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ABSTRACT 

In the 19th Century Galois developed a method for determining 

whether an equation is solvable. It relied on the close relationship 

between fields and their automorphism group. This paper is a survey 

of the techniques of Galois theory. After presenting the main results 

of elementary Galois theory and some useful facts about factorization, 

I develop the important methods of calculating the Galois group and 

give a proof of the Chebotarev density theorem. 

vii 
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NOTATION 

l is the identity automorphism. 

IGI is the order of the group G. 

lcrl is the order of the element.a. 

[K:F] is the degree of the field ·Kover the field F. 

G(K:F) is the Galois group of Kover F. 

G(f,F) is the Galois group of f(x) over F. 

F[x] is the ring of polynomials with coefficients from F. 

[g] is the degree of the polynomial g(x). 

Q is the field of rational numbers. 

Z is the ring of rational integers. 

C is the field of complex numbers. 

F(a) is the finite extension of F formed by adjoining the element a. 

I'\, means "is isomorphic to." 

Zn is the group of integers modulo n. 

GF(pm) is the Galois field containing pm elements. 

i(G:H) is the index of Hin G. 

Sn is the symmetric group of degree n. 

An is the alternating group of degree n. 

IF is the ring of integers of the field F. 

NK(U) is the norm in K of the ideal U. 

Gp is the decomposition group of the prime P. 

ap=(K~F) is the Frobenius automorphism of P. 

l 
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(KIF) 
p is the Artin symbol at p. 

C(cr) is the centralizer of the element cr. 

r;;F(s) is the Dedikind zeta function. 

I(F) is the group of ideals of F whose prime factors are unramified 

in the finite extension K of F. 

X is a group character. 

Xo is the trivial character. 

G* is the group of characters of G. 

L(s,x;K/F) is an abelian [-function. 

d(A) is the Dirichlet density of t~e set A. 

f(P/p) is the relative degree of P over p. 

<a> is the cyclic group generated by cr, 



INTRODUCTION 

The theory of Galois groups arose from the problem of trying 

to calculate the roots of a polynomial equation from the coefficients. 

If we can write the roots of an equation as a function of its co­

efficients using addition, subtraction, multip~ication, division and 

extraction of roots, then we say that the equation is solvable by 

radicals. 

Of course, equations of the first degree are always solvable 

by radicals. If ax+b=O, then x = - ~. For quadratic equations, the 

solution was known several centruies B.C. and is given by the quadratic 

1t2 -b+ b -4ac 2 formula x = - 2a where ax +bx+c = O. 

Cardan's formulas (Uspensky, 1948, pp. 84-89) give the solution 

of equations of degree three and four by radicals. For ax3+bx2+cx+d=O, 

we let p = £a - -i' q = 2b3 - ~ + .<l. A = a~ .'l. +/q2 + p3 and 
3ai::. 27a3 3a2 a ' /- 2 4 27 

------
B = It-/{+~~. Then the solutions are x = A+B, - A;B + A·;} 0, 

A+B A-B r-;;;- 4 3 2 3 ~ ~ - ~ v-3. When ax + bx + ex + dx + e = 0, let f(x) = x 

c 2 (bd 4e) b
2
e 4ce ci2 ( ) - - x + 2 - - x - s + - 2 - , and y be a root of f x = O. 

a a a a a a 

If R i O, let D = 

3 
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d E 3b R2 _ 2c __ be + 2d + _b_ · / 2 3 an = --,, -
4ac'.'. a a2R aR 4a3R • 

If R = 0, let 

/
3b2 2c /2 4e /3b2 2c fv2 D = -:-2 - - + 2/y - - and E = - 2 - - - 2 y 
4a a a 4a a 

4e Then - -a 

-b R D the roots of the quartic equation are x = 4a + 2 ± 2 and 

These formulas were discovered in the 16th Century. 

Such a formula for equations of degree greater than four was 

sought until the 19th Century when it was shown by means of Galois 

theory that no such formula exists. 

Galois theory associates with each polynomial equation a group 

G called the Galois group. G is said to be solvable provided we can 

form a finite chain of subgroups G
0 

C G1 C • • • CG , with G = G, - - - n o 

Gn the identity group, Gi+l normal in Gi and'G/G/1._ abe·lian for· 

i = 0,1, ... ,n-1. It can be shown that an equation is solvable by 

radicals if and only if its Galois group is solvable. Thus, if we can 

calculate this group, the problem is reduced to determining whether 

the Galois group is solvable. 

This paper is a survey of elementary Galois theory and the 

techniques used in calculating the Galois group. Chapter l deals 

with the basic concepts of Galois theory. Chapter 2 discusses 

techniques for factoring polynomials over the rational numbers. 

Chapter 3 demonstrates some of the methods of calculating the Galois 

group, while in Chapter 4 I give a proof of the Chebotarev density 

thoerem and show how it can be used to aid in the calculation of 

the Galois group. 
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Some facts concerning the theory of groups and the theory 

of fields are assumed. This material can be found in any algebra 

text of the caliber of Herstein (1975). In the discussion of the 

Zassenhaus Method and the Chebotarev density theorem, I also assume 

some knowledge of algebraic number theory (Pollard and Diamond, 

1975). 



CHAPTER I 

GALOIS THEORY 

A. Basic Concepts 

Definition: Let K be a field. A 1-1 function a from K onto 

K is an automorphism provided o(a+b) = o(a) + o(b) and o(ab) = 

o(a)o(b) for all a,b EK. 

It is clear that the set of all automorphisms of K forms a 

group under the operation of composition of functions. We are 

interested in certain subgroups of this group. 

Definition: Let G be a group of automorphisms on K (that is 

a subgroup of the set of all automorphisms on K). The fixed field 

of G is the set F = {a EK: o(a) = a for all a E G}. 

By the definition of automorphism, if a,b E F then a+b and ab 

are in F. Also 0,1 E F since for any automorphism a, a(O) = 0 and 

o(l) = 1. Finally, if a E F then a-l = (o(a))-l = o(a-1) for each 

a E G. So the fixed field is actually a subfield of K. 

Definition: Let K be a field and Fa subfield of K. The set 

of automorphisms of K leaving each element of F fixed is called the 

Galois group of Kover F and is denoted by G(K:F). 

To see that G(K:F) is a group, we first note that the identity 

automorphism is in G(K:F). If o,p E G(K:F)i then o(p(a)) = o(a) = a 

6 
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for all a E F. Also if cr-1(a) =band a E F, then cr(b) =a= cr(a), 

so that a= b. Hence crp and cr-l are in G(K:F) whenever cr and pare. 

Lemma 1 .1: Any set of distinct automorphism of a field K 

is linearly independent over K. 

Proof: Let {a1, ... ,crk} be distinct automorphisms of K. 

Suppose that there is a set {a1, ... ,ak} of elements of K such that at 

k 
least one of the a

1
• is nonzero and I a,cr.(u) = 0 for all u EK. 

i = l l l 

Consider all such sets and pick the one with the fewest nonzero 

elements. Call this set {s1, ... ,8k} and rearrange the Si so that 

{81, .•• ,Sr} are the nonzero Bi. 
r 

Then I s.cr.(u) = 0 for each u EK. . 1 , , ,= 
Note that r i 1, because if r = 1, then-cr1(u) = 0 for all u EK which 

cannot happen. Find c EK such that cr1(c) i crr(c). Such a c must 

r 
exist since cr1 and crr are distinct. Now O = .I B;cr;(cu) = 

, =l 
r r 

.I s.cr.(c)cr.(u) for all u EK. Also O = cr1(c) I 8,cr.(u) = 
,=1 1 1 1 i=l 1 1 

r 
I Sicr1(c)cri(u) for all u EK. By subtracting these two sums we get 

i =l 
r 

that i~l 8;(cr;(c)-cr1(c))cri(u) = 0 and by setting yi = 8i(cri(c)-cr1(c)) 

r 
we have that I y.cr.(u) = 0. But the set {y2, ... ,yr} is a smaller 

i =2 1 1 

set than {s1, ... ,8r}, ~nd Yr i O since Br i 0. This is a contradiction 

of the choice of the 8; and therefore the set {cr1 , ... ,crk} must be 

linearly independent. // 
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We now wish to find an upper bound for I G(K:F) j. 

Theorem l .2: Let F be a field and Ka finite extension of F( 

then /G(K:F)I .::_ [K:FJ. 

Proof: Suppose jG(K:F)I > [K:F] = n, then there are n+l 

distinct automorphisms in G(K:F). Let w1, ... ,wn be a basis for Kover 

F, and 0 1, ... ,on+l be distinct elements of G(K:F). Now consider the 

system of n equations in the n+l unknowns x1 , ... ,xn+l: 

This system must have a nontrivial solution, say a1, ... ,an+l. 

n+l n 
Then i~l a1o1(wk) = 0 fork= l , ... ,n. If u e.: K, then u = I S. w •. . 1 1 1 ,= 

n+ l n+.l n 
with Bi £ F. Hence I a.cr.(u) = I a.cr.( I s.w.) 

i=l l l i=l l l j=l J J 

n+l n n n+l 
= L a.[ I s.cr.(w.)] = I s.[ l a.cr.(w.)] = 0. This contradicts 

i=l l j=l J l J j=l J i=l l l J 

Lemma 1.1 so that IG(K:F)I .:_ [K:F]. // 

Under certain conditions we can determine precisely the order 

of G(K:F). 

Definition: Let K be a finite extension of the rational 

numbers and Fa subfield of K. If for every u £ K-F there exists 
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a E G(K:F) such that a(u); u, then K is said to be a normal extension 

of For nonnal over F. (That is, K is normal over F if Fis the fixed 

field of G(K:F).) 

Theorem 1 .3: Let G be a group of automorphisms of the field 

Kand let F be the fixed field of G where K is a finite extension of 

Q. Then IGI = [K:F]. 

Proof: By the definition of fixed field, we must have that K 

is normal over F. Theorem l.2 implies that !GI~ [K:F] since G must 

be a subgroup of G(K:F). Suppose that !GI < [K:F]. Let G = 

{a1, ... ,an} and w1 , ... ,wr be a basis for Kover F where [K:F] = r. 

The system 

x1cr 1(w1) + ••• + xn+lcr1(wn+l) = 0 

Xl ~n(,.,
1

) + ••· + x ~ (w ) - 0 
V VJ n+lVn n+l -

of n equations in n+l unknowns must have a nontrivial solution. 

( 1 ) 

From the set of all solutions pick one {a1, ... ,ak,O, .•. ,O} with the 

fewest number of nonzero elements a1, ... ,ak. (We .rearrange the wi if 

necessary so that the nonzero elements appear first.) Assume that 

cr1 is the identity automorphism. 

If k = 1, then a 1am(w1) = 0 form= l , ... ,n. This implies 

that a1a1(w1) = a1w1 = 0 so that a1 = 0. But the solution was 

supposed to be nontrivial, hence k > 1. Also we note that not all of 

k 
the a. are in F, for if a. E F for each i, then O = I a.a1(w.) = 

1 1 . l 1 1 1= 

k 
I a.wi. This contradicts the linear independence of thew. over F. 

i = l 1 l 



. ~. 
·. ' '·· ~ ·. . 

10 

Without loss of generality, we may assume that ak = 1 and a1 E K-F. 

For any fixed m = 1 ,2, ... , n we have, 

(2) 

Since K is normal over F, there is crj such that crj(a1) f a1. 

Pick cri such that crjcri = am. Now 

= cr.(a1)cr.(cr.(w1)) + ••• + cr.(ak 1)cr.(cr.(ruk 1)) + cr.(cr.(wk)) J J 1 J - J 1 - J _, 

Subtracting this from Equation (2) we get that 

This can be done for each m. If we let B· = a.-cr.(a.) for 
1 1 J 1 

i = l, •.. ,k-1, then {s1, ... ,f\_1,o, ... ,O} is a nontrivial solution of 

the system (1) with fewer nonzero elements. This follows from the 

fact that we chose crj such thai s1 = a1-crj(a1) f 0. So we have a 

contradiction of the choice of the a. and we must have that 
1 

I GI = [K: F]. / / 

Note that this theorem implies that if G has fixed field F 

then G = G(K:F) since !GI 2- IG(K:F) I 2- [K:F] = !GI. 



11 

Corollary l .4: Let Kand F be finite extensions of Q. K is 

a normal extension of F if and only if IG(K:F)I = [K:F]. 

Proof: Theorem 1.3 shows that if K is a normal extension of 

F,then IG(K:F)I = [K:F]. Suppose now that IG(K:F)I = [K:F] and let 

F1 be the fixed field of G(K:F). Since Fis fixed by G(K:F), we 

have that FCF1. Now [K:F] = [K:F1J[F1:F] and G(K:F) = G(K:F1). 

K is normal over F1, so by Theorem 'l .3, IG(K:F1)1 = [K:F1J. Thus we 

have IG(K:F)! = [K:F] = [K:F1][F1:F] = jG(K:F1)i[F1:F] = jG(K:F)l[F,:FJ, 

and [F1:F] = 1. Therefore F = F1 and K is normal over F. // 

Another characterization of normal extensions is the following. 

Theorem 1.5: Let Kand F be finite extensions of Q. Then 

K is normal over F if and only if any polynomial with coefficients 

from F, which is irreducible over F and has one root in K, has all of 

its roots in K. 

Proof: First let K be a normal extension of F and f(x) e F[x] 

be irreducible with root a e K. Let G(K:F) = {cr1, ... ,crn} and 

a1, ... ,ar be the distinct values of cr1(a), ... ,crn(a). Suppose that 

m . m • m • 
f(x) = I a.x1

, then O = cr(O) = cr(f(a)) = cr( l a.a1
) = l a.cr(a) 1 

i=o 1 i=o 1 i=o 1 

for each cr e G(K:F). Thus cr(a) is a root of f(x) for each cr e G(K:F). 

r 
Let g(x) = IT (x-a.). Then g(x) e F[x]; indeed if u e Kand a e G(K:F), 

. l l ,= 
r r r 

then cr{g(u)) = cr( IT (u-a.)) = IT cr(u-ai) = IT (cr(u)-cr(a.)). Since 
i=l l i=l i=l l 

cr is one-to-one, the values cr(a1), ... ,cr(ar) exhausts the set 
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{a1, ... ,a }. So cr(g(u)) = TI (cr(u)-a.) = g(cr(u)) and the coefficients r . 1 1 
1= 

of g(x) must remain fixed by cr. That is g(x) e F[x]. Now glf 

because every root of g(x) is a root of f(x). Hence g(x) = f(x) 

since f(x) is irreducible. Finally g(x) has all of its roots in K 

and so f(x) has all of its roots in K. 

Next suppose that any irreducible polynomial in F[x], which 

has a root in K, has all of its roots in K. Let [K:F] = n and 

K = F(a). Suppose that f(x) is the minimal polynomial of a over F 

and f(x) has roots a1, ... ,an where a= a1. f(x) must have all of its 

roots in K by our hypothesis, so that ai e K for each i. Any element 

a e G(K:F) must have the property that cr(a) = ai for some 
. n-1 
1 = l , •.. ,n. Also {l,a, ... ,a } is a basis for Kover F so that the 

way cr acts on a actually determines its value for all elements of K. 

Define cr.(a) = a. for i = l, ... ,n and extend cr
1
, to all of Kin a 

l l 

1 . n-1 . h ( ) natura way using {l ,a, ... ,a } as a basis for K. Eac cri e G K:F 

so that n .::_ IG(K:F)J.::.. [K:F] = n. Therefore K is normal over F. // 

The next theorem illustrates the important relationship between 

the fields which lie 11 between 11 Kand F and the normal subgroups of 

G(K:F). It is called the Fundamental Theorem of Galois Theory. 

Theorem 1 .6: Let K be a normal extension of F. If F C LC K 

then K is a normal extension of L and G(K:L) <;" G(K: F). Furthermore, 

Lis a normal extension of F if and only if G(K:L) is a normal sub­

group of G(K:F). In that case G(L:F) ~ G(K:F)/G(K:L). 
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Proof: First we show that K is a normal extension of L 

whenever F CL C K and K is normal over F. Let g(x) e: L[x] be 

irreducible over L with root a e: K, and f(x) e: F[x] be a 1 s minimal 

polynomial over F. In L we have glf and, by Theorem 1.5, f(x) must 

have all of its roots in K. Hence g(x) must have all of its roots 

in Kand, again by Theorem 1 .5, K is normal over L. Clearly 

G(K: L) C G(K:.F). 

Now assume that Lis normal over F. Lis a finite extension 

of F, so L = F(a) for some a e: L. Let g(x) e: F[x] be a's minimal 

polynomial over F and suppose [g] = m. Now for each a e: G(K:F), a(a) 

is a root of g(x). Since {1 ,a, ... ,am-l} is a basis for Land the 

roots of g(x) are in L, we have a mapping L onto L. So all is an 

automorphism of L for each o e: G(K:F). Define a group homomorphism h 

from G(K:F) to G(L:F) by h(o) = oil, Clearly the kernel of his G(K:L) 

since h(cr) = 'L (the identity in G(L:F)) implies that o leaves L 

fixed. Therefore G(K:L) is a normal subgroup of G(K:F). Also 

IG(L:F)I = [L:F] = [K:F]/[K:L] = IG(K:F)I/IG(K:L)I so that his onto. 

Hence G(L:F) ~ G(K:F)/G(K:L). 

Finally suppose that G(K:L) is a normal subgroup of G(K:F). 

Now [K:F] = [K:L][L:F] so [L:F] = [K:F]/[K:L]. Since K is normal over 

both Land F, we can apply Corollary l .4 to get that [L:F] = [K:F]/[K:L] 

= IG(K:F)I/IG(K:L)I = IG(L:F)I. Corollary 1.4 implies that Lis 

normal over F. // 

B. The Galois Group of a Polynomial 

Definition: Let f(x) e: F[x], where Fis a finite extension of 



14 

the rational numbers. By the fundamental theorem of algebra, we can 

n 
write f(x) = IT (x-a.) where the a

1
• are complex numbers. The splitting 

i =l l 

field of f(x) over Fis the field K = F(a1, ... ,an). If f(x) has all 

of its roots in some field L, we say f(x) splits in L. 

Definition: Let f(x) s F[x], where Fis a finite extension 

of the rational numbers. If K is the splitting field of f(x) over F, 

then the Galois group of f(x) over Fis the group G(K:F) and is 

denoted by G(f,F). 

Theorem 1.7: Let f(x) s F[x] have distinct roots a1 , ... ,an. 

Then G(f,F) can be embedded in Sn where Sn is the symmetric group 

of degree n. Therefore jG(f,F)I .::_ n!. 

Proof: We may assume that f(x) has no repeated roots since 

they can be divided out without changing the Galois group. If 

n e. h n 
= IT (x-a.) 1 where e. > 1, then f(x) = IT (x-a.) s F[x]. 

i=l l l - i=l l 
f(x) 

This is true because the coefficients of f(x) are symmetric functions 

of the roots of f(x) and hence in F. 

n 
So f(x) = IT (x-a.). Write f(x) = 

i=l l 

n . 
I a.x1 and let as G(f,F); 

i =o , 
n . n . 

then o = cr(O) = cr(f(a.)) = a( I a.aJ~) = I a.cr(a.) 1
• Thus cr(a.) is 

J i =o 1 i =o 1 J J 

a root of f(x), say cr(aj) = ak. Then crifo1., ... ,crn} e Sn and 

G(f,F) can be embedded in Sn. Clearly if crl(a1, ... ,an)= Tl(a1, ... ,an)' 

then a= T because automorphisms of G(f,F) are determined by how they 

act on the roots of f(x). So the embedding is 1-1. // 
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This theorem also tells use that cr E G(f,F) is completely 

determined by how tt behaves on the roots off. If u is in the 

splitting field of f(x) over F, then u = h(a1, ... ,an) where 

a
1

, .•• ,an are the roots of f(x) and his a rational function inn 

variables with coefficients in F. So cr(u) = h(cr(a1), •.. ,cr(an)). 

Thus we have three ways of describing G(f,F): (1) the automorphism 

group of the splitting field of f(x) fixing F; (2) a permutation group 

of the roots of f(x); and (3) a subgroup of the synmetric group of 

degree n. 

Theorem 1 .8: 

splitting field K. 

Let f(x) E F[x] be irreducible over F with 
n 

If f(x) = ti (x-a.) in K[x], then there is an 
i=l l 

automorphism cr E G(K:F) such that cr(a1 ) = a . n 

Proof: First it is clear that F(a1) ~ F(an) by the isomorphism 

¢ whi~h holds F fixed and has ~(a1) = an. This is true since 
n-1 n-1 {1,a

1
, ... ,a

1 
} is a basis for F(a1).and {l,an, ... ,an } is a basis 

for F(an). 

Ne ·,wi 11 construct an extension of ¢ inductively. Suppose we 

have extended~ to ~m' an isomorphism of F(a1 , ... ,am) ont~ F(s1, ... ,sm) 

with the following properties: 

(1) s1 = an, 

( 2) { s
1 

, ... , .B } C fo
1 

, ••. ,a } , m - n 
( 3) ~m ( ai) = .Bi for i = 1 , ... ,m. 

\~e assume that, for i > m, a; i F(a1, ... ,am). For if 

ai E F(a1, ... ,am), then ~m would actually be an isomorphism of 

F(a1, ... ,a ,a.) onto F(s1, ... ,$ ,~ (a.)). Factor f(x) over m 1 m m 1 



16 

m 
F(a1, ... ,am)[x] as f(x) = g1(x)•••gk(x) _n (x-ai) where the gi(x) are 

1 =1 

irreducible and of degree greater than one. Let am+l be a root of 

g1(x), and h1(x) be the image of g1(x) under 1/Jm· h1(x) must be 

irreducible in F(s1, ... ,sm)[x], since if h1(x) = h(x)g(x), then the 

inverse images of h(x) and g(x) would be.in F(a
1

, ..• ,am)[x] and 

would divide g1(x). Let sm+l be a root of h1(x) and define wm+l 

from F(a1, ... ,am+l) onto F(s1, ... ,sm+1) by 1/Jm+l(am+l) = Sm+l and 

wm+1(u) = wm(u) tf u e F(a1 , ... ,an). 1/Jm+l is an isomorphism because 
[gl]-1 

{1,am+l'"""'am+l } is a basis for F(a1, ... ,am+l) over F(a1, ... ,am)' 

[hl]-1 
{l,sm+1, ... ,sm+l } is a basis for F(s1, .. qsm+l) over F(s1, ... ,sm) 

and [g1J = [h1J. 1/Jm+l also satisfies our 3 conditions. We use this 

process at most n times to arrive at an automorphism a from 

K= F(a.1, •.. ,an) onto F(s1, ... ,sn) = K. Finally we have cr(a1) = an 

as required. // 

Definition: A subgroup G of Sn is said to be transitive 

provided for each i,j e {l, ... ,n} there is a E G such that cr(i) = j. 

Corollary l .9: The Galois group of an irreducible polynomial 

is transitive. 

Corollary 1.10: Let f(x) E F[x] and let p(x) be an 

irreducible factor of f(x) in F[x]. If a1,a2 are roots of p(x), then 

there is a E G(f,F) such that cr(a.1) = a.2. 

Proof: Let K1 be the splitting field of p(x) over F. By 

Theorem 1.8, there is 1/J E G(K1:F) such that w(a1) = a2. Let q(x) be 
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an irreducible factor of f(x) over K1. By the method of the proof of 

Theorem l .8, we can extend w to~' an automorphism of q's splitting 

field. Proceeding by induction, we can extend w to an automorphism 

a E G(K:F) such that a(a1) = a2 , where K is the splitting field of 

f(x). II 

Theorem 1 .11: Let Kand F be finite extensions of Q. K is 

a normal extension of F if and only if K is the splitting field of 

some polynomial over F. 

Proof: First suppose that K is a normal extension of F, then 

K = F(a) for some a EK. Let p(x) be a's minimal polynomial over F. 

Then by Theorem 1 .5 p(x) must split in K. Hence F(a) C: F(a1 , ... ,a) 
- n 

<: K = F(a), where a
1

, •.• ,a are the roots of p(x), and K is p's 
- n 

splitting field. 

Next assume that K is the splitting field of f(x) over F. We 

proceed by induction on [K:F]. If [K:F] = 1, then K = F and so K is 

normal over F. Now suppose that [K:F] = n > 1, and whenever K1,F1 are 

fields such that [K1 :F1J < n and K1 is the splitting field of some 

polynomial over F
1

, then 

Since [K:F] > 1, 

with degree greater than 

K1 is normal over F1 . 

f(x) must have an irreducible factor p(x) 
m 

1. Let p(x) = TI (x-a.). Now [K:F(a
1
)J < n 

i=l l 

and f(x) E F(a1)[x] has splitting field Kover F(a1). Therefore K 

is normal over F(a1) be our induction hypothesis. 

Let u EK be such that a(u) = u for all cr E G(K:F). We will 

show that u E F. Since G(K:F(a1)) ~ G(K:F), u is left fixed by each 
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automorphism of K fixing F(a1). By the normality of Kover F(a1), 

( ) m-1 u e: F a1 • {l,a1, ... ,a
1 

} is a basis for F(a1) over F so that 

m-1 
u = l 

i=o 
By Corollary 1.10, there is crj e: G(K:F) 

such that a/a1) = aj for j = l, ... ,m. We have that u = aj (u) = 

m- l . m- l . m- l . m- l . 
a.( l aia~) = .l a.a.(a1)

1 = l a.a~ and so ( I a.a~) - u = 0 
J i=o 1=0 1 J i=o 1 J i=o 1 J 

for j = l , ... ,m. 
m-1 i Let g(x) = (a -u) + I a;x, then g(x) has m roots, 

0 i =l 

namely a1, ..• ,am. This can happen only if g(x) is identically zero. 

In particular a0-u = 0, sou= a0 e: F. Therefore, if u e: Kand cr(u) = u 

for each a e: F(K:F), u e: F. Thus K is normal over F. // 

This theorem is very important in the calculation of the Galois 

group of a polynomial, because it tells us that any element of K-F 

must be moved by some a,:e: G(f,F), where K is the splitting field of 

f(x) over F. So if we can find u e: K-F such that u is moved by no 

element of the automorphism group G on K, then G must not be a+l of 

G(f,F). 

A couple of special polynomials have Galois groups which are 

relatively ea$Y to calculate. 

Th 1 12 I f F t . . . t. th t f . t eorem . : con ams a pr, m1 ·1 ve n roo o um y 

and f(x) = xn-a, where a is a nonzero element of F, then G(f,F) is 

abelian. 

Proof: Let a be a root of f(x) and~ a primitive nth root 
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of unity. Then a,as, ... ,asn-l are the distinct roots of xn-a. 

a£ G(f,F), then a is a permutation of the roots off, so a is 

determined by how it acts on a. Suppose cr,p £ G(f,F) with 

cr(a) = ask and p(a) = asm. Then cr(p(a)) = cr(asm) = a(a)a(sm) = 

asksm = ask+m and p(cr(a)) = p(ask) = p(a)p(sk) = asmsk = ask+m. 

Hence pa= crp and G(f,F) is abelian. // 

If 

Theorem l .13: Let F be a subfield of the real nubmers and 

f(x) £ F[x] be irreducible over F with prime degree p. If f(x) has 

exactly 2 nonreal roots, then G(f,F) = Sp. 

Proof: Our goal is to show that every transposition is in 

G(f,F) and then, since every element of SP is a product of trans­

positions, we will have the conclusion of the theorem. Let f(x) = 

p 
II (x-a.) and a1 ,a2 be nonreal. Complex conjugation is always an 

i =l l 

automorphism and can be represented as the transposition (1 2). This 

is because a1 is the complex conjugate of a2 and the rest of the ai 

are real. Consider all of the transpositions in G(f,F) involving 1 

and arrange the roots of f(x) so that these transpositions are 

(1.2),(1 3), ... ,(1.m) for some m > 2. If j > m and (j i) £ G(f,F), 

then i > m. For if i 2.m,then [(j i)(i,l)r1 = (j 1)-l = (1 j) £ G(f,F) 

which cannot happen. Also G(f,F) contains all transpositions of the 

form (i 1 i 2) with l 2. i 1,i 2 2.m, for (i 1 i 2) = (1 i 1)(1.i 2)(1 i 1). 

Now m 2. p and, if m < p, then there is j with m < j 2. p. 

By Corollary 1.9, G(f,F) is transitive and so there is a£ G(f,F) 

such that a(l) = j, Let 
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1,2, ···,m, ···,p 

(J = 

T,hen, fork= 2, ... ,m, a(l k)a-l = (j jk) s G(f,F). By our remarks 

above, jk > m. We now have 2m distinct numbers 1 ,2, ... ,m,j,j2, ... ,jm 

and each is less than or equal top. So 2m ~ p and if 2m < p we 

repeat this process to arrive at 3m ~ p. We stop when we have exhausted 

all p numbers. At each step we use exactly m numbers so that mJp. 

Since m > l, m =~and G(f,F) = SP. II 

Definition: Let K1 ,K2 be finite extensions of the rational 

numbers. The c,ompositum of K1 and K2 is the smallest field containing 

both K1 and K2. It is denoted by K1 K2. 

Lemma 1.14: If K1 and K2 are normal extensions of F, then 

K1K2 is normal over K1 (and hence over F). 

Proof: By Theorem 1 .11, we know that Ki is the splitting 

field of some polynomial p.(x) s F[x] for i = 1,2. Let K be the 
1 

splitting field of p1(x)p2(x). Then K = K1K2 because the elements of 

Kare rational functions of the roots of p1(x) and p2(x) with 

coefficients in Fas are the elements of K1K2. Hence by Theorem 1.11, 

K1K2 is normal over K1 since it is the splitting field of 

p2(x) s K1[x]. II 

Theorem 1 .15: If Kand Lare normal over F, then K is normal 

over Kf) L and the mapping h from G( KL: K) to G( L :.I{ () L) is an 
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isomorphism, where h(cr) = all. 

Proof: The mapping his clearly a homomorphism. Suppose that 

h(a) is the identity automorphism of G(L:K() L) where a e G(KL:K). 

Then a(u) = u for each u EK and cr(v) = v for each v EL. Hence 

a(w) = w for each w E KL for the members of KL are just rational 

functions of the elements of Kand L. So his 1-1 and an isomorphism 

onto its range. Finally we show that h(G(KL:K)) = G(L:K(l L). Since 

h(G(KL:K)) ~ G(L:K () L), it is sufficient to show that K () L is the 

fixed field of the image of G(KL:K) under h. Let u EL with 

(h(cr))(u) = u for every a E G(KL:K). Then u EK, for if not then there 

exists a E G(KL:L) such that a(u) 1 u. But KL is normal over L by 

Lenma 1.14, so (h(a)){u) ; u which is a contradiction. Thus u E K () L 

and by Theorems 1.2 and 1.3, ih(G(KL:K))I = [L:K(l L] ~ IG(L:K() L)I 

~ lh(G(KL:K))I. So equality must hold. This also shows that Lis 

normal over Kn L using Corollary 1.4. // 

Theorem l .16: Let K1 and K2 be normal over F and define the 

mapping h from G(K1K2:F) to G(K1:F) x G(K2:F) by h(a) = (aiK1,crjK2). 

Then h is a 1-1 homomorphism, and if K1 () K2 = F, then h is an 

isomorphism. 

Proof: It is clear that his a homomorphism; and if h(a) = 

(i1,i2), where ti is the identity in G(K;:F), then a fixes both K1 and 

K2. Hence a fixes K1K2 and must be the identity of G(K1K2:F). This 

implies that his one-to~one. 

Now assume that K1 () K2 = F and let (a1,cr2) E G(K1 :F)xG(K2:F). 

We apply Theorem 1.15, with K = K1 and L = K2, to get a a E G(K1K2:K1) 
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such that oiK2 = a
2

• Again applying Theorem 1.15,-only with K = K2 

and L = K
2

, we find p E G(K1K2:K2) such that pJK1 = a1• Then 

pcriK
1 

= a
1 

and pcrJK
2 

= a
2

. Hence h(pcr) = (o1 ,o2) which implies that 

his onto and an isomorphism. // 

An easy induction argument provides the following. 

Corollary 1.17: Let K
1

, ... ,Kn be normal extensions of F with 

Galois groups G
1 

, ... ,Gn respectively. Then G(K1·-·Kn:F) is isomorphic 

to a subgroup of G1X-··XGn. If Ki+l (\(K,···Ki) = F for i = 1, ... ,n-1, 

then G(K1·-·Kn:F) ~ G1X•••XGn. 

An immediate consequence-of Corollary l .17 is Corollary 1.18, 

which greatly simplifies the task of calculating the Galois group of 

an equation. 

Corollary 1 .18: Let f(x) 

pn(x) E F[x], and suppose that K; 

n 
= . TI pi (x) where f(x) ,p 1 (x), ... , 

1=l 
is the splitting field of P;(x) 

.. 
for each i. Then G(f,F) is isomorphic to a subgroup of G(p1 ,F)X··· 

XG(pn,F). If Ki+l n (K1 -"K;) = F for i = 1, ... ,n-1, then G(f,F) ~ 

G(p1 ,F}X•••XG(pn,F). 

This corollary shows that when trying to calculate the Galois 

group of a polynomial f(x), we need only search inside the product of 

the Galois groups of its irreducible factors. Furthermore, if we are 

fortunate enough to have Ki+l (1 (K1. • ·K;) = F for i = 1, ... ,n-1, then 

we can find the Galois group of f(x) directly from the Galois groups 

of f~s irreducible factors. Thus, for most polynomials f(x), our 

problem is reduced to the problem of factoring and calculating the 

Galois group of irreducible polynomials. 
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The Galois group of f(x) = x6 - 2x4 - 2x2 + 4 provides an 

example of when G(f,Q) is not equal to the product of its factors. 

f(x) = (x4-2)(x2-2) which are both irreducible. Let p1(x) = x4-2, 

p2(x) = x2-2, K1 be the splitting field of p1(x), K2 the splitting 

field of p2(x) and K the splitting field of f(x). The roots of p1(x) 

are s1 = 1t/2-, s2 = -s1, s3 = s1i and s4 = -s3. The roots of p2(x) are 

s5 = /2 and s6 = -12. Since 12 = t~ e: K1, K2 C K1 . Hence K = K1 and 

G(f,Q) = G(p1,Q) i G(p1,Q) x G(p 2,Q) = G(p1,Q) x c2 where c2 is the 

cyclic group of order 2. To calculate G(p1 ,Q), we first observe that 

[K1:Q] = [Q(W,Wi):Q] = [Q(Y2,¥2i):Q(V2)][Q(LV2°):Q]. [Q(Y2):Q] = 4 

since p1(x) is irreducible over Q. Also in Q(Y2), p1(x) = 

(x2-12Hx2+12) and x2 + 12 is irreducible over Q(o/2). Thus '¥2i has 

degree 2 over Q(V2) and [Q(V2,1¥2i) :Q(V2)] = 2. Hence [K1 :Q] = 8. 

Complex conjugation is always an automorphism so that (3 4) s G(p 1 ,Q). 

Since G(p 1,Q) is transitive, there must be a e: G(p1 ,Q) such that 

a(s1) = s2. Then a(~2) = a(-t1) = -cr(s1) = -~2 = s1, Thus (1 2) or 

(1 2)(3 4) E G(pl'Q). Because (3 4) E G(p1 ,Q), both (1 2) ,(1 2)(3 4) 

E G(p1,Q). If TE G(p1,Q) with T(t1) = t~ then T(t2) = -T(s1) = 

-s3 = s4, Hence (1 3)(2 4) or (1 3 2 4) is in G(p 1,Q). But 

(1 3)(2 4)(1 2) = (1 3 2 4) and (1 3 2 4)(1 2) = (l 3)(2 4), so that 

if one of (l 3)(2 4) and (1 3 2 4) is in G(p1 ,Q), then both are. Also 

( 1 3 2 4 ) 3 = ( 1 4 3 2 ) E G ( p 
1 

, Q ) and ( 1 4 3 2 )( 1 2 ) = ( 1 4 ) ( 2 3 ) 

E G(p1,Q). Therefore G(p1,Q) = {l,(12),(34),(12)(34),(13)(2 4), 

(1 4)(2 3),(1 3 2 4),(1 4 3 2)} which is isomorphic to the dihedral 

group of order 8. 
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Definition: Let F be a finite extension of the rational 

numbers. The algebraic integers of F (or integers~?f F) are all, of 

the elements of F which satisfy a monic irreducible pqlynomial with 

integer coefficients. This set is denoted by IF. 

We can further simplify our problem by observing that it is 

necessary to consider only manic polynomials with algebraic integer 

n . 
coefficients. To see this let f(x) = l a.x1 

E F[x]. Then for each 
i =o 1 

b. 
i, ai = c~ , where bi ,ci E IF. Let d be the least common multiple in 

IF of c
0

, ••• ,cn. Then g(x) = df(x) e IF[x], and g(x) has the same 

roots as f(x). Thus g(x) has the same splitting field, and so the 

n . 
same Galois group, as f(x). Suppose g(x) = I d.x1 with d. E IF' and 

i =o , , 
n-1 . 1 . 

put h(x) = xn + I d~-,- dix1
• If g(a) = 0, then h(dna) = 

i=o 

n-1 l . 1 n . 1 
dnan + l dn- d.a1 = dn- [ l d.a1

] = dn- g(a) = 0. Since 
n i =o n 1 n i =o , n 

d E F, h(x) has the same splitting field as g(x), and so the same 
n 

Galois group as f(x). 



CHAPTER II 

FACTORING 

A. Irreducibility Criterion 

In factoring polynomials over the rational numbers, it is 

convenitent to know whether or not the polynomial is reducible in 

the first place. I present here the three most general irreduci­

bility criterion involving divisibility of coefficients. The most 

useful is the Theorem of Dumas, which appears first. 

Let f(x) s Q[x] and p be a prime number. Write f(x) = 

n b .. 
I aip 1x1

, where either ai = 0 or ai is relatively prime top for 
i=o 

each i. Consider the cartesian coordinates (i ,bi) for each i with 

Let P = (O,b) and P. = (k.,bk ), where kJ. is the greatest 
0 0 J J j 

integer such that no (i ,b.) lies below the line from P. 1 to P .. 
1 J- J 

Definition: The Newton polygon for f(x) corresponding top 

is the set of line segments P
0
P1 ,P1P2, ... ,Pr-lpr' where Pr= (n,bn). 

Consider all of the points with integer coordinates which fall on the 

Newton polygon, The portion of the polygon joining two such points 

is called an elerrent of the polygon. Note that the number of elements 

is greater than or equal tor. 

Theorem 2.1: Let f(x),g(x),h(x) s Z[x] with f(x) = g(x)h(x), 

and let p be a prime. Then the Newton polygon for g(x) corresponding 

25 
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top can be formed by joining some of the elements of the Newton 

polygon for f(x) corresponding top without changing their lengths 

or slopes. Furthermore, the Newton polygon for h(x) corresponding to 

p can be formed by joining the remaining elements. 

Proof: 
n b. . m 

Let f(x) = I a.p JxJ, g(x) = I 
j=o J i=o 

d .. 
1 1 c.p x and 

1 

n-m ek k 
h(x) = l mkp x, where the a.,c. and mk are either zero or 

k=o J 1 

relatively prime top. 

for f(x). Suppose P; = 

a segment of the Newton polygon Let R;P i+ 1 be 

(Jr,2 b . ) ' pi + 1 = 
'1 Jq 

(j ,b. ), and let d be the 
S JS 

greatest common divisor of jq-j and b. -b .. Then j -js = Kd and 
S Jq JS q 

b. -b. = Bd for some B,K; and the slope of PiPi+l is~. Also B 
Jq JS 

and Kare relatively prime and the equation of the line PiPi+l is 

Ky-Bx = C, where C = Kb. -Bj = Kb. -Bj . Now for every ( j, bJ.) we 
Jq q JS S 

have that C < Kb.-Bj; and if j < j or j > j , then C < Kb.-Bj; and 
- J q s J 

if j < jq or j > js, then C < Kbj-Bj. 

Notice that these are the defining properties for the endpoints 

of a segment of a Newton polygon. That is, if jt and jr are the 

B 
b. -b. 

1 Jt Jr 
least and greatest exponents of x such that - = . , where B1 Kl j t-Jr 

less than jt or greater than jr' then (jt,b. ) , (j ,b. ) are endpoints 
Jt r Jr 

of some segment of the Newton polygon for f(x). 
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Consider the numbers Kd;-Bi for all i where ci 1 0. Let 

D = min{Kd.-Bi}, and let iq,is be the least and greatest exponents of 
O<i <m 1 

c-:fo 
1 

x such that D - Kd Bi - Kd Bi Then D < Kd.-Bi for each i. - iq- q - is- s· - 1 

Also put E = min {Kek-Bk}, and let kq and ks be the least 
O<k<n-m 
mkiO 

and greatest exponents of x such that E = Kek -Bk = Kek -Bks. Then 
q q s 

E ~ Kek-Bk for each k. 

b [ i +k J [ i +k J d. . 
We have that a[. +k JP q q x q q = I (c.p 1 x1

) 
1q q i+k=i +k l 

q q 

Also for i < i ' q 
d > D+Bi and for k 

i K 
E+Bk 

< kq' ek > -K-. 

So if i 1 iq' but i+k D+E+B(i+k) = i +k , then d.+ek > K = q q l 

D+E+B(i +k) 
9 9 

K 

d [d. +ek J 
l (c.p \i )(m /k/) =·p ,q q Thus 

i+k=i +k l k 
q q 

[d:+ek-d. -ek -1] . +k 
. l l l 

(c. ·m +p l c.m p q q )x q \ and the part in the 
1q kq i+k=i +k l k 

q q 

parentheses is relatively prime top. Sob. +k = d. +ek and 
l q-- q l q q 

Kb. +k -B(i +kq) = D+E. Also for j < i +k , Kb.-Bj > D+E; while if 
,q q q q q J 

j > i +k then Kb.+Bj > D+E. Therefore D+E = C and iq+kq = jq. In a q q J -

similar manner we get that is+ks = js. Hence O < j -j = (i -i )+(k -k ) s q s q s q 
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and either is-iq > 0 or ks-kq > 0. 

If\= iq, then ks-kq = js-jq and (kq,ekq), (ks,eks) ar.e: 

endpoints of a segment of the Newton polygon for h(x) with slope B/K. 

If ks= kq, then is-iq = js-jq and (iq,diq),(is,dis) are 

endpoints for a segment of the Newton polygon for g(x) with slope 

B/K. 

If both are greater than zero, then (iq,d. ),(is,di ) are 
lq s 

endpoints of a segment of the Newton polygon for g{x) and (kq,ek ), 
q 

(k ,ek ) are endpoints of a segment of the Newton polygon for h(x). 
s s 

Both segments have slope B/K. In all _three cases, the conclusions 

of the theorem hold. // 

The theorem of Dumas can be used to test for irreducibility 

as the following example illustrates. Let f(x) = 63x6+189x4+18x3+ 

49x2+42. With p = 3 we have f(x) = 7•32x6+7°33x4+2·32x3+49·3°x2+14·31. 

The Newton polygon of f(x) corresponding to 3 has 3 elements each of 

length 2. So if f(x) has a factor, it must have one of degree 2. 

With p = 7, f(x) = 9·71x6+27•71x4+18·70x3+1•72x2+6·71. The Newton 

polygon of f(x) corresponding to 7 has 2 elements both of length 3. 

Thus if f(x) has a factor, it must have degree 3. Therefore f(x) is 

irreducible. 
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3 • 3 

2 

l 

2 • 

l 

l 2 3 4 5 6 1 2 3 4 5 

Newton polygon for p=3 Newton polygon for p=7 

As an imnediate corollary of the Theorem of Dumas we get 

Eisenstein's irreducibility criterion: 

n . 

6 

Corollary 2.2: Let f(x) = .I aix1 be a polynomial in Z[x] 
1=0 

and pa prime, If pfai for i = O,l, ... ,n-1, but pfan and p2ia
0

, 

then f(x) is irreducible over the rational numbers. 

The final irreducibility criterion follows from the next 

theorem. For this theorem, we will use the following notation. Let 

k . 
t(x) E Z[x] with t(x) = I a.x1

, and let p be an odd prime. By a. 
i=o 1 , 

we mean that unique integer such that - p2-l < a. < p2-l and a. = a.+c.p, 
- , - 1 , , 

where ci E Z. If p = 2, then a.= 0 if a. is even and a
1
. = l if a. , 1 , 

is odd. " k i 
Then we let t(x) = I a.x . 

i =o 1 

Definition: Let f(x),g(x) E Z[x] and n be an integer. Then 

f(x) = g(x) (mod nZ[x]) provided n divides all of the coefficients of 

f(x) .. g(x). 
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Theorem 2.3: Let f(x),g(x),h(x) E Z[x] with f(x) = g(x)h(x). 

Then for any prime p, f(x) ~ g(x)n(x) (mod pZ[x]). 

n . m . 
Proof: Let g(x) = I a.x1

' h(x) = I b.xJ and a. = a.+c.p, 
i=o 1 j=o J . , , , 

b. = b.+d.p. Also for i > n let c. = a. = a. = 0, and for j > m 
J J J 1 1 1 

" let dJ. = b. = b. = 0. Then 
J J 

" " n+m i 
g(x)h(x) = I x 

i=o 

i " " l a .b. . 
j=o J 1-J 

n+m . i 
= I x 1 

\' [ ( a . +c . p )( b . . +d . . p) ] 
i=o );o J J l-J l-J 

n+m 
= l 

i=o 
X

i i 2 
\ [a.b .. +p(a.d .. +b .. c.)+p c.d .. ] 

j~o J 1-J J 1-J 1-J J J 1-J 

n+m . i 
= l x1 I a.b1 . = f(x) (mod pZ[x]). // 

i=o j=o J -J 

Corollary 2.4: If f(x) E Z[x] is irreducible modulo pZ[x] 

for some prime p, then f(x) is irreducible over Z (and hence over Q). 

B. Factorization Over Q[x] 

Definition: A valuation on a field K is a function¢ from K 

to the real numbers such that for all a,b EK: 

(1) ¢(a)> 0 if a f 0, 

(2) ¢(0) = 0, 

(3) ¢(ab)= ¢(a)¢(b), 

(4) ¢(a+b).:. ¢(a)+ ¢(b). 
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An example of a valuation is the absolute value function on 

the real numbers. 

Definition: A valuation¢ on K is said to be non-Archimedean 

provided ¢(a+b)..::. max{¢(a),¢(b)} for a,b EK. 

Let p be a prime integer and let a be a rational number. 

Write a= f pn where pfs, pft and s,t E Z. If we let 

if a 1 0 

if a = O 

(1), (2) in the definition of valuation. Ifa,bEQ, then ~P satisfies 

s1 n1 say a = t p , 
1 

s2 n2 
b = t p , where p does not divide s1 ,s 2,t1 ,t2, then 

2 

max{¢p(a),¢p(b)}..::. ~p(a) + ¢p(b). Hence ¢pis a non-Archimedean 

valuation of the rational numbers. 

Definition: The valuation ¢P constructed above is called the 

p-adic valuation of Q. 

Any field with a valuation has a completion. This completion 

can be constructed in the usual way by using Cauchy sequences, that 

is, sequences {xn} from the field for which lim ¢(x -x) = 0. 
m,n-+<x> n m 
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Definition: The completion of the rational numbers using the 

p-adic valuation is called the p-adic numbers and is denoted by QP. 

Definition: For a non-Archimedean valuation¢ on the field K, 

the set {a£ K: ¢(a).::. l} is called the integral elements of Kor the 

integers of K. Note that the set of integral elements of K is a ring, 

and the set {a£ K: ¢(a) < l} is an ideal in that ring. It is the 

ideal of non-units of the ring. 

Definition: Let D be a ring and Pan ideal of D. Then for 

f(x),g(x) £ D[x], f(x) = g(x) (mod PD[x]) means that the coefficients 

of f(x)-g(x) are in P. 

Definition: Let D be a ring and Pan ideal of D. f(x),g(x) 

E D[x] are relatively prime modulo P provided there exist s(x),t(x) 

£ D[x] such that s(x)f(x) + t(x)g(x) = 1 (mod PD[x]) .. f(x) £ D[x] is 

said to be primitive if the only elements of D which divide all of the 

coefficients of f(x) are units. 

In factoring polynomials over the rational numbers, a reduci­

bility criterion called Hensel's lerrrna is useful. It is presented 

here in a general setting and a bit later in a manner more applicable 

to the rational numbers. 

Theorem 2.5: Let K be a complete field under the non-Archimedean 

valuation¢, D the set of integral elements of Kand P ={a£ K: ¢(x) < 1}. 

Suppose f(x),g
0

(x),h
0

(x) E D[x] such that f(x) is primitive, g
0
(x) and 

h
0

(x) are relatively prime modulo P, and f(x) = g
0

(x)h
0

(x) (mod PD[x]). 

The there are polynomials g(x),h(x) E D[x] such that i: 
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(1) f(x) = g(x)h(x), 

(2) g(x) - g
0
(x) (mod PD[x]), 

(3) h(x) - h
0

(x) (mod PD[x]), 

(4) [g] = [go]. 

Proof: If an element of P divides one of the coefficients of 

g
0

(x) or h
0

(x), we may set that coefficient equal to O; so we assume 

that the leading coefficient of both g
0
(x) and h

0
(x) is a unit. Also 

assume that the leading coefficient of g
0

(x) ts 1. If not, divide 

g
0

(x) by its leading coefficient and multiply h
0

(x) by the same 

number. Let [g
0

] = m and [f] = n; then [h
0

] _::. n-m. 

Since the coefficients of f-g
0
h

0 
are elements of P they have 

$-value greater than or equal to 0, but strictly less than 1. Let 

o1 be the greatest of these values. If o1 = 0, then f(x) = g
0

(x)h
0

(x) 

and we are done; if not, then O < o1 < 1. 

Since g
0
(x) and h

0
(x) are relatively prime modulo P, .there 

are s(x),t(x) E D[x] such that s(x)g
0

(x) + t(x)h
0

(x) - l (mod PD[x]). 

As before, the coefficients of s(x)g
0

(x) + t(x)h
0

(x) - 1 have $-values 

between O and 1. Let o2 be the greatest of these coefficients; then 

0 _::. o2 < 1. Set E = max{o1,o2} and let TIE K with ~(TI)= E. Such 

a TI must exist since one of the coefficients of f-g
0
h

0 
or sg

0 
+ th

0
-l 

has $-Value E. So we have 

f(x) = g
0

(x)h
0

(x) (mod TID[x]), 

s(x)g
0
(x) + t(x)h

0
(x) = 1 (mod TID[x]). 

We will construct two sequences {gk(x)}, {hk(x)} of polynomials 

in D[x] with_the following properties: 

' 
! 

I 

I ! 

I 

I 
' 11 

I 
I 

I 

1 
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k+l (a) f(x) = gk(x)hk(x) (mod n D[x]} 1 

{b) gk(x) = g
0
{x) (mod nD[x]), 

(c) hk(x) = h
0

(x) (mod nD[x]), 

(d) gk(x) is monic, [gk] = [g
0

] and [hk] ~ n-m. 

We proceed by induction. Suppose we have constructed such 

polynomials gi ,h; for i = 1,2, ... ,k-l. We will now construct gk and 

hk. 

By (a) we see that f(x)-gk_ 1(x)hk_1(x) = nkp(x) for some 

p(x) £ D[x]. Then p(x)s(x)g
0

(x) + p{x)t(x)h
0

(x) = p(x) (mod nD[x]). 

If we divide p{x)t(x) by g
0
(x), we get a quotient q(x) and a remainder 

r(x) with [r] < m. So p(x)t(x) = g
0

(x)q(x) + r(x), and p(x)s(x)g
0

(x) 

+ [g
0

(x)q(x) + r(x)]h
0

(x) = p(x) (mod nD[x]), or [p(x)s(x) + q(x)h
0

(x)] 

g
0

{x) + r(x)h
0
(x) = p(x) (mod nD[x]). Let u(x) = p(x)s(x) + q(x)h

0
(x) 

(mod nD[x]), where the coefficients of u(x) are units or zero. Then 

u(x)g
0
(x) + r(x)h

0
(x) = p(x) (mod nD[x]). 

Put gk(x) = gk_1(x) + nkr(x) and hk(x) = hk_1(x) + nku(x), 

then [gk] = [gk_1] = [g
0
]. Also [hk] ~ n-m, for if not, then 

[u] > n-m and [ug
0

] > n. Now [rh
0

] < m + [h
0

] ~ m+n-m = n, so that 

[ug
0
+rh

0
] > n and [p] > n. But by the selection of p, [p] ~ n. So 

(d) has been verified. 

To see that (b) and (c) hold, we note that gk(x) = gk_1(x) -

g
0

(x) (mod nD[x]) and hk(x) = hk_1(x) = h
0

(x) (mod nD[x]). 

Finally for (a), we have that 

~ 
~ 
j 
'l 
j 
! 

' 

! ; 
I 
I, 

1 ! 
I: 

I 

I 
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k 2k + TI [r(x)hk_1(x) + u(x)gk_1(x)] + TI r(x)u(x) 

k 2k 
= TI [r(x)hk_1(x) + u(x)gk_ 1(x)-p(x)J + TI r(x)u(x) 

gk(x)hk(x)-f(x) 

= Tik[r(x)hk_
1

(x) + u(x)gk_ 1(x)-p(x)] (mod Tik+lD[x]). 

r(x)hk_ 1(x) + u(x)gk_1(x) _ p(x) (mod TID[x]), 

k+l gk(x)hk(x)-f(x) = 0 (mod TI D[x]). 

gk+l(x) 
k+l _ gk{x) (mod TI D[x]) 

k+l hk+l(x) = hk(x) (mod TI D[x]), 

we must have the coefficients of gk(x) and hk(x) converging. 

m i k+l ) 
if gk(x) = I ai,kx then TI ! (ai,k+l-ai,k . So 

i=o 

For 

a. k ,-a. k 
~( r, +k+l,' ) ~ 1 or ~(a; ,k+l-ai,k) ~ Ek+l, which tends to 0. Hence, 

TI 
00 

since K is complete, {a1,k}k=o converges. In a similar manner the 

coefficients of hk(x) converge. Let g(x) = lim gk(x) and h(x) = 
k-+oo 

lim hk(x). 
k"700 

Each gk{x) is con?ruent to g
0

(x) modulo TID[x] and each hk(x) 

is congruent to h
0

(x) modulo TID[x]. · Hence the limits, g(x) and h(x), 

must be congruent to g
0
(x) and h

0
(x), respectively, modulo TID[x]. 

,. 
,. ' 

J 
l I 
l . 
j 

J . 
I 
t 

' ' 

I . 
! . 

I I 
I 

j 
f 
j 

j 

I 
j 

• I 
, I 
' i 

• I 

I 

l 
I 

. i 
, I 

I I 
I I 

I 
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Also [g] = [g0], and since f(x) = gk(x)hk(x) (mod nk+lD[x]) for each 

k , i t f O 11 OWS that f ( X) = g ( X) h ( X) • / / 

Lerrma 2.6: Let p be a rational prime, k an integer and 

f(x),g(x),h(x) E Z[x], where p does not divide the leading coefficient 

of g(x). If [f] < [g] and f(x) = pkg(x)h(x) (mod p2kz[x]), then 

h(x) = 0 (mod pkZ[x]), and consequently f(x) = 0 (mod p2kz[x]). 
n . 

Proof: Write h(x) = I a.x1 and let j be such that 
i =o 1 

pk1aj' but for i > j, Pkiai. Suppose, for i > j, ai = pkbi with 

bi E Z, and let b be the leading coefficient of g(x). Then 

f(x) = pkg(x)h(x) 
n k · n 2k · j k · - ( I p a.x1 )g(x) = ( I p b.x1 + .I p aix1 )g{x) 

i=o 1 i=j+l 1 1=0 

j k . 2k - ( I p a.x1 )g(x) (mod p Z[x]). Because [g] > [f], we must have the 
i =o 1 

leading term on the right congruent to Q modulo p2k. So 

pkbaj = O (mod p2k) and baj = 0 (mod pk). Since pfb, it must be that 

piaj. Thus no such j exists, and h(x) = O (mod pkZ[x]). // 

A more useful form of Theorem 2.5 is the following. It gives 

an algorithm for factoring polynomials with integer coefficients 

modulo pkZ[x] for arbitrarily large k. 

Definition: Let n be an integer and f(x) E Z[x]. f(x) is 

said to be reduced modulo n provided the coefficients of f(x) are 

in the interval (- ; , %J. 
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Theorem 2. 7: Let f (x) ,g
0 

(x) ,h
0 

(x),s
0
(x), t

0 
(x), r 

O 
(x), 

u
0

(x) s Z[x], p be a prime and k a positive integer. If 

(a) f,g
0

,h
0 

are manic and non-constant, 

(b) g
0

,h
0

,s
0
,t

0 
are reduced modulo pk, 

(c) [so]< [ho], [to]< [go]' 

(d) f = g h + pkr, 
.o O 0 

(e) sago+ toho = 1 + pkuo' 

(f) r
0 

is not identically zero, 

then there are polynomials g1,h1,s1,t1,r1,u1 ~ Z[x] such that 

(1) g1 ,h1 are manic and non-constant, 
2k (2) g1 ,h1 ,s 1,t1 are reduced modulo p , 

(3) [s 1J < [h1), [t1J < [g1J, 
2k (4) f = g1h1 + p r1, 

2k (5) s1g1 + t 1h1 = 1 + p u1, 

(6) g1 = g
0 

(mod pkZ[x]), h1 = h
0 

(mod pkZ[x]. 

Proof: The following is the algorithm for obtaining 

g1,h 1,s 1 ,t1 ,r1 ,u1. 

Divide t
0
r

0 
by g

0 
and s

0
r

0 
by h

0 
modulo pkZ[x] to get 

remainders d
0 

and d~. Then t
0

r
0 

= d
0 

(mod(pk,g
0

)Z[x]) and 

s
0
r

0 
= d~ (mod(pk,h

0
)Z[x]). Let 

qi - + kd o - 9o P o' qi*= h + pkd*. 
0 0 0 

Reduce qi
0 

and qi~ modulo p2k to obtain g1 and h1. 

Then 

91 = qi + 2k S hl = qi*+ p2ks~ for some s
0

,s~ s Z[x]. o P o' 0 

(7) 

(8) 
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Set 

a = d + pkB and a*= d*
0 

+ pkB
0
*. 

0 0 . 0 0 
(9) 

Then 

( 10) 

Now let 

L = -(u + s a +ta*) 
0 0 0 0 0 0 ' 

( 11) 

and divide L
0
s

0 
by h

0
, L

0
t

0 
by g

0 
modulo pkZ[x] to obtain remainders 

P
0 

and P;. Then 

Next put a = s + pkP and a*= t
0 

+ pkP
0
*. 

0 0 0 0 
( 13) 

Reduce these modulo p2k to get s1 and t 1. Then 

= + 2k d t - * + 2k,,,* h * Z[] (14) s
1 

a
0 

p w
0 

an 1 - a
0 

p '1'
0

, were w
0

,iJi
0 

e x . 

If we let 

· then 

and 

1T = 
0 

P + pkiJi and 
0 0 

Finally we let 

,r* = 
0 

k r 1 = (r
0 

+ a;g
0
-a

0
h

0
)/p 

P* + pk,,,* 
o 'l'o' 

u = (-L + ,r g + 1r*h )/pk+ 1r a + 1r*a*. 1 0 0 0 0 0 0 0 0 

Now we will show that conditions (1)-(6) hold for 

g1,h1,s 1,t1 ,r1,u1. Clearly (6) is satisfied because of (10). 

( 15) 

(16) 

( 17) 

( 18) 

I. 

'.I. 

; . 

I 

I I 

! 
I 
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To prove (1), notice that [d
0

] < [g
0

] and [d;J < [h
0
]. Also 

[s
0

] < [~
0

] and [s;J < [~;J so that, by (7), [~
0

] = [g
0
], [~~] = [h0 ] 

and by (8), [g1J = [~
0
], [h1J = [~;J. ~o and~; must then be manic; 

hence 91 and h1 are manic. Neither 91 nor h1 could be constant 

since [g1J = [g
0

] and [h1] = [h
0
]. 

By the construction of g1,h1 ,s1,t1, they are all reduced 

modulo p2kz[x], and so (2) is satisfied. 

By the definition of P
0 

and P;, we have that [P
0

] < [h 0 ] 

and [P;J < [g
0
]. So, by (13), [a

0
] < [h

0
] and [a~]< [g

0
]. Now 

[s1J 2.. [a
0

] and [t1J .::_ [a~], hence [s1J < [h
0

] = [h1] and [t1J < [g
0

] 

= [g1J. This proves (3). 

For (4) we see that 

f-g1h1 = f-(g
0

+pkcr
0

)(h
0
+pkcr;) by (10) 

k 2k 
= f-g

0
h

0
-p (cr~g

0 
+ cr

0
h

0
)-p cr 0cr~ 

We still must show that r1 e Z[x]. Since t
0
r

0 
= d

0 
(mod(pk,g0 )Z[x]), 

and. _ s
0
r

0 
= d; (mod pk ,h

0
)Z[x]) 1 from (9) it follows t

0
r

0 
= 

q g + pkb + cr ands r- = q*h + pkb* +,·cr*, where q ,q*,o;_,b* E Z[x]. 
0 0 0 0 0 0 0 0 0 0 0 0 u 0 

Then 

f-g1h1 = pk(r -cr*g -cr h ) 
0 0 0 0 0 

- k = p [r -(s r -q*h )g -(tr -q g )h J 
0 0 0 0 0 0 0 0 0 0 0 

I I 
' ' 

' J 
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_ pk[r (1-s g -th)+ (q +q*)h g] 
0 0 0 0 0 0 0 0 0 

- pk[ro(-pkuo) + (qo+q;)(f-pkro)J 

= pk(q
0
+q;)f (mod p2kz[x]). 

Since q
0 

+ q~ E Z[x] and [f-g1h1] < [f], we can apply Lemma 2.6 to 

get that f-g1 h1 = 0 (mod p2kz[x]}. Hence r1 E Z[x]. 

Finally we prove (5). By (10) and (16), 

= s: g + t h -1 + pk ( s cr +t a *+1r g +1r *h ) 
0 0 0 0 0 0 0 0 0 0 0 0 

k = p (u +s cr +t cr*+1r·g +1r*h ) 
0 0 0 0 0 0 0 0 0 

2k + p (1r cr +rr*cr*) by (e) 
0 0 0 0 

2k = p u, by ( 18) • 

Now we need only show that u1 E Z[x]. By (12) and (15), there are 

polynomials G
0

,G;, H
0

,H; E Z[x] such that L
0
s

0 
= G

0
h0 + pkH0 + 1r0 and 

Lt = G*g + pkH* + 1r*. Then 
0 0 0 0 0 0 

s
1
g1 + t 1h1-1 = pk{-L +1r g +1r*h) 

0 0 0 0 0 

= pk[-L +(Ls -G h )g +(Lt G* )h] o o o o o o o o- ogo o 

- k = p [-L (1-s g -th )-(G +G*)g h] 
0 0 0 0 0 0 0 0 0 

I I 
i 

: I 

' j 
' ,, 

' 
' I 

I 

' I 

I 
,·· 
; <t 

I 
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- pk[-Lo(-pkuo)-(Go+G~)(f-pkro)J 

= -pk(G
0
+G;)f (mod p2kz[x]). 

Again we can apply Lemma 2.6 since [s1g1+t1h1-1J < [f] and 

(G
0
+G~) E Z[x]. Thus s1g1 + t 1h1-l = O (mod p2kz[x]) and u1 E Z[x]. II 

A look at this theorem shows that it is just a constructive 

form of Hensel 's lemma with K = Q and <I> = <I> • We are guaranteed that p p 

the sequences {gk} and {hk} converge in QP[x]. At times we are lucky 

and this form of Hensel's lenma leads to a solution in the integers, 

but the method need not converge in the integers. We can always start 

the algorithm modulo p unless f(x) is irreducible. If f(x) is 

reducible, Theorem 2.3 says that f(x) can be factored modulo p. Now 

these factors can be chosen so that they are relatively prime modulo 

p. One problem is that there may be more than one way to choose g
0

(x) 

and h
0

(x) so that they are relatively prime. For the method to have 

a chance to converge in the rational integers, we must pick g
0

{x) and 

h
0

(x) so that they have the same degree as factors of f{x) in Z[x]. 

As an example, consider f(x) = x6+3x5+x4+7x3-3x2+5x-5. f(x) 

can be factored modulo 2Z[x] into g
0

(x) = x3+x+l and h
0

(x) = x3+x2+1, 

which are relatively prime modulo 2. We can find s
0
(x) and t

0
(x) by 

2 2 solving the congruence g
0
(x)(a1x +b1x+c1) + h

0
(x)(a2x +b2x+c2) = 1 

(mod 2Z[x]) for a1,b1,c1,a2,b2,c2. We find s
0
(x) = x and t

0
(x) = x+l. 

A simple calculation gives r
0 

= x5+2x3-2x2+2x-3 and u
0 

= x4+x3+x2+x. 

The computation proceeds as follows: 

I: i ' I 

I I 

l ! : 
t I 1 

I, . ~ 
I 

'! 

',, 
I 
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tr = x6+x5+2x4-x-3 = 1 (mod(2,x3+x+l)Z[x]) 
0 0 

3 
gl = X +x-1 hl 

2 4 cr; = -x and L
0 

= -x. 

Thus 

Ls ~ -x5 = x+l (mod(2,x3+x2+l)Z[x]) 
0 0 

P
0 

= x+l, P* = l a = 3x+2 and a*= x+3. 
0 ' 0 0 

a
0 

_ 3x+2 = -x+2 (mod 22z[x]) and a;= x+3 = x-1 (mod 22z[x]) 

so 

s - x+2 t = x-1 ,1, = -x ,1,* = -1 TI = -x+l TI*= -1. l - - ' 1 'o/0 'o/0 ' 0 ' 0 , 

5 3 2 r1 = x +2x -x +x-1 and u1 = x-1. 

Since r1 f Owe use the algorithm again. 

t 1r1 = x6-x5+2x4-3x3+2x2-2x+l = 0 (mod(22,x3+x-1)Z[x]) 

s1r1 = -x6+2x5-2x4+5x3-3x2+3x-2 = x2+1 (mod(22,x3-x2+l)Z[x]). 

So 

; ' 

: i 
.I' 

'' 

I 
j 

I 
: I 

I ' 
' ·~ 

I I 
:) i j 

. . ' 

' 1.' 

' r: J 
I I. 
' 'I 
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x3+x-l - x3+x-l (mod 24z[x]) and x3-:+ 3x t- 5 = x3+3x+5 (mod 24z[x]) 

so 

g2 = x3+x-l, h2 = x3+3x+5, e1 = O, Bi= O, o1 = 0, 
2 3 2 

o1 = x +land L1 = -x +x -2x+2. 

Thus 

and 

so 

L1s1 = x4-3x3+4x2-6x+4 = 2x2+x+2 (mod(24,x3-x2+l)Z[x]) 

L1t 1 = -x4+2x3-3x2+4x-2 = 2x2+x (mod(24,x3+x-l)Z[x]). 

2 2 2 2 P1 = 2x +x+2, Pi= 2x +x, a1 = Bx +3x+l0 and ai = Bx +5x-l. 

Bx2+3x+l0 = Bx2+3x-6 (mod 24z[x]) 

2 2 2 s2 = Bx +3x-6, t 2 = Bx +5x-l, ¢1 = -1, tl = 0, w1 = 2x +x-2, 

wy = 2x2+2 and r2 = 0. Therefore f(x) = (x3+x-l)(x3+3x2+5). 

We can modify this method so that we wi 11 always get a solution 

over the integers 

goal is to find a 

provided f(x) is reducible over the integers. 
m-1 . 

constant M such that, if g(x) = xm + I b.x1 

· i=o 1 

The 

is a factor of the monic polynomial f(x), then lb; I:::.._ M for each i. 

If we can find such an M, then for any prime p we find r such that 

pr.:.. 2M. Using Hensel 's lemma, we factor f(x) modulo pr, say 

f(x) = ~ g.(x) (mod prZ[x]). Then g{x) _ ~t 
i=l 1 i=n1 

g.(x) (mod prZ[x]) 
l 

for some subset {n1, ... ,nt} of {l, ... ,k}. Since g(x) is reduced 

I 
I . 

I ' 
! 
' 

. I 

J ~, 
.I• 

·:Ii .. 
'·11 J1 

I 
11 . :, 
I ," l •· 

' 
I I 

I 

'! 
I 
I 

.. \ 
t.: 
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modulo pr, the problem of factorization is reduced to seeing which 

products of the irreducible factors of f(x) modulo prZ[x], when 

reduced modulo pr, actually divide f(x) in Z[x]. Theorem 2.13 

pro vi des us with an appropriate M, but first we need a few lemmas. 

For convenience, let 

n 2 1/2 
!!fl!= (_L !a;I) ,wheref(x) 

1=0 

n i 
= L a.x e C[x]. 

i =o 1 

n i 
lemma 2.8: let f(x) = ;1o aix s C[x] and as C with a~ 0. 

If g(x) = (x + a)f(x) and h(x) = (x + a-1)f(x), where a denotes the 

complex conjugate of a, then I 191 I = la! I !hi I. 

Proof: 
n+ l . n+ l 1 · 

g(x) = _I (a._
1 

+ aa
1
.)x1 and h(x) = I (a._ 1+a- a.)x1

, 
1=0 1 i=o 1 1 

where a_1 = an+l = 0. 

So 
2 n+ l 2 

11 g 11 = _L I ai-1 + aa · I 
1=0 l 

Also 2 2 2 
n+ 1 __ 1 2 n+ l 

I a I 11 h 11 = I a I L I a· -1 + a · a; I = • L I aa; -1 
i=o 1 1=0 

--1 12 + cm a. 
l 

n+ 1 - -1 ) ( - -1 ) = .l (aa
1
._1 + aa a. aa. 1 + aa a. 

1=0 l ,- l 

n+ 1 - -1 ) (- - - l - ) = l (aa. 1 + aa a. aa. 1 + aa a. 
i=o 1- 1 1- 1 

; f' 

. I : 
! ; I 
l Ii , 
i I I 
' i 
' ! 

' 

I; 
I' 
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n+l 2 2 - - - 2 
= L ( I a I la . 1 I + a.a . 1 a . + aa . 1 a . + I a . I ) . ; =o 1 - 1 - 1 1- 1 1 

Each term in this sum is also in the sum for I 1911
2

. 

So we have I 1911
2 = la.1

2
1 !hi 1

2 
and I jg] I = !al I lhl I. // 

Lemma 2.9: Let s1,s2, ... ,sn be complex numbers such that 

O < I s1 I 2 · · · 2 I sq I < l 2 I sq+ 1 1 .::. .. • 2. I sn I for some q ~ O. Put 

n q n 
f(x) = TI (x-si) and g(x) = [ TI (x-I.-l ) ] [ TI (x-s.)] then 

i = l i = 1 l i =q+ l 1 

q 
llfll = ( rr ls;l)llgll, 

i =l 

Proof: We proceed by induction on q. For q = 0 we have 

f(x) = g(x), so the conclusion holds. Now assume q > 0, and set 

f*(x) = ~~~ 1) and g*(x) = 9(_:_)_ 1 ~ Then 11 f i' I = 11 (x-s1 )f*(x) 11 
X-s, 

= ls1 111(x-I1-
1 )f*(x)II = ls1 lls2 ••• ~q11(x-I1-

1 
)g*(x)II using 

Le1TJ1Ja 2.8, our induction hypothesis and the fact that li-l I = ls 11-\_1. 

Now (x-"f1-l )g*(x) = g(x) so we have I If! I 
q 

= ( IIls-;1)11911· ff 
i =1 · 

Lemma 2.10: Let f(x) = 
i=o 

n i n I a.x = a n (x-s.) E C[x] and 
1 n . 1 1 ,= 

I s1 I 2. • • • .::. I sq I < l .::. I sq+ 1 1 .::. • • • .::. l sn I for some q ~ 0. Then 

2 2 2 2 -2 
IJfll ~ lanl lsq+l,4

" snl + la0 I lsq+l ... snl · 

I 

'·1 
I! 

. I 
I: 
! 

'I· 

-I 
! 

I 
I 
), 
i 

'.!ii 

l I. 
i., 

·~ 
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q --1 n n i 
Proof: Let g(x) = a II (x-E;. ) II (x-~.) = I b

1
.x. 

n k=l 1 i=q+l 1 i=o 

First assume that s1 I 0, then by Lemma 2.9 I !fl I = !s1 •·• ~qi! !9! I. 

2 n 2 2 2 
Hence llfl I = ls1 ••• sql (J

0
lbi I ) .:".. 1~ 1 ••• ~qi lb0 l 

+ I~, • • • ~q 12 1 bn i 2. 

Now 

so 

Also 

Thus 
2 2 2 2 

1~1 ••• E;ql lbnl = ls1 ••• c;ql lanl 

=I~,··· sq1
2

!a0 !
2

is1 ·•· sn!-
2 

= !a0 1
2

1sq+l ••• snl-
2

. 

Hence 

Now suppose that ~l = E; 2 = ••• = ~m = 0, while O < l~m+l I, 
with m _::. q. Then a

0 
= 0 and we need only show. that I lfl 1

2 
.:".. 1an1 2 1E;q+l 

+ laml 2 lsq+l ·•• ~nl-2 by the first part of our proof. Hence 

2 2 
11 f 11 ~ i an I I ~q+ 1 • • • ~n I · / / I 

i I 
I 
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Coro l1 a ry 2. l1 : 
n . n 

Let f(x) = I a.x1 = an _n (x-l;;) £ C[x] 
i=o 1 

1=1 

with 1,11 ~ ·•· ~ 1,ql < l 2- [c;q+l I ~ ·•• 2- \c;nl for some q ~ 0. 

n 
Then Ian!. II /t;; I .::. I !fl I, 

1=q+l 

Lenma 2.12: Let f(x) 
n . n 

= l a.x1 = a II (x-c;.) £ C[x] with 
; =o , n i =l , 

and 

Proof: Let cr,T £ Sn and say a =j' provided {a(i): i=l, ... ,j} 

= {,(i): i=l, ... ,j}. This defines an equivalence relation on Sn. 

Put S . equal to the set of equivalence classes with respect to this n,J 

equivalence relation. Note that S J. has (~) elements and n, J 

j j 
a.= (-l)n-\n I n l; (")' Then ja.j = lanll I IT t;a(i)I 

J a£Sn,j i=l a 
1 

J a£Sn,j i=l 

Also 

!, 

l 
11 

I 'Jl 

' I 
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Theorem 2.13: Let f(x) E: Z[x] with f(x) = g
1

(x)•·•gk(x), 
m. . 

where each gi{x) E: Z[x]. If [f] = n and gi(x) = _11 bi J.x
1

, then 
J=O ' 

and 

k m. 
n ( I1 I b. . I ) 2. 2n 11 f 11 

i=l j=o 1 ,J 

m. 
I bi ,j I 2. ( / ) 11 f 11 for each i and j . 

Proof: If si, 1 ... ,si ,m. are the roots of gi {x) for i = 1, ... ,k, 
l 

m. 
then g.{x) = b. II

1(x-1; .. ). Suppose Is, 11 < ••• < !1;. I< 1 
1 1 , mi j = 1 1 , J 1 , - - 1 , qi 

2. lsi,q.+l I 2- ••• 2- l1;i,m. I with qi..::. 0, then by Lemma 2.22 
1 1 

Now if 

So 
k 
II 

i =1 

m. m. 
I1lb- ·I 2.2 1 1s· +l ... 1; • . lib. 1-j=o 1,J 1,qi ,,mi 1,m; 

k k m. 
a = II b. , then f(x) = a II II

1 (x-s .. ). 
n i = 1 . , 'mi n i = 1 j = 1 , 'J 

m. 
111 b. · I < 

j=o , ,J -
k m. 
II ... 

i =1 
2 1 I 1;i ,q .+ 1 , 

m. 
lb, I II

1 J1;. •I 
1,mi j=q.+l 1,J 

1 

k 
l m. . 1 , 

1; • 11 b · I = 21= 
1,m. 1,m. l , 

k 
II 

i =1 

n k m. n 
= 2 la I II II

1 Is,· -I 2.2 !If/! by Corollary 2.11. 
n i=l j=q.+1 ,J 

1 

To prove the second inequality we use Lerruna 2.12 and Corollary 

2.11 to get 

m. 
lb .. , < (.,)11;. +1 

1 ,J - J , ,qi 

m. k m. 
s· llb. I< (.1)la I II II

1 
1,mi , ,mi - J n i=l j=q.+l 

1 

,, 
'1 

ff 

l 
I I 

' j 
I I 

'11 

·:} 
11 

. !l!: 
I' I 
I' I 

I 
' 

'I 

' ·~ l i' 
~ . . ' 
\ 
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m. 
I~- -I< (. 1 )11t11- 11· 1,J - J 

If we let k be the greatest integer in n/2, then we have 

lbi,jl ~ (~)I lfl I for each i ,j. Therefore a suitable constant would 

be M = (~)I !fl I. Zassenhaus (1969) uses as a bound on the roots of 

f(x) the number ~f = { max [la. l/(~)]1/i}/(n/2 - 1), and notes that 
1 <i <n 1 1 

m. . 
jb. -1 < ( .1 )(IPf)J. Another bound for the roots of f(x) is 

l ,J - J 

A= max ja.j + 1 (Mignotte, 1974). Mignotte, however, claims that 
1 <i <n 1 

the bound provided by Theorem 2.13 is the best in general. 

For completeness, I now include Kronecker's method of 

factorization, as it was the first finite method. Let f(x) s Z[x] 

and suppose [f] = n. If f(x) has a factor g{x) in Z[x], say f(x) = 

g{x)h(x), then either [g] 2- ~ or [h] 2- ~. So to test for divisors of 

f(x), we need only check for polynomials of degree less than or 

equal to~. Letmbethe greatest integer inf, and pick 

a
0

,a1 ~···,am' distinct elements of Z. Calculate f(a;) for each i. 

If g{x)!f(x), then g(a;)lf(a;) for each i. Pick one set of integers 

b
0

,b1, ... ,bm such that bi jf(ai) for each i. Let 

m b.(x-a )(x-a1),,,{x-a. 1)(x-a1+1)···(X-a) 
(x) = I 1 o 1- m 

g . (a.-a )•••{a.-a. 1)(a.-a.+1) 00 •(a.-a) ' 
1 =o 1 o , 1 - 1 1 1 m 

then g(a;)Jf(a;) for each i since g{a;) = b;. Also ~(x) is the only 

polynomial of degree less than or equal tom such that g(a;) = bi 

for each i. (If there was another, then their difference would have 

m+l distinct roots which cannot be.) For each set b
0

,b1, ... ,bm' 

• I '.II 

~I 
l 
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there is a unique polynomial g(x). Hence a divisor of f(x) must be 

selected from one of these. Since there are only a finite number of 

choices for b
0

, ••• ,bm, this is a finite method of factorization. 
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CHAPTER I II 

CALCULATION OF THE GALOIS GROUP 

A. Early Methods 

The purpose of this section is to present two of the first 

methods of calculating the Galois group of a polynomial over the 

rational numbers. The first method involves the calculation of a 

polynomial called the Galois resolvent. We will let t denote the 

identity permutation. 
n 

Let f(x) e Z[x] with f(x) = a TI (x-~.), where each~- e C . l 1 1 

n 

1= 
n 

Let G(x1 , ... ,xn) = I ~.x .. . 1 , 1 
1= 

For each a e Sn, 

put G (x1, ••. ,xn) = I ~ (")x .. We pick c1, ... ,c s Z such that 
a i =l a , 1 n 

G (c
1

, ... ,c) 'I G (c
1

, ••• ,c) if a 'Ip. Putt = G (c1 , ••• ,c) for 
a . n P n a a n 

each as S , and F(x) = TI (x-t ). By the theory of symmetric 
n a 

assn 

functions, F(x) s Z[x]. Factor F(x) in Z[x] so that F(x) = F1(x) 

F (x), where F1(t) = 0. Note that if F(x) is irreducible, then r t 

F
1

(x) = F(x). F
1

(x) is called the Galois resolvent of f(x). Write 

F
1

(x) = TI (x-t ), where G is the set of permutations from S from 
G a n 

as 

which F1(x) is derived. We will see that G is actually the Galois 

group of f (x). 

Lemma 3. 1: Each root of f(x) can be written as a polynomial 

int, 
t 

51 
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Proof: For this discussion recall that we may think of 

elenents of Sn as either a permutation of the numbers 1 ,2, ... ,n or 

as a permutation of the roots of f(x). So, with this convention, 

cr(si) and scr(i) will have the same meaning. This notion can be 

extended to all rational functions of the si, We will identify 

cr(h(s1, ... ,sn)) with h(scr(l)'''''scr(n))' where his a rational 

function over the rational numbers. 

Let s1 be any root of f(x), and let cr1 , ... ,crm be the 

permutations in Sn such that cr;(l) = l for each i. Put 

m m . 
H(t) = IT (t-t ) = I a.t1

• Each ai s Q(s1) since they are the 
i=l 0 i i=o 1 

elementary symmetric functions of the roots of=~~) s (Q(s1))[x]. 
l 

Thus each ai can be expressed as a polynomial in s1 with coefficients 

m . 
in Q, say ai = pi(s1) where pi(x) s Q[x]. Now H(t) = .I pi(s1)t1

• 
1=0 

m • 
Let S(x) = I p.(x)t1

; then S(s1) = H(t) = O. 
i=o , t t 

If j > 1, we have S(sj) i 0. To see this, let pi = (1 j)cri 

and compute cr(ai) = cr(pi(s1)) = pi(scr(l)) = pi(sj) where cr = (1 j). 

i i i 
Also a

1
. = I t t and so cr(a.) = l t t = I t t . 

k=o cr~ 0 i-k 1 k=o crcrk 00 i-k k=o Pk Pi-k 

m m i i 
Let H1(t) = IT ( t-t ) = I 13. t , where 13i = I t t = cr(a.) 

i =1 rJi i=o l k=o Pk Pi-k 1 

= p.(s.), Finally S(sj) = Hl ( \) i O s i nee t /; {p,, ... ,pm}. For if 
l J 

t = p., then t = (1 j)cr. and cr i = ( l j) which does not hold 1 fixed. 
l l 

I 
JI 

I ,. 
ii• 
El 
11.,. 

, 'I 
11 ' ,, 

• I 

''·I I I 

I I 
'·I 

,j I 

, I 

'I 
I 

.l 
l'l . l 

.1 

L 
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Both f(x) and S(x) have their coefficients in Q(t ), so we 
l 

can find the greatest common divisor of f(x) and S(x) in (Q(t ))[x]. 
l 

If they are relatively prime, then there are polynomials h(x),g(x) s 

(Q(t
1

))[x] such that 1 = h(x)f(x) + g(x)S(x). But then 1 = h(~1) 

f(~ 1) + g(~1)s(~ 1) = 0. Thus f(x) and S(x) cannot be relatively 

prime. Because they share only one root, the greatest common divisor 

must be x - , 1. This implies that , 1 s Q(t
1
), and hence a polynomial 

int. // 
l 

Corollary 3.2: 

rational function oft 
l 

If t is a root of F(x), then t is a cr cr 

Proof: Each t
0 

is a rational function of the ~i' and each 

Therefore each t can be expressed as a 
a '; is a polynomial in t

1
• 

rational function oft. // 
t 

Theorem 3.3: G = G(f,Q). 

Let K be the splitting field of f(x) over Q and suppose cr s G. 

If us Q, then let cr(u) = u. If us K-Q, then u = g(~1 , ... ,~n)' 

where g(x1, ... ,xn) s Q(x1, ... ,xn), and we will put cr(u) = g(~cr(l)'"'' 

t;cr(n)). 

First we must show that G is a group. Let cr,p s G. By 

Corollary 3.2.t
0 

= g(tt), where g(x) s Q(x). Now p(t) = t = cr pcr 
g(tP), Let H(x) = F1(g(x)); then H(t,) = 0. But F1(x) is irreducible, 

so F1 IH and H(\) = 0. H(\) =F'1(g(tp)) =F,{\
0
), thus pcr s G and 

G is a group. 

. . 

"" ;11111 
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We now show that the fixed field of G is Q. Let u EK such 

that o(u) = u for all o £ G. Since u E K, there is h(x1 , .•... ,xn) E 

Q(x1 , ... ,xn) with u = h(s1 , ... ,s ). We use Lemma 3.1 to find . n 

g
1
.(x) E Q(x) such thats· = g.(t) for i = 1 ,2, ... ,n. Then 

1 1 t 

u = h(g1 (t ), ... ,g (t )) = T(t) for some T(x) s Q(x). Now 
1 n i 1 

u = o(u) = T(t ) = T(t) for each o E G. Let G = {o1, ••• ,om}. 
Ol 0 

Then u = -brr(t ) + T(t ) + ••• + T(t )] which is a symmetric 
m a1 a2 am 

function of the roots of F1(x) and hence in Q. Therefore u E Q and 

Q is the fixed field of G. By Theorem l .3 !GI = [K:Q] = !G(f,Q)I. 

Also G C G(f,Q) so that G = G(f,Q). // 

Using the Galois resolvent is a method of finding the Galois 

group of an equation over the rational numbers in a finite number of 

steps, but the calculations required are formidable if n is large. 

First we need to find the roots of the equation. Next, to find 
n!(n!-1) . c1, ... ,cn, we must check 2 equations of the form G

0
(x1, ... ,xn) 

= GP(x1, ... ,xn). Finally we must factor F(x), where the degree of 

F(x) is n!. In general this is unreasonable for n > 4. 

Theorem 1.11 gives us an alternative to using the Galois 

resolvent. Let g(s1, ... ,sn) be a rational function of the roots of 

f(x) with coefficients in Q, where f(x) £ Q[x]. Let u = g(s1, ... ,sn). 

If us Q, then o(u) = u for each a£ G(f,Q). So to see that a 

permutation a is not in G(f,Q), we only need to find a g(s1 ,.,.,sn) £ Q 

such that g(so(l)''' ,,sa(n)) i Q. Also if g(s1 ,.,.,sn) i Q, then at 

least one of the permutations a such that g(sa(l)'''''sa(n)) f 

1 •r.,... 
I 

! ~ 
I ;1, 
t 
I 

.. ! 
l1 
I 

,,! 

i 
j1 
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g{s 1, ... ,sn) is in G(f,Q). 

As an example, consider.the polynomial f(x) = x4 + x2 - 6. 
; 

f(x) has roots s1 = fl, s2 = -fl, s3 = /3 and s4 = -/3. s1 + s2 = o 

and s3 + s:4 = 0, but s:1 + s: 3 r O, s:1 + s:4 r O, s: 2 + s: 3 f O and 

s2 + s:4 r O. Since s: 1 + s: 2 = 0, while s:1 + s: 3 1 0, the permutation 

(2 3) cannot be in G(f,Q). Similar observations with the remaining 

relations eliminate all of the permutations of s4 except 1, (1 2), · 

(3 4), (1 2)(3 4), (1 3 2 4) and (1 4 3 2). Also if K is the splitting 

field of f(x) over Q, then K = Q(fl,/3) = Q(/2+ /3) and /2-+ /3has 

x4-lox2-35 for a minimal polynomial over Q. Hence [K:Q] = 4 and 

G(f,Q) = {l,(l 2),(3 4),(1 2)(3 4)} or G(f,Q) = {1,(l 3 2 4),(1 4 2 3), 

(1 2)(3 4)}. These are isomorphic, and so we have calculated G(f,Q). 

B. Method of Zassenhaus 

Another method, which is a bit more practical, involves 

calculating G(f,Q) by finding the subgroups of Sn which contain G(f,Q). 

Definition: Let F(x1, ... ,x) £ Z[x1, ... ,x J and G CS. n n - n 

F belongs to G provided F(x1 , ... ,xn) = F(xcr(l)'''''xcr(l)) if and 

only if cr £ G. 

Theorem 3.4: If G ~Sn, then there is F(x1, ... ,xn) £ 

Z[x1 , .•. ,xn] such that F belongs to G. 

Proof: Let H(x1, ... ,xn) = x1x~ • • • x~ and F(x1, ... ,xn) = 

IGH(xcr(l)'''''xcr(n)). If p E G,th~n F(xp(l)'''''xp(n)) = 
CT£ 

If 

'' '' 
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p ¢ G, then the sum I H(x (l)' ... ,x ( )) contains the term 
aeG pa pan 

H(xp(l)'' .. ,xp(n)) since the identity is in G. But this term is not 

in the original sum because pi G. Hence F(xp(l)'''''xp(n)) f 

F(xl' ... ,xn). II 

Definition: Let G,H be subgroups of Sn. F(x1, ... ,xn) e 

Z[x1, ••. ,xn] belongs to Gin H provided for every a e H, 

F(xl'"''xn) = F(xa(l)'""'xcr(n)) if and only if cr e G. 

Definition: Let G,H be subgroups of Sn, and suppose 

F(x1, ... ,xn) belongs to Gin H. If G~H and cr1 , ... ,am is a 

representative set for the right cosets of Gin H, then 

m 
R(x) = i~

1
[x-F(xcri(l)'''"'xcri(n))] is the resolvent polynomial of 

n 
Gin H corresponding to F. If f(x) e Z[x] and f(x) = a IT (x-s.), 

. 1 1 1= 

then the resolvent polynomials of Gin H corresponding to F for f(x~ 

m 
is R(x) = IT [x-F(~ (l)'''''~ ( ))]. 

i=l ai ai n 

n 
Theorem 3.5: Let f(x) = a IT (x-s.) e Z[x] be irreducible 

i=l l 

over Zand Ha transitive subgroup of Sn. Suppose also that G is a 

subgroup of H and F(x1 , ... ,xn) is a polynomial in n variables wnich 

belongs to Gin H, with F(s1 , ... ,sn) not a repeated root of the 

resolvent polynomial of Gin H corresponding to F for f(x). Then 

G(f,Q) c G if and only if F(~1, ... ,s ) e z. 
- n 

II, 
• I 

i 

• 

~ 
I 

I 
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. 



57 
m 

Proof: First we note that R(x) = i~
1

[x-F(s 0 i(l)'···,Scri(n))J 

E Z[x]. The coefficients are products and sums of the F(scr.(l)'"""' 
l 

scr.(n)), which are products and sums of s1 , •• ,,sn' which are algebraic 
l 

integers. To see that the coefficients are in Q, let a E G(f,Q). 

Then aa1, ••• ,aam forms a representative set for the right cosets of 

Gin H. Hence the coefficients of R(x) are left fixed by the elements 

of G(f,Q) and R(x) E Q[x]. Thus the coefficients of R(x) are both 

algebraic integers and rational numbers, and hence they are rational 

integers. 

Now suppose that G(f,Q) CG. Then for each a E G(f,Q), 

a ( F ( s 1 , ... , s n) ) = F ( s a ( 1) , ... , s cr ( n ) ) = F ( s 1 , ... , s n ) s i n ce a E G. 

So F(s 1,.,.,sn) E Q because Q is the fixed field of G(f,Q). But 

F(s 1, ••• ,sn) is an algebraic integer and so a rational integer. 

Finally, let F(s 1, •.. ,sn) E Q. Then F(scr(l)'''''scr(n)) 

= F(s1 , ••• ,sn) for each a E G(f,Q). This implies that a E G since 

F(s1, •.• ,sn) is not a repeated root of R(x). Hence G(f,Q) ~ G. // 

n 
Corollary 3 .6: Let f(x) = a IT (x-s,) E Z[x] be irreducible 

; =l l 

over Zand Ha transitive subgroup of S . Suppose also that G is a 
n 

subgroup of Hand F(x1, ••• ,xn) is a polynomial inn variables over 

m 
the integers belonging to Gin H. If R(x) = IT [x-F(s (l)'•••,S ( ))] 

i=l cri cri n 

is the resolvent polynomial of Gin H corresponding to F for f(x), 

then G(f,Q) CG (for some arrangement of the roots of f(x)) if and 

only if F(scr.(l)'···,sa.(n)) E Z for some i, provided· 
l l 

11 

'I 
I 
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F(sa.(l)'''''sa.(n)) is not a repeated root of R(x). 
1 1 

Proof: If G(f,Q) s; G, then Theorem 3.5 says that F(sl'"' ,sn) 

s Z, provided F(s
1

, ••• ,sn) is not a repeated root of R(x). Now 

suppose that F(sa.(l)'''''sa.(n)) E z is not a repeated root of R(x). 
l l 

Then for each as G(f,Q), F(sacr.(l)'' .,,saa.(n)) = F(scr.(l)'''''sa.(n)). 
l 1 1 1 

~l l So a.F belongs to a.Ga. in Hand G{f,Q) Ca.Ga: . If we reorder the 
1 1 1 - 1 1 

roots of f(x) so that aJ. = s (")for j = l , ... ,n, then 
ai J 

n 
f(x) = a rr (x-a.) and G(f,Q) CG. // 

. l 1 -1= 

n 
Definition: Let f(x) = IT (x-s-), then the number 

i =l l 

D(f) = IT (si-s-) 2 is called the discriminant of f(x). 
i <j J 

An important consequence of Theorem 3.5 is the following: 

Theorem 3.7: Let f(x) s Z[x]. Then G(f,Q)CAn if and only 

if /oTfT s Z, where An is the alternating group of degree n. 

Proof: Let F(x
1

, ••. ,x) = IT (x.-x.); then F belongs to A 
n i <j 1 J n 

in\· For iJ a is a transposition in Sn' say a= (km) where k < m, 

then F(xa(l)'''''xa(n)) = _IT_(xa{i)-xa(j)) = (xa(k)-xa(m)) 
1 <J 

IT (x.-x.) = 
1 <J 1 J 

(i ,j),!(k,m) 

(xm-xk) IT (xi-xj) = 
1 <J 

(i,j),!(k,m) 

- IT (x.-x.). 
. . 1 J 
l <J 

Thus if p s Sn, then F(xp(l)'''''xp(n)) = F(x1 , ... ,xn) if and only if 

p can be written as an even number of permutations. 
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Now let R(x) = [x-F(~1, ... ,~n)][x-F(~cr(l)'"""'~cr(n))J where 

a f. An. By Theorem 3.5, G(f ,Q) <; An if and only if F(~1, ... '~n) e: Z, 

that is lo[fT ~ z. I I 

Corollary 3.6 and Theorem 3.7 give us an important method 

of calculating the Galois group of an irreducible polynomial, and 

this method is a definite improvement on the use of the Galois 

resolvent. Here is a s_ummary of the method. First we calculate the 

roots and discriminant of f(x). Next we find a maximal transitive 

subgroup Hof Sn, where n = [f]. Theorem 3.4 guarantees that we can 

find a function F which belongs to Hin Sn. Actually, F can be 

constructed so that the reso.hreni R(x) has no repeated roots. We test 

R(x) for integer roots, If there are none, then we find a new maximal 

subgroup to work with. If no maximal transitive subgroup has a re­

solvent with an integer root, then G(f,Q) = Sn. Now suppose that the 

resolvent computed for H has an integer root. If cr(F) is that root, 

then we rearrange the roots of f(x) by letting cri = ~cr(i)" According 

to Corollary 3.6, with this root arrangement, we must have G(f,Q) ~ H. 

Next we find a maximal transitive subgroup H1 of Hand a function F1 
belonging to H1 in H. We test to see if G(f,Q) C H1. This process 

is terminated when either we reach a minimal transitive subgroup of Sn 

(which then must be G(f,Q)), or we have G(f,Q) ~ Hk and th~re is no 

maximal transitive subgroup Hk+l of Hk such that G(f,Q) ~ Hk+l. 

In this case G(f,Q) = Hk. Of course the method is accelerated by 

knowledge of the discriminant of f(x). If D(f) is a perfect square, 

then by Theorem 3.7 we need only search in An for G(f,Q). If not, 
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then we may omit from our technique all subgroups of An. The main 

difficulties of this method come from the need to know, with a great 

deal of accuracy, what the roots of f(x) are; the fact that we must 

somehow come up with all of the transitive subgroups in Sn; and the 

calculation of suitable functions F. The latter two problems have 

been solved in part by Stauduhar (1973) who has produced tables for 

this purpose. (See appendix.) Figure 1 indicates the order in which 

we select our maximal transitive subgroups, while Table 1 describes 

the groups listed in Figure 1 and exhibits an appropriate function F. 

For that function F, we use the right coset representatives listed 

in Table 2. If the function given in Table 1 gives rise to repeated 

roots in the integers, then we can use Table 2 to construct our 

own resolvent, We must find, on our own, a function belonging to G 

in H, then Table 2 gives us the right coset representatives which we 

use to calculate the resolvent. Zassenhaus (1971) also suggests a 

particular function that we may use. If G CH and K is the splitting 

field of f(x), then set trG(a) = L (a). If a= h(~ 1 •... ,~n), 
cri::G 

where the ~i are the roots of f(x), then by cr(a) we mean 

h(scr(l)'''''~cr(n)). By the selection of a suitable a, trG(a) belongs 

to Gin H. Observe that if a= s1s~ ••• s~, then trG(a) yields the 

same function as given in Theorem 3.4. 

Notice that in Corollary 3.6 we must have that f(x) is 

irreducible. However, we may still apply this method to any polynomial 

over the rationals by using Corollary 1.18. We factor the given 

polynomial over the integers and apply the method to each factor. 
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Then the Galois group must be a subgroup of the product of the groups 

of the factors. The following example of the method of Corollary 3.6 

is due to Stauduhar (1973). 

Let f(x) = x6-42x4+80x3+44lx2-1680x+4516. The roots of f(x) 

are s1 = 4.392-l.570i, s2 =I1, s3=·-5.490-.780i, s4 =~3, s5 = 

l.098-2.355i and s6 = f5 and f(x) is irreducible over the integers. 

Also a routine calculation shows that D(f) < 0 and hence not a 

perfect square. 

We now refer to Figure l to see that a maximal transitive 

subgroup of s6 is G72 . (The subscript denotes the order of the group.) 

Table 2 gives as right coset representatives 1, (2 5 4 3),(2 3·6)(4 5), 

(2 5 4 3 6),(2 5)(3 4),(2 4 5 3),(2 5),(2 3 4 5),(2 4 5 3 6) and 

(3 6 4 5); and Table 1 suggests the use of F1(x1 , ... ,x6) = x1x2x3 + 

x4x5x6. We use this information to calculate R1 (x) = x10 + 80x9 -

59166x8 - 4390320x7 + 1200615393x6 + 88076918880x5 - 7198940057856x4 

- 388801984512000x3 + 20193311991398400x2 + 595967000182784000x -

4689149328097280000. R1(x) has a root -80 corresponding to the coset 

representative (2 3 6)(4 5). By letting a1 = s1 ,a2 = s3, a 3 = s6, 

a 4 = s5, a5 = s4 and a 6 = s2 we have, according to Corollary 3.6, 

G ( f, Q) C G72 • 

Figure l now implies that we should use either G~6 or G16. 

But G16 C A6, so by Theorem 3.7 G(f,Q) ~ G16. ·Table 2 yields right 

coset representatives 1 and (5 6) for G~6 in G72 . Table l gives us 

the function F2(x1, ... ,x6) = (x1-x2)(x2-x3)(x3-x1)(x4-x5)(x5-x6)(x6-x4), 

and the resolvent is R2(x) = (x+l37376)(x-137376). Thus G(f,Q) CG~6. 
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Now G~
6 

has two maximal transitive subgroups. To see if 

G(f,Q) <; G18 , we note that G~6 contains two isomorphic copies of G18 

which are conjugate in G72 , but not in G~6. So either we test both 

of these, or we test one as a subgroup of G72 . For the latter choice 

we use the coset representatives t, (l 2)(4 5),(5 6),(1 2)(4 6 5) given 

in Table 2 and compute R3(x) = (x + 360i)(x - 360i)(x + 648)(x - 648), 

so that R3(x) has a root corresponding to the coset representative 

(5 6). If we let s1 = a
1

, s2 = a 2 , s3 = a3, s4 = a 4, s5 = a 6 and 

s6 = a 5 then G(f,Q) c G18 . 
1 2 G18 has two maximal transitive subgroups G6 and G6. For 

G~, we use the right coset representatives t, (1 2 3) and (1 3 2), 

and the function F4(x1, ... ,x6) = x1x4 + x2x6 + x3x5• Then R4(x) = 
3 - 1 x - 1323x + 7722 = (x - 33)(x - 6)(x + 39). Hence G(f,Q) C G6, 

and since G~ is a minimal transitive subgroup, we have that G(f,Q) = 

G~ = {t,(1 2 3)(4 6 5),(1 3 2)(4 5 6),(1 4)(2 5)(3 6),(1 5)(2 6)(3 4), 

(1 6)(2 4)(3 5)};;, 53. 

r 
• I I 



CHAPTER IV 

CHEBOTAREV-VAN DER WAERDEN METHOD 

A. The Chebotarev Density Theorem 

Definition: A finite field containing pm elements, where 

pis a rational prime and mis a positive integer, is called a 

Galois field. It is denoted by GF(pm). 

It is a well known fact from the theory of fields that every 

finite field is a Galois field. We will use ZP to denote the field 

of integers modulo p. 

Theorem 4.1: The Galois group of GF(pmn) over GF(pn) is 
n 

a cyclic group. The automorphism a defined by cr(a) = aP generates 

this group. 
n n n 

Proof: GF(pmn) has characteristic p so that (a+b)p =ap +bP 
n n n n n 

and (ab)p =ap bp Also a is 1-1 since if aP =bp , then O = 
n n n 

aP -bp =(a-b)P . So a-b = 0 and a=b. Due to the fact that GF(pmn) 
n 

is finite, it must be that a is onto. If a E GF(pn), then aP =a 

so a fixes GF(pn). Hence a is in the Galois group of GF(pmn) over 

GF(pn). Now a,a2 , ... ,am are all distinct since if O 2- j < i 2- m and 
. . ni nj nj 0ni nj 

a
1 (a)=crJ(a),thenaP =aP SoaP (a' _-p·-l)=Oandeithera=O 

or a has degree pni_pnj. For each i and j we can find a nonzero 

element bin GF(pmn) whose degree is not pni_pnj. Then cr;(b)~crj(b) 

and hence a,a2 , .•• ,am are distinct elements of G(GF(pmn):GF(pn)). 
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Now [GF(pmn):GF(pn)] = m, so that, by Theorem 1.2, the Galois group 

can have at most m elements. Therefore G(GF(pmn):GF(pn)) = 

2 m 
{a ,cr , ••• ,o }. / / 

Definition: Let p be a prime in a finite extension F of Q, 

and suppose p = P
1 

••• Pk is the factorization of pinto primes in 

the finite extension K of F. If the P; are distinct, then pis 

unramified in K. 

For the remainder of this section, p, P and B wi 11 represent 

unramified primes and K,F wtll be finite extensions of Q. Observe 

that if p E F and PE K with Ka finite extension of F, then IF/p 

can be considered as a subfield of IKtP when Pjp. Define h from 

IF/p to IK/P by h(a+p) =a+ P, where a E IF; then his a 1-1 mapping. 

Indeed if h(a+p) = h(b+p), then a+ P = b + P. Hence Pj(a-b) and 

p!(a-b) because each prime of K divides only one prime of F. 

Definition: Let K be a finite extension of F,p E F and PE K 

with Pjp. The relative degree of P over pis the number f(P/p) = 

[IK/P:IF/p]. If F = Q, then we say that P has relative degree f(P/p) 

over Q. 

Definition: If K is a field and U is an ideal in IK' then 

the norm of U, NK(U), is the number of elements in IK/U. 

It can be shown that the following properties of NK hold 

(Pollard and Diamond, 1975): 

(1) NK(u,u2) = NK(Ul)NK(U2), 

•I 

I 
I 

-- __ J 
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(2) If K is a finite extension of F and a E F, then NK(a) = 

NF(a)[K:FJ, 

(3) If K is a finite extension of F and a EK, then 

NK(a) = IT cr(a), 
OEG(K:F) 

(4) If K is a finite extension of F, p E F and p = P1···Pk 
k 

in K, then NK(P;) = NK(Pj) and NK(p) = NK(Pi) . 

Definition: Let K be a finite extension of F and PE K. 

The decomposition group of Pis Gp= {cr E G(K:F): cr(P) = P}. 

Theorem 4.2: Let K be a normal extension of F, p E F and 

PE K with Pip, Suppose also that Lis the fixed field of GP and 

BEL with BjP. Define the mapping h from IF/p to IL/B by h(a+p)=a+B 

for a E IF. Then his an isomorphism. 

Proof: his clearly a homomorphism, and if h(a+p) = h(b+p), 

then Bj(a-b). But a-b E F, so pj(a-b) since Bjp. Hence his 1-1. 

To see that his onto let b E IL. For each a E G(K:F) - Gp 

we have o(P) r p and cr-1(P) f P. Let B EL be such that o-1(P)IB , 
· 0 0 

We use the Chinese remainder theorem to find a E IL such that 

a = b (mod B) 

a = l (mod Bo) 

for each o e G(K:F)-Gp. Then a= b (mod P) and a= 1 (mod o-
1
P); 

thus cr(a) = l (mod P) for each o e G(K:F)·-Gp. Now G(L:F) ~ G(K:F)/Gp 

so that NL(a) = IT a(a), and a runs through a set of right coset 
OEG(L:F) 

representatives of Gp in G(K:F). Thus NL(a) = b (mod P). Also 

H '. 
t' ,. ' 
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NL(a) e Zand hence is in IF. Finally NL(a) = b (mod B) since 

Pl(NL(a)-b) and NL(a)-b e IL. Therefore h(NL(a)+p) = b+B and 

h is onto. // 

Lemma 4.3: Let K be a normal extension of F and p e Fan 

unramified prime in K. If p = P1···Pk' then G(K:F) is transitive 

on the Pi. 

Proof: Suppose a(P1) 1 P2 for all a e G(K:F). P1 and P2···Pk 

are relatively prime so that there exist s,t e IK such that 

sP1 + tP2 ••• pk = 1. Now P2fNK(sP1) since NK(sP1) = Il o(sP1). 
aeG(K:F) 

But plNK(sP1) since PINK(P1),and P2!p. Hence P2!NK(sP), a contradiction. 

Therefore G(K:F) is transitive on the Pi. // 

Theorem 4.4: Let K be a normal extension of F and p e Fan 

unramified prime in K. If Pe K with Pjp, then Gp~ G(IK/P:IF/p). 

Proof: If a e Gp, define a' on IK/P by o'(a+P) = a(a) + P 

for a e IK. It is easy to see that a' is a homomorhpism. Also if 

a'(a+P) = a 1 (b+P), then a(a) + P = cr(b) + P and Plcr(a-b). Hence 

cr(a-b) = a-b since a e Gp and Pj(a-b). Thus 0
1 is an isomorphism. 

To see that 0
1 fixes IF/p, let a+ Pe IF/p. Then o'(a+P) = o(a)+P 

=a+ P. Therefore a' e G(IK/P: IF/p). 

Define the mapping hon Gp by h(o) 
,. 

= a . h is clearly a 

homomorphism. If h(a)(a+P) =a+ P for each a e IK' then o(a) = a 

for each as IK and a is the identity automorphism. This shows that 

his 1-1. 
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To see that his onto we show that IG(IK/P: IF/p)I = IGpl. 

Let L be the fixed field of Gp and BEL with PjB. Lemma 4.3 implies 

that Pis the only prime in K such that PIB. For if P1 IB, then there 

is o E G(K:L) = Gp such that o(P) = P1. Thus P1 = P. Now 

NL(B)[K:L] = NK(B) = NK(P). Suppose that NL(B) = qm and NK(P) = qn 

for some rational prime q. Then qm[K:L] = qn so that!'!_= [K:L]. 
m 

Also [IK/P: IL/BJ=~. and by Theorem 4.2 [IK/P: IL/BJ= 

[IK/P:IF/pJ. Thus jG(IK/P: IF/p) I = [IK/P: IF/p] =iii= [K:L] = IGpl. 

II 

Theorem 4.1 implies that G(IK/P: IF/p) is cyclic and generated 
. N {p) 

by op where op(a + P) = a F + P. Use the isomorphism of Theorem 4.4 
. ·NF(p) 

to find op E Gp. Then op(a) = a (mod P) for each a E IK. 

Definition: op is called the Frobeniu~ automorphism of P. 

We will use both op and (K~F) to represent the Frobenius automorphism. 

Suppose K is a normal extension of F, p E F, PE K with Pip 

and op is the Frobenius automorphism of P. If P1 is another prime 

divisor of pin K, then there is TE G(K:F) such that T(P) = P1 . 

If n = NF(p), then op(a) = an (mod P) for each a E IK. So op(T~1(a)) -

( -1( ) n -1( n) ( ) -1 n ( 1' a) = T a mod P. Thus 1'0pT (a)= a (mod T P)). 
. -1 Hence the Frobenius automorphism of P~ 1s op = rnRT and ,· 

l 

op and op are conjugate. 
l 

! 

'l 

i I 
t 

~ 
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Definition: Let K be a normal extension of F and pa prime 

in F, unramified in K. The Artin symbol at p,(K~F), is the conjugary 

class of the Frobenius automorphisms of the primes in K which divide p. 

Observe that if G(K:F) is abelian, then the Artin symbol 

consists of a single element. So for a prime p E F and Pip, we have 

( K~ F) = ( K~ F) . 

Definition: Let K be a finite extension of F and pa prime 

in F. If p has just one prime divisor in K, then pis said to be 

undecomposed in K. 

Definition: The centralizer of an element o in a group G is 

the subgroup C(o) = {, E G: io = o,}. 

Lemma 4.5: Let K be normal over Q, p E Q and PE K with Pip. 

Suppose that F is a field with Q ~ F C K and every prime divisors B of 

pin Fis undecomposed in K. Let C(op) be the centralizer of the 
1, 

Frobenius automorphism op of P over Q. Then there are i(C(op): <op>) 

prime divisors·s of p in F such that (FhQ) = (K~Q). 

Proof: Let B1 be a prime divisor of p and P1 the unique prime 

divisor of B1 in K. If o = (KL.Q.) = (KL.Q.), then P l(o (a)-aP) P1 P1 P l . P1 

for all a E IF. Hence B1 !(op (a)-aP) and (F~Q) = (K~Q), Thus it is 
1 1 1 

sufficient to show that there are i(C(op): <op>) prime divisors Pi of 

p in K such that (K~?) = (K~Q). 
1 

Any prime divisor of p in K is of the form ,(P) for some 

, E G(K:Q). We know that (~/Q) = 1CKp/Q),-l, so there are JC(op) I 
+(P) 

. 
i I 
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elements of G(K:Q) which are conjugate to (K~Q). To see how many of 

these yield distinct prime divisors of p, we note that , 1(P) = , 2(P) 

if and only if •21•1 E Gp. Since GP= <crp> we have the result. // 

Definition: Let K be a finite extension of F and I(F) the 

group of ideals of F whose prime factors are unramified in K. The 

Dedikind zeta function of Fis the complex valued function 

Definition: A character of a group G is a homomorphism of G 

into the complex unit circle. The trivial character x
0 

has the 

property that x
0

(cr) = 1 for all cr E G. 

The set of characters can be made into a group G* by defining 

x1x2(cr) = x1(cr)x2(cr). The trivial character is the identity of G*. 

Suppose that K is a normal extension of F and G(K:F) is 

abelian. Then we can define a group of characters on the group I(F) 

by letting x(p) = x(K~F), where pis a prime of F unramified in~· 

and x E G*(K:F). We extend x to all of I(F) by letting x(U) = IT x(pi) 
i =l 

Defi ni ti on: Let L(s,x;K/F) = I x(U)NF(U)-s, (Re(s)>l), 
Ud(F) 

then L(s,x;K/F) is called a abelian L-function. 

Notice that L(s,x
0

;K/F) = r;F(s). 

Lemma 4.6: L(s,x;K/F) = IT (1-x(p)NF(p)-s)-l 
pEF 

I' 
', I 

' ' 

I' 

" ' •.. 

I 
I 

l 
i 

r 

l.1 
. I 
:' I 
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Proof: Let T(x) = rr {l+x(p)NF(p)-s+x(p) 2NF(p)-2s+···}. 
NF(p)~x 

Observe that since Re(s) > 1, L(s,x;K/F) converges uniformly so that 

we can rearrange the terms without altering the sum. If U E I(F) 

el ek 
and U = p1 •••pk with NF(P;) ~ x for each i, then x(U)NF(u)-s is 

in the product T(x). Let A= {U E I(F): Uhas a prime factor p with 

NF(p) > x}. Then IL(s,x;K/F)-T(x)I = I x(U)NF(U)-s which tends to 
Ut:A 

zero. Hence lim T(x) = L(s,x;K/F) and L(s,x;K/F) = 
X-+= 

IT {l+x(p)NF(p)-5+x(p) 2NF(p)- 25+···} = n (1-x(p)NF(p)-5 )-l. // 
pEF pEF 

Corollary 4.7: ~F(s) = rr (1-NF(p)-s)-l. 
psF 

Lemma 4.8: If G is cyclic, then I x(,)=IGI and I x(cr)=O 
XEG* XEG* 

for a:/- t, 

Proof: Let G be cyclic of order n, say G = <a>. Then 

x(T)n = x(,n) = x(1) = l for all TE G, x E G*. So x(T) must be an nth 

root of unity. Also x(cr) = e2kni/n is clearly a character for 

k = O,l, ... ,n-1. Hence the group of characters of G has order n since 

there are n nth roots of unity. 

Now x(1) = 1 for each x E G*. So I x(1) = JG*! = JG!. 
XEG* 

Also if, r t, then there is X1 E G* such that x,(,) r 1. x,x runs 

through G* as x runs through G* so that I x(,) = I x1(,)x(,) = 
XEG* XEG* 

Definition: Let A be a set of primes of K. Then the Dirichlet 

density of A is 

''I ~' 
1. 
I 

;I 

.. 

·i ) 
,ti 

I 
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log rr (1-NKP-s)-l 

PsA ' d(A) = lim+ - whenever the limit exists. 
s+l log ~K(s) 

It can be shown that ~K(s) has a simple pole at s = 1, 

(Janusz, 1973, p. 125). Thus log sK(s) = -log(s-1) + 0(1), where 

f(s) = O(g(s)) means f~s~ remains bounded ass+,+. By f(s) = o(g(s)) 
g s 

. f(s) _ 
we mean that l1m+ ::-7sT - 0. 

s+l 9\::. 1 

Lemma 4.9: Let A be a set of primes in K. Then d(A) 

if and only if I NK(P)-s = -a log(s-1) + o(log(s-1)). 
PsA 

Proof: Suppose d(A) = a. log JI (1-NK(Pfs)-l 
PsA 

co 

' ( -s) -- \' ' m-lNK(P)-ms = - L log 1-N P l l since 
PsA K PsA m=l 

co zm 
log(l-Z) = - I -. So 

m=l m 

( -s -1 
log F (1-NK P) ) 

PsA 

= lim+ log sK(s) 
s+l 

= a 

I NK(Pfs + a(log(s-l)+o(,r)+ I I m-
1NK(P)-ms 

PEA PsA m=2 = 1 i m+ .:......::.;._;__ ___________ .....:.....::.~;._:_-----
s+l -log(s-1) + 0(1) 

l NK(P)-s + a log(s-1) 
= 1 im _PE=-A _______ _ 

s+l+ - log(s-1) + 0(1) 

I 
I 
11 

.I 
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0(1) + l I m-lNK(P)-ms 
PEA m=2 + lim+ ----------

s+l -log(s-1) + 0(1) 

and the second limit clearly goes to zero. Hence 

I NK(P)-s + a log(s-1) 
lim PEA = 0 and 

+ s+l -log(s-1) + 0(1) 

l NK(P)-s = -a log(s-1) + o(log(s-1)). These steps are 
PEA 

clearly reversible, so that the result is obtained. // 

Lemma 4.10: Let K be normal over F and G(K:F) be abelian 

with [K:F] = n. If BE F, then -II (1-x(B)NF(B)-s) = 
XEG*(K:F) 

(1-NF(B)-sm)n/m where m = !Gp! ,PE Kand P!B. 

Proof: Consider the mapping h from G*(K:F) to Gp defined by 

h(x) = x!Gp. his a homomorphism with kernel H = {xEG*(K:F): x(B)=l}. 

IHI = jG*(K:F))/IGpl = 'iii so that. rr (1-x(B)NF(B)-s) = 
xsG*(K:F) 

_ rr (1--.x(B)NF(Bfs)n/m. As in the proof of Lemma 4.8, them elements 
:xtG* p 
?f GP are the characters of GP which send (·KfuF) to the m i..h roots of 

unity. Let~ be a primitive mth root of unity. Then 

' 
* ~ I ,I 

I : 
'1 

11 
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' 

I 

'i \ 
• , 
' 

* 
i 

I 
' l 
I 

' 

'1 



73 

Theorem 4. 11: Let K be a normal over F and G(K:F) be 

abelian. Then rr L(s,x;KIF) = sK(s), (Re(s) > 1). 
XEG*( K: F) 

Proof: Since L(s,x;KIF) = rr (1-x(B)NF(B)-s)-l and 
BEF 

sK(s) = IT (1-NK(P)-s)-l, it suffices to show that 
PEK 

IT (1-x(B)NF(B)-s) = IT (1-NK(P)-s). First we note that if 
X EG* ( K : F) p I B 

f(P,fp) = !Gp I= I, where n = [K:F] and k is the number of prime 
1 

divisors of Bin K. By Lemma 4.10, IT (17x(B)NF(B)~s) = 
XEG*(K:F) 

,1:-NF.(_B_)_-sm)nlm ~ (:1-N (P )-sl = IT (1-N (P)-s). II 
, . K .1 · p 

1
-8 K 

Because sK(s) and sF(s) have simple poles at s = 1, we have 

sK( 1) 
is analytic at s = 1. Hence sF(l) = IT L(l,x;KIF) r 0, 00 • 

xrx. 
0 

We use this fact to get Dirichlet 1 s theorem. 

Theorem 4.12: Let K be normal over F and G(K:F) be abelian of 

order n. If a E G(K:F) and A= {BEF:(K'F) = a}, then A has Dirichlet 

density}. 

Proof: - -l n 

: I 
. I 

,, 
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As in the proof of Lemma 4.9, this limit is equal to 
00 

L L m-lN (B)-sm 
Bt:A rn=l F lim+ -~~~ 

s+l log tF(s) 

Let T(s) = n-l I x(cr-1)logL(s,x;K/F). Then 
xsG*(K:F) 

-1 ( -1) ( ) -1 \ ( -1 ) T(s) = n x
0 

cr logL s,x
0

;K/F + n l x cr )logL(s,x;K/F 
X'tX0 

~ n-11og tF(s)+n-1 I x(cr-1)1og L(s,x;K/F). So 
X"fXo -1 I x(o )logL(s,x;K/F) 

lim T(s) = l + lim 
s+l+ log xF(s) n s+l+ 

X X 
-:/ 0 

By the remarks following Theorem 4 .11, the above limit tends to l. n 

. T( s) _ l 
Hence l1m+' 1 (s) - -. s+l og sF n 

We also have that 

T(s) = n-l I x(cr-1)1og L(s,x;K/F) 
xt:G*(K:F) 

= n x o l l m x B NF B -1 f ( -1 ) \ ~ -1 ( ) ( )-sm 
xt:G* K:F) Bt:F m=l 

I, 
I 
, l 
I I ; 
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By Lemma 4.7, >. x(cr-l(K'F)) is zero if (K'F) f cr and 
XEG*{K:F) 

II 

Lemma 4.13: Let A be a set of primes in Kand A1 the set of 

primes of A with relative degree one over the rationals. Then the 

Dirichlet density of A-A1 is zero so that d(A) = d(A1). 

Proof: Let PE: A-A1; then NK(P) = pk for some p E: Q and k ~ 2. 

Let S be the set of rational primes p such that Pip for some PE: A-A1. 

There are at most [K:Q] primes in A-A1 which divide p for any p E: S. 

Now 

and d(A-A1) = 0 by Lemma 4.9. II 

I 
I 
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We now come to the main theorem of this section, the Chebotarev 

density theorem. 

Theorem 4. 14: Let K be norma 1 over Q, C a conjugary cl ass of 

G(K:Q) with c elements and A= {pEQ: (K/Q) = C}. Then A has Dirichlet 
p 

density%, where n = IG(K:Q)I. 

Pro_of: Let a EC and F the fixed field of <a>. G(K:F) is 

cyclic so that the set A
1 

={BE F:(K,~) = a} has Dirichlet 

density~ by Dirichlet 1s theorem. Using Lemma 4.9 we have 

B~Al NF(B)-s = i~I log(s-1) + o(log(s-1)). If A2 = {BEA1:B has 

relative degree one over Q}, then I NF(B)-s = I NF(p)-s 
8EA2 BEA2 

Blp 

= j!1 log(s-1) + o(log(s-1)) by Lemma 4.13. 

Now if (K'F) = a, then a E G8 <;G(K:F) = <a>. Hence G8 = <a> 

and f(P/8) = jG8i = [K:F] for PIB. If B = P1···Pk, then f(P 1/B)k = 

[K:FJ and k = l. Therefore each BE A2 is undecomposed in K. Also 

if Blp, then (K'F) = a if and only if (K~Q) = C. Thus the hypothesis 

of Lemma 4.5 are satisfied and we have i(C(cr): <a>) I NQ(p)-s 
PEA 

log(s-1) + o(log(s-1)). Hence 

\ N ( )-s = -log(s-1) 
l Q p i(C(cr):<cr>)lcrl + o(log(s-1)). 

pdl, 

-1 =-
icrl 
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l = l _ i(G(K:Q): C(cr)) = c 
Finally ~i(~C~(cr~)~:-~s~cr>~)~lcr~I IC(cr)I - IG(K:Q)I n II 

B. A Theorem of Van der Waerden 

Theorem 4.15: Let f(x) E Z[x] and p be a rational prime with 

p not dividing the leading coefficient of f(x). Then G(f,ZP) in 

a subgroup of G(f,F). 

Proof: As at the beginning of Chapter 3 we form the poly­

nomial F(x) = F1(x)···Fk(x), where F1(x) is the Galois resolvent of 

f(x). If cr E G(f,Zp)' then cr holds the coefficients of F;(x) fixed 

for each i because F;(x) E Zp[x]. Hence crF1 = F1 which, according 

to Theorem 3.3, is precisely the condition necessary for cr E G(f,Q). 

Theorem 4.16: Let f(x) E Z[x] and p be a rational prime with 

p not dividing the leading coefficient of f(x). If f(x) = 
e1 e2 ek 

f 1(x) f2(x) ···fk(x) (mod pZ[x]), where the f;(x) are distinct 

irreducible polynomials of ZP[x], then G(f,Q) contains a permutation 

consisting of k cycles and the ;th cycle has length [f;]. 

Proof: By Theorem 4.1, G(f,Z) is cyclic. Let cr be an ~- p 

automprphism generating G(f,ZP). Now cr is transitive on the roots of 

f;(x) for each i, while cr does not send a root of fi(x) to a root of 

fj(x) if i 1 j, Since cr, acting on the roots of fi(x), must be a 

cycle of length [f;], cr has the desired form. Finally cr E G(f,Q) 

because G(f,Zp) ~ G(f ,Q) by Theorem 4.15. II 

II 
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Theorem 4.17: Let f(x) E Z[x] and p be a rational prime with 

p not dividing the leading coefficient of f(x). Suppose also that K 

is the splitting field of f(x) and Pis a prime in IK with Pip. 

If the Frobenius automorphism of P is o and f(x) = 
k e. 
rr fi(x) 1 (mod pZ[x]),where the fi(x) are distinct irreducible 

i =l 
th polynomials of Zp[x], then o has k cycles and the i cycle has length 

[f i J. 

Proof: By the definition of o, it is the automorphism of 

G(K:Q) such that o(a) = aP (mod P) for all a E IK. By Theorem 4.1, 

o•(a) = aP for all a E IK/P generates G(!K/P: ZP). Since 

Gp~ G(IK/P: Zp), and using the proof of Theorem 4.17, o has the 

appropriate cycle structure. // 

We can use Theorems 4.14, 4.16 and 4.17 to aid us in calculating 

the Galois group of f(x) over the rational numbers. Factoring f(x) 

modulo p for a sufficient number of primer p will yield the cycle 

structure of each permutation in G(f,Q). If we want an approximation 

as to what proportion of the elements of G(f,Q) have the same cycle 

structure as a particular element o, we use Theorems 4.14 and 4.17. 

We let Ax be the set of rational primes p for which p.:::. x and factoring 

f(x) modulo p yields the same cycle structure as o. Let S be the 
X 

set of all rational primes p for which p.:::. x. If. and o have the 

same cycle structure, then they are conjugates. So the Chebotarev 

. IAxl c 
density theorem says that~_::~= ..,_IG~(-f-,Q~)-I where c is the 

' . . 

I· 
l' 
I 
I I 

Ii 
I 
hi 
I 
t I 
> 

,l 



79 

number of elements of G(K:Q) conjugate to a. For any x, we can use 

IA I 
the approximation is:i for the proportion of elements of G(f,Q) 

which have the same cycle structure as a. One problem here is that 

we need to know how large to pick x. Lagaries and Odlyzko (1977) 

indicate how one might calculate such a bound, but the bound is quite 

difficult to compute. 

Fortunately we seldom need to know these bounds. Generally 

if we know the cyclic structure of the elements of G(f,Q), we can 

determine G(f,Q). It is advantageous to have a listing of the 

permutation groups of degree [f] with entries describing the degree, 

order, transitivity and cycle structure of these groups. Such a 

listing can be found for degrees up to seven in Zassenhaus (1971), 

but there are a number of errors in the tables (Neuman, 1975). 

To use this method, you must be able to factor polynomials 

modulo p for a prime p. This factorization is done by trial and error. 

It amounts to solving, for each possible degree of a factor, a system 

of n+l congruences modulo p, where n = [f]. 
n . 

If f(x) = l a.x1 and 
i =o , 

we want to determine whether f(x) is congruent to the product of an 

mth degree polynomial with an n-mth degree polynomial, then we set 

i 
up the n+l congruences l b .c .. = ai (mod p) for f = 0, 1, ... ,n, 

j=o J 1-J 

where the bi,ci are unknowns, b; = 0 if i > m and cj = O if j > n-m. 

As an example of Van der Waerden's method of determining the 

Galois group, consider the polynomial f(x) = x5+2x4+sx3+3x2+sx+l. 
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By trial and error it can be shown that f(x) is irreducible modulo 2; 

has factors of degree 1 ,2 and 2 modulo 3; and has factors of degree 

2 and 3 modulo 5. So G(f,Q) contains a 5 cycle a 1, a permutation a2 

with 2 cycles of length 2 and a permutation a
3 

with a 2 cycle and a 

3 cycle. Note that o~ is a 3 cycle and o~ is a 2 cycle. Hence 

the order of G(f,Q) must be at least 2·3·5 = 30. Thus G(f,Q) is 

s5 or A5, but o~ is an odd permutation. Therefore G(f,Q) = s5. 

Another example is f(x) = x4+2x3+2x+2. f(x) factors into 

2 quadratics modulo 3, and so G(f,Q) is either the cyclic group of 

order 4 or the Klein 4 group. f(x) is irreducible modulo 5, hence 

G(f,Q) is the cyclic group of order 4. 

An alternative to using the Chebotarev density theorem in 

cases where the use of Van der Waerden's theorem is inconclusive, 

is to use the method of Zassenhaus. We use Van der Waerden 1 s method 

for a few 11 smal1 11 primes to narrow down the choices for G(f,Q), 

and then apply the Zassenhaus method to determine which of these choices 

is actually G(f,Q), This is actually the most efficient procedure in 

general because it usually avoids calculating resolvent equations 

for subgroups in groups where the index is large. Also it avoids the 

most difficult part, as far as the computation goes, of the Van der 

Waerden method--factoring modulo large primes. 

Zassenhaus (1971) suggest two other methods, a p-adic method 

and a ring theoretic approach. The numerous errors and misprints, 

a 1 ong with the sketchy proofs and explanations, make these methods 

difficult to understand. Both involve deep ring theoretic results. 
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which are beyond the scope of this paper. Some of the details for 

the second method are fi 11 ed in by the papers Zassenhaus (1967) and 

Zassenhaus (1974), although there are still numerous gaps even in 

these articles. 

Van der l~aerden's method generally needs no help. 

Gallagher (1973) shows that "almost all II manic polynomials of a given 

degree are irreducible and have Galois group equal to the symmetric 

group. Zassenhaus (1971) claims that if the Galois group of an 

equation is the symmetric group, Van der Waerden's method will 

usually quickly realize this by showing that the Galois group contains 

a transposition and a p-cycle for some p > n/2, where n is the degree 

of the equation. 

It is worth noting that computers can be used in some of the 

techniques described in this paper to do the tedious calculations. 

For instance, Hensel 1s lemma applied to the p-adic numbers provides 

an algorithm that can easily be used on a computer. Many of the 

computations of the Zassenhaus method can be done by computers 

(Stauduhar, 1973). Also factoring modulo p can be done by computers 

as it is just a matter of testing a finite number possibilities. 

1,. 

t ' 
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"TABLE l 

TP-ANSITIVE SUBGROUPS OF Sn FOR n=4, ... ,7 

Degree Group I Contained Function Generators, Description in 

4 G8 S4 x1x3+x2x4 (1234), (13) group of the square 

4 Gl G8 
2 2 2 2 (1234) cyclic four group 4 x, x2+x2x3+X3X4+X4X1 

4 G2 
4 (12)(34), (13)(24) Klein 4-group 

5 G20 S5 [x,x2+x2x3+X3X4+X4X5+X5X1 

-x,x3-X2X5-X5X2-X2X4-X4X1] 
2 (12345), (2354) metacyclic five group 

5 GlO (12345), (25)(34) 

5 G5 Gl 0 
2 2 2 2 2 

x,x2+x2x3+X3X4+X4X5+X5X1 (12345) cyclic five group 

6 G72 S6 x1x2x3+x4x5x6 (123), (456), (12), (45), (14)(25)(36) 
maximal group imprimitive on two sets 
of three letters 



Degree Group Contained 
in 

6 l 
G36 

6 2 
G36 G72 

6 Gl8 
2 

G36 

6 1 
Gl 2 

2 
G36 

6 Gl 
6 Gl8 

6 G2 
6 G18 

TABLE 1--Continued 

Function 

(x1-x2)(x2-x3)(x3-x1)(x4-x5) 

• (x5-x6)(x6-x4) 

(x1-x2)(x2-x3)(x3-x1) 

+ (x4-X5)(x5-x6)(x6-x4) 

x,x4+X2X5+X3X5 

XlX4+XzX5+X3X5 

' 

2 2 2 2 2 
X1X5+XzX4+X3X5+X4X2+X5X1 

2 
+ X6X2 

"' __ -,,,,,,........---.,.,,,:."ll--:.-r"r ---

Generators, Description 

( 123) , ( 456) , ( 12 )( 45) , ( 1 425 )( 36) 

G72 A6 

(123), (456), (12)(45), (14)(25)(36) 

(123), (456), (14)(25)(36) 

(123)(456), (12)(45), (14)(25)(36) 
metacyclic six group 

(123)(465), (14)(25)(36) 

isomorphic to s3 

(123)(456), (14)(25)(36) 

cyclic six group 

-- ·.Ir -,.-n ..... -..... ~ - ---- ---------.-



Degree i Group Contained 
in 

6 G4S S6 

6 1 
G24 G48 

6 
2 

G24 G4S 

6 
3 

G24 

' 

6 2 
Gl 2 

3 
G24 

TABLE 1--eontinued 

Function 

x,x2+X3X4+X5X6 

(x,+x2-X3-X4)(x3+X4-X5-X5) 

· (x5-x6-x1-x6)(x1-x2) 

. (x3-X4) (x5-X5) 

(x,+x2-X3-X4)(x3+X4-X5-X5) 

• (x5+x6-x1-x2) 

2 see G24 

Generators, Description 

(12), (34), (56), (135)(246), (13)(24) 
maximal group imprimitive on three 
sets of two letters 

(12)(34), (34)(56), (12)(56), 

(135)(246), (14)(23)(56) 

(12)(34)(56), (34)(56), (56), 

( 135 )(246) 

(135)(246), (13)(24), (12)(34), 
(34)(56) G4S A5 isomorphic to s4 

(12)(34), (34)(56), (12)(56), (135)(246) 
isomorphic to A4 

co 
0, 



TABLE 1--Continued 

Degree Group Contained Function Generators, Description in 

6 G120 \ [x1x2+X3X5+X4X5]·[x1x3+X4X5+X2X5] (126)(354), (12345), (2354) 

, [X3X4+xlx6+x2x5J•[X1X5+X2X4+X3X5] i s omo rp hi c to S 5 

· [x1x4+X2X3+X5X5] 

6 G60 (126)(354), (12345), (25)(34) 

Gl20 A5 isomorphic to Ar co 
::) O"'l 

7 Gl68 S7 X1X2X4+X1X3X7+X1X5X5+X2X3X5 ( 1234567), (235)(476), (2743)(56) 

+ X2X5X7+X3X4X5+X4X5X7 

7 G42 S7 X1X2X4+X1X2X5+X1X3X4+X1X3X7 ( 123456 7) , ( 243756) 

+xlx5x6+X1X5X7+X2X3X5+X2X3X7 

+x2X4X5+X2X5X7+X3X4X5+X3X5X5 metacyclic seven group 

+X4X5X7+X4X5X7 

7 G2l Gl68 See G42 S7 (1234567), (235)(476) 



TABLE 1--Continued 

Degree Group Contained Function Generators, Description in 

7 Gl4 G42 x1x2+x2x3+···+x6x7+x7x1 (1234567), (27)(45)(36) 

7 G7 G21 See G14 G42 (1234567) cyclic 7 group 
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Degree 4 

G8 cs4 
l G4 CG8 

Degree 5 

G5 C GlO 

Degree 6 

TABLE 2 

RIGHT COSET REPRESENTATIVES 

1, (23), (34) 

1, ( 12)( 34) 

1, ,(12)(34), (12435), (15243), 

(12453), (12543) 

1, (12)(35) 

1, (2543), (236)(45), (25436), 

(25)(34), (2453), (25), (2345), 

(24536), (3645) 

1, (56) 

1 , ( 12 )( 45) , ( 56) , ( 12 )( 465) 

1, (123), (132) 

1 , ( 1 23) , ( 132) 

1 , ( 123) , ( 132) , ( 56) , ( 123 )( 56),. 

(132)(56) 

1, (24635), (26)(35), (354), (2345), 

(253), (345), (256)(34), (26435), 

(2346), {234), (25)(36), (2435)~ 

(24)(35), (26543) 

1, (12) 

1, (13)(24) 

1' ( 13 )( 24) 

1, (13), (23), (123), (132), (12) 

88 



Degree 7 

89 

TABLE 2--Continued --..-

1, (356), (365),· (34)(56), (354), (364), (456), (345), 
(36)(45), (465), (35)(46), (346), (47)(56), (35)(47), 
(36)(47), (243756), (243675), (243)(57), (2475), 
(247536), (247563), (246375), (246)(57), (246753), 

(24)(375), (24)(36)(57), (24)(567), (245)(37), 

(245736), (245673) 

Let A be the set consisting of the even coset 

representatives for G168 in s7. Let B be the 
set of all coset representatives for G21 in G168 . 
Then the required 120 coset representatives here 

a re given by A , B . 

1, (37)(56), (23)(74), (2347)(56), (24)(56), 
(24)(37), (2743)(56), (27)(34) 

1, (235)(476), (253)(467) 

1, (235)(476), (253)(467) 

fi 
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Figure 1. The Order of Subgroup Choices 
for the Zassenhaus Method 
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