﬂ;
Proof: Our goal is to show that every transposition is in

G(f,F) and then, since every element of Sp is a product of trans-

positions, we will have the conclusion of the theorem. Let f(x) = i

= o]

(X'ai) and oy 505 be nonreal. Compiex conjugation is always an
1

;
automorphism and can be represented as the iransposition (1 2). This
is because oy is the complex conjugate of oy and the rest of the o
are real. Consider all of the transpositions in G(f,F) involving 1

and arrange the roots of f(x) so that these transpositions are

(1.2),(1 3),...,(1.m) for some m> 2. If j>mand (j i) ¢ G(F,F),

then i > m. For if i < m, then [(j DENIT =G T =) . G(f,F)

which cannot happen. Also G(f,F) contains all transpositions of the

form (iy 1,) with 1 < i,,9, <m, for (i; i,) = (1 1;)(1.1,)(7 14).

AT i KA BTy 2 s £

Now m < p and, if m < p, then there is j with m < j < p.

sy

By Corollary 1.9, G(f,F) is transitive and so there is o ¢ G(f,F)

such that o(1) = j. Let

o ST
| M
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]’2’ cee My e ,p

Ja\]z:"'st3"'st

Then, for k = 2,...,m, o1 k)o'] = (j jk) e G(f,F). By our remarks
above, jk > m. We now have 2m distinct numbers 1,2,...,m,j,j2,...,jm
and each is less than or equal to p. So 2m < p and if 2m < p we

repeat this process to arrive at 3m < p. We stop when we have exhausted
all p numbers. At each step we use exactly m numbers so that m|p.

Since m > 1, m = p and G(f,F) = Sp. //

Definition: Let K],K2 be finite extensions of the rational
numbers. The compositum of K] and K2 is the smallest field containing

both K] and K2. It is denoted by K]Kz.

Lemma 1.14: If K] and K2 are normal extensions of F, then
K]K2 is normal over K] (and hence over F).

Proof: By Theorem 1.11, we know that K is the splitting
field of some polynomial pi(x) e F[x] for i = 1,2. Let K be the
splitting field of p](x)pz(x). Then K = KK, because the elements of
K are rational functions of the roots of p](x) and p2(x) with
coefficients in F as are the elements of K]Kz. Hence by Theorem 1.11,
K]K2 is normal over K] since it is the spliiting field of

po(x) e KyIx1. 7/

Theorem 1.15: If K and L are normal over F, then K is normal

over KL and the mapping h from G(KL:K) to G(L:K N L) is an
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isomorphism, where h(c) = o|L.

Proof: The mapping h is clearly a homomorphism. Suppose that
h{(c) is the identity automorphism of G(L:K#) L) where o e G(KL:K).
Then o(u) = u for each u ¢ K and o(v) = v for each v ¢ L. Hence
o(w) = w for each w e KL for the members of KL are just rational
functions of the elements of K and L. So h is 1-1 and an isomorphism
onto its range. Finally we show that h(G(KL:K)) = G(L:KN L). Since
h(G(KL:K)) C G(L:KN L), it is sufficient to show that KN L is the
fixed field of the image of G(KL:K) under h. Let u e L with
(h(o))(u) = u for every o ¢ G(KL:K). Then u ¢ K, for if not then there
exists o ¢ G(KL:L) such that o(u) # u. But KL is normal over L by
Lerma 1.14, so (h(o))(u) # u which is a contradiction. Thus u e KNAL
and by Theorems 1.2 and 1.3, |h(G(KL:K))| = [L:KN L] > |G(L:KNL)|
> |h(G(KL:K))|. So equality must hold. This also shows that L is

normal over KN L using Corollary 1.4. //

Theorem 1.16: Let K] and K2 be normal bver F and define the

mapping h from G(K1K2:F) to G(K

]:F) X G(KZ:F) by h(s) = (OIK],GIKZ).
Then h is a 1-1 homomorphism, and if K]{\ Ky = F, then h is an
isomorphism.

Proof: It is clear that h is a homomorphism; and if h(c¢) =
(1],12), where 1 is the identity in G(Ki:F), then ¢ fixes both K] and

K Hence o fixes K{Ky and must be the identity of G(K]KZ:F). This

2.
implies that h is one-to~-one.
Now assume that K1(\ K, = F and let (01,02) € G(K]:F)XG(KZ:F).

We apply Theorem 1.15, with K = Ky and L = K,, to get a o e G(K1K2:K])
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such that olK2 = 0,. Again applying Theorem 1.15,-only with K = K,

and L K2, we find p e G(K K2:K2) such that pIK] = oq. Then

1
polK] = g; and po[Ky = 0,. Hence h(po) = (c],az) which implies that

h is onto and an isomorphism. //

An easy induction argument provides the following.

Corollary 1.17: Let K]""’Kn be normal extensions of F with
Galois groups G]"";Gn respectively. Then G(K1---Kn:F) is isomorphic
to a subgroup of GyX:«-XG . If Kiy (\(K1--oKi) =F fori=1,...,n-1,
then G(K]-o-Kn:F) g=G1X---XGn.

An immediate consequence-of Corollary 1.17 is Corollary 1.18,
which greatly simplifies the task of calculating the Galois group of

an equation.

»

n
Corollary 1.18: Let f(x) = 1u_p,(x) where f(x)pq(x),...
i=1
pn(x) e F[x], and suppose that K. is the splitting field of pi(x)

for each i. Then G(f,F) is isomorphic to a subgroup of G(p1,F)X--

fle

X6(p,,F). If Ky N (K]---Ki) =F fori=1,...,n-1, then G(f,F)
G(py,F)Xe - XG(p»F).

This corollary shows that when trying to calculate the Galois
group of a polynomial f(x), we need only search inside the product of
the Galois groups of its irreducible factors. Furthermore, if we are
fortunate enough to have Ki+] f\(K]---Ki) =F fori=1,...,n-1, then
we can find the Galois group of f(x) directly from the Galois groups
of f's irreducible factors. Thus, for most polynomials f(x), our
problem is reduced to the problem of factoring and calculating the

Galois group of irreducibie polynomials.
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The Galois group of f(x) = x6 - 2x4 - 2x2 + 4 provides an

example of when G(f,Q) is not equal to the product of its factors.
f(x) = (x4-2)(x2—2) which are both irreducible. Let p](x) = x4-2,
pz(x) = x2—2, Ki be the splitting field of p](x), K, the splitting
field of pz(x) and K the splitting field of f(x). The roots of p](x)

are g, = Yz, £y = -Eps E3 = g]i and g, = -t5. The roots of pz(x) are
Z
G(f,Q) = G(py,Q) # G(py»Q) x G(p,,Q) = G(py,Q) x C, where C, is the
cyclic group of order 2, To calculate G(p],Q), we first observe that
[K,:Q1 = [Q(¥2,¥21):qQ] = [Q(¥2,¥2i):q(v2)1[Q(v2):q]. [a(v2):Q] = 4

since p](x) is irreducible over Q. Also in Q(¥2), p](x) =

g = 2 and g = /2. Since v2 = £] ¢ K;, K, C Ky. Hence K = K, and

(xz—/?)(x2+V?) and x% + /7 is irreducible over Q(%2). Thus ¥2i has
degree 2 over Q(¥2) and [Q(¥2,%¥21):Q(¥2)] = 2. Hence [K]:Q] = 8,

Complex conjugation is always an automorphism so that (3 4) ¢ G(p],Q).

Since G(p1,Q) is transitive, there must be o e G(p],Q) such that
olgq) = £5. Then o(gy) = o(-£7) = -o(gy) = ~£, = £4. Thus (1 2) or
(1 2)(34) ¢ G(p1,Q). Because (3 4) ¢ G(p],Q), both (1 2),(1 2)(3 4)
e 6(py,0Q). If © e G(py,Q) with <(g)) = €4 then <(g,) = -<(gy) =

~£5 = g,. Hence (1 3)(24) or (1 324) 1s in G(p],Q). But
(13)(24)(12)=(1324)and (1324)(12)={13)(24), so that
if one of (1 3)(2 4) and.(1 324) 14s in G(p],Q),then both are. Also
(1324)%=(1432) c6(py,0) and (1432)(12) = (14)(23)

e G(py»Q). Therefore G(py,Q) = {1,(1 2),(3 4),(1 2)(3 4),(1 3)(2 4),
(1 4)(23),(1 324),(1 43 2)} which is isomorphic to the dihedral

group of order 8.

s R S
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Definition: Let F be a finite extension of the rational

numbers. The algebraic integers of F (or integersof F) are all, of

the elements of F which satisfy a monic irreducible polynomial with
integer coefficients. This set is denoted by IF'

We can further simplify our problem by observing that it is
necessary to consider only monic polynomials with algebraic integer

coefficients. To see this let f(x) =

a1.x1 e F[x]. Then for each
i

o

i t~13

b.
i, a; = El" where bi’ci € IF. Let d be the least common multiple in
i

IF of CO,;..,Cn.

Then g(x) = df(x) ¢ IF[x], and g{x) has the same

roots as f(x). Thus g(x) has the same splitting field, and so the

n .
same Galois group, as f(x). Suppose g(x) = ) d1.x1 with di e I, and
i=0
n o Ml oneial,
put h(x) =x + ) d d.x . If g(a) = 0, then h(d a) =
iZo N i n
n-1 . n .
nn n-1, i _ ,n-1 i _ ,n-1 _ .
dna + 120 dn dia = dn [120 dia ] = dn g(a) = 0. Since

d e F, h(x) has the same splitting field as g(x), and so the same

Galois group as f(x).



CHAPTER II

FACTORING

A. Irreducibility Criterion

In factoring polynomials 6ver the rational numbers, it is
convenitent to know whether or not the polynomial is reducible in
the first place. I present here the three most general irreduci-
bility criterion involving divisibility of coefficients. The most
useful is the Theorem of Dumas, which appears first.
Let f(x) € Q[x] and p be a prime number. Write f(x) =
b

a;p 1x1, where either a; = 0 or a; is relatively prime to p for
0

He-13

i
each i. Consider the cartesian coordinates (i,bi) for each i with

a; #0. Let Po = (O,bo) and Pj = (kj’bkj)’ where kj is the greatest

integer such that no (i,bi) lies below the line from Pj-] to Pj'

Definition: The Newton polygon for f(x) corresponding to p

is the set of line segments POP1,P]P2,...,Pr_]Pr, where Pr = (n,bn).
Consider all of the points with integer coordinates which fall on the
Newton polygon, The portion of the polygon joining two such points
is called an element of the polygon. Note that the number of elements

is greater than or equal to r.

Theorem 2.1: Let f(x),g(x),h(x) e Z[x] with f(x) = g(x)h(x),
and lel p be a prime. Then the Newton polygon for g(x) corresponding

25
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to p can be formed by joining some of the elements of the Newton
polygon for f(x) corresponding to p without changing their lengtihs
or slopes. Furthermore, the Newton polygon for h(x) corresponding to

p can be formed by joining the remaining elements.

d. .

1.1

cip X
0

Proof: Let f(x) = a;p Ixd, g(x) = and

1~
I 13

0 1

J

h(x) = } mp "X, where the a.,c. and m, are either zero or
k=0 Jo 1

relatively prime to p. Let PiP be a segment of the Newton polygon

i+]

for f(x). Suppose P, = (J¢qu), Pigy = (Js,bjs), and let d be the

-Jg and bj -bj . Then Jq—Js = Kd and
q “s

b, -b, = Bd for some B,K; and the slope of P_.P

I s !

greatest common divisor of jq

. B
i+ is & Also B

and K are relatively prime and the equation of the line P1P1+] is

Ky-Bx = C, where C = Kb, -Bj_ = Kb, -Bj_. Now for every (j,b,) we
Jg Ja g s ]

have that C j_ij-Bj; and if j < jq or j > js, then C < ij—Bj; and
if j < jq orJ > Je» then C < ij-BJ.
Notice that these are the defining properties for the endpoints
of a segment of a Newton polygon. That is, if jt and jr are the
1 jt Ip

least and greatest exponents of x such that +— =

> . where B
Ky Jgdp 1

and K] are relatively prime, and K]bj - B]j > K1bj -B]Jt for all j

t

less than jt or greater than jr’ then (jt,bj ) (jr’bj ) are endpoints
t r

of some segment of the Newton polygon for f(x).

|
B
iy
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Consider the numbers Kdi-Bi for all 1 where Ci # 0. Let

D = min{Kd,-Bi}, and et i _,i_ be the least and greatest exponents of
O<i<m 9 s
ci#o
x such that D = Kd, -Bi_ = Kd, -Bi_. Then D < Kd.-Bi for each i.
1q q ig s —

Also put E = min {Kek—Bk}, and let k_ and kS be the least
O<k<n-m q
mk#O

and greatest exponents of x such that E = Kek -Bk = Kek -Bks. Then

E < Ke, -Bk for each k.

k

br. .
[i +k 1 [1 +k ] d, .
We have ihat a[i +k ]p 9 a7y 4 9° = Z (cip 1xl)
qg q i+k=1 +k
q q
ekxk) E+Bk
. K .

Also for i < iq, d. > D+B1 >

(mkp ; g and for k < kq, e

k

. D+E+B(i+k) _ D+E+B(iq+kq)

So if i # 1q’ but i+k = 1q+kq, then d1.+ek K 4

4 iy, Bk SR
= di ey . Thus ) (cip X )(mkp xy=p 9 4
q q 1'+k=1'q+kq

. Ldjrey-d; e =11 5 4
(c.*mk ) c;mPp 9 9 yx 9 9, and the part in the
Tq Xq i+k=1 K !

q
parentheses is relatively prime to p. So b, = d. +e, and
i 4k i 7k
-9 q q
b. -B{i _ + = D+E. j i +k , .-BJj +E; i i
K 1q+kq B(1q kq) D+E. Also for j < i kq KbJ Bj > D+E; while if
Dot R4 ' - Dok =g
j-> 1q kq then KbJ+BJ > D+E. Therefore D+E = C and 1q kq Jq In a

similar manner we get that 1s+ks = Jq- Hence 0 < Js-Jq = (15

-iq)+(ks-kq)
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and either 1S-1q > 0 or ks'kq > 0.

If i = igs then ks--kq = jS—Jq and (kq,ekq), (ks’eks) are

endpoints of a segment of the Newton polygon for h(x) with slope B/K.

),(1,d; ) are

If kg = kq, then i_-i, = j.-j, and (i ,d-q .

q q q 1

endpoints for a segment of the Newton polygon for g(x) with slope
B/K.

s’

If both are greater than zero, then (iq’di Y,(i_,d. ) are
q S

endpoints of a segment of the Newton polygon for g(x) and (kq,ek )>
q

(ks,ek ) are endpoints of a segment of the Newton polygon for h(x).
s

Both segments have slope B/K. In all _three cases, the conclusions

of the theorem hold, //

The Theorem of Dumas can be used to test for irreducibility

4 3

as the following example illustrates. Let f(x) = 63x0+189x T +18x°+

89x2+42. With p = 3 we have f(x) = 7-3%x0+7.3%x%42.3%:%+49 30541430,
The Newton polygon of f(x) corresponding to 3 has 3 elements each of
length 2. So if f(x) has a factor, it must have one of degree 2.

1,6427.71,%418.7%34+1.7%x%46-71.  The Newton

With p = 7, f(x) = 9-7
polygon of f(x) corresponding to 7 has 2 elemenis both of length 3.
Thus if f(x) has a factor, it must have degree 3. Therefore f(x) is

irreducible.




Newton polygon for p=3 Newion polygon for p=7

As an immediate corollary of the Theorem of Dumas we get
Eisenstein’'s irreducibility criterion:

a1-x1 be a polynomial in Z[x]

It ~13

Corollary 2.2: Let f(x) =

1=0

and p a prime, If p[ai for i =0,1,...,n-1, but pfan and pZTaO,
then f(x) is irreducible over the rational numbers.
The final irreducibility criterion follows from the next
theorem. For this theorem, we will use the following notation. Let
k .
t(x) e Z[x] with t(x) = 120 a1x1, and let p be an odd prime. By 31

we mean that unique integer such that - E%l-f_éi E_E%l-and éi = a1+c1p,

where c. e Z. If p =2, then 31 = 0 if a, is even and 31 =11if a;

~ i
a.x .

is odd. Then we let t(x) = ;
0

i

I~

Definition: Let f(x),g(x) ¢ Z[x] and n be an integer. Then

f(x) = g(x) (mod nZ[x]) provided n divides all of the coefficients of
f(x)-~g(x).




Theorem 2.3:

Then for any prime p,

Proof: Let g(x

b. b +d.p. Also for
J J .

Tet d b =D,
J

0.

n+m

)

i=0

g(x)h(x)

1
—te

Ino~1+
(o]

(1]
!

n+m

1
i=0

Corollary 2.4:

for some prime p, then

Definition: A

30
Let f(x),g(x),h(x) e Z[x] with f(x) = g(x)h(x).
f(x) = g(x)h(x) (mod pZ[x]).

n ; m . .
)= ) a.x', h(x) = Y b.x) and a, = a.+c.p,
i=o 1 j:o J . 1 1 1
i>nlet c; =3y = 31 =0, and for j > m
Then
1‘ "~ ”»
b. .
x ) asb;_;
;1
X é ay+c,p (b1_J+d1_jP)]
X.i Z [a . p(a.d, .+b. .c.)+p2c.d. .]
J -3 1-37] J 1-J
j=o
3 i
x' 1 asby = f(x) (mod pZ[x]). //
j=o J 1-3

If f(x) e Z[x] is irreducible modulo pZ[x]

f(x) is irreducible over Z (and hence over Q).

B. Factorization Over Q[x]

valuation on a field K is a function ¢ from K

to the real numbers su
(1) ¢(a) > 01
(2) ¢(0) = 0,
(3) ¢(ab) = of
(4) o(atb) < ¢

ch that for all a,b ¢ K:
fa##o,

a)o(b),
(a) + ¢(b).
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An example of a valuation is the absolute value function on

the real numbers,

Definition: A valuation ¢ on K is said to be non-Archimedean

provided ¢(a+b) < max{¢(a),¢(b)} for a,b e K.
Let p be a prime integer and let a be a rational number.
Write a = %—pn where pfs, pft and s,t ¢ Z. If we let
p " ifa#0

¢p(a) =
0 ifa=0

then ¢p satisfies (1), (2) in the definition of valuation. If a,b ¢ Q,

S-l n] 52 n2 .

say a = %;-p , b= {E-p , where p does not divide s],sz,t1,t2, then

$.S, n.+n -(n;+n,) -n; -n

_ 012 TR _ 172 T T2
ab = e, P . So ¢,(ab) = p =p p ¢p(a)o(b).
n,-n

. sytptsytp 0 1 M

Also if n; <n,, then a+b = tt, p " and ¢p(a+b) <p =

max{¢p(a),¢p(b)} j_Qp(a) + ¢_(b). Hence ¢p is a non-Archimedean

p
valuation of the rational numbers.

Definition: The valuation ¢p constructed above is called the

p-adic valuation of Q.

Any field with a valuation has a completion. This completion
can be constructed in the usual way by using Cauchy sequences, that

is, sequences {x_} from the field for which 1im ¢(x _-x_) = 0.
n . Mo n'm
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Definition: The completion of the rational numbers using the

p-adic valuation is called the p-adic numbers and is denoted by Qp.

Definition: For a non-Archimedean valuation ¢ on the field K,

the set {a ¢ K: ¢(a) < 1} is called the integral elements of K or the

jntegers of K. Note that the set of integral elements of K is a ring,

and the set {a ¢ K: ¢(a) < 1} is an ideal in that ring. It is the

ideal of non-units of the ring.

Definition: Let D be a ring and P an ideal of D. Then for

f(x),g(x) e D[x], f(x) = g(x) (mod PD[x]) means that the coefficients

of f(x)-g(x) are in P.

Definition: Let D be a ring and P an ideal of D. f(x),g(x)

e D[x] are relatively prime modulo P provided there exist s(x),t(x)

e D[x] such that s(x)f(x) + t(x)g(x) = 1 (mod PD[x]). f(x) e D[x] is
said to be primitive if the only elements of D which divide all of the
coefficients of f(x) are units.

In factoring polynomials over the rational numbers, a reduci-
bility criterion called Hensel's lemma is usefu].‘ It is presented
here in a general setting and a bit later in a manner more applicable

to the rational numbers.

Theorem 2.5: Let K be a complete field under the non-Archimedean
valuation ¢, D the set of integral elements of K and P = {a ¢ K: o(x) < 13.
Suppose f(x),go(x),ho(x) e D[x] such that f(x) is primitive, go(x) and
ho(x) are relatively prime modulo P, and f(x) = go(x)ho(x) (mod PD[x]).
The there are polynomials g(x),h(x) e D[x] such that
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(1) f(x) = g(x)h(x),
(2) g(x) = g (x) (mod PD[x]),
(3) h(x) = h_(x) (mod PD[x]),

(4) [g1 = [g,1.

Proof: If an element of P divides one of the coefficients of
go(x) or ho(x), we may set that coefficient equal to 0; so we assume
that the leading coefficient of both go(x) and ho(x) is a unit. Also
assume that the leading coefficient of go(x) is 1. If not, divide
go(x) by its leading coefficient and multiply ho(x) by the same
number. Let [go] =mand [f] = n; then [h_] < n-m.

Since the coefficients of f-goh0 are elements of P they have
¢-value greater than or equal to O, but strictly less than 1. Let
81 be the greatest of these values. If §; =0, then f(x) = go(x)ho(x)
and we are done; if not, then 0 < 8, < 1.

Since go(x) and ho(x) are relatively prime modulo P, .there

1 (mod PD[x]).

i

are s(x),t(x) e D[x] such that s(x)go(x) + t(x)ho(x)

As before, the coefficients of s(x)go(x) + t(x)ho(x) 1 have ¢-values
between 0 and 1. Let 8, be the greatest of these coefficients; then
0 <6, <1. Sete=mx{s,5,} and Tet = e K with ¢(m) = €. Such

a w must exist since one of the coefficients of f—gohO or sg, + tho-]
has ¢-value . So we have

f(x) = go(x)ho(x) (mod wD[x]),
s(x)go(x) + t(x)ho(x) = 1 (mod #D[x]).

We will construct two sequences {gk(x)}, {hk(x)} of polynomials

in D[x] with_the following properties:
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(a) F(x) = g (x)h (x) (mod <" Tp[x]),
(b) g (x) = g (x) (mod wD[x]),
(c) he(x) = h (x) (mod =D[x]),
(d) gk(x) is monic, [gk] = [go] and [hk] < n-m.

We proceed by induction. Suppose we have constructed such
polynomials gi’hi for i = 1,2,...,k-1. We will now construct 9 and
hk.

By (a) we see that f(x)-g, _;(x)h, _;(x) = nkp(x) for some
p(x) € DIx]. Then p(x)s(x)g (x) + p(x)t(x)h (x) = p(x) (mod =D[x]).
If we divide p(x)t(x) by go(x), we get a quotient q(x) and a remainder
o (%)
+ [gy(x)a(x) + r(x)In (x) = p(x) (mod 7D[x]), or [p(x)s(x) + q(x)h (x)]
go(x) + r(x)ho(x) = p(x) (mod #D[x]). Let u(x) = p(x)s(x) + q(x)ho(x)
(mod wD[x]), where the coefficients of u(x) are units or zero. Then

u(x)g,(x) + r(x)h (x) = p(x) (mod wD[x]).

Put g, (x) = g _;(x) + nkr(x) and hy (x) = h_;(x) + nku(x),

r(x) with [r] < m. So p(x)t(x) = g (x)a(x) + r(x), and p(x)s(x)g

then [gk] = [gk_]] = [go]. Also [hk] < n-m, for if not, then
(u] » n-m and [ugo] >n. Now [rho] <m+ [h0] < mkn-m = n, so that
[ugo+rho] > n and [p] > n. But by the selection of p, [p] < n. So
(d) has been verified.

To see that (b) and (c) hold, we note that gk(x) = gk_](x) =
9,(x) (mod «D[x1) and h (x) = hy_;(x) = h (x) (mod mD[x]).

Finally for (a), we have that

gk(x)hk(x)-f(x) = gk_‘] (X)hk_-l(X)-f(X) *
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Zkr(

+ wk[r(x)hk_](x) +ulx)g 4 (x)] + = x)u(x)

= wKIr(0h,_; () + u(x)g,_1(x)-p(x)] + 17 r(x)u(x)
so that
g, (x)h (x)-f(x)

= W Ir(0h_; (0 + u(x)g_y(x)-p(x)] (mod «*'oLx1).

Also
r(x)h,_;(x) + u(x)g _1(x) = p(x) (mod «D[x]),
SO
g, (x)h, (x)-F(x) = 0 (mod «<*'D[x]).
Since
941(x) = g (x) (mod »"TD[x])
and

+
hyes1(0) = 0y (x) (mod =< 1D[x1),
we must have the coefficients of gk(x) and hk(x) converging. For

1 k+1l(

a; X then = | ai,k+1_ai,k)' So

II'MB

if gk(x) =

1=0

Qs -3
iLk+1 %9,k k+1
o) T orelay gmay ) < e

v

, which tends to 0. Hence,

since K is complete, {ai k}E=o converges. In a similar manner the
coefficients of hk(x) converge. Let g(x) = lim gk(x) and h(x) =
Ko

Tim hk(x).

k-»o
Each gk(x) is congruent to go(x) modulo wD[x] and each hk(x)
is congruent to ho(x) modulo wD[x]. Hence the Timits, g(x) and h(x),

must be congfuent to go(x) and ho(x), respectively, modulo «D[x].
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Also [q] = [go], and since f(x) = gk(x)hk(x) (mod nk+]D[x]) for each
k, it follows that f(x) = g(x)h(x). //

Lerma 2.6: Let p be a rational prime, k an integer and
f(x),q(x),h(x) e Z[x], where p does not divide the leading coefficient
of g(x). If [f] < [g] and f(x) = pXg(x)h(x) (mod p2Kz[x]), then
h(x) = 0 (mod ka[x]), and consequently f(x) = 0 (mod kaZ[x]).

Proof: Write h(x) = 120 aixi and let j be such that

pkfhj, but for i > j, pk|ai. Suppose, for i > j, a; = pkbi with
b. ¢ Z, and let b be the leading coefficient of g(x). Then

k k

p g(x)h(x) = (

. n . J
phax)glx) = (1 pbx! + T p

a;x')g(x)
0 i=j+1 i=0

-+
—
bad
~—
1l
nes1-s

i

J .
= () pka1x1)g(x) (mod kaZ[x]). Because [g] > [f], we must have the

leading term on the right congruent to Q modulo p2k. So

pkbaj = 0 (mod p2k) and baj = 0 (mod pk). Since pfb, it must be that

plaj. Thus no such j exists, and h(x) = 0 (mod ka[x]). //

A more useful form of Theorem 2.5 is the following. It gives
an algorithm for factoring polynomials with integer coefficients

modulo ka[x] for arbitrarily large k.

Definition: Let n be an integer and f(x) e Z[x]. f(x) is

said to be reduced modulo n provided the coefficients of f(x) are

in the interval (- %—,%J.
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Theorem 2.7: Let f(x),go(x),ho(x)ﬁcﬁx),to(x),ro(x),

uo(x) e Z[x], p be a prime and k a positive integer. If

(a) f,go,ho are monic and non-constant,

. k
(b) go,ho,so,to are reduced modulo p,

(¢) Is,] < [hy1, [t,1 < [g,J,
(d) £ = gihy + Py,
(e) 509 * toho =1+ pkuo,
(f) o is not identically zero,

then there are polynomials g1,h1,s],t],r1,u1 ¢ Z[x] such that
(1) g1,h] are monic and non-constant,

(2) 9],h1,s],t] are reduced modulo p2k,

(3) [5]] < [h.l‘]’ [t-l] < [g‘l]’
- 2k
(4) f—g]h] +p Y'-l,
_ 2k

(6) 9y = 9, (mod ka[x]), hy = ho (mod ka[x].

Proof: The following is the algorithm for obtaining
g],h],s],t],r],u].

Divide t r. by g, and s rg by h0 modulo ka[x] to get
remainders d0 and dg. Then toro = do (mod(pk,go)Z[x]) and

- k
ST = dg (mod(p ,hO)Z[x]). Let

— k % - k
%= 9% *tP do’ % = ho P dg'

2k

Reduce ¢0 and ¢3 modulo p~ to obtain 95 and h].

Then
2k 2k

= = 4% * *
9y = ¢y + PTBy> hy = oF + pTsk for some 8,85 € Z[x].

(7)

(8)

o ——




Set

Then

Now let

and divide LosO by ho, Lot0 by 9% modulo

38
c.=d_+ pkB and o* = d* + pkB*
0 o] "0 0 0 o'
91 =9, * pkoo and h] =h, * pkgg,
Lo = ~(ug * 550, + tyos) s

P0 and Pg. Then

and

LySo = Po (mod(pX,0 )Z0x1), Loty = PE (mod(p®,g,)Z[x]).

Hl

0°0
Next put o« =s_+ ka and o* = t_+ ka*
0 0 0 0 0 0’
Reduce these modulo p2k to get 51 and t]. Then
2k 2k
5] =9y TP Y, and t, = as + p wg, where wo,wg e Z[x].
If we let
T =P + pkw and 7% = p* + pkw*
0 0 0 0 0 o’
* then
- k . k
Sy =S, P, and t1 = Lo +p wg.

Finally we let

k
ry = (rg + 959506, ) /™ = 9pag

k
up = (-L + mg. + ngho)/p + M0, * mEo¥.

Now we will show that conditions (1)-(6) hold for

g1shysSqstysrysuy . Clearly (6) is satisfied because of (10).

(10)

(1)

ka[x] to obtain remainders

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Ll
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To prove (1), notice that [d0] < [go] and [dg] < [hoj. Also
* - -
[8,] < [$,] and [8%] < [43] so that, by (7), [, = [9,1, L% = [h,]
and by (8}, [g]] = [¢o], [h]] = [¢3]' b6 and ¢* must then be monic;
hence 91 and h] are monic. Neither gy nor h1 could be constant
since [91] = [go] and [h]] = [ho].
By the construction of g],h],s],t1, they are all reduced
modulo kaZ[x], and so (2) is satisfied.
By the definition of P and P¥, we have that [Po] < [ho]
and [Pg] < [gOJ. So, by (13), [ao] < [h0] and [“3] < [90]. Now
[s]] 5_[a0] and [t]] 5_[ag], hence [s]] < [ho] = [h]] and [t]] < [gO]
= [g]]. This proves (3).
For (4) we see that
k
f-gihy = F-(g %o ) (h #0¥a%) by (10)

k 2
f-ghoP (059, * Ooho)'p kco°ﬁ

K %
= p (ry=089,-0,14)-P "0 by (d)

p?r by (17).

We still must show that ri e Z[x]. Since to"o = 945 (mod(pk,go)z[x]),

_ k , -
and. Sy = d¥ (mod p”,h )Z[x1), from (9) it follows t r =
k ~ k P ,
959, +p b0 t o, and Sofo = qgho +p bg +~0§= where qo,qgj%fbg e Z[x].
Then :
f-g;hy = pk(ro"c’::;go"ooho)

Y

k
P [ro'(soro'qgho)go'(toro—qogo)ho]
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it

k
p Lr (1-s,9,-t h,) + (q +a&)h g ]

i

pk[ro(-pkuo) + (qo+qg)(f-pkro)]

p(a rar)f (mod p™z[x]).

t

Since q, + qg e Z[x] and [f-g]h]] < [f], we can apply Lemma 2.6 to
get that f-g;h, = 0 (mod kaZ[x]). Hence ry e Z[x].
Finally we prove (5). By (10) and (16),

k
o
0

k

k Ko i
5107 *+ tyhy=1 = (sg#p m ) (ggp o ) + (LorpimE) (h+pog)-T

. _ k . % *
Sodp F thy 1 + P (So°o+to°o+”ogo+"oho)

Zk(ﬂ g Frn¥o¥)

+
P 00 0O

k
= +S o +t o*+r-q_+n*h
p (uo 0% %% "o o o)

+ pPK(n o #n%o%) by (e)

Zk(

pk(-L +r_g +r*h ) + p

*
o 0% "0'o "o°o+“ocz) by (11)

p2ku] by (18).

Now we need only show that u; e Z[x]. By (12) and (15), there are

. k
polynomials G_,G%, HooH% € Z[x] such that LoSo = GohO +pH, oy and

k
= (% * *
Loto Gogo +p H0 + - Then

_ .k %
5191 * t]h]—] = p (-Lo+n0go+n0ho)
_k
=P ['Lo * (Loso'Goho)go + (Loto'G’Sgo)ho:I

k
P [’Lo(1'Sogo'toho)“(GoJr@S)goho:I

i
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pKL-L (-pFu_)- (B, +6%) (F-pr )]

-pK(6+6%)f (mod p*¥Z[x]).

Again we can apply Lemma 2.6 since [s]g]+t]h]—1] < [f] and

171

(Go+63) e Z[x]. Thus 5197 +t h,-1 = 0 (mod p2kZ[x]) and uj e Z[x1. 7/

A Took at this theorem shows that it is just a constructive
form of Hensel's lemma with K = Qp and ¢ = ¢p' We are guaranteed that
the sequences {gk} and {hk} converge in Qp[x]. At times we are lucky
and this form of Hensel's lemma leads to a solution in the integers,
but the method need not converge in the integers. We can always start
the algorithm modulo p unless f(x) is irreducible. If f(x) is
reducible, Theorem 2.3 says that f(x) can be factored modulo p. Now
these factors can be chosen so that they are relatively prime modulo
p. One problem is that there may be more than one way to choose go(x)
and ho(x) so that they are relatively prime. For the method to have
a chance to converge in the rational integers, we must pick go(x) and
ho(x) so that they have the same degree as factors of f(x) in Z[x].

61 3x04x +7x3-3x%45x-5. f(x)

can be factored modulo 2Z[x] into go(x) = x3+x+1 and ho(x) = x3+x2+],

As an example, consider f(x) = x

which are relatively prime modulo 2. We can find so(x) and to(x) by

. 2 2 _
solving the congruence 9o(x)(alx +b]x+c]) + ho(x)(azx +b2x+c2) = 1]
(mod 2Z[x]) for a],b1,c],a2,b2,c2. We find so(x) = x and to(x) = x+1.
A simple calculation gives ro = x5+2x3-2x2+2x-3 and Ug = x4+x3+x2+x.

The computation proceeds as follows:
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Lo = x6+x5+2x4—x-3 =] (mod(2,x3+x+1)2[x])

So¥o = x6+2x4-2x3+2x2-3x = x2 (mod(Z,x3+x2+1)Z[x])
So

2 3 3.2
= * = = * =

do 1, dO X, ¢0 X “+x+3 and ¢0 x“+3x + 1.
Now

x3+x+3 z x3+x—1 {mod ZZZ[x]), x3+3x2+1 = x3-x2+1 (mod ZZZ[x])
S0

g9 = x3+x—1, h] = x3-x2+1, By = -1, Bg = —xz, g = -1,

_ A4

o* = ~-x~ and LO = ~X .

Loso = -x5 = x+] (mod(2,x3+x2+1)2[x])

Loto =z 1 (mod(2,x3+x+1)Z[x]).
Thus

= = = * =

PO x+1, Pg 1, % 3x+2 and o8 x+3.

oy = 3x+2 = -x+2 (mod ZZZ[x]) and ag =z x+3 = x-1 (mod 222[x])
SO

$1 = -x+2, t] = x-1, Yo = "X wg = -1, Ty = ~x+1, ﬂg = -1,
ry = x5+2x3—x2+x-1 and uy = x-1.

Since y # 0 we use the algorithm again.

tyry = x8-xB+2xt-3x3+2x%-2x+1 = 0 (mod(22 ,x3+x-1)2[x1)

syry = xBeox0oxti5x3-3x43x-2 = X241 (mod(22,x°-x2+1)Z[x]).
So

d =0, d¥ = x°+1, oy = x+x-1 and ¢ = x>+3x35.
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3 3 3

x+x-1 = x +x-1 (mod 24Z[x]5 and x3++3x +5 = x7+3x+5 (mod 24Z[x])

Hi

SO

_ .3 U3 - - -
gp = X +x-1, h2 = X“+3x+5, By = 0, BT =0, oy = 0,

c? = x2+1 and L] = —x3+x2-2x+2.

L]s] = x4—3x3+4x2—6x+4 =z 2x2+x+2 (mod(24,x3—x2+1)2[x])
L]t] = -x4+2x3-3x2+4x—2 = 2x2+x (mod(24,x3+x—1)Z[x]).
Thus
_ 2 _ 2 _ 2 _ 2
P] = 2Xx +x+2, PT = 2X+X, ay = 8x"+3x+10 and u? = 8x"+bx-1.
8x2+3x+10 = 8x%+3x-6 (mod 2%7[x1)
and
8x245x-1 = 8x245x-1 (mod 2%Z[x]),
)

s, = 8x2+3x-6, t, = 8x°45x-1, b= v = 0, m = 2x2+x-2,

2+5).

¥ = 2x2+2 and ry, = 0. Therefore f(x) = (x3+x-])(x3+3x
We can modify this method so that we will always get a solution
over the integers provided f(x) is reducible over the integers. The
goal is to find a constant M such that, if g(x) = x4 Ti1 bixi
' i=0
is a factor of the monic polynomial f(x), then lbi] < M for each i.
If we can find such an M, then for any prime p we find r such that

pr > 2M. Using Hensel's Temma, we factor f(x) modulo p’, say

=3

g:(x) (mod p"z[x]). Then g(x) =

9 1 g.(x) (mod p"Z[x])
1

"

= =~

f(x) =
;

for some subset {n],...,nt} of {1,...,k}. Since g{x) is reduced
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modulo pr, the problem of factorization is reduced to seeing which
products of the irreducible factors of f(x) modulo prZ[x], when
reduced modulo p', actually divide f(x) in Z[x]. Theorem 2.13
provides us with an appropriate M, but first we need a few lemmas.
For convenience, let

aix1 e C[x].
0

N~

e = 3 1oy D)2, where £(x) =
1=0 1

n N
Lemma 2.8: Llet f(x) = ) a1.x1 e C[x] and o € C with o # 0.
i=0
If g(x) = (x + «)f(x) and h(x) = (x + E"J)f(x), where o denotes the
complex conjugate of «, then ||g|| = |a]]|[h]].
n+l 5 n+l o1 i
Proof: g(x) = § (a; ; +aa;)x and h(x) = J (a;_ ;o a;)x
——— TR Y i L VT-T
i=0 i=0
where a_; =a .4 = 0.
So
5 n+1 2
all™ = 1 laj_q t+ ea;|
i%o i-1 i
n+1
= 1 (a4 *oay)ay y + oay)
i=0
n+1 :
2 — — - 2 2
iZo(lai_ll +oa;_qa; *toag_43; * [o] !ail ).
n+1 n+1
mso  Jal?iInl1Z = Jaf® T Ja,q + 3 %= T faay g+ o 1 a,?
i=o ! i=o " !

n+l 1 —
1.Zo(ctai_] + aa aj)(aai_] + oo ai)

nt+l — _ -
Zo(aai'] + aa ai)(aai-l + aa ai)

i}

1
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ntl
2 2 — —_— 2
= _Zo(lalla1_1| toay g2y +eag eyt ag]n).
'I=

Each term in this sum is also in the sum for Ilgllz.

So we have ||g||% = Ja|?[|n]|% and |lg]] = |a||ln]]. //

Lemma 2.9: Let g],gz,...,gn be complex numbers such that

0 < IE]I A f.lqu <1 §_|£q+]l AR j_l&nl for some q > 0. Put

n
(x-E71)I0 1 (x-£,)] then
i=q+]

] ee Jhee |

f(x) =

.i

q
(x-g;) and g(x) = [ T
i=1

1

q
HFt = (o fe D1l
i=1

Proof: We proceed by induction on q. For q = 0 we have

f(x) = g(x), so the conclusion holds. Now assume q > 0, and set

pr(x) = S and gx() = L2 then [1£]] = |1 (x-g)) F5(x)] |
1 X=Ey
= IE]IH(X"E{] )f*(X)H = lg'lHaz ce gql,(x—-g‘l-] )g*(X)H using
Lemma 2.8, our induction hypothesis and the fact that fE'] | = Ig]|"]zj.
—-] q
Now (x-£y " )g*(x) = g(x) so we have ||f|] = ( mlgDIlgll. 7/

1

n . n
Lemma 2.10: Let f(x) = ) aix1 =a T (x-gi) e C[x] and
=0 i=1

[Eq] < = i_liql <1 §_l€q+]l < v+ < |g, | for some q > 0. Then

2 2 2 2 -2
EHT 2 JapTlequy ree gql™ + lagl legyq «om g0l




———

46
a a9, " L i
Proof: Let g(x) = a, 1 (x—gi ) @ (x-ai) = ) bix .
- k=1 j=q+1 i=o
First assume that ¢; # 0, then by Lemma 2.9 [f]] = [g] oo gq[l[gl[.
2 _ d 2 2., 12
Hence [[f[]" = IE] i qu(izolbil ) > IE] gql Ibol
2 2
+ lg] e gql Ibnl .
Now
byl = la (1 BTN T g,
=la (10 g, I €,
° =1 71 i=qr1
SO -
2 2 2 2
Ig'l E’ql Ibol = Ianl !£q+] Enl .
Also
n
lagl = la, 121 £;] and b, =2,
Thus
2 2 2
|£'l ¢ gql |bn| IE'I A qu lan|
2 2 -2 2 -2
= |g gql lagl™ley = g 17" = Hag | legy gl "
Hence
2 2 2 2 -2
HEHT + o T legyy oo gq 1™ + HapTlegyy oo g1

Now suppose that g, = g, = «»» = £ =0, while 0 < |£m+]l,

with m < q. Then a = 0 and we need only show. that |If]|2 3_|an]2|£

g+1
2. £/ | and [ [£00/5" ] > (2,18 2

< But ||f||

n q+1- "’ n

+ [amlzlgq+] e gn[—z by the first part of our proof. Hence

F1L 2 faPlegsy - €ql®e 77
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e3>
o3}
—to
x
i
QU
[ = ]

Corollary 2.17: Let f(x) =

1
with [gy] < -eor < gl <V < [ggql < ooe < [g| for some q > 0.

n
Then [a | 1 |g;| < |If]].
i=q+]

i
a:x = a
o | n

Lemma 2.12: Let f(x) =

. (X"Ei) e C[x] with
i

==

I~13

1
lggl <« ﬁ_liql <1 j_[€q+]l <+« < |g,| for some q > 0. Then

laif j_(?)lé ce- &nl]an! for i = 0,1,...,n

q+1
and

n n
1§0|a1| <2 Eyy anllanl-;

Proof: Let o,7 ¢ S, and say ¢ =5t provided {o(i): i=1,...,j}
= {1(i): i=1,...,3}. This defines an equivalence relation on Sp-
Put Sn j equal to the set of equivalence classes with respect to this

equivalence relation. Note that S, j has (g) elements and

-1 j j
= (0 Ln ey Tenlagl = all 3 el

UESn,J- -i ] Esn,j 1=

all Y1 e = fa ()] |

< la l 1 £E.| = la L) {E see E .

Z 19, . i n'tj’legtl n
ceSn’j i=q+1

Also

n n n n n

1Zola1l 5120(1)15(«]‘“ e gnllanl - Ianll€q+] fet gn{'r—zo(])
= oh |
= 2 l€q+-| e gnHanl_ //
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Theorem 2.13: Let f(x) e Z[x] with f(x) = g](x)---gk(x),

m. .
where each gi(x) e Z[x]. If [f] = n and gi(x) = 21 bi jx], then
j=o0

k ™ n
1 (Y by 5D < 21|
i=1 j=o
and
m; : .
Ibi,jl f-(j Y| |f]| for each i and j.
Proof: If i 177985 . 3re the roots of gi(x) for i = 1,...,k,
H] ’.i
m,
then g.(x) = b, T (x-£, .). Suppose |&, 1] < ++» < |&s | <1
i LELY i,J i,1 1,q;
f‘lgi,qi+]l < e f.|€i,mil with q; > 0, then by Lemma 2.22
Dby gl <2 b |
b: | <2 "g. cer E. o b. .
=0 1,3 1’qi+] Tom, ' ,my
Now if
k k m,
a = T b, ,then f(x) =a 1T 1 (x-&; .)
A B Ni=1 gm0 T
k
So zm
i By gl 2 2 oyl =270
I b, < I 2 '|&, £ |b; = 2 I
j=1 j2o 120 T AL TTLm L, j=1
byl T Iyl
b i E. -
i,m, j=q,+1 i,J
n K My n
=2%a | M1 g | < 27|If]| by Corollary 2.11.
i=1 j=q;+1 »J

To prove the second inequality we use Lemma 2.12 and Corollary
2.11 to get

m, m, k m,
- > . 'y LA 4 . b . 0 H
il < )l€1,q1+1 E"mill 1’m1| <4 )la”|1=1 .41
1

|b
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m.
leg 51 < GOUFIL 77

If we let k be the greatest integer in n/2, then we have

|b, jl 5_(2)|lf[| for each 1,j. Therefore a suitable constant would

be M = (E)llfll. Zassenhaus (1969) uses as a bound on the roots of

f(x) the number ¢f = { max [Iail/(?)]]/i}/("/§ - 1), and notes that
1<i<n

m .
| < ( )(2f)3. Another bound for the roots of f(x) is

i
by 51 = {5

A = max lail + 1 (Mignotte, 1974). Mignotte, however, claims that
1<i<n

the bound provided by Theorem 2.13 is the best in general.
For completeness, I now include Kronecker's method of
factorization, as it was the first finite method. Let f(x) e Z[x]

and suppose [f] = n. If f(x) has a factor g(x) in Z[x], say f(x) =

g(x)h(x), then either [g] 5_%—or [h] 5_%—. So to test for divisors of

f(x), we need only check for polynomials of degree less than or

equal to %w Let m be the greatest integer in g—, and pick

Qg a0y 7 e e+ 20 distinct elements of Z. Calculate f(ui) for each 1.

If g(x)|f(x), then g(ai)lf(ui) for each i. Pick one set of integers
bo’bl""’bm such that bi]f(“i) for each i. Let
)

b_‘ (X"OLO) (X"O{..I )-.- . (X*O{._i__.I )(X-—o(,_i_l__] ) cese (X"OL

Tagmagl - Tagay g agragyg)ee-log-oy)

m

m
g(x) =
i=o0

then g(ai)]f(ai) for each i since g(ai) = bi' Also g(x) is the only
polynomial of degree less than or equal tom such that g(ai) = bi
for each i. (If there was another, then their difference would have

mt+1 distinct roots which cannot be.) For each set bo’bl""’bm’

—— e r———— ———— "
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there is a unique polynomial g(x). Hence a divisor of f(x) must be
selected from one of these. Since there are only a finite number of

choices for bo""’bm’ this is a finite method of factorization.




CHAPTER III
CALCULATION OF THE GALOIS GROUP

A. Early Methods
The purpose of this section is to present two of the first
methods of calculating the Galois group of a polynomial over the
rational numbers. The first method involves the calculation of a
polynoﬁia] called the Galois resolvent. We will let 1 denote the
identity permutation.

n
Let f(x) e Z[x] with f(x) =a T (x—gi), where each S C
i=1

and £ # gj ifi#j. Llet G(x1,...,xn)

n
put Go(x1,...,xn) = 121 Es(i)%" We pick ¢q,....c e Z such that

Gg(c],...fcn) # Gp(c],...,cn) ifo#p. Putt = GG(C]""’Cn) for
each ¢ ¢ S, and F(x) = 1 (x—to). By the theory of symmetric

GsSn

functions, F(x) ¢ Z[x]. Factor F(x) in Z[x] so that F(x)

Fr(x), where F](tl) = 0., Note that if F(x) is irreducible, then
Fq(x)
Fi(x)

F(x). F](x) is called the Galois resolvent of f(x). Write

i (x—to), where G is the set of permutations from Sn from
oel

which F1(x) is derived. We will see that G is actually the Galois

group of f(x).

Lemma 3.1: Each root of f(x) can be written as a polynomial

in t ,
51

n
= } €.x,. Foreachoe Sy

F](X) cee
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Proof: For this discussion recall that we may think of
elements of Sn as either a permutation of the numbers 1,2,...,n or
as a permutation of the roots of f(x). So, with this convention,
O(Ei) and £5(1) will have the same meaning. This notion can be
extended to all rational functions of the £ wé will identify
o(h(g],...,gn)) with h(go(]),...,gc(n)), where h is a rational
function over the rational numbers.

Let g4 be any root of f(x), and et Oys---50, be the
permutations in S, such that Ui(]) = 1 for each i. Put

a1t1. Each a5 € Q(g]) since they are the
0

H(t) =

T (et ) =
1

1 i i

e~-3

n= s

elementary symmetric functions of the roots of gg%l-e (Q(g]))[x].
1
Thus each a; can be expressed as a polynomial in & with coefficients
n i
in Q, say a; = pi(g]) where pi(x) e Q[x]. Now H(t) = _2 pi(E])t .
i=0

m .
Let S(x) = .Z pi(x)tl; then S(s]) = H(t1) = 0.
j=0

If j > 1, we have S(gj) # 0. To see this, let Py = (1 j)ci

and compute o(a;) = o(p;(gq)) = p1(£0(1)) = pi(aj) where o = (1 j).
1 1 1
Also o, = kzo t“kt°1-k and so o(ai) = kzo t°0kt“01-k = kzo t“kt°1-k'
m m i i
Let H](t) = iE1(t-tgi) = 120 Bst', where 8. = kzo tpktpi-k = o(ai)

= pi(gj). Finally S(gj) = Hl(t1) # 0 since 1 ¢ {p],...,pm}. For if

U= o then 1 = (1 j)oi and o, = (1 j) which does not hold 1 fixed.
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Both f(x) and S(x) have their coefficients in Q(tl), S0 we
can find the greatest common divisor of f(x) and S{x) in (Q(tl))[x].
If they are relatively prime, then there are polynomials h(x),g(x) ¢
(Q(tl))[x] such that 1 = h{x)f(x) + g(x)S(x). But then 1 = h(g])
f(g)) + g(gq)S(gq) = 0. Thus f(x) and S(x) cannot be relatively
prime. Because they share only one root, the greatest common divisor
must be x - £y This implies that £y € Q(tl), and hence a polynomial
int. //

1

Corollary 3.2: 1If t is a root of F(x), then tO is a

rational function of tl.

Proof: Each t0 is a rational function of the gi, and each

gl

j is a polynomial in tl. Therefore each td can be expressed as a

rational function of tl. //

Theorem 3.3: G = G(f,Q).
Let K be the splitting field of f(x) over Q and suppose o ¢ G.
If ue Q, then Tet o(u) = u. If u e K-Q, then u = g(g],...,gn),

where g(x],...,xn) € Q(x],...,xn), and we will put o(u) = g(gg(]),...,

go(n))'
First we must show that G is a group. Let o,p € G. By

Corollary 3.2.t = g(t ), where g(x) e Q(x). Nowo(t ) =1t =

o]0}
g(tp). Let H(x) = F](g(x)); then H(tl) = 0. But F](x) is irreducible,
S0 F]IH and H(tp) = 0, H(tp) =|ﬂ(g(tp)) =F](tpc), thUS'pG e G and

G is a group.

B R I T
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We now show that the fixed field of G is Q. Let u € K such
that o(u) = u for all o € G. Since u e K, there is h(x],w..,xn) £
Q(x1,...,xn) with u = h(g1,...,£n). We use Lemma 3.1 to find
gi(x) e Q(x) such that g5 = gi(tl) for i = 1,2,...,n. Then

u = h(g1(t1),...,g (tl)) = T(tl) for some T(x) ¢ Q(x). Now

n
u=o(u) = T(t01) = T(tc) for each ¢ ¢ G. Let G = {o],...,cm}.

Then u = %{T(tO ) + T(tg )+ oeee T(tg )] which is a symmetric
1 2 m

function of the roots of F](x) and hence in Q. Therefore u € Q and
Q is the fixed field of G. By Theorem 1.3 |G| = [K:Q] = [G(f,Q)].
Also G C G(f,Q) so that G = G(f,Q). //

Using the Galois resolvent is a method of finding the Galois
group of an equation over the rational numbers in a finite number of
steps, but the calculations required are formidable if n is large.
First we need to find the roots of the equation. Next, to find
CpseeesCps WE must check‘ﬂiigiill equations of the form Gc(x1,...,xn)
= Gp(x1,...,xn). Finally we must factor F(x), where the degree of
F(x) is n!. In general this is unreasonable for n > 4.

Theorem 1.11 gives us an alternative to using the Galois
resolvent. Let g(g],...,gn) be a rational function of the roots of
f(x) with coefficients in Q, where f(x) e Q[x]. Let u = g(g],...,gn).
If u e Q, then o(u) = u for each ¢ ¢ G(f,Q). So to see that a
permutation ¢ is not in G(f,Q), we only need to find a g(g],...,gn) e Q
such that g(gc(]),...,gc(n)) £ Q. Also if g(g],...,gn) £ Q, then at

least one of the permutations o such that 9(50(])""’€o(n)) #




g(gq,-..58,) 1s in G(f.Q).

As an example, consider the polynomial f(x) = x + x“ -~ 6.

4 2

f(x) has roots £y = /2, gy = -/2, Eg = /3 and &y = -/3. 1 + 6y =0
and g5 + £, =0, but g, + &5 #0, 54 +&, #0, & +&5 #0 and

Er + &y # 0. Since £ g, = 0, while g] + £3 # 0, the permutation

(2 3) cannot be in G(f,Q). Similar observations with the remaining
relations eliminate all of the permutations of 54 except v, (1 2), °
(34), (]'2)(3 4), (1 32 4) and (1 4 3 2). Also if K is the splitting
field of f(x) over Q, then K = Q(v2,v3) = Q(vZ + ¥3) and /2 + /3 has
x4—10x2—35 for a minimal polynomial over Q. Hence [K:Q] = 4 and

G(f,Q) = {13(] 2)9(3 4’)9(-l 2)(3 4)} or G(fsQ) = {13(] 32 4)3(] 4 2 3)9
(1 2)(3 4)}. These are isomorphic, and so we have calculated G(f,Q).

B. Method of Zassenhaus
Another method, which is a bit more practical, involves

calculating G(f,Q) by finding the subgroups of Sn which contain G(f,Q).

Definition: Let F(x 2Xp) € Z[Xy,..x T and GCS .

12+ 2%,

F belongs to G provided F(x],...,xn) = F(xc(]),...,xc(])) if and

only if o ¢ G.

Theorem 3.4: If G S;Sn, then there is F(Xl""’xn) >

Z[x],...,xn] such that F belongs to G.

X AN |
Proof: Let H(x],...,xn) = XXy X and F(x],...,x

) =

n
) H(xc(]),...,xo(n)). If p € G,then F(xp(]),...,xp(n)) =

oel

Y H(xpo(]),...,xpc(n)) = ) H(xc(]),...,xc(n)) = F(x],...,xn). If

cel
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o ¢ G, then the sum ) H(xpg(]),...,x ) contains the term

oe pd(n)
H(xp(1),...,xp(n)) since the identity is in G. But this term is not
in the original sum because p ¢ G. Hence F(xp(]),...,xp(n)) #

F(x],...,xn). //

Definition: Let G,H be subgroups of Sn. F(x],...,xn) >

Z[x],...,xn] belongs to G in H provided for every o ¢ H,

F(x],...,xn) = F(x0(1),...,xo(n)) if and only if o € G.

Definition: Let G,H be subgroups of Sn’ and suppose

F(x],...,xn) belongs to G in H. If GCH and O a0y is a

representative set for the righi cosets of G in H, then

m
R(x) = 1z][x—F(xoi(]),...,xoi(n))] is the resolvent polynomial of

G in H corresponding to F. If f(x) ¢ Z[x] and f(x) = a (X'Ei)’

| e e
—_—

i

then the resolvent polynomials of G in H corresponding to F for f(x)

m
is R(x) = 1.£1I:x—F(€0r1_(]),...,501_(,]))].

Theorem 3.5: Let f(x) = a (x-gi) e Z[x] be irreducible

n=s
—_—

i
over Z and H a transitive subgroup of Sn. Suppose aliso that G is a
subgroup of H and F(x],...,xn) js a polynomial in n variables which
belongs to G in H, with F(g1,...,gn) not a repeated root of the
resolvent polynomial of G in H corresponding to F for f(x). Then

G(f,Q) € G if and only if F(E],...,En) e Z.
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Proof: First we note that R(x) = =«

1 [x—F(£01(1)""’Eci(n))]

1
e Z[x]. The coefficients are products and sums of the F(gci(]),...,
Eoi(n))’ which are products and sums of g],...,gn, which are algebraic
integers. To see that the coefficients are in Q, let o ¢ G(f,Q).
Then 005+ +500, forms a representative set for the right cosets of
G in H. Hence the coefficients of R(x) are left fixed by the elements
of G(f,Q) and R(x) ¢ Q[x]. Thus the coefficients of R(x) are both
algebraic integers and rational numbers, and hence they are rational
integers.

Now suppose that G(f,Q) € G. Then for each o ¢ G(f,Q),
o(F(gq5..058,)) = F(Eo(]),...,go(n)) = F(gq5...5€,) since o ¢ G.
So F(g],...,gn) e Q because Q is the fixed field of G(f,Q). But
F(ET""’En) is an algebraic integer and so a rational integer.

Finally, let F(g],...,g

n) € Q. Then F(Ec(l),...,gg(n))

= F(g],...,gn) for each o ¢ G(f,Q). This implies that ¢ ¢ G since
F(g1,...,gn) is not a repeated root of R(x). Hence G(f,Q) CG. //

n
Corollary 3.6: Let f(x) = a I

(x-gi) e Z[x] be irreducible
i=1

over Z and H a transitive subgroup of Sn’ Suppose also that G is a

subgroup of H and F(x],...,xn) is a polynomial in n variables over

the integers belonging to G in H. If R(x) =

n= 3
—

i i
is the resolvent polynomial of G in H corresponding to F for f(x),
then G(f,Q) CG (for some arrangement of the roots of f(x)) if and

only if F(gc.(]),...,gc_(n)) e Z for some i, provided °
i i

[X-F(gc-(])""’gci(n))]
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F(gci(]),...,ggi(n)) is not a repeated root of R(x).
Proof: If G(f,Q) CG, then Theorem 3.5 says that F(g],...,gn)
e Z, provided F(g],...,gn) is not a repeated root of R(x). Now

suppose that F(gc_(1),...,g

(n)) e Z is not a repeated root of R(x).
i

94

Then for each o e G(f,Q), F(g_ (1)""’500.(n)) = Fle, (1)""’gc.(n))'
i

o .
1 1 1
1

So o F belongs to o 607 in H and G(f,Q) C o;607 . If we reorder the

roots of f(x) so that ay = goi(j) for j = 1,...,n, then

n
f(x) =a I (x-ai) and G(f,Q) CG. //
i=1
n
Definition: Let f(x) = I (x~gi), then the number
- =1
D(f) = & (g]-—gj)2 is called the discriminant of f(x).

i<j

An important consequence of Theorem 3.5 is the following:

Theorem 3.7: Let f(x) ¢ Z[x]. Then G(f,Q)Q;An if and only
if ¥D(f) ¢ Z, where An is the alternating group of degree n.

Proof: Let F(x],...,x ) = 1 (x;-x;); then F belongs to A

- n i<j 1 J n
in Sn. For if ¢ is a transposition in Sn, say o = (k m) where k < m,

then F(Xo(]),..-,xc(n)) = 'H_(XO(i)-XO(j)) = (Xo(k)'xo(m))

i<

I (x;-x.) = - 1 N c=Xs)

i<j i XJ) (Xm Xk) i<j (x1 X;3) 1Ej(x1 XJ)
(i,3)#(k,m) (1,3)#(k,m)

Thus if p e S, then F(xp(1),...,xp(n)) = F(x],...,xn) if and only if

o can be written as an even number of permutations.
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Now let R(x) = [x—F(g],...,gn)][x—F(gG(]),...,Ec(n))] where
o £ A . By Theorem 3.5, G(f,Q) C An if and only if F(g] ,...,gn) e Z,
that is /D(f) ¢ Z. //

Corollary 3.6 and Theorem 3.7 give us an important method
of calculating the Galois group of an irreducible polynomial, and
this method is a definite improvement on the use of the Galois
resolvent. Here is a summary of the method. First we calculate the
roots and discriminant of f(x). Next we find a maximal transitive
subgroup H of Sn’ where n = [f]. Theorem 3.4 guarantees that we can
find a function F which belongs to H in Sn. Actually, F can be
constructed so that the resolvent R(x) has no repeated roots. We test
R(x) for integer roots, If there are none, then we find a new maximal
subgroup to work with. If no maximal transitive subgroup has a re-
solvent with an integer root, then G(f,Q) = Sn. Now suppose that the
resolvent computed for H has an integer root. If o(F) is that root,
then we rearrange the roots of f(x) by letting a; = gc(i). According
to Corollary 3.6, with this root arrangement, we must have G(f,Q) CH.
Next we find a maximal transitive subgroup H] of H and a function F]
belonging to H, in H. We test to see if G(f,Q) g;H]. This process
is terminated when either we reach a minimal transitive subgroup of Sn
(which then must be G(f,Q)), or we have G(f,Q) g;Hk and there is no
maximal transitive subgroup Hypq of Hy such that G(f,Q) g:Hk+].

In this case G(f,Q) = H Of course the method is accelerated by

K
knowledge of the discriminant of f(x). If D(f) is a perfect square,

then by Theorem 3.7 we need only search in An for G(f,Q). If not,

T TSRSt OGS ST T E aw e o et

e a—————  ——— =
b
————

e
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then we may omit from our technique all subgroups of An' The main
difficulties of this method come from the need to know, with a great
deal of accuracy, what the roois of f(x) are; the fact that we must
somehow come up with all of the transitive subgroups in Sn; and the
calculation of suitable functions F. The latter two problems have
been solved in part by Stauduhar (1973) who has produced tables for
this purpose. (See appendix.) Figure 1 indicates ihe order in which
we sé]ect our maximal transitive subgroups, while Table 1 describes
the groups listed in Figure 1 and exhibits an appropriate function F.
For that function F, we use the right coset representatives listed

in Table 2. If the function given in Table 1 gives rise to repeated
roots in the integers, then we can use Table 2 to construct our

own resolvent, We must find, on our own, a function belonging to G
in H, then Table 2 gives us the right coset representatives which we
use to calculate the resolvent. Zassenhaus (1971) also suggests a
particular function that we may use. If GCH and K is the splitting
field of f(x), then set try(o) = ) (a)., Ifas= h(EqseeesEp)s

oeB
where the Ei are the roots of f(x), then by o(a) we mean
h(EO(]),---,EG(n)). By the selection of a suitable a, trG(a) belongs

_to G in H. Observe that if o = &e5 -+- €1,

then trG(a) yields the
same function as given in Theorem 3.4.

Notice that in Corollary 3.6 we must have that f(x) is
irreducible. However, we may still apply this method to any polynomial
over the rationals by using Corollary 1.18. HWe factor the given -

polynomial over the integers and apply the method to each factor.
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Then the Galois group must be a subgroup of the product of the groups
of the factors. The following example of the method of Corollary 3.6

is due to Stauduhar (1973).

4 2

Let f(x) = x6-42x +80x3+44]x -1680x+4516. The roots of f(x)

are g, = 4.392-1.5701, ¢, = E}, a3='-5.490-.7801, &g = Eé, &5 =
1.098-2.3551 and g4 = Eé and f(x) is irreducible over the integers.
Also a routine calculation shows that D(f) < 0 and hence not a

perfect square.

We now refer to Figure 1 to see that a maximal transitive
subgroup of S6 is G72. (The subscript denotes the order of the group.)
Table 2 gives as right coset representatives 1, (2 54 3),(2 3'6)(4 5),
(25436),(25)(34),(2453),(25),(2345),(245 36) and
(364 5); and Table 1 suggests the use of F1(x1,...,x6) = XyXoXg +

X XpXe - e use this information to calculate R](x) = x]O + 80x9 -

59166x8 - 4390320x7 + ]200615393x6 + 88076918880x5 - 7198940057856x4

- 388801984512000x3 + 20]93311991398400x2 + 595967000182784000x -

4689149328097280000. R](x) has a root -80 corresponding to the coset
representative (2 3 6)(4 5). By letting A = sty = £z, 03 = &g,
ag = &g, ap = &y and ag = £, We have, according to Corollary 3.6,
6(£,Q) C 6,

Figure 1 now implies that we should use either Ggs or 6;6‘
so by Theorem 3.7 6(f,Q) € Gyc. Table 2 yields right

2 . .
3 n G72. Table 1 gives us

1
But G C Ag >

coset representatives 1 and (5 6) for G
the function Fz(x],...,x6) = (x]—x2)(x2—x3)(x3—x])(x4-x5)(x5-x6)(x6~x4),
(x+137376)(x-137376).  Thus 6(f,Q) C Gag.

H]

and the resolvent is Rz(x)
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2
Now 636

G(f,Q) C G18’ we note that G%G contains two isomorphic copies of G18

has two maximal transitive subgroups. To see if

which are conjugate in G72, but not in G§6. So either we test both

of these, or we test one as a subgroup of G72. For the latter choice
we use the coset representatives 1, (1 2)(4 5),(56),(1 2)(4 6 5) given
in Table 2 and compute R3(x) = (x + 3601)(x - 360i)(x + 648)(x - 648),

so that R3(x) has a root corresponding to the coset representative

mw:mag@aﬂg'v e R g g iR T R e
N wnece = mecmnma s

(56). If we let B] = a, 82 = ans 83 = ag, 84 = ags 85 = g and
Bg = og then G(f,Q) < G'l8'

G18 has two maximal transitive subgroups Gé and Gg. For

1
6’

and the function F4(x],...,x6) = XgXg + XoXg T XgXg. Then R4(x) =

G., we use the right coset representatives 1, (12 3) and (1 3 2),

<3 - 1323x + 7722 = (x - 33)(x - 6)(x + 39). Hence G(f,Q) C 6.,

and since Gé is a minimal transitive subgroup, we have that G(f,Q) =
Gé = {1,(1 23)(465),(132)(456),(14)(25)(36),(1 5)(2 6)(3 4),
(16)(24)(35)}) xS,
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CHAPTER IV
CHEBOTAREV-VAN DER WAERDEN METHOD

A. The Chebotarev Density Theorem
Definition: A finite field containing pm elemenis, where
p is a rational prime and m is a positive integer, is called a

Galois field. It is denoted by GF(p").

It is a well known fact from the theory of fields that every
finite field is a Galois field. We will use Zp to denote the field

of integers modulo p.

Theorem 4.1: The Galois group of GF(pmn) over GF(pn) is
n
a cyclic group. The automorphism o defined by o(a) = aP generates

this group.

n .n .n
Proof: GF(pmn) has characteristic p so that (a+b)P =a" +bP

n o .n.n n .n
and (ab)p =a” b . Also ¢ is 1-1 since if aP =bP , then 0 =

n n n
aP -bP? =(a-b)P . So a-b = 0 and a=b. Due to the fact that GF(p™)

is finite, 1t must be that o is onto. If a ¢ GF(p"), then apn=a

so o fixes GF(p"). Hence o is in the Galois group of GF(p™) over
GF(pn). Now 0,02,...,0T are all distinct since if 0 < j < i <m and
oi(a) = oj(a), then apn1=aan. So aan(aﬁn?"pn9-1)=O and either a=0
nj

or a has degree pn1—p For each i and j we can find a nonzero

element b in GF(pmn) whose degree is not pn1-pnj. Then 01(b)#03(b)

m

and hence 0,02,...,0 are distinct elements of G(GF(pmn):GF(pn)).
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Now [GF(pmn):GF(pn)] = m, so that, by Theorem 1.2, the Galois group
can have at most m elements. Therefore G(GF(pmn):GF(pn)) =

{0,02,...,0m}. !/

Definition: Let p be a prime in a finite extension F of Q,
and suppose p = P] ver Pk is the factorization of p into primes in
the finite extension K of F. If the Pi are distinct, then p is
unramified in K.

For the remainder of this section, p, P and B will represent
unramified primes and K,F will be finite extensions of Q. Observe
that if p e F and P ¢ K with K a finite extension of F, then IF/p
can be considered as a subfield of IKZP when Plp. Define h from
IF/p to IK/P by h(a+p) = a + P, where a ¢ I then h is a 1-1 mapping.
Indeed if h{a+p) = h(b+p), then a + P = b + P. Hence P|(a-b) and

p|(a-b) because each prime of K divides only one prime of F.

Definition: Let K be a finite extension of F,p e Fand P ¢ K
with P|p. The relative degree of P over p is the number f(P/p) =
[IK/P:IF/p]. If F = Q, then we say that P has relative degree f(P/p)

over Q.

Definition: If K is a field and U is an ideal in IK, then
the norm of U, NK(U), is the number of elements in I, /U.

It can be shown that the following properties of NK hold
(Pollard and Diamond, 1975):

(1) NK(U1U2) = NK(U1)NK(U2)’
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(2) If K is a finite extension of F and a ¢ F, then NK(a) =
NF(a)[K:F],
(3) If K is a finite extension of F and a e K, then

Nla) = 1 ola),
oeG(K:F)

(4) 1f K is a finite extension of F, p e F and p = P]"'Pk
X - _ k
in K, then NK(Pi) = NK(Pj) and NK(p) = NK(Pi) .
Definition: Let K be a finite extension of F and P e K.

The decomposition group of P is Gy = {c e G(K:F): o(P) = P}.

Theorem 4.2: Let K be a normal extension of F, p ¢ F and
P e Kwith Plp. Suppose also that L is the fixed field of Gy and
B e L with B|P. Define the mapping h from IF/p to IL/B by h(a+p)=a+B
for a ¢ IF' Then h is an isomorphism.

Proof: h is clearly a homomorphism, and if h(a+p) = h(b+p),
then B|(a-b). But a-b ¢ F, so pl(a-b) since B|p. Hence h is 1-1.

To see that h is onto let b ¢ IL. For each o ¢ G(K:F) - GP
we have o(P) # P and o'](P) #P. LetB_ e L be such that c'](P)|BO.
We use the Chinese remainder theorem to find a e IL such that

b (mod B)

]

a

a =1 (mod Bo)

]

]P);

thus o(a) = 1 (mod P) for each ¢ ¢ G(K:F)LGP. Now G(L:F) ;G(K:F)/GP

for each o ¢ G(K:F)—GP. Then a = b (mod P) and a = 1 (mod o~

so that NL(a) = ! s(a), and o runs through a set of right coset
oeG(L:F)

representatives of GP in G(K:F). Thus NL(a) = b (mod P). Also
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NL(a) e Z and hence is 1in IF. Finally NL(a) = b (mod B) since
P[(NL(a)-b) and NL(a)-b e I). Therefore h(NL(a)+p) = b+B and

h is onto. //

Lemma 4.3: Let K be a normal extension of F and p ¢ F an
unramified prime in K. If p = P]---Pk, then G(K:F) is transitive
on the Pi'

1
are relatively prime so that there exist s,t ¢ IK such that

Proof: Suppose o(P]) # P, foralloe G(K:F). P, and Pyee Py

sPy + tPZ"'Pk = 1. Now PZfNK(sP]) since NK(sP]) = i . c(sP1).
oeG(K:F)

But p]NK(sP]) since plNK(P]),and P2|p. Hence PZINK(SP), a contradiction.

Therefore G(K:F) 1is transitive on the Pi' //

Theorem 4.4: Let K be a normal extension of F and p ¢ F an
unramified prime in K. If P ¢ K with P|p, then Gp ;:G(IK/P:IF/p).

Proof: If ¢ ¢ GP, define o' on IK/P by ¢'(at+P) = o(a) + P
for a ¢ IK. It is easy to see that o' is a homomorhpism. Also if
o'(a+P) = o' (b+P), then o(a) + P = o(b) + P and P|oc(a-b). Hence
o(a-b) = a-b since o ¢ GP and P|(a-b). Thus o' is an isomorphism.
To see that o' fixes I/p, let a + P ¢ I/p. Then o' (a+P) = o(a)+P
= a + P. Therefore ¢' ¢ G(IK/P: IF/p).

Define the mapping h on GP by h(¢) = ¢". h is clearly a

homomorphism. If h(c)(a+P) = a + P for each a ¢ IK, then o(a) = a
for each a ¢ IK and o is the identity automorphism. This shows that

h i{s 1-1,
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To see that h is onto we show that IG(IK/P: IF/p)I = |6

Let L be the fixed field of GP and B e L with P|B. Lemma 4.3 implies

that P is the only prime in K such that P[B. For if P]IB, then there

Thus P] = P. Now

B) = qm and NK(P) = q

is ¢ ¢ G(K:L) = G, such that o(P) =P

P 1°
NL(B)[K:L:I = NK(B) = NK(P). Suppose that NL( n
mLK:L] _ qn

for some rational prime q. Then q so that %—= [K:L].

Aso [I,/pP: 1,/8] = % and by Theorem 4.2 [I,/P: 1 /B] =
[14/P:1c/p]. Thus [G(L/P: Ip/p)| = [1,/P: To/p] = o= [K:L] = |Gy ].
//

Theorem 4.1 imp]ies(tgat G(IK/P: IF/p) is cyclic and generated
Nelp
by oﬁ where oé(a +P) =a F + P( Use the isomorphism of Theorem 4.4
‘N-(p)
F

to find op € GP. Then oP(a) = a (mod P) for each a e IK.

Definition: 9p is called the Frobenius automorphism of P.

We will use both 9p and (E%E) to represent the Frobenius automorphism.
Suppoée K is a normal extension of F, p ¢ F, P ¢ K with P|p
and 9p is the Frobenius automorphism of P. If P] is anotlher prime

divisor of p in K, then there is t ¢ G(K:F) such that =(P) = P

.
If n= NF(p), then oP(a) = a" (mod P) for each a ¢ Iy So OP(TTl(a)) =
("M(a)™ = <1 (@") (mod P). Thus 7oyt (a) = a" (mod ©(P)).
Hence the Frobenius automorphism of Py is op = topt  and .-

1

p] and op are conjugate.

(o

s e A .

- Bc i
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Definition: Let K be a normal extension of F and p a prime

K/F

5 ), is the conjugary

in F, unramified in K. The Artin symbol at p,(

class of the Frobenius automorphisms of the primes in K which divide p.

Observe that if G(K:F) is abelian, then the Artin symbol

consists of a single element. So for a prime p ¢ F and P|p, we have

K/Fy _ (K/F
(M) = (KEy.

Definition: Let K be a finite extension of F and p a prime
in F, If p has just one prime divisor in K, then p is said to be

undecomposed in K.

Definition: The centralizer of an element o in a group G is

the subgroup C(o) = {t ¢ G: %0 = o1}.

Lemma 4.5: Let K be normal over Q, p ¢ Q and P ¢ K with P|p.
Suppose that F is a field with Q CF CK and every prime divisors B of
p in F is undecomposed in K. Let C(cp) be the centralizer of the
Frobenius automorphism op of P over Q. Then there aré’i(C(oP): <oP>)
prime divisorsB of p in F such that (Eégd = (E%EQ.

Proof: Let B] be a prime divisor of p and P] the unique prime

divisor of By in K. If op = (M) = (XL0), then P | (o, (a)-aP)
1 1 P

for all a ¢ I.. Hence B,|(o (a)-aP) and (Elg) = (EZQ). Thus it is
F ] P-l B-l P-l

sufficient to show that there are 1(C(cp): <cP>) prime divisors Pi of

p in K such that (Eégg - (EéQ).
i
Any prime divisor of p in K is of the form t(P) for some

T e G(K:Q). We know that (5%93) = T(EéQ)T'], so there are ]C(oP)I
(P

r—s
e — —— | ——

= =
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elements of G(K:Q) which are conjugate to (Eégd. To see how many of
these yield distinct prime divisors of p, we note that 11(P) = TZ(P)
if and only if Té]T] € GP. Since GP = <op> we have the result. //
Definition: Let K be a finite extension of F and I(F) the

group of ideals of F whose prime factors are unramified in K. The

Dedikind zeta function of F is the complex valued function

= N_(U)7S.
pls) = TV

Definition: A character of a group G is a homomorphism of G

into the complex uniti circle. The trivial character Xq has the

property that xo(o) = 1 for all o ¢ G.
The set of characlers can be made into a group G* by defining
X]XZ(O) = X](C)XZ(O)' The trivial character is the identity of G*.
Suppose that K is a normal extension of F and G(K:F) is
abelian. Then we can define a group of characters on the group I(F)

by letting x(p) = X(ELE- where p is a prime of F unramified in K,

p k
and x € G*(K:F). We extend x to all of I(F) by letting x(U) = =«

where U = Pp®°Py-
Definition: Let L(s,x:K/F) = } x(U)NF(U)_S, (Re(s)>1),

UeI(F)

then L(s,x;K/F) is called a abelian L-function.

Notice that L(s,xo;K/F) = gF(s).

Lemma 4.6: L(s,x;K/F) = nF(l-x(p)NF(p)’S)']
pe
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Proof: Let T(x) = 1 {T+x(p)N(p) S4x(p) BNplp) 25403,
Ne(p)sx

Observe that since Re(s) > 1, L(s,x;K/F) converges uniformly so that

we can rearrange the terms without altering the sum. If U e I(F)

e e
and U = p]]~v-pkk with NF(pi) < x for each i, then X(U)NF(U)~S is

in the product T(x). Let A = {U ¢ I(F): U has a prime factor p with
N:(p) > x}. Then [L(s,xsK/F)-T(x)| = J§ x(UIN-(U)™ which tends to
UeA

zero, Hence 1im T(x) = L(s,x;K/F) and L(s,x;K/F) =

X~co

1 (LN (p) " Srx(p) Ne(p) 2S4eeet = 1 (1-x(pIN(p) ™)1,/
pef peF

Corollary 4.7: ;F(s) = I (1—NF(p)'s)'].

peF
Lemma 4.8: If G is cyclic, then ) x{(1)=|G] and § x(0)=0
xeG¥* xeG*

for o # 1,

Proof: Let G be cyclic of order n, say G = <o>. Then

x(r)n = X(Tn) = x() =1 for all 1€ G, x ¢ G*. So x(7) must be an nth

2kwi/n

root of unity. Also x(o) = e is clearly a character for

k =0,1,...,n-1, Hence the group of characters of G has order n since

there are n nth roots of unity.

Now x(1) = 1 for each x € G*, So z x{(1) = |6*] = |G]|.
xe@*

Also if = # 1, then there is X] € G* such that X](r) # 1. xqx runs

through G* as x runs through G* so that ) x(t) = J X](T)X(T) =

xeG* xeG*

X](T) Z x(t). Thus (]“X](T)) z x(7) = 0 and X () = 0. //
xeG* xeG* xeG*

Definition: Let A be a set of primes of K. Then the Dirichlet

density of A is




11m
S+1

d(A) =

It can be shown that ¢, {s) has a simple pole at s
K

(Janusz, 1973, p.

= 0(g(s)) mea

we mean that ]im+
s—+1

f(s)

Lemma 4.9:

if and only if }
PeA

Proof: Su

g(s)

7
log T (1-NKP_S)—]

Peh
Tog cK(S)

125

—h\_/
L~

S)

n

VLQ
wn
o

s
f(s

Let A be a set of primes in K.

N (P)™®

log 1 (1-
PeA

ppose d(A) = a.

P

)

eA m=]

. +
remains bounded as s -~ 1 .

X m V (P) WS L a 1og CK( s)

whenever the 1limit exists.

1,

Thus Tog cK(s) = -Tog(s-1) + 0(1), where
= 0(g(s))

By f(s)

Then d(A) =

-a log(s-1) + o{log(s-1)).

-5y =1
N (P)7%)

Tog ck(§7’

L

a(log(s-1)+0(1))+ §
PeA m=2

. -ms
Yy om NK(P) m

P

-log(s-1) + 0(1)

N, (P
Ly " "~

+ a log(s-1)

Tim
s->]

- Tog(s-1) + 0(1)
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o() + J T mR ()™ ?
+ ]_im+ PEA m"2 !
s-+1 -Tog(s-1) + 0(1)
and the second 1imit clearly goes to zero. Hence |

I N(P)™® + a log(s-T)
Tim Peh

s+17  -Tog(s-1) + 0(1)

= 0 and |

) NK(P)'S = -a log(s-1) + o(log(s-1)). These steps are
PeA

e D, S R R VAP & R T

clearly reversible, so that the result is obtained. //

Lemma 4.10: Let K be normal over F and G(K:F) be abelian

with [K:F]=n. IfBeF, then I (1-X(B)NF(B)‘S) =
xeG*(K:F)

-sm)n/m

(1-NF(B) where m = |Gp|,P e K and P|B.

Proof: Consider the mapping h from G*(K:F) to G5 defined by

foey

h(x) = XIGP- h is a homomorphism with kernel H = {xeG*(K:F): x(B)=1}.

il
IH| = |G*(K:F)|/|G&] = S so that 1 (T-x(BIN (B)73) = )
P M yeG*(K:F) F g
~sy\n/m . i

I (luax(B)NF(B) yMM  As in the proof of Lemma 4.8, the m elements
xéG; j
of G; are the characters of GP which send (Eéfd to the mth roots of 4
unity. Let £ be a primitive mth root of unity. Then {
m-1 %
1 e = 1 (- eV - T (1-g g (8)75)"" !

xeG*(K:F) xeG¥ i=0

P

= (1-N(8) )y
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Theorem 4.11: Let K be a normal over F and G(K:F) be

abelian. Then 1 L(s,x;K/F) = ;K(s), (Re(s) > 1).
xeG*(K:F)
Proof: Since L(s,x;K/F) = 1 (1-x(B)N (B)'S)-] and

BeF F

-1

e (s) = 1 (1-NK(P)'S) , it suffices to show that

PekK

I (1-x(B)NF(B)-S) = I (1—NK(P)-S). First we note that if
xeG*(K:F) P|B

P]|B, then NK(P1) NF(B)m where m = f(P]/B). This is because

f(P]/p) = IGP | = E-, where n = [K:F] and k is the number of prime
1
divisors of B in K. By Lemma 4.10, @ (1=x(BN:(B)™®) =
xeG*(K:F)

O=HR(B)7 MMM = (3-n, ()X - P?B(w—NK(P)'S). /!

Because z,(s) and z.(s) have simple poles at s = 1, we have
K F

£ (s) (1)

that E;ng- is analytic at s = 1. Hence 2;177- e
0

We use this fact to get Dirichlet's theorem.

Theorem 4.12: Lei K be normal over F and G(K:F) be abelian of

order n. If o ¢ G(K:F) and A = (BeF:(*LF) = o} then A has Dirichlet
densitly %u
Tog 1 (1-N.(8)™S)""
Proof: We must show that 1im BeA =-%.
s-+1 log ;F(s)

I L{1,x3K/F) # 0,o.

- -

e e i A W . AT

R TR e e N T e

- i eyl

- A M e s
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As in the proof of Lemma 4.9, this 1imit is equal to

Z m"]NF(B)'Sm
1i BeA m=1
m

s+1+ log ;F(s)

Let T(s) = n-] ) x(o"])logL(s,x;K/F). Then

xeG*(K:F) .
S . -1 -1 _
T(s) = n"'x (o7 )ogl(s,x 3K/F) + n" § x(o”")TogL(s,x;K/F)
XFXg
-1 1 -1 !
=n"Tlog ge(s)n” ; x{c” " )log L(s,x;K/F). So }
X7FX -
O 7 x(o”")TogL(s,x:K/F) |
. T(s) 1 : XX
lim = — + 1im 0
51+ 109 XF(S} LIPS L log £(s)

By the remarks following Theorem 4.11, the above Timit tends to~%.

. T(s) _ 1
Hence lll_?_l_ -1—0_9—__?;.;(_5_5- "

=

We also have that

n! ) (o™ Tog L(s,x3K/F)
xeG*(K:F)

[l

T(s)

- - e ——"

-1 -1

n

) x(a™1)log 1_(1-x(BIN(B)™®)
xeG*(K:F) BeF

T BT N, ot

-1
n

1]

(0'] s -1 BN (B)-Sm
xeG*%K:F)X )BZF mzl m BN

1
e}
1
—
o~1
~1
3
——
=
-
Pty
(we)
S—
1
w0
3
>
P
Q
1
—
S
>
L
rﬂ
~
-
o
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sl D T owhe®m 1 xR,

BeF m=1 XEG*(K:F)
By Lemma 4.7, % x(o'](EéE)) is zero if (K/ ) # ¢ and
xeG* K:F)
nif (Eéﬁ) = g. Hence
A -1 -ms_ _ v -ms
T(s) =n"" } Z moN(B)on= Y ) m Ng(B)
BeA m=1 BeA m=1
= -s\-1 .
= log I (]—NF(B) Y™, That is
BeA
Tog 1 (1-N.(8)™%)""
1, —ch = Yim, o = Ly
sl Tog zp(s) 5] g cpls

Lemma 4.13: Let A be a set of primes in K and A] the set of
primes of A with relative degree one over the rationals. Then the

Dirichlet density of A-A, is zero so that d(A) = d(A]).

k

Proof: Let P e A-Ay; then NK(P) = p

1°
Lelt S be the set of rational primes p such that P|[p for some P e A'Al'

There are at mosi [K:Q] primes in A-A1 which divide p for any p e S.

Now
] AP)TE
y NK(P)'S < [K:F1} p25 = 0(1). Thus Tim, Pe:ﬁ]\-A} Ty— =0
PeA-A, pesS s+ 10918

and d(A-A]) = 0 by Lemma 4.9. //

for some p € Q and k > 2.

P

e A AR L i 7 i 0 S

Bt g Y TARE Ve Y TT ¥
—
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We now come to the main theorem of this section, the Chebotarev

density theorem.

Theorem 4.14: Let K be normal over Q, C a conjugary class of

G(K:Q) with c elements and A = {peQ: (E%Q) = C}. Then A has Dirichlet
density %3 where n = |G(K:Q)]|.

Proof: Let o € C and F the fixed field of <o>. G(K:F) is

K/F)

cyclic so that the set A] = {B ¢ F:(—En- = ¢} has Dirichlet

density T%T-by Dirichlet's theorem. Using Lemma 4.9 we have

s _ -1
Ben, N:(B) S = ToT log(s-1) + o(log(s-1)). If A, = {BeA,:B has

-S =S

relative degree one over Q}, then ) NF(B)

= 1 Ng(p)
BeA2

BeA2
Blp

T]T 0g(s-1) + o(log(s-1)) by Lemma 4.13.

Now if (KéF

) = o, then o ¢ GB C G(K:F) = <o>. Hence GB = <g>

and f(P/B) = IGBI = [K:F] for P|B. If B = P, , then f(P]/B)k =

PP
[K:F] and k = 1. Therefore each B ¢ A, is undecomposed in K. Also

if Blp, then (*5) = o if and only if (Eég) = C. Thus the hypothesis

of Lemma 4.5 are satisfied and we have 1(C(o): <o>) ) NQ -
peA o]

Tog(s-1) + o(log(s-1)). Hence

L) - el + ollog(s-1).
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B. A Theorem of Van der Waerden

Theorem 4.15: Let f(x) ¢ Z[x] and p be a rational prime with

p not dividing the leading coefficient of f(x). Then G(f,Zp) in
a subgroup of G{f,F).

Proof: As at the beginning of Chapter 3 we form the poly-
nomial F(x) = F](x)---Fk(x), where F](x) is the Galois resolvent of
f(x). Ifoe G(f,Zp), then o holds the coefficients of Fi(x) fixed

for each i because Fi(x) € Zp[x]. Hence cF] = F] which, according

to Theorem 3.3, is precisely the condition necessary for ¢ e G(f,Q). //

Theorem 4.16: Let f(x) € Z[x] and p be a rational prime with

p not d1v1d1ng the 1ead1ng coeff1c1ent of f(x). If f(x) =
e
fy (x) fz( X) 2---f (x) “ (mod pZ[x]), where the fi(x) are distinct

irreducible polynomials of Zp[x], then G(f,Q) contains a permutation

th

consisting of k cycles and the i~ cycle has length [fi]'

Proof: By Theorem 4.1, G(f,Zp) is cyclic. Let ¢ be an
automorphism generating G(f,Zp). Now o is transitive on the roots of

fi(x) for each i, while ¢ does not send a root of fi(x) to a root of

fj(x) if 1 # j. Since o, acling on the roots of fi(x), must be a

cycle of length [fij, o has the desired form. Finally o ¢ G(f,Q)
because G(f,Zp) C 6(f,Q) by Theorem 4.15. //
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Theorem 4.17: Let f(x) ¢ Z[x] and p be a rational prime with

p not dividing the leading coefficient of f(x). Suppose also that K

is the splitting field of f(x) and P is a nrime in I, with Plp.

If the Frobenius aulomorphism of P is ¢ and f(x) =

K e. -
I fi(x) ' (mod pz[x]), where tihe fi(x) are distinct irreducible
i=1

polynomials of Zp[x], then o has k cycles and the ith

[,

cycle has length

Proof: By the definition of o, it is the aulomorphism of

G(K:Q) such that o(a) = aP (mod P) for all a e I By Theorem 4.1,

K
o'(a) = aP for all a ¢ IK/P generates G(IK/P: Zp). Since
GP 2=G(IK/P: Zp)’ and using the proof of Theorem 4.17, o has the

appropriate cycle structure. //

We can use Theorems 4.14, 4.16 and 4.17 to aid us in calculating
the Galois group of f(x) over ihe rational numbers. Factoring f(x)
modulo p for a sufficient number of primer p will yield ithe cycle
structure of each permutation in G(f,Q). If we wani an approximation
as to what proportion of the elements of G(f,Q) have the same cycle
structure as a particular element o, we use Theorems 4.14 and 4.17.
We Tet AX be the set of rational primes p for which p < x and factoring
f(x) modulo p yields the same cycle structure as o. Let Sx be the
set of all rational primes p for which p < x. If t and o have the

same cycle structure, then they are conjugates. So the Chebotarev

|A, |
density theorem says that lim X ¢ where ¢ is the

X->o0 lsxl i lG(f’Q)[

s

e e et e P e . Bt W ot L, A . e 3 Ty
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number of elements of G(K:Q) conjugate to o. For any x, we can use
the approximation :: : for the proportiion of elements of G(f,Q)
which have the same cycle structure as o. One problem here is that
we need to know how large to pick x. Lagaries and Odlyzko (1977)
indicate how one might calculale such a bound, but the bound is quite
difficult to compute.

Fortunately we seldom need to know these bounds. Generally
if we know the cyclic structure of the elements of G(f,Q), we can
determine G(f,Q). It is advantageous to have a listing of the
permutation groups of degree [f] with entries describing the degree,
order, transitivity and cycle structure of Llhese groups. Such a
listing can be found for degrees up to seven in Zassenhaus (1971),
but there are a number of errors in the tables (Neuman, 1975).

To use this method, you must‘be able to factor polynomials
modulo p for a prime p. This factorizalion is done by trial and error,

It amounis to solving, for each possible degree of a factor, a system

>

of n+l congruences modulo p, where n = [f]. If f(x) = _Z aixi and

i=0
we want to determine whether f(x) is congruent to the product of an

m h degree polynomial with an n-mth degree polynomial, then we set

up the n+l congruences Z bJ i-j =8 (mod p) for i = 0,1,...,n,

where the bi’ci are unknowns, bi =01if i >mand Cj 0 if j > n-m.

As an example of Van der Waerden's method of determining the

Galois group, consider the polynomial f(x) = x5+2x4+8x3+3x2+5x+1.
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By trial and error it can be shown that f(x) is irreducible modulo 2;
has factors of degree 1,2 and 2 modulo 3; and has factors of degree
2 and 3 modulo 5. So G(f,Q) contains a 5 cycle o1s @ permutation oy
with 2 cycles of Tength 2 and a permutiation o3 with a 2 cycle and a
3 cycle. Note that cg is a 3 cycle and Og is a 2 cycle. Hence
the order of G(f,Q) must be at Teast 2-3+5 = 30. Thus G(f,Q) is
Sg or A5, but og is an odd permutation. Therefore G(f,Q) = 55.

Another example is f(x) = x4+2x3+2x+2. f(x) factors into
2 quadratics modulo 3, and so G(f,Q) is either the cyclic group of
order 4 or the Klein 4 group. f(x) is irreducible modulo 5, hence
G(f,Q) is the cyclic group of order 4.

An alternative to using the Chebotarev density theorem in
cases where the use of Van der Waerden's theorem is inconclusive,
is to use the method of Zassenhaus. We use Van der Waerden's method
for a few "small" primes to narrow down the choices for G(f,Q),
and then apply the Zassenhaus method to determine which of these choices
is actually G(f,Q), This is actlually the most efficient procedure in
general because it usually avoids calculating resolvent equations
for subgroups in groups where the index is large. Also it avoids the
most difficult part, as far as the computation goes, of the Van der
Waerden method—factoring modulo large primes.

Zassenhaus (1971) suggest two other methods, a p-adic method
and a ring theoretic approach. The numerous errors and misprints,
along with the sketchy proofs and explanations, make these methods

difficult Lo understand. Both involve deep ring theoretic results.
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which are beyond the scope of this paper. Some of the details for
the second method are filled in by the papers Zassenhaus (1967) and
Zassenhaus (1974), although there are siill numerous gaps even in
these articles.

Van der Waerden's method generally needs no help.

Gallagher (1973) shows that "almost all" monic polynomials of a given
degree are irreducible and have Galois group equal to the symmetric
group. Zassenhaus (1971) claims that if the Galois group of an
equation is the symmetric group, Van der Waerden's method will

usually quickly realize this by showing that the Galois group contains

a transposition and a p-cycle for some p > n/2, where n is the degree
of the equation.

It is worth noting that computers can be used in some of the
techniques described in this paper to do the tedious calculations.
For instance, Hensel's lemma applied to the p-adic numbers provides
an algorithm that can easily be used on a computer. Many of the
computations of the Zassenhaus method can be done by computers
(Stauduhar, 1973). Also factoring modulo p can be done by computers

as it is just a matter of testing a finite number possibilities.
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TABLE 1

TRANSITIVE SUBGROUPS OF Sn FOR n=4,...,7

Degree Group Con$21ned Function Generators, Description
4 68 S4 X1 X3tXoX, (1234), (13) group of the square
4 GA Gg x]x§+x2x§+x3x§+x4x§ (1234) cyclic four group
4 65 (12)(34), (13)(24) Klein 4-group %
5 GZO 55 [x]x2+x2x3+x3x4+x4x5+x5x]
2 . .
—x1x3-x2x5-x5x2—x2x4-x4x]] (12345), (2354) metacyclic five group
5 G]O (12345), (25)(34)
5 G G X x2+x x2x x2+x x2+x x2 (12345) cyclic five group
5 10 XXX 3T XXy TR X 5T XXy g
4
maximal group imprimitive on two sets
of three letters




TABLE 1--Contiinued

Degree Group Con$2ined Function Generators, Descriptlion
6 61 (123), (456), (12)(45), (1425)(36)
G2 Ag
2
6 G36 672 (xg=%5) (%)% 3) (x3=% ) (%4=x5 )
* (X5'X6)(X6‘X4) (]23): (456)3 (]2)(45): (]4)(25)(36)
6 G G2 (X=X5) (Xn=Xs ) {X0=X4)
18 36 1 %2772 737273 1
+ (x4—x5)(x5—x6)(x6-x4) (123), (456), (14)(25)(36)
1 2
6 G]2 636 x]x4+x2x5+x3x6 (123)(456), (12)(45), (14)(25)(36)
metacyclic six group
1
6 6 Gyg Xy Xg FXp X+ XX (123)(465), (14)(25)(36)
isomorphic to S3
6 62 G Xy Kok X XX KoK XA X X (123)(456), (14)(25)(36)
6 18 176 7274 7375 7472 757 ?
+ x6x§ cyclic six group
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TABLE 1--Continued

Contained

- BT YR et v b

Degree |} Group in Function Generators, Description
6 Gyg S X XptXgXg HXe X (12), (34), (56), (135)(246), (13)(24)
maximal group imprimitive on three
sets of two letters
1
6 Gog Gyg (x]+x2-x3—x4)(x3+x4-x5-x6) (12)(34), (34)(56), (12)(56),
. (x5-x6-x]-x6)(x]—x2) (135)(246), (14)(23)(56)
- (x3-xg) (x5-%¢)
2
6 624 G48 (x]+x2-x3-x4)(x3+x4—x5—x6) (12)(34)(56), (34)(56), (56),
. (x5+x6-x]—x2) (135)(246)
6 6, (135)(246), (13)(24), (12)(34),
(34)(56) Gy Ag isomorphic to Sy
6 sz 65, see Go, (12)(34), (34)(56), (12)(56), (135)(246)
isomorphic to A4




TABLE 1--Continued

Degree Group Con$ﬁined Function Generators, Description
6 G]ZO 36 [x]x2+x3x5+x4x6]-[x]x3+x4x5+x2x6] (126)(354), (12345), (2354)
. [x3x4+x]x6+x2x5]-[x]x5+x2x4+x3x6]isomorphic to 55
© Dxyxgrxoxgtxgxel
6 660 (126)(354), (12345), (25)(34)
G]ZO A6 isomorphic to A5 XK
.1
7 GTG8 57 Xq XX g Xy XXX XX e+ Xo XX (1234567), (235)(476), (2743)(56)
T XpXpXa¥ XX Xt Xy Xp X5
7 642 S7 X1 XpXg HXq Xo XX XgX g X7 Xa X (1234567), (243756)
Xy XgXg X XgX7 TR X X5 H Ko X 3Ky |
+x2x4x5+x2x6x7+x3x4x6+x3x5x6 metacyclic seven group {
+x4x5x7+x4x6x7 |
7 GZ] G168 See G42 S7 (1234567), (235)(476)




TABLE 1--Continued

Degree Group Con$21ned Function Generators, Description
7 G]4 G42 X Xo Xy Xate = e+ XXX Xy (1234567), (27)(45)(36)
7 G, G21 See G]4 Gy (1234567) cyclic 7 group

L8
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Degree 4
Gg CSy
63 C Gy
Degree 5
Gog C S

Gy C:G1O

Degree 6

G72 C:S6

635 < 675
G18 < G72
6 C6yq
6 Céyg

G2 €6y

624 C:G

24 C:G48
2 3
Gy Ty

G CsS

120 6

1,

1,

1,

1,

1,

1,

1,

1

1,

TABLE 2

RIGHT COSET REPRESENTATIVES

(23), (34)
(12)(34)

(12)(34), (12435), (15243),

(12453), (12543)
(12)(35)

(2543), (236)(45), (25436),
(25)(34), (2453), (25), (2345),
(24536), (3645)

(56)
(12)(45), (56), (12)(465)
(123), (132)

(123), (132)

(123), (132), (56), (123)(56),.
(132)(56)

(24635), (26)(35), (354), (2345),
(253), (345), (256)(34), (26435),

(2346), (234), (25)(35), (2435),

(24)(35), (26543)

(12)

(13)(24)

(13)(24)

(13), (23), (123), (132), (12)
88




Degree 7
G168 €57

Gyp & Sy

Gy4 C Gy
G; CGy,

61 € i3

89

TABLE 2--Continued

1, (356), (365), (34)(56), (354), (364), (456), (345),
(36)(45), (465), (35)(46), (346), (47)(56), (35)(47
(36)(47), (243756), (243675), (243)(57), (2475),

(247536), (247563), (246375), (246)(57), (246753),

(24)(375), (24)(36)(57), (24)(567), (245)(37),

(245736), (245673)

Let A be the set consisting of the even coset
representatives for G168 in S7. Let B be the
set of all coset representatives for 621 in G]68'
Then the required 120 coset representatives here

are given by A + B.

1, (37)(56), (23)(74), (2347)(56), (24)(56),
(24)(37), (2743)(56), (27)(34)

1, (235)(476), (253)(467)
v, (235)(476), (253)(467)
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Figure 1. The Order of Subgroup Choices
for the Zassenhaus Method
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