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ABSTRACT 

Coupled thermal and poromechanical processes play an important role in many 

geomechanics problems, such as borehole stability analysis and studies of initiation and 

propagation of hydraulic fractures. Thermal effects, as well as hydraulic effects, can 

greatly change the stresses and pore pressure fields around an underground opening. This 

is due to the fact that thermal loading induces a volumetric deformation because of 

thermal expansion/contraction of both the pore fluid and the rock solid.  Volumetric 

expansion can result in significant pressurization of the pore fluid. In order to take into 

account the influence of temperature gradients on pore pressure and stresses, it is 

necessary to use a non-isothermal poroelastic theory, or thermo-poroelasticity. Many 

problems formulated within the framework of thermo-poroelasticity are not amenable to 

analytical treatment and need to be solved numerically. The boundary element method 

(BEM) has proven suitable for the poroelastic and thermoelastic problems. In this thesis, 

a two-dimensional transient indirect BEM is developed to solve coupled thermo-

poroelastic problems.  

The indirect BEM has two sub-formulations, namely, the displacement 

discontinuity (DD) method and the fictitious stress (FS) method. The DD method has 

shown to be particularly suitable for crack-shaped problems (Crouch and Starfield, 1983). 

A combine FS-DD model is developed to take advantage of the strengths of both FS and 



 
 xiii

DD methods. The boundary integral equations, fundamental solutions, and the numerical 

implementations for the development of this model are described. The model is tested 

using some poroelastic and thermo-poroelastic examples. The numerical predictions 

show good agreement with analytical solutions or previously published results. The 

results indicate that the transient formulation of the indirect BEM (FS-DD) model is an 

accurate and suitable means for solving problems in thermo-poroelasticity.  

In addition to verification of the numerical techniques, the model is applied to 

borehole stability and fracture problems in high temperature underground environments. 

Drilling-induced stress and pore pressure distributions around a borehole are analyzed. 

Effects of thermal loading and pore pressure loading are considered. The results indicate 

that cooling the borehole wall will induce a pore pressure reduction and additional tensile 

stresses in the formation. Therefore, the potential for tensile fracture at the wall and 

inside the rock increases. The influence of excavation geometry on borehole stability 

under combined poro-thermo-mechanical loading is also considered. It is found that an 

elliptical borehole will be more likely to fail in tension due to the pressure of the mud 

column and cooling. The examples also indicate that cooling increases crack opening and 

stress intensity, leading to crack growth. Fracturing is more likely to occur in the cooled 

zone. In general, cooling at the borehole wall can lead to fracturing and instability; 

cooling the crack surface can cause the crack to open up and further propagate. Pore 

pressure effects in these problems are far less important than thermal effects according to 

the study. However, thermal effects tend to develop slowly and can be neglected in 

hydraulic fracture propagation. 
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CHAPTER 1 

INTRODUCTION 

The stability of underground openings is of interest in geological, mining and 

petroleum engineering as well as many other disciplines. One of the major applications is 

the borehole stability analysis in the energy industry. Extraction of oil, gas and 

geothermal resources requires drilling through rock formations. Drilling operations can 

be costly and risky because of various geomechanical problems related to borehole 

instability. The practical consequences of borehole instability are often the collapse of 

borehole wall in shear or lost circulation caused by fracturing of the borehole. In the 

petroleum industry, it is estimated that at least 10% of the average well budget is used on 

unplanned operations resulting from borehole instability. This cost may approach one 

billion dollars per year worldwide (Aadnoy and Ong, 2003).  

Having a good understanding of the mechanical behavior of the borehole and 

surrounding rock formation is the key points for borehole stability analysis. In the 

petroleum industry, the common practice of stress analysis around borehole uses classic 

theory of elasticity [e.g. Bradley, 1979]. Models based on this theory are popular because 

they assume the rock is a linear elastic continuum and thus are relatively easy to 

implement and require a modest number of input parameters. Factors contributing to 

borehole instability, such as trajectory of the borehole, orientation and magnitude of the 
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in-situ stress field, and rock properties, are normally considered in the analyses. Stresses 

computed from the model are compared to a rock strength criterion to determine if shear 

failure or tensile failure will occur. In addition to failure of the intact rock, borehole 

failure can also be initiated along pre-existing natural discontinuities, such as bedding 

planes and fractures, in rock masses. This factor has also been considered in some 

borehole stability models within the framework of elasticity. 

Thermo-poroelasticity 

Due to the complexity of the rock formation, in many cases pure elastic models 

alone are inadequate to provide accurate stress analysis. One of the reasons is because 

rock, as a porous medium, is usually saturated with fluid. Drilling in fluid saturated rock 

disturb the initial state of pore pressure. The stress analysis must take into account the 

influence of pore pressure gradient induced by fluid flow and those by induced stresses. 

In addition, pore pressure changes induce stress in the rock. The first detailed studies of 

the coupling between the fluid pressure and solid stress fields were described by Biot 

(1941). In the poroelastic theory, the time dependent fluid flow is incorporated by 

combining the fluid mass conservation with Darcy's law; the basic constitutive equations 

relate the total stress to both the effective stress given by deformation of the rock matrix 

and the pore pressure arising from the fluid. From then on, the theory of poroelasticity 

has been developed by a number of investigators (e.g. Geertsma, 1957; Rice and Cleary, 

1976). The coupled poroelastic effects can be summarized as follows (Vandemme et.al, 

1989): 
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(1) a volumetric expansion of the porous rock is induced by an increase of the 

pore pressure; 

(2) if the fluid is prevented from escaping (undrained condition), an increase of 

the pore pressure results from the application of a confining pressure; 

(3) the volumetric deformation of the rock is sensitive to the rate of isotropic 

loading (the rock appears to be stiffer under faster loading rates).  

Another factor that plays an important role in borehole stability is the temperature 

variations. In many situations, there is a significant temperature difference between the 

drilling mud and the formation. This thermal loading on the borehole wall can induce 

additional stresses and pore pressure around the borehole. Thermally induced stresses 

have attracted the attention of many researchers in the context of thermoelasticity (e.g. 

Carslaw and Jaeger, 1959; McTigue, 1986). However, thermal induced pore pressure 

change is not considered in this theory. 

As mentioned above, the practice of drilling causes perturbations of the initial 

stresses, pore pressure and temperature equilibriums. Hydraulic and thermal gradients 

developed between the drilling mud and the formation result in a modification of the 

stress state near the borehole. Therefore, it is necessary to consider both the hydraulic 

effects and the thermal effects in borehole stress analysis. In order to achieve this goal, 

the theory of thermal-poroelasticity is developed on the basis of poroelasticity by 

coupling the time-dependent processes of fluid diffusion and heat diffusion to the 

mechanical behavior of the rock. Constitutive equations for this theory were first 

introduced by Palciauskas and Domenico (1982) by extending the classic Biot’s 
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poroelastic theory for the non-isothermal case. Whereas the equations of poroelasticity 

are fully coupled, in the sense that the pore pressure influences the deformation and the 

deformation influences the pore pressure, coupling in thermoelasticity is usually 

unidirectional. Temperatures will have a large influence on the stresses and strains, but 

the deformation does not lead to significant temperature change. This is also the case 

when one looks at the relationship between pore pressure and temperature. So, 

temperature field and heat flux can usually be calculated independently. The relationships 

of these three main components in thermo-poroelasticity are indicated in Figure 1.  

It should be noted that convective heat transport is often neglected in low 

permeable rocks like shale and granite. This is because in such rocks heat conduction 

dominates the heat transfer process and heat convection is negligible due to the extremely 

low fluid flow velocity. This approach has been justified by Delany (1982). 

A few analytical procedures have been developed and used to solve geomechanics 

problems of interest involving coupled thermal and poromechanical problems (Ghassemi 

and Diek, 2002; Wang and Papamichos, 1994). However, many problems formulated 

within the framework of thermo-poroelasticity are not amenable to analytical treatment 

and need to be solved numerically. The boundary element method (BEM) or the 

boundary integral equation formulation has been used extensively for the poroelastic and 

thermoelastic problems (e.g., Cheng et al. 2001; Ghassemi et al. 2001). The advantage of 

the method is that it reduces the problem dimensionality by one, thereby reducing the 

computational efforts significantly.  There are two types of BEM formulations: direct and 

indirect. In the former, the unknowns in the integral equations are physical variables (e.g. 
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displacements or stresses). It is realized by using the reciprocal theorem. In contrast, the 

unknowns in the indirect BEM are fictitious terms which usually do not represent the 

physical variables of the problem. The indirect approach can be developed based on the 

principle of superposition or using a rigorous mathematical approach.  

The indirect BEM has two sub-formulations, namely, the displacement 

discontinuity (DD) method and the fictitious stress (FS) method. The former is 

particularly useful for modeling fractures and fracture propagation. Its advantages stem 

from the fact that in this method the two surfaces of a thin crack are treated as one entity, 

and the relative displacements between these surfaces are the unknown physical 

parameters. 

 

 

 

 

 

 

 

Figure 1. Illustration of thermo-poroelasticity 

 

Although the coupled diffusion-deformation problems are essentially three-

dimensional (3-D), they can be analyzed in 2-D using the concept of plane strain as long 

as the length of the excavation is much larger than its dimension in the plane 

Pore pressure 

 Thermoelasticity  Poroelasticity 

Temperature 

Stress/Strain 
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perpendicular to its axis. The plane strain concept can also be used when the long axis of 

the opening is not in the direction of a principle stress (Cheng, 1998; Ghassemi et al., 

2001), which is often practiced in engineering. In this thesis, a plane strain 2-D indirect 

boundary element model is developed and applied to a number of transient thermo-

poroelastic problems.  

Literature Review 

 Analysis of mechanical failure of underground openings has been the subject of 

rock mechanics for a long time. As one of the major applications, during the last two 

decades, the borehole stability issue has been seriously addressed due to the increasing 

complexity of drilling operations by the petroleum and gas industry.  

Drilling into a deeply buried rock formation involves perturbation of the natural 

stresses around the drilled zone. To examine the borehole stability, the stress and pore 

pressure fields around the well must be determined. Assuming linear elastic material 

behavior, equations for stress distributions around a circular hole are given by various 

authors (e.g., Timoshenko and Goodier, 1951; Jaeger and Cook, 1979). Numerous 

borehole stability models have been proposed based on the theory of linear elasticity, e.g. 

Bradley (1979), Aadnoy and Chenevert (1987), and Hsaio (1987). However, these 

traditional models are inadequate for fluid saturated rocks because they do not take into 

account the poroelastic and thermal effects. 

Biot (1941) developed the theory of linear poroelasticity to study coupled 

diffusion-deformation phenomena in porous media. This theory was later reformulated by 

Rice and Cleary (1976), who presented the poroelasticity with parameters used in rock 
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and soil mechanics. The coupling phenomena between the pore pressure and rock stress 

changes are discussed under undrained and drained conditions by Rice and Cleary (1976) 

and later by Detournay and Cheng (1988). Detournay and Cheng (1993) applied 

poroelasticity to a number of problems in petroleum and civil engineering. Detournay and 

Cheng (1988) and Cui et al. (1995, 1997) introduced poroelastic effects to investigate the 

stability of vertical and inclined wells, respectively. With the reduction of pore pressure 

around the borehole, the effective stress becomes more compressive, thus the potential of 

compressive failure at the wall increases. Fluid flow into the formation induces pore 

pressure rise and an effective tensile stress zone around the borehole, which implies a 

higher potential of tensile failure. It was also found that shear failure could be initiated 

inside the rock rather than at the borehole wall due to deviatoric stress loading, as is 

predicted on the basis of an elastic analysis (Detournay and Cheng, 1988). 

Thermal stresses develop when there are differences in temperature between 

formation and borehole fluids. Thermal stresses have also been examined by a number of 

researchers, e.g., Carslaw and Jaeger (1959) and McTigue (1986). The latter studied 

several problems of thermal loadings of a fluid-saturated porous media. The contribution 

of the thermal effects to fluid flow and rock deformation is considered using a linear non-

isothermal poroelastic theory. Kurashige (1989) developed a theory that fully couples 

heat transfer to the poroelastic process. Coussy (1991), Wang and Papamichos (1994), 

and Li et al. (1998) among others applied the theory of thermo-poroelasticity in borehole 

stress analysis (Wolfe, 2002). Ghassemi and Diek (2002) extended this theory to include 

the influence of a chemical potential in a nonisothermal setting. Borehole stability and 
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time-delayed formation failure under cooling or heating conditions are discussed. Heating 

increases the potential of shear failure, because the volume expansion during heating 

increases the compressive stress as well as the stress difference. Cooling increases the 

potential of tensile failure because of the tensile stress induced by material shrinkage. It 

was found that with cooling, a tensile stress zone would develop inside the formation 

with time, which can facilitate the time-delayed fracture growth. 

Due to geometric complexity, many problems formulated within the framework 

of thermo-poroelasticity do not have analytical solutions, e.g., when studying elliptical 

boreholes and boreholes intersected by fractures. This calls for the development of 

numerical solutions.  

The applications of boundary element method in poroelastic and thermoelastic 

problems can also be found in literature. Direct and indirect boundary element methods 

for poroelasticity have been presented by Ghassemi et al. (2001), Cheng and Detourney 

(1988), and Curran and Carvalho (1987), respectively. Prasad et al. (1996) developed a 

dual boundary element method for transient thermoelastic crack problems. Green’s 

functions for a fully coupled thermo-poroelasticity have been presented by Smith and 

Booker (1993) in the Laplace space. Transient BEM has the following advantages: first, 

it is relatively easy to formulate since Laplace transform inversion is avoided in this 

method; second, it is suitable for simulations of problems in which the problem boundary 

changes with time such as crack propagation. However, there are no transient indirect 

boundary element methods for thermo-poroelasticity.  
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Objectives 

The objective of this thesis is to develop a two dimensional transient indirect 

Boundary Element Method (BEM) to solve coupled thermo-poroelastic problems. Two 

sub-formulations of the indirect BEM, both displacement discontinuity (DD) model and 

fictitious stress (FS) model are developed in order to treat different problems. To further 

examine the interactions of an underground opening and fractures under thermo-hydro-

mechanical loading, the two models are combined into one mixed FS-DD model.  

The model for poroelasticity is developed first; then, the influence of temperature 

gradient is added in to make it a thermo-poroelastic model. The model is verified by 

various cases and compared with published results by other researchers. At last, several 

applications in geomechanics are studied. 

Sign Convention 

 Most previously published papers concerning poroelasticity and thermo-

poroelasticity consider tensile stress as positive. However, in rock mechanics, 

compressive stresses are generally considered as positive for the convenience of 

engineering use. In this thesis, in order to be consistent with the thermo-poroelasticity 

literature, all equations are presented using the tension positive convention, whereas all 

graphics are plotted with the compressive positive convention used in rock mechanics. 

This sign convention is adopted for the remainder of this thesis unless otherwise 

specified.  
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CHAPTER 2 

THERMO-POROELASTICITY 

Drilling can cause temperature contrasts between the formation and the borehole 

because of the drilling fluid circulation. This results in heat transfer into or out of the 

formation, which may be referred to as thermal loading. In a fluid-saturated porous rock, 

thermal loading can significantly alter the surrounding stress field and pore pressure field. 

Thermal loading induces volumetric deformation because of thermal 

expansion/contraction of both the pore fluid and the rock solid. If the rock is heated, 

expansion of the fluid can lead to a significant increase in pore pressure when the pore 

space is confined. The tendency is reversed in the case of cooling. Therefore, the time-

dependent poromechanical processes should be fully coupled to the transient temperature 

field. This can be studied in the framework of thermo-poroelasticity.  

In order to study the pore pressure and stress field under the thermal and poro-

mechanical loading, the theory of thermo-poroelasticity was first developed by 

Palciauskas and Domenico (1982). This theory was later established by other 

investigators, e.g., McTigue (1986), and Coussy (1991). They introduced the constitutive 

equations by extending the Biot’s poroelastic theory for the non-isothermal case. The 

transient heat transfer process is coupled with the poroelastic behavior in the theory.  
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Although heat transfer can result in significant changes in pore pressure and 

volumetric stress, influences of fluid and rock matrix deformation on the temperature 

field are usually negligible. This means that heat flux and temperature can be calculated 

separately without the contribution of pore pressure and stresses. 

From the foregoing discussion, the three mechanisms that play a key role in the 

thermo-poroelastic process are:  

(1) an increase of pore pressure induces volumetric deformation of the rock;  

(2) rock compression leads to a rise in pore pressure;  

(3) heating of the rock increases pore pressure and volumetric stresses. 

 Due to the time dependency of both fluid diffusion and heat conduction, the 

changes of pore pressure and stress fields are transient processes. Undrained and drained 

deformations are two limiting behaviors for a fluid-saturated material. The undrained 

response characterizes the case when there is no fluid moving out of the porous solid. 

This denotes the instantaneous behavior of a poroelastic material under a suddenly 

applied loading. Pore pressure change is exclusively related to the variation of pore 

volume under isothermal conditions and also to a mismatch of the thermal expansivity of 

fluid and bulk solid under non-isothermal conditions (Berchenko, 1998). While the 

drained response characterizes the long-term behavior when the pore pressure vanished 

everywhere or has reached steady-state conditions. 
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Assumptions 

It should be noted that for rocks with low permeability, heat conduction 

dominates the heat transfer process. This has been confirmed by �������(1982). Heat 

convection can usually be neglected because of the extremely low fluid flow velocity in 

such rocks. This thesis is concerned with low permeable rocks like shale and granite only, 

so effects of heat transported by convection are neglected and linear thermal conductive 

behavior is assumed in the thermo-poroelastic analysis. 

 The theory of thermo-poroelasticity incorporates the typical linear elastic 

assumptions as well as the following ones: 

• Homogeneous, isotropic, infinite porous medium 

• Constant material parameters 

• Transient fluid flow governed by Darcy’s Law 

• Fluid pressure acts equally in all directions 

• No shear stress at the interface of pore fluid and the rock matrix 

• Transient linear heat conduction 

 

Governing Equations For Thermo-poroelasticity 

 The governing equations for thermo-poroelasticity can be found in the works of 

McTigue (1986) and Coussy (1991). Following is a brief review of the equations, which 

consist of constitutive equations, transport laws and balance laws. 
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Constitutive Equations 

In isotropic thermo-poroelasticity, the constitutive equations can actually be 

separated into a deviatoric response and a volumetric one. The later includes volumetric 

response of the solid matrix and the fluid. 

Deviatoric response is given by: 

ji
G
ij

ij ≠= ,
2

σ
ε      (1) 

where ijε  denotes the components of the deviatoric strain tensor, ijσ  denotes the 

components of the deviatoric strain stress tensor, and G is the shear modulus. Throughout 

this thesis, subscript indices i and j have values in the range {1,2} and the summation 

convention is used over repeated indices. 

 The volumetric response of the solid contains both hydraulic and thermal 

coupling terms: 

T
K
p

K s
kk

kk βασε ++=
3

     (2) 

where kkε is volumetric strain, also denoted as ε , 
3
kkσ

 is volumetric stress (mean stress), 

p is pore pressure change, T is temperature change. The constant K is the rock's bulk 

modulus; α  is Biot's effective stress coefficient and can be computed using 

)/(1 sKK−=α , where Ks is the bulk modulus of solid grains; sβ is the volumetric 

thermal expansion coefficient of the bulk solid under constant pore pressure and stress. 

Note that without the pore pressure term and temperature term, equation (2) degenerates 

to the classical elastic relation.  
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 Equation (2) can also be written as a stress form: 

ijsijijkkijij TKp
G

G δβδαδε
ν
νεσ +−

−
+=

21
2

2    (3) 

in which ν  is Possion’s ratio. 

 The volumetric response of the fluid can be written as: 

( )Tn
BK

p
K sfkk ββασαζ −−+=

3
    (4) 

where ζ is the variation of the fluid content per unit volume of the porous material (Biot, 

1941), B is Skempton's pore pressure coefficient, fβ is volumetric thermal expansion 

coefficient of the fluid and n is porosity. Physical meaning of B is the increase in pore 

pressure due to an increase of mean stress under isothermal undrained condition ( 0=ζ ).  

Equation (4) can also be written in term of pore pressure: 

( )TMp mkk βασζ +−=     (5) 

where M is the Biot modulus given as 
)1( αα B

BK
M

−
= , mβ is hydro-thermal expansion 

coefficient given as )( sfsm n ββαββ −+= . 

Transport Laws 

 The transient fluid flow in porous rocks is governed by the well-known Darcy’s 

law, which can be described as: 

ii pq  ,κ−=      (6) 
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where qi is the fluid flux (units of fluid volume per unit area); κ  is defined as µκ /k= ( 

k is the intrinsic permeability having dimension of length squared, and µ the fluid 

dynamic viscosity). 

 The heat flow is governed by Fourier law, which is written as: 

i
TT

i Tq  ,κ−=      (7) 

where T
iq is the heat flux, Tκ is the thermal conductivity. 

 One can see that the transport laws for fluid flow and heat flow are analogous to 

each other. 

Balance Laws 

 For local stress balance, standard considerations of static equilibrium lead to the 

equilibrium equation used in elasticity: 

0, =jijσ      (8) 

 Considerations of mass conservation for a compressible fluid yield the local 

continuity equation: 

0, =+
∂
∂

iiq
t
ζ

           (9) 
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Field Equations For Thermo-poroelasticity 

From the constitutive, balance, and transport laws, the field equations can be 

derived for temperature T, displacement ui, and pore pressure p: 

Navier Equation: 

( ) isiii TKpKGuG ,,,
2 3

3
1 βαε +=++∇    (10) 

 
Diffusion equation for pore pressure p: 

t
T

tt
p

M
p m ∂

∂−
∂
∂+

∂
∂=∇ βεακ 12     (11) 

              
Diffusion equation for temperature T: 

t
T

TcT

∂
∂=∇2       (12) 

In the above equations, ui denotes the solid displacement vector, ijε  the total 

strain tensor, p the pore pressure change, and T the temperature change. The constant Tc  

represents thermal diffusivity.  

 As mentioned above, heat transfer is calculated separately because stress and 

pressure changes do not significantly alter the temperature field. Also, note that 

convective heat transport is neglected.  

 Totally ten independent parameters are needed for thermo-poroelastic theory, they 

are {K, G, α , B, �, �s, �f, cT, �T, γf }. Among them, five parameters {K, G, α , B, �} are 

from poroelasticity, with {K, G} as the pure elastic parameters. 
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Field Equations for Poroelasticity and Thermoelasticity 

 Poroelasticity and thermoelasticity can be considered as two special cases for 

thermo-poroelasticity. Derivations of field equations for isothermal poroelasticity can be 

found in the literature (e.g. Detourney and Cheng, 1993). These equations can also be 

obtained from the thermo-poroelastic ones by neglecting the thermal effect. 

 Letting T = 0 in equation (10) and (11), one can get the field equations for 

poroelasticity: 

Navier Equation for solid displacement: 

( ) iii pKGuG ,,
2 3

3
1 αε =++∇     (13) 

 
Diffusion equation for pore pressure p: 

tt
p

M
p

∂
∂+

∂
∂=∇ εακ 12     (14) 

 
 Similarly, neglecting the pore pressure term from the field equations of thermo-

poroelasticity will result in field equations for thermoelasticity: 

Navier Equation: 

( ) isii TKKGuG ,,
2 3

3
1 βε =++∇    (15) 

             
Diffusion equation for temperature T is the same as the thermo-poroelastic 

equation (12) because actually no pore pressure and stress effects are considered. 

Derivations of thermoelasticity equations and poroelasticity equations are parallel. 

The analogies between these two theories have been discussed in references (Rice and 

Cleary, 1976; Norris, 1992). 
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CHAPTER 3 

BOUNDARY ELEMENT METHOD 

Overview 

Thermo-poroelastic problems, as well as poroelastic and thermoelastic ones, can 

be described by a set of partial differential equations mentioned above. Unfortunately, 

analytical solutions for coupled diffusion-deformation problems exist only for very 

simple problems. In general the geometry and boundary conditions of real problems are 

quite complex and require the use of numerical methods.  

Boundary element method (BEM) is a powerful numerical tool for solving 

systems governed by linear partial differential equations (Brebbia et al., 1984). It has 

been used extensively for the poroelastic and thermoelastic problems (e.g., Cheng et al. 

2001; Ghassemi et al. 2001). BEM is based on fundamental solutions, which are 

analytical solutions corresponding to some sort of singular impulse at a point in an 

infinite region. For example, in solid mechanics, the impulse can represent a point force 

applied within an elastic solid. The impulse could also represent a point fluid source, a 

point heat source or a displacement discontinuity in different problems. The fundamental 

solutions are also called singular solutions because, mathematically speaking, they are 

well behaved everywhere in the region except at the point of the impulse, where there is a 

mathematical singularity. 
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Partial differential equations plus certain conditions specified on the boundary of 

region of interest, R, enclosed within a boundary �, defines a boundary value problem. 

Other than finite difference and finite element methods which make approximations on 

the whole region R, BEM makes approximations only on the boundary � by dividing it 

into N elements, as shown in Figure 2 (after Crouch and Starfield, 1983). Singular 

impulses (e.g. point force, heat source, fluid source, or displacement discontinuity) are 

distributed on the elements along the boundary so that the combined effects of all the 

impulses satisfy the prescribed boundary conditions. At any one element, combined 

effects of all N singular impulses can be expressed in terms of the strengths of the 

impulses. Therefore, a system of N linear algebraic equations can be written down, in 

which the unknowns are the strengths of the impulses. Once these equations have been 

solved, the solution at any point in R can be constructed. 

 

 

 

 

 

 

 

Figure 2. Discretization in boundary element method 
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The main advantage of BEM is that the boundary-only discretization significantly 

simplifies modeling. The system of equations need to be solved is much smaller than the 

system needed to solve the same boundary value problem by finite element method. 

However, this smaller system of equations is no longer sparse as each singular impulse 

plays a part in every equation (Crouch and Starfield, 1983). Another major advantage is 

that BEM can generate solutions at any point in the region R, instead of a number of 

fixed mesh points in finite element method. This is because BEM exploits analytical 

solutions that hold true for the whole region. Therefore, BEM is potentially more 

accurate than finite element method, where approximations are made in every subdivision 

of R (Crouch and Starfield, 1983). 

 The boundary element method can be of direct and indirect nature. The direct 

method is from integral equations based on the generalized Green’s theorem, which are 

sometimes expressed in the form of an energy reciprocity theorem (Cheng and Detournay 

1998). Solution of the integral equations for the elements into which a boundary is 

discretised directly yields the desired values of the unknown variables on the boundary. 

In the indirect method, singular impulses (e.g., point force, heat source, fluid 

source, or displacement discontinuity) are distributed on the elements along the boundary 

so that the combined effects of all the impulses satisfy the prescribed boundary 

conditions. At any one element, combined effects of all N singular impulses can be 

expressed in terms of the strengths of the impulses. Therefore, a system of N linear 

algebraic equations can be written down, in which the unknowns are the strengths of the 

impulses. 
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The indirect methods are based on the distribution of influence functions such as 

source, point force, etc. with “fictitious densities”. They can be determined from the 

boundary integral equations for a set of prescribed boundary conditions. Displacements 

and stresses on the boundaries, as well as in the domain, can then be obtained indirectly 

from the fictitious variables. 

The indirect form as applied to the problems of our interest has two sub-

formulations, namely, the fictitious stress method (FSM) and the displacement 

discontinuity method (DDM). The fictitious stress method is based on the analytic 

solution of a point force in an infinite solid. It is a versatile method of modeling 

underground openings of arbitrary shape. The displacement discontinuity method makes 

use of the fundamental solution for a constant discontinuity of displacement in an infinite 

solid. The displacement jump inherent in the fundamental solution of displacement 

discontinuity method are not fictitious quantities, this makes it a natural choice for 

modeling fractures. The fictitious stress method is not suitable for such problems, 

because the effects of elements placed along one crack surface are indistinguishable from 

the effects of elements placed along the other surface (Crouch and Starfield, 1983).  

When developing the fictitious stress boundary element method for thermo-

poroelasticity, fundamental solutions for a point force, a fluid source and a heat source 

are needed. The displacement discontinuity method requires fundamental solutions for a 

displacement discontinuity, a fluid source and a heat source. The fundamental solutions 

are integrated over a desired element shape to form the building block of each method. 
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Since the formulation of displacement discontinuity method is exactly the same with the 

fictitious stress method, only the former is described in detail in this thesis. 

In order to model problems with both underground openings and fractures, 

fictitious stress method and displacement discontinuity method can be combined in one 

model, due to the fact that they share the same structure of formulation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Spatial distribution of point forces on a straight-line segment in the fictitious 
stress method 
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Fictitious Stress Method For Thermo-poroelasticity 

 The elastic fictitious stress method is based on the analytic solution to the 

problem of a point force in an infinite solid, which is also called Kelvin’s problem 

(Crouch and Starfield, 1983). Suppose constant tractions tx=Fx and ty=Fy applied to the 

line segment 0,|| =≤ yax  in an infinite elastic solid, as shown in Figure 3 (after Crouch 

and Starfield, 1983). The solution of spatial distribution of the point forces along the 

segment can be obtained by integrating the Kelvin’s point force solution. Therefore, the 

displacement and the stress components can be computed everywhere. Fictitious stress 

method can be extended to thermo-poroelasticity using the following methodology. 

At any given time t, temperature, pore pressure and stresses fields on the 

boundary can be approximated by the following methodology in the fictitious stress 

method (note that the heat equation is not coupled to others, thus it can be solved 

independently first): 

(1) Distribute point forces, fluid sources and heat sources on the boundary 

elements. 

(2) Temperature at each element is the sum of all temperatures caused by all heat 

sources taking place at time t≤τ . (The temperature field is decoupled from 

pore pressure and stresses because fluid sources and point forces do not 

contribute to temperature change.) The strengths of heat sources, which are 

functions of time, are calculated to satisfy the temperature boundary 

condition. 
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(3) Pore pressure at each element is the sum of all pore pressures caused by all 

point forces, fluid sources and heat sources taking place at time t≤τ . Among 

them strengths of heat sources have been known from step (2). 

(4) Stresses at each element are the sum of all corresponding stresses induced by 

all point forces, fluid sources and heat sources taking place at time t≤τ . 

Among them strengths of heat sources have been known from step (2). 

(5) To satisfy the boundary conditions of pore pressure and stresses, strengths of 

point forces and fluid sources can be solved since contributions from heat 

sources have been known. The strengths of point forces and fluid sources are 

also functions of time. 

Boundary Integral Equations 

 With the fundamental solutions, one can get stresses, pore pressure and 

temperature at any point by conducting spatial integral along the boundary � and 

temporal integral along time t because of the time-dependent nature of the heat and fluid 

diffusion problems. The strengths of heat sources, fluid sources and point forces can be 

solved, as a function of time, from the known history of temperature, pore pressure and 

stress along the boundary. The determination of these unknowns requires the solution of a 

set of three singular integral equations. They are called integral equations because the 

unknowns appear inside the integral sign. These integral equations can be obtained by a 

heuristic approach, using the principle of superposition, or in a rigorous fashion based on 

the reciprocal theorem (Cheng and Detournay, 1998; Ghassemi and Zhang, 2004). 
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 In the above equations, � is the boundary. x and �  are two-dimensional co-

coordinate tensors. ),( tij xσ  is the stress component at co-ordinates x and at time t. The 

influence function );,( τσ −tip
ijk �x represents stress component ),( tij xσ due to an 

instantaneous unit point force, located at �  and taking place at time τ . Similarly, 

symbols );,( τσ −tis
ij �x  and );,( τσ −tih

ij �x  represents stress components induced by an 

instantaneous fluid source and an instantaneous heat source, respectively. ip
ip , isp  and 

ihp  are pore pressure induced by an instantaneous unit point force, fluid source and heat 

source. ihT is temperature induced by a instantaneous unit heat source. ),( τψ �k , 

),( τφ � , and ),( τϕ �  are strengths of the point force, fluid source and heat source, 

respectively. Superscripts “ip”, “is” and “ih” denotes instantaneous force, fluid source 
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and heat source, respectively. Subscript i, j, k can take number 1 or 2, which denotes the 

two directions. 

Fundamental Solutions 

In the boundary integral equations for thermo-poroelastic fictitious stress method 

described in equation (16), (17) and (18), terms ip
ijkσ , is

ijσ , ih
ijσ , ip

ip , isp , ihp and 

ihT are fundamental solutions corresponding to instantaneous singular impulses. 

Fundamental solutions for continuous impulses can be obtained by integrating the 

corresponding solutions for instantaneous impulses with respect to time. Stress tensor 

induced by a unit continuous point force is denoted as cp
ijkσ , with superscript “cp” 

representing continuous point force. Similarly, symbols cs
ijσ , ch

ijσ , cp
ip , csp , chp and 

chT  are used to represent stresses, pore pressure and temperature due to certain kind of 

unit continuous impulse. Superscript “cs” and “ch” represent continuous fluid source and 

heat source, respectively. 

Among them, ch
ijσ , chp and chT  are stress, pore pressure and temperature 

induced by a continuous unit heat source, which represent the thermal effects in the non-

isothermal poroelasticity, or thermo-poroelasticity. The derivation of fundamental 

solutions for continuous heat source in thermo-poroelasticity is given by Berchenko 

(1998) and listed in Appendix A. Spatial integrations of the fundamental solutions over a 

straight-line element were performed and are also included in Appendix A. 
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cp
ijkσ , cs

ijσ , cp
ip , and csp are poroelastic terms, which represents the coupling 

between stresses and pore pressure. These four fundamental solutions are exactly the 

same with those used in the isothermal poroelastic fictitious stress method, and can be 

found in literature (e.g., Cheng and Detournay, 1988; Ghassemi et al., 2001). They are 

listed in Appendix B together with the expressions for their spatial integrations over a 

straight-line element. The fundamental solutions for a continuous heat source in 

thermoelasticity are also listed in Appendix C. 

Numerical Implementation 

 Numerical implementation of the boundary integral equations of transient thermo-

poroelasticity requires spatial and temporal discretization. Spatial discretization is 

achieved by dividing the boundary of the problem into a number of elements and 

replacing the integrals over the boundary by a sum of integrals over these elements. 

Temporal discretization is realized by dividing the time domain into a number of time 

increments and utilizing a time marching scheme. In the present implementation, the 

following approximations are made: 

(1) the boundary elements are straight-line segments 

(2) the singular impulses (point force, displacement discontinuity, fluid source, 

heat source) are located at the midpoint of each element 

(3) the intensity of the impulses is constant over each element 

(4) the time increments, �t, are constant 
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Suppose p+1 is the number of time increments used, then the boundary integral 

equations for induced stresses, pore pressure and temperature expressed in equation (16), 

(17) and (18) can be rewritten as:  

{ }	�
=

Γ
Γ++=

p
ch
ij

cs
ijk

cp
ijkij d

0
 

�

��� ϕσφσψσσ    (39) 

{ }	�
=

Γ
Γ++=

p
ch
ij

cs
ijk

cp
k dpppp

0
 

�

��� ϕφψ     (40) 

{ }	�
=

Γ
Γ=

p
ch

ij dTT
0

 
�

�ϕ       (41) 

where �

kψ , �φ and �ϕ are strengths of continuous point force, fluid source and heat source 

in time increment � . 

Suppose N is the number of elements used to discretize the boundary. The spatial 

integrals over the boundary are replaced by a sum of integrals over these elements. Then, 

the induced stresses, pore pressure, and temperature on element m due to a constant 

spatial distribution of continuous force, fluid source and heat source on element r are 

given by: 

rch
ij

rcs
ij

r
k

cp
ijk

m
ij ϕσφσψσσ ++=      (42) 

rchrcsr
k

cpm pppp ϕφψ ++=      (43) 

rchm
ij TT ϕ=        (44) 

where r
kψ , rφ and rϕ are strengths of continuous point force, fluid source and heat source 

on element r. The superscripts m and r refer to the influenced and influencing elements, 
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respectively. Influence coefficients cp
ijkσ , cs

ijσ , ch
ijσ , cp

ip , csp , chp and chT now 

denote the influences of the element r, which are obtained by integrating the fundamental 

solutions for continuous point impulses over the influencing element r. The spatial 

integration over the straight-line constant elements is a relatively easy process in two-

dimensional system. Integrations of the fundamental solution for a continuous heat source 

over an element of length 2a are listed in Appendix A. 

 

 

 

 

 

 

 

 

 

Figure 4. Time marching scheme for a continuous heat source 

 

There are different approaches to temporal solution of the problem. One approach 

is solving the problem at the end of a time step and then using the results as the initial 
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method is that it requires discretizing the spatial domain of the problem. The second 

approach is a time marching technique which solves the problem at the end of a time step 
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but keeps a solution history (Banerjee and Butterfield, 1981). This allows for strengths of 

singular impulses to vary with time. It involves incrementing the strengths of singular 

impulses at each time step and including the influence of all previous increments. This 

technique eliminates the need for internal discretization of the spatial domain. But it has 

the disadvantage that the coefficient matrix must be kept to be used as required. The 

scheme is illustrated with heat source �(t) as an example in Figure 4 (after Curran and 

Carvalho, 1987). 

The implementation of this time marching scheme is possible because it is the 

time interval between loading and receiving that affects the response rather than the 

absolute times. This is the so-called “time translation” property of the fundamental 

solutions. For example, the stress at a point x and time t due to a heat source taking place 

at point χχχχ and at time τ is equal to the stress at point x and time t-τ due to a heat source 

occurring at time zero at the point χχχχ. That is: 

)0,;,(),;,( �x�x τστσ −= tt ch
ij

ch
ij     (52) 

 Due to this property of the fundamental solutions, the evaluation time and loading 

time can be shifted along the time axis without affecting the values of the fundamental 

solutions. Therefore, the influence coefficient can be calculated only once during the 

calculation history. 

 From the above discussion, the induced stresses, pore pressure and temperature of 

element m are given by: 
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where p+1 is the number of time increments. rp
kψ∆ , and �rφ∆ , et al. are the increments of 

strengths of certain kind of continuous impulse occurring on element r. It should be noted 

that co-ordinate of influencing point χχχχ is also changing with each element along the 

boundary.  

Equation (53), (54) and (55) constitute a set of linear algebraic equations which 

can be solved by applying the boundary conditions.  

It should be noted that procedures described above are only used to solve 

boundary conditions specified by stresses, pore pressure and temperature. For boundary 

conditions described in displacement, fluid flux and heat flux, corresponding fundamental 

solutions are needed. However, the process of numerical implementation remains the 

same, which means the method used here can be easily adopted for other diffusion-

deformation boundary element models provided the fundamental solutions are available. 
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Displacement Discontinuity Method For Thermo-poroelasticity 

 As mentioned before, the fictitious stress method and displacement discontinuity 

method share similar principles in formulation. The major difference is in the analytical 

solutions which they are based on, and which control the formation of the influence 

coefficients. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Constant normal and shear displacement discontinuity 

 

The displacement discontinuity method is based on the fundamental solution for 

the problem of constant normal and shear discontinuities in displacement over a finite 

line segment in the x, y plane of an infinite elastic solid in plane strain, as shown in 

Figure 5 (after Crouch and Starfield, 1983). The line segment is chosen to occupy a 
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certain portion 0,|| =≤ yax , Consider this segment to be a line crack with two surfaces, 

one is on the positive side of y=0, denoted y=0+, and the other is on the negative side, 

denoted y=0-. From one side of the line segment to the other, the displacements undergo a 

constant specified change in value Di=(Dx, Dy). Define the displacement discontinuity Di 

as the difference in displacement between the two sides of the segment as follows: 

)0,()0,( +− −= xuxuD xxx     (56) 

)0,()0,( +− −= xuxuD yyy     (57) 

The elastic solution to this problem is given by Crouch and Starfield (1983). The 

displacements and the stress components are then defined everywhere with function of Dx 

and Dy. The displacement discontinuity method can be extended to thermo-poroelasticity 

using a methodology similar to that used for the fictitious stress method by replacing the 

fictitious point force Fi with displacement discontinuity Di. 

Boundary Integral Equations 

Parallel to fictitious stress method, in displacement discontinuity method thermo-

poroelastic problems can be modeled by distributing displacement discontinuity and fluid 

and heat sources on the boundary surface and requiring that the superposition of their 

effects satisfy the prescribed boundary conditions. The boundary integral equations for 

induced stresses, pore pressure and temperature can be written in the following forms: 
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where “id” denotes instantaneous displacement discontinuity. id
ijkσ  and id

kp are the stress 

tensor and the pore pressure caused by an instantaneous displacement discontinuity, 

respectively. kD is the strength (magnitude) of the displacement discontinuity in k 

direction. Other terms have the same meanings with those described in fictitious stress 

method in equation (16), (17) and (18). It can be seen that the temperature part remains 

the same in the two methods, because temperature is calculated separately while pore 

pressure and stress are fully coupled. 

Fundamental Solutions   

The corresponding fundamental solutions for continuous impulses required in 

displacement discontinuity method are cd
ijkσ , cs

ijσ , ch
ijσ , cd

ip , csp , chp and chT . 

Among them, only cd
ijkσ  and cd

ip  are special for this method, the rest are the same with 

those in fictitious stress method. cd
ijkσ , cs

ijσ , cd
ip , and csp  are poroelastic terms, and 

have been given in Curran and Carvalho (1987). Thermally induced effects 

ch
ijσ , chp and chT are described in the previous section. 
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Numerical Implementation 

Due to the complete similarity in structure of displacement discontinuity method 

and fictitious stress method, details of numerical procedures for displacement 

discontinuity method can be easily obtained by modifying the foregoing discussion for 

fictitious stress method and therefore are omitted here. 

In displacement discontinuity method, the induced stresses, pore pressure and 

temperature of element m are given by: 
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where p+1 is the number of time increments, N is the number of elements. rp
kD∆ , and 

�rφ∆ , et al. are the increments of strengths of certain kind of continuous impulse 

occurring on element r. Subscript k takes value from {1, 2}, which denotes the two 

directions. 

The influence coefficient cd
ijkσ  and cd

kp are obtained from spatial integration of 

fundamental solutions of a displacement discontinuity on the influencing element r. Other 

influence coefficients like cs
ijσ , et al. have the same meaning with those in fictitious stress 
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method. It should be noted that equation (63) for induced temperature is exactly the same 

with equation (55). 

Equation (61), (62) and (63) constitute a set of linear algebraic equations with the 

unknowns are the increments of the singular impulses. They can be solved by applying 

the boundary conditions. 

Combined FS-DD Method For Thermo-poroelasticity 

In order to model problems that involve both openings and cracks/fractures, th 

fictitious stress method and displacement discontinuity method are combined in one 

model in this thesis. It is relatively easy due to the similarity of the two methods. In 

thermo-poroelastic system, the difference between fictitious stress method and 

displacement discontinuity method lies in the poroelastic part only and the thermal effect 

can always be calculated separately. 

The whole problem boundary is divided into two types: boundaries of opening 

and crack-type boundaries. The entire boundary is then discretized into N straight-line 

elements in the following way, as shown in Figure 6. The opening boundary is divided by 

M elements with a point force, a fluid source and a heat source applied on each element. 

These elements are used in fictitious stress method and thus are denoted as “FS” 

elements. Whereas the crack boundaries are divided by N-M elements with a 

displacement discontinuity, a fluid source and a heat source applied on each element. 

Similarly, these elements are called “DD” elements.  

From principle of superposation, the induced stresses and pore pressure are the 

sum of the effects of all M fictitious point forces, N-M displacement discontinuities, N 
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fluid sources and N heat sources. The induced temperature are the sum of the effects of 

all N heat sources. 

 

 

 

 

 

 

 

Figure 6. Discretization of combined FS-DD method 

 

 Therefore, using p+1 as the number of time increments and the time marching 

scheme described before, the induced stresses, pore pressure and temperature of element 

m are given by: 
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where rp
kψ∆ , rp

kD∆ , rpφ∆  and rpϕ∆  are unknowns, meaning singular impulse 

increments in current time step p. �r
kψ∆ , �r

kD∆ , �rφ∆  and �rϕ∆  are previous increments 

that have already been calculated. All influence coefficients are defined in the foregoing 

discussions. 

 Equation (66), (67) and (68) are N linear algebraic equations and can be solved 

using classic mathematical techniques. These three equations are the basis of combined 

FS-DD method for thermo-poroelasticity.  

It should be noted that in order to avoid the singularity at the midpoints of the FS 

elements, the opening boundary is divided such that the intersection points with the crack 

boundary occur at the ends of FS elements, as shown in Figure 6.  

 A computer code was developed based on the above discussion. It provides a 

flexible tool for modeling of stress and pore pressure fields around underground openings 

and pre-existing cracks. It can handle thermo-poroelastic problems as well as isothermal 
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poroelastic problems. The isothermal poroelastic problems were simulated in this model 

by simply disabling the part producing the thermal effects.  
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CHAPTER 4 

MODEL VERIFICATION AND TESTING 

 In order to verify the FS model, DD model and the combined FS-DD model 

developed in this thesis, an array of examples concerning poroelasticity and thermo-

poroelasticity has been considered. The results are compared to closed forms or 

previously published results. 

Problem Description 

The pore pressure and stress distributions around a borehole are an important 

concern in drilling and hydraulic fracturing operations for production of petroleum and 

geothermal energy. Prior to drilling, a rock formation at depth exists in a state of initial 

stress, pore pressure and temperature. Drilling removes the rock and the stresses that 

were previously acting at the location. This action results in redistribution of stresses. 

Hydraulic and thermal gradients developed between the drilling mud and the formation 

cause additional modification of the stress state near the borehole. The additional stresses 

caused by these effects are referred to as “induced stresses”. The stress at any point is the 

sum of in-situ stresses and induced stresses.  

Stress fields and pore pressure fields around a borehole are predicted using the FS 

model. Behaviors of cracks in fluid-saturated porous rock are examined by the DD 
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model. Openings and stress intensity factors of the cracks are calculated. For problems of 

a borehole with pre-existing cracks, the combined FS-DD model is used. 

The rock is assumed to be Westerly Granite this chapter to simulate rocks 

encountered in Coso geothermal field. Input parameters for Westerly Granite are listed in 

Table 1 (Data are taken from McTigue, 1986). 

 

Table 1. Input parameters for Westerly Granite 

Variable Physical meaning Value Unit 

E Modulus of elasticity 3.75×104 MPa 
ν  Poisson's ratio 0.25    - 

uν  Undrained Poisson's ratio 0.33    - 
Ks Solid bulk modulus 4.5×104 MPa 
Kf Fluid bulk modulus 2.5×103 MPa 
cT Thermal diffusivity 5.1×10-6 M2/sec 
C Heat capacity 790.0 Joule/(kg·oC) 

sβ  Solid thermal expansion coef. 2.4×10-5 1/oC 

fβ  Fluid thermal expansion coef. 3.00×10-4 1/oC 
n Porosity 0.01    - 

fγ  Unit weight of fluid 9.8×103 N/m3 

k Intrinsic permeability 4.053×10-7 Darcy 
B Skempton’s constant 0.815    - 
µ  Fluid viscosity  3.547×10-4 kg/(m·sec) 
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Borehole Under Non-hydrostatic Stress Loading 

This example is considered to verify the poroelastic FS model. Consider drilling a 

vertical circular borehole with radius R in a fluid saturated Westerly Granite rock 

subjected to a uniform in-situ anisotropic stress and a pore pressure. This is an isothermal 

poroelastic problem, and can be analyzed in two dimensions by assuming plane strain 

conditions.  

The loadings can be described as (see Figure 7): 

)( 00 SPxx −−=σ      (40) 

)( 00 SPyy +−=σ      (41) 

0=xyσ       (42) 

0Pp =        (43) 

where P0 is the hydrostatic stress (mean stress), S0 is the deviatoric stress, and p0 is the 

virgin pore pressure. 

The loading condition can be decomposed into three fundamental modes. Among 

them, Mode 1 and 2 are axisymmetric loadings; Mode 3 is asymmetric loading 

(Detournay and Cheng, 1988): 

Mode 1: hydrostatic stress loading 

0
0

=
−==

p

Pyyxx σσ
    (44) 

Mode 2: pore pressure loading 

0

0

pp
yyxx

=
== σσ

     (45) 
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Mode 3: deviatoric stress loading  

0
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=
−==
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SS yyxx σσ
    (46) 

 

 

 

 

 

 

 

 

 

 

Figure 7. Circular borehole under non-hydrostatic stress loading 

 

For each of the above loading mode, induced stress field and pore pressure field 

are examined and analyzed using the FS model. This problem is solved by dividing the 

boundary into 25 elements for a quarter of the borehole wall. Symmetry with respect to 

both x-axis and y-axis are considered. Time is normalized by 2/* Rtct f= . The number 

of time steps is 10 for each computation and the time step length, t∆ , is adjusted 

accordingly. To compare with Detournay and Cheng’s work (1988), tension positive 

convention is used in plots of this section. 

X 

Y 

 

�yy= -( P0 + S0) 

2R 

θ �xx= -( P0 - S0) 

 p= P0  
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Mode 1: Hydrostatic Stress Loading 

 The mode 1 loading case is hydrostatic stress loading. The far field stress field is 

considered to be -10 MPa everywhere. That is, magnitude of hydrostatic stress P0 = 10 

MPa. There is no pore pressure in the far field and the initial temperature is zero. Stresses 

on boundary are considered to be reduced to zero. The pressure and temperature on 

boundary are maintained at the initial values.  
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Figure 8. Stresses and pore pressure field under hydraulic stress loading 

 Tangential stress, radial stress and pore pressure near the borehole at normalized 

time t* = 0.01 and t* = 1 are plotted in Figure 8. The field points plotted in the figure are 

located along the line � = 0, and their distance from the borehole wall is normalized by 

r/R.  
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One can see excellent agreement between the FS results and the analytical 

solutions, which are represented using curves in the plot. Under this loading mode, no 

pore pressure change is induced as the stress field is identical to the classical elastic 

solution and leads to no volumetric strain: 

2

2

0

1
r
R

P
−−=θθσ

     (47) 

2

2

0

1
r
R

P
rr +−=σ

     (48) 

Mode 2: Pore Pressure Loading 

 In the case of mode 2 loading, the pore pressure at the boundary is reduced from 

initial value. Far field stress field is considered to be zero everywhere. Virgin pore 

pressure is p0= 4MPa. Far field temperature is zero. Stresses and pressure on boundary 

are considered to be zero. The temperature on boundary is also zero.  

Figure 9 shows the pore pressure history at various distances from the borehole 

predicted by FS model and closed forms. They agree very well in the plot.  

Figure 10 and 11 are the plots for tangential stress field and radial stress field, 

respectively. Stresses are normalized by 0/ pησ , where η  is a poro-elastic coefficient 

given by: 
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Both plots indicates perfect match between FS results and closed solutions. The 

work also agrees with those of Detournay and Cheng (1988). 
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Figure 9. Pore pressure history at different points under pore pressure loading 
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Figure 10. Tangential stress field due to pore pressure loading at various times 
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Figure 11. Radial stress field due to pore pressure loading at various times 
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Mode 3: Deviatoric Stress Loading 

 Mode 3 loading is deviatoric stress loading without pore pressure and temperature 

loading. Assume in-situ stresses are xxσ =  2 MPa and yyσ =  - 2 MPa, that is, magnitude 

of stress deviator S0 = 2 MPa. 

 Under pure deviatoric stress loading, the induced pore pressure, tangential stress 

and radial stress fields for θ = 0 are plotted in Figure 12, 13 and 14 respectively. In 

Figure 12, the dash line represents the closed form instantaneous (for t*<10-2) pore 

pressure distribution given by (Detournay and Cheng, 1988): 

θν 2cos)1(
3
4

2

2

0
0

r
R

BSp u+=+    (49) 

in which r is the distance from center of the borehole. It should be noted that only the 

field points at θ = 0 are examined in this section.  

One can see there exist a steep radial gradient of the pore pressure at early times, 

which is triggered by the rapid drainage of fluid at the wall. The pore pressure peak 

decays with time, and moves away from the borehole wall.  

Figure 13 shows the tangential stress field in various times. The dash line is 

closed form solution at the instance of drilling given by (Detournay and Cheng, 1988): 

θσ θθ 2cos31 04
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However, the tangential stress at the borehole wall, is instantaneously reduced to 

θ
ν
ν

2cos
1
1

4 0Su

−
−− . As a result, at very small time (here shows at t* = 10-4), the peak of 

the tangential stress occurs inside the rock instead of the borehole wall, as predicted by 
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the elastic analysis. This phenomenon is caused by the stiffness contrast at the borehole 

wall and the rock further away due to rapid drainage (Detournay and Cheng, 1988). As 

time increases, the tangential stress decreases monotonically with distance. At t* = 1 the 

tangential stress at the wall is pretty close to the long-term elastic value θ2cos4 0S− . 

From Figure 14, it is clear that unlike the tangential stress, the radial stress 

experiences little variation with time. Figure 12, 13 and 14 agree very well with 

Detournay and Cheng’s work in 1988. 
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Figure 12. Pore pressure field due to deviatoric stress loading at various times 
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Figure 13. Tangential stress field due to deviatoric stress loading at various times 
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Figure 14. Radial stress field under deviatoric stress loading at various times 
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Borehole Under Thermal Loading 

Consider a borehole with radius R = 0.1m as shown in Figure 15 in a reservoir 

with a temperature T0 of 200oC. The borehole wall is suddenly cooled by water and 

maintained Tw at 80oC. For clarity of presentation and investigation of the role of 

temperature, only induced stress and pore pressure are studied. Thus, no pore pressure 

and no stress loadings are considered meaning that the far field pore pressure and stresses 

are considered to be zero.  Due to symmetry only a quarter of the borehole boundary is 

modeled and 25 elements are used to approximate one-quarter of the circular boundary. 

Number of time steps is 10 for each computation and the time step length, t∆ , is adjusted 

accordingly.  

 

 

 

 

 

 

 

 

Figure 15. Circular borehole under thermal loading 
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 Figures 16-19 illustrate the profiles of temperature, induced pore pressure, 

induced tangential stress, and radial stress around the borehole. Analytical results are also 

shown for comparison. As can be observed, the numerical results agree well with the 

analytic solution, which verifies the numerical procedure used in the FS model for 

thermo-poroelastic problems. 

Figure 16 shows the transient temperature distribution; it is typical of a 

conductive heat transfer situation. Rock formation is gradually cooled off as the borehole 

temperature is kept constant.  

Figure 17 is the distribution of the induced pore pressure. One can see that a 

pressure drop is generated near the borehole at early time. With time, the pore pressure 

will gradually recover toward its original state.  

Figure 18 presents the thermally induced tangential stress. With cooling, a 

significant tangential tensile stress is induced around the borehole. This is caused by the 

tendency of the rock to shrinkage near the borehole wall. Away from the borehole wall, 

the magnitude of the induced tensile stress decreases and at some point inside the 

formation it changes sign, turning into a compressive stress. This is because the shrinkage 

of the material at the inner face of the borehole geometry, due to cooling, tends to pull on 

the outer rock thus inducing a compressive stress on the outer rock. The compressive 

zone fades away with distance and gradually moves away from the borehole.  

Figure 19 illustrates the thermally induced radial stress. A significant radial 

tensile stress peak is produced inside the formation. At later times, the tensile stress zone 

moves inside the formation while the magnitude of the ‘‘peak’’ increases. 
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From the above observations, one can see cooling increases the potential of 

fracturing because of the tangential tensile stress induced by the material shrinkage. The 

fracture will always be initiated from the borehole wall because the maximum tensile 

stress always occurs there. However, a tensile stress zone will develop around the 

borehole with time, which can encourage the time-delayed fracture development. 
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Figure 16. Temperature field under thermal loading at various times 
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Figure 17. Pore pressure field under thermal loading at various times 
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Figure 18. Tangential stress field under thermal loading at various times 
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Figure 19. Radial stress field under thermal loading at various times 
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Uniformly Pressurized Crack Problem 

This example is used to verify the poroelastic DD model. The problem studied 

here is the response of a suddenly pressurized crack of length 2L (shown in Figure 20). 

This pressurization by a fluid pressure P may be decomposed into two fundamental 

modes of loading (Detournay and Cheng, 1991), namely a normal stress loading and a 

pore pressure loading as shown below: 

Mode 1: stress loading  

)(),( tPHtxn −=σ      (51) 

0),( =txp       (52) 

Mode 2: pressure loading  

)(),( tPHtxp =      (53) 

0),( =txnσ       (54) 

where H(t) denotes Heaviside step function. The initial conditions for both problems are 

zero stress and pore pressure everywhere. 

 

 

 

 

 

 

Figure 20. Uniformly pressurized crack 
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 In this section, normal stress applied on the crack surface is assumed to be –15 

MPa, and pore pressure inside the crack is 15 MPa. The crack extends from (-1.0, 0.0) to 

(1.0, 0.0), with its center at (0.0, 0.0) so that its length is 2.0 m. Temperature is 

considered to be 0oC everywhere. 

Mode 1: Stress Loading 

Initial And Final Crack Opening 

Mode 1 loading is responsible for a time-dependent opening of the crack. At time 

t=0+, the crack opens according to the well known Sneddon’s solution (Detourney and 

Cheng, 1991) with undrained Possion ratio uν : 

 

��
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�
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−−−= 2

2

1
)1(2

)(
L
x

G
PL

xD u
n

ν
    (55) 

 
At t = 1 sec, (normalized time 32 1048.6/ −×=⋅= Lct fτ ), the crack profile is 

computed by the DD model and is plotted in Figure 21, with the analytical short-term 

solution predicted from equation (55). 

As time increases, the crack opens and reaches the steady-state solution given by 

the previous equation but with drained material properties. That is, at time ∞=t , the 

crack opens according to (Detourney and Cheng, 1991): 
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1
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L
x

G
PL

xDn

ν
    (56) 

The crack opening calculated by the DD model at t = 710 sec is plotted in Figure 

22 along with the analytic long-term solution. 
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Figure 21. Short-term crack opening under uniformly stress loading 
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Figure 22. Long-term crack opening under uniformly stress loading 

 

Figure 21 and Figure 22 show that overall, the results of the DD model agree well 

with the analytic solution. The DD model slightly overestimates the crack opening by less 

than 4% for most elements far from the tip. The results are the least accurate near the tip. 

At the tip element, the error goes up for both short-term and long-term calculations. 

Crouch and Starfield (1983) obtained a comparable error when modeling a pressurized 

crack with constant-strength DD elements over its whole length (Crouch and Starfield, 

1983). The discrepancy can be attributed to the use of constant DD elements, that is, 

constant displacement and fluid flux approximation on each element. The results will be 

more accurate if the element number is increased. To obtain good results near the crack 

tips, a special higher-order tip DD element should be used to replace the current constant 
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DD element in the future study. The tip element approach gives reasonably good results 

according to Crouch and Starfield(1983).  
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Figure 23. Normalized maximum crack opening under stress loading 

 

Maximum Crack Opening 

 At any time, the maximum opening along the crack occurs at the center. The 

maximum normalized opening is defined as: 

L
GtD

D
n

n
n ||

),0(
)ˆ( max σ

=      (57) 
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It should evolve with time from an initial value of 32.1)1(2 =− uν  to a final value 

of 50.1)1(2 =−ν  (Vandemme et al. 1989).  

In Figure 23, max)ˆ( nD  is plotted as a function of the normalized time 2/ Ltc f=τ . 

One can see that the normalized maximum opening predicted by the DD model agrees 

with the closed forms. It tends to slightly overpredict the maximum crack opening in both 

initial and final conditions. Similar results have been obtained by other researchers. (e.g. 

Vandamme et at. 1989). 

Stress Intensity Factor 

 The Stress Intensity Factors (SIFs) are used to define the magnitude of the 

singular stress and displacement fields (local stresses and displacements near the crack 

tip). Although the concept originated from studies of elastic materials, it can be used to 

poroelastic materials. The r/1  singularity characteristic is inherent in the nature of the 

elastic stresses around a crack tip from which r is measured (Sih et.al., 1962). That is to 

say, the form of stress singularity around the tip does not change in the presence of 

temperature and pore pressure field. Therefore, one can use the typical calculation 

method for the elastic SIFs in thermo-poroelastic problems. 

The classical elastic relationship between the crack opening displacement and the 

SIF is given by (Detournay and Cheng, 1991): 

||
)(

lim
)1(8 ||1

xL
xDG

K n

Lx −−
=

→ν
π

 , -L<x<L  (58) 
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where G is shear modulus, Dn is crack opening at a point S (x, 0) near the crack tip as 

shown in Figure 24. And ( || xL− ) is the distance from this point to the tip. K1 has unit 

(MPa·m1/2). 

 

 

 

 

 

 

Figure 24. Sketch for stress intensity factor calculation 

 

In this thesis we use the point S at (0.88, 0), where ( || xL− )/L = 12%. As 

mentioned above, the calculated crack opening Dn(x) is least accurate near the tip. 

Previous discussions show that Dn(x) at this point yields an acceptable error of about 5%. 

As a result of, this point is chosen to calculate the SIF. The SIF is normalized by 

||
ˆ 1

1 P
K

K = , where nP σ−=  in mode 1 loading.  

The short-term value (initial value) of the SIF is given by (Detournay and Cheng, 

1991): 

LK u π
ν
ν

−
−=+

1
1

)0(ˆ
1      (59) 

The long-term value (final value) of the SIF is (Detournay and Cheng, 1991): 

LK π=∞)(ˆ
1       (60) 

L-|x| 

Dn(x) S 
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The evolution of the normalized SIF with time is plotted in Figure 25 with closed 

forms for initial and final values. It shows that the DD models can predict accurate SIF 

values. In order to compare with crack SIFs under other loading modes, the plot of the 

absolute value of SIF vs. time is shown in Figure 26.  
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Figure 25. Normalized crack stress intensity factor under stress loading 
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Figure 26. Crack stress intensity factor under stress loading 

 

Mode 2: Pore Pressure Loading 

Maximum Crack Opening 

In mode 2, the maximum normalized opening is defined as: 

LP
GtD

D n
n ||

),0(
)ˆ( max =      (61) 

The crack closes progressively, starting from a zero displacement discontinuity at 

time t=0+.  The final value of the normalized maximum opening max)ˆ( nD  is given by 

(Vandamme et al, 1989):  

)1(2)ˆ( max νη −−=nD      (62) 



 
68

where  η  is the poroelastic stress parameter defined as 
)1)(1(2

)(3
νν

ννη
−+

−=
u

u

B
. 

Normalized maximum opening in Mode 2 loading is illustrated in Figure 27. As 

can be seen, the crack closes with time. Because the two crack surfaces will not overlap, 

this closure is physically possible only if the crack remains open, under appropriate 

combination of Mode 1 and Mode 2 loading. The comparison between the DD solution 

and the close solution is good.  Small discrepancy develops at large time simulation. The 

numerical results are lower than the long-term close form, because the later one 

represents the ideal state of complete draining out of the formation, which actually is 

impossible for the assumed infinite media. Vandamme et al (1989) observed comparable 

error in their work. 
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Figure 27. Normalized crack maximum opening under pore pressure loading 

 

Stress Intensity Factor 

SIF is computed using displacement method. There is no displacement on the 

crack surface induced by Mode 2 at time t=0+, so the initial value of the SIF is zero. The 

final value of normalized SIF is given by (Detournay and Cheng, 1991) 

LK πη−=∞)(ˆ
1      (63) 

The calculated SIF is normalized using 
||

ˆ 1
1 P

K
K = . Figure 28 shows a plot of the 

normalized SIF with time. A small divergence between the DD solution and the close 

form solution is developing near the end. This is partly because the close form solution 

represents the ideal “completely drained” condition, which is actually impossible to reach 
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numerically. Also note in this thesis, constant-strength elements are adopted through all 

the calculations. Detournay and Cheng (1991) got better result for long-term SIF 

calculation by using edge dislocation solution and tip element. Figure 29 plots the 

absolute value of SIF changing with time under pressure loading. 
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Figure 28. Normalized crack stress intensity factor under pore pressure loading 
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Figure 29. Crack stress intensity factor under pore pressure loading 

 

Crack Under Thermal Loading 

Consider a crack of length 2L subject to a sudden uniform temperature change 

(cooling or heating) on its surface as shown in Figure 30. This problem can be solved by 

DD model. In this example, the hot formation of Westerly Granite at T0 = 200oC is 

gradually cooled down by keeping the crack temperature constant at Tc = 0oC. Far field 

stresses and pore pressure are assumed to be zero thus there are no stress or pressure 

loading on the crack surface.  

 

 



 
72

 

 

 

 

 

Figure 30. A crack under thermal loading 

 

Maximum Crack Opening 

Maximum opening of the crack is plotted as a function of time in Figure 31. It can 

be seen that the crack gradually opens as time increases and finally tends to reach an 

asymptotic value in the long run given by: 

T
L

D s
n ∆+−=

3
)1(2

)( max

νβ
     (64) 

where �T = -200oC. Derivation of equation (93) can be found in Appendix B. The crack 

response can be explained by the contraction of the formation material, due to cooling, 

pulls the crack surface to opposite directions and gradually opens it up.  

 The maximum crack opening predicted by this thermo-poroelastic solution is the 

same with the one calculated by the thermoelastic solution, as shown in Figure 32. This is 

because although the cooling process induces a pore pressure reduction in the formation, 

the induced pore pressure reduction is zero at the crack surfaces thus has no impact on the 

crack opening. That is to say, if no hydraulic loading applied on the boundary, thermo-
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poroelastic solution and thermoelastic solution will give the same result on crack width 

prediction. 
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Figure 31. Maximum crack opening under cooling condition, thermo-poroelastic solution 
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Figure 32. Maximum crack opening under cooling condition, thermo-poroelastic solution 
and thermoelastic solution 

 

Stress Intensity Factor 

 The stress intensity factor induced by cooling the crack surfaces is plotted in 

Figure 33. It indicates that cooling will increase SIF, which means higher potential of 

fracture propagation is expected. As time increases, the SIF will approach to a steady 

state value, given by: 

LT
E

K s π
ν

β ∆
−

−=∞
)1(6

)(1     (65) 

where �T = -200oC. Derivation of equation (65) is shown in Appendix B. 
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Figure 33. Crack stress intensity factor under cooling condition 

 

 By comparing Figure 33 with Figure 26 and 29, one can see that the long-term 

SIF due to cooling from 200oC to 0oC is much larger than those under mechanical or 

hydraulic loading of magnitude P = G/1000. Figure 34 plots the normalized crack SIF 

under thermal loading. The SIF value is normalized with respect to the initial SIF value 

under mode 1 loading, which is given by LPK u π
ν
ν

−
−=+

1
1

)0(1  = 23.3 MPa�m1/2. It 

indicates that the long-term value of crack SIF under thermal loading �T = -200oC is 

about 3 times of the instantaneous crack SIF under the pressurization of 15 MPa. 

Therefore cooling can significantly increase the crack SIF, which means a much higher 

potential of crack propagation.  
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Figure 34. Normalized crack stress intensity factor under cooling condition 
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Borehole With Pre-existing Cracks 

 In order to test the combine FS-DD method, two examples are considered in this 

section. 

Tangential Stress Near a Borehole Intersected By a Crack 

As shown in Figure 35, a borehole is intersected by a crack. Both the borehole 

wall and the crack surfaces are pressurized by p. The far field stress field is assumed to be 

zero. The length of the crack a equals to the well radius r. This problem is solved using 

the combined FS-DD model. The borehole boundary is divided by 50 FS element, 

whereas the crack is divided by 14 DD elements. In Figure 36, distribution of tangential 

stress (normalized by ���/p) near the borehole is examined along line AB. 

 

 

 

 

 

 

 

 

 

 

Figure 35. Pressurization of a crack intersecting a borehole 
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As can be seen in Figure 36, the result predicted by the combined FS-DD model 

agrees well with the finite element solution obtained by Vijayakumar and Curran (2003). 

The tangential stress in the area close to the borehole boundary can be calculated with 

considerable accuracy by the combined FS-DD model. At the point where the distance 

from the borehole wall is 1/50 of the radius, the difference between the combined FS-DD 

model and the FEM solution is less than 3%.  
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Figure 36. Tangential stress near a borehole intersected by a crack 
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Stress Intensity Factor of Cracks Intersecting with a Borehole 

In order to study the fracture behavior near a borehole, the stress intensity factors 

need to be analyzed. To test the functionality of the combined FS-DD model for this 

problem, eight different cases of cracked borehole are studied. As shown in Figure 37-40, 

borehole radius is r, crack length is a. � is field stress magnitude (hydrostatic stress field 

is assumed in order to simplify the problems). p is the pressure applied on boundary. 

Eight cases are formed from the combination of stress pattern and problem geometries. 

For each case, the values of the input data are shown in Table 2 together with the SIF 

computed by the model and the results are compared with the solutions given by Sih 

(1973). 

 

 

 

 

 

 

 

 

 

Figure 37. A borehole intersected by a crack, under biaxial tension 
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Figure 38. A borehole intersected by two cracks, under biaxial tension 

 

 

 

 

 

 

 

 

 

 

Figure 39. A borehole intersected by two cracks, under internal pressurization  
on both borehole and crack 
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Figure 40. A borehole intersected by two cracks, under internal pressurization 
 on borehole only 

   

  From Table 2, it can be seen that the stress intensity factors computed by the 

combined FS-DD model agree well with the solutions provided by Sih (1973). The 

largest error generated in these eight cases is an acceptable 3.8%. Therefore, one can 

assume the model is accurate enough to compute crack SIF near a borehole. Based on the 

study of the stress/displacement singularity around the crack tip, fracture propagation 

behaviour can then be further examined using this model. 
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Table 2. Stress intensity factor of cracks intersecting with a borehole  

 

 

 

 

Case 

# Description Input data 
Results of Combine 

FS-DD model 
(Pa�m1/2) 

Solutions from 
reference 
(Pa�m1/2) 

1 See Figure 37 
r = 0.1 m 
a = 0.1 m 
� = 30 MPa 

2.06822E+07 2.0514E+07 

2 See Figure 37 
r =0.1 m 
a = 0.2 m 
� = 30 MPa 

2.45140E+07 2.4018E+07 

3 See Figure 38 
r = 0.1 m 
a = 0.1 m 
� = 30 MPa 

2.30665E+07 2.3205E+07 

4 See Figure 38 
r = 0.1 m 
a = 0.05 m 
� = 30 MPa 

1.79650E+07 1.8667E+07 

5 See Figure 39 

r = 0.1 m 
a = 0.1 m 
� = 0 MPa 
p = 30 MPa 

2.30665E+07 2.2995E+07 

6 See Figure 39 

r = 0.1 m 
a = 0.05 m 
� = 0 MPa 
p = 30 MPa 

1.79647E+07 1.8594E+07 

7 See Figure 40 

r = 0.1 m 
a = 0.1 m 
� = 0 MPa 
p = 30 MPa 

6.97829E+06 6.7797E+06 

8 See Figure 40 

r = 0.1 m 
a = 0.05 m 
� = 0 MPa 
p = 30 MPa 

7.19040E+06 6.9670E+06 
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CHAPTER 5 

ROCK MECHANICS APPLICATIONS 

 In this chapter, the boundary element model is applied to several problems of 

interest in applied rock mechanics. Pore pressure and stress fields around underground 

openings are examined under coupled hydro-thermo-mechanical loading. The rock type 

used in this chapter is Westerly Granite except for the first example in which a Shale is 

considered. 

Influence of Borehole Geometry on its Stability 

 The influence of excavation geometry on borehole stability is considered in this 

section. The motivation for this problem is the fact that many boreholes tend to become 

elliptical, i.e., a/b = C � 1 (Figure 41) under the influence of the in-situ stresses (Aadnoy 

and Angell-Olsen, 1995). The safe density of the mud to be used is affected by the stress 

concentrations around the borehole. Therefore, mud support calculations based on a 

circular (C=1) geometry may cause problems. Furthermore, future fracturing operations 

are also affected by the change in the hole geometry.  

Rock material used in this example is assumed to be Gulf of Mexico Shale. Input 

parameters are listed in Table 3 (Data are taken from Cui et al., 1998). Due to symmetry 

of this problem, only a quarter of the borehole wall is modeled using 10 elements. The 

magnitude of the in-situ major and minor horizontal stresses and pore pressure is 
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assumed to be 29, 20, and 10 MPa, respectively. Formation temperature is assumed to be 

200oC. Normal stress and mud pressure applied at the borehole wall are both 15 MPa. 

Mud temperature is 0oC. The elliptical ratio a/b is assumed to be 1.1.  

Figure 42 compares the effective hoop stress for circular and elliptical cases. At t= 

102 sec, the ellipticity increases the magnitude of the compressive effective tangential 

stress induced near the x-axis (from 0-20 degrees); and increases the magnitude of the 

tensile effective tangential stress near the y-axis (from 70-90 degrees). The implication is 

that at early time, an elliptical borehole will be more likely to fail in tension due to the 

pressure of the mud column and cooling. Hence a mud with a higher temperature and/or 

lower density than that for a circular well need be used. The situation is reversed if the 

ellipticity were to occur in the opposite orientation. At t= 106 sec, the ellipticity slightly 

increases the magnitude of the compressive effective tangential stress near the x-axis 

(from 0-10 degrees); while it decreases the magnitude of the tensile effective tangential 

stress near the y-axis (from 75-90 degrees). This means that the ellipticity does not 

contribute to the tensile failure at long time in this case. 

Figure 43 shows the effective hoop stress for circular borehole under poro-

mechanical loading. It can be seen that the compressive effective hoop stress increases 

near the x-axis (from 0 to 35 degrees) while decreases near the y-axis (from 50 to 90 

degrees). This effect is caused by the deviatoric stress loading and its impact was 

apparent in the previous figure and discussion.  

 

 



 
85

   

 

 

 

 

 

 

 

 

Figure 41. A borehole under combined poro-thermo-mechanical loading 

 

Table 3. Input parameters for Gulf of Mexico Shale 

Variable Physical meaning Value Unit 

E Modulus of elasticity 2.06×104 MPa 
ν  Poisson's ratio 0.20    - 

uν  Undrained Poisson's ratio 0.31    - 
Ks Solid bulk modulus 4.8×104 MPa 
Kf Fluid bulk modulus 2.5×103 MPa 
cT Thermal diffusivity 1.6×10-6 M2/sec 
C Heat capacity 1.17×106 Joule/(kg·oC) 

sβ  Solid thermal expansion coef. 1.8×10-5 1/oC 

fβ  Fluid thermal expansion coef. 3.0×10-4 1/oC 
n Porosity 0.143    - 

fγ  Unit weight of fluid 9.8×103 N/m3 

k Intrinsic permeability 7.66×10-8 Darcy 
B Skempton’s constant 0.551    - 
µ  Fluid viscosity  3.547×10-4 kg/(m·sec) 
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Figure 42. Effective hoop stress around a circular borehole and an elliptical borehole 
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Figure 43. Effective hoop stress around a circular borehole, under poro-mechanical 
loading 
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Drilling-induced Tensile Failure 

As shown before, drilling a borehole will change the stress field and pore pressure 

field dramatically. This section analyzes the conditions of tensile failure induced by 

borehole drilling. Consider a borehole (Well 38B-9) drilled in Coso geothermal field 

(Sheridan et al., 2003) at a depth of 7800 ft, as shown in Figure 41. The magnitude of the 

in-situ major and minor horizontal stresses and pore pressure is assumed to be 67.33, 

21.97, and 17.93 MPa, respectively. The formation temperature is 250oC. Normal stress 

and mud pressure applied at the borehole wall are 25.81 MPa. Mud temperature is 50oC. 

Considering the problem symmetry, 10 FS elements are used to simulate a quarter of the 

circular borehole wall. 

Figure 44 illustrates the effective hoop stress field at t = 10 hours. One sees that 

large tensile stresses are induced on the opposite sides of borehole wall at the azimuth of 

major in-situ stress. In these two areas, tensile fractures are very likely to occur in the 

borehole wall when the effective hoop stress exceeds the tensile strength of the rock. In 

fact,  a tensile fracture has been observed at this depth. The fracture will initialize on the 

wall because it is where the tensile stress is the largest. Also note that at the azimuth of 

the minor in-situ stress, the compressive hoop stress is greatest, which means borehole 

breakouts will occur when the compressive stress concentration exceeds the rock 

strength. 

Figure 45 shows the effective radial stress field. A tensile stress zone is formed 

inside the formation, which encourages tensile fracturing in the circumferential direction. 
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In this example, both excess mud pressure and borehole cooling influence the 

occurrence of drilling induced tensile fractures because both cause additional tensile 

stress to the hoop stress acting around the borehole. 

 

 

 

 

Figure 44. Effective hoop stress field induced by borehole drilling 
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Figure 45. Effective radial stress field induced by borehole drilling 
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Influence of Thermal Stress on Injection Well Fracturing 

 During waterflooding or other recovery processes, fluids such as water are 

injected into the reservoir through a well. Typically the temperatures of the injected fluids 

are cooler than the in-situ reservoir temperature (Perkins and Gonzalez, 1985). With time, 

a zone of cooled rock forms around the injection well. If the injection condition is such 

that the formation is fractured hydraulically, the cooled zone will also evolve in geometry 

accordingly. Thermally induced stresses result in an additional tensile stress field around 

the well and the fractures. As a result, the magnitudes of in-situ stresses in the cooled 

zone are decreased. Thus the pressure required to fracture the formation is reduced. 

 When the injection rate is high enough, the effective tangential stress around the 

well will exceed the tensile strength of the formation, as a result a short fracture 

perpendicular to the direction of the minor in-situ stress will extend from the well, as 

shown in Figure 46.  

 

 

 

 

 

 

 

Figure 46. Hydraulic fracturing of an injection well 

 

 p0, T0  pw, Tw 

 R 

σh 

σH 

σh 

σH 

σn 



 
92

 Consider injecting water of 0oC into a well of radius R = 0.1m drilled in a 

formation at a temperature of 200oC. Assume the current length of the fracture is now 

0.5R. In order to examine the impact of the thermally induced stress only, the mechanical 

and hydraulic loadings are not considered. That is to say, the in-situ stresses and pore 

pressure are assumed to be zero, so are the stresses and pressure applied on the well 

boundary and the fracture surface. Figure 47 plots the temperature field at time = 105 sec. 

As shown in Figure 47, the cooled region around the well and the short fracture is nearly 

circular, although slightly elliptical. Figure 48 shows the difference of major and minor 

principle stress induced by cooling. One can see the differences of thermally induced 

stresses in two principle directions are very small in the cooled region illustrated by the 

dashed ellipse. This leads to the conclusion that the magnitudes of thermally induced 

stresses (which is also the reduction of the in-situ stresses) are nearly uniform in all 

directions. Therefore, for actual cases where the in-situ stresses are applied, the direction 

of the minor in-situ stress remains the same as that initially in the formation. And 

consequently the orientation of the fracture will also remain the same. 

 Now, consider another case when the injection rate is much higher, thus the 

fracture extends a greater distance from the well. In this example, the length of the 

fracture is supposed to be 14R. The cooled region becomes more elongated in shape, as 

shown in Figure 49. At time = 105 sec, the temperature of the region shown in the dashed 

ellipse is approximately under 100oC. Figure 50 plots the difference between major and 

minor principle stress induced by cooling. Mechanical and hydraulic loadings are not 

considered. The plot indicates that the difference between the magnitudes of thermally 
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induced stresses parallel and perpendicular to the fracture is much larger in the cooled 

region than outside. That is to say, in the elliptical cooled region, the thermoelastic 

reduction of the in-situ stress parallel to the fracture (��H) is much greater than the 

thermoelastic stress reduction perpendicular to the fracture (��h). Let a to be the length 

of the long axis of the ellipse in the direction of �H, and b to be the length of the short 

axis in the direction of �h, then the expressions for ��H and ��h can be given by (Perkins 

and Gonzalez, 1985): 
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 According to equation (66) and (67), at the crack surface where the T∆  is -200oC, 

the difference between ��H and ��h can be 78 MPa for an ellipse with axis ratio of b/a = 

0.01, and 56 MPa for b/a = 0.1. The value could be lower inside the formation because 

the temperature change ( T∆ ) there is not as high as at the crack surface. 

The effect of the elongated cooled region is further illustrated by the following 

example. Let the geometries of the well and the fracture remain the same. Assume the in-

situ major and minor stresses and pore pressure are 40 MPa, 10 MPa and 10 MPa, 

respectively. As mentioned before, the direction of the minor principle stress is 

perpendicular to the fracture. The normal stress and pressure applied on the well 

boundary and fracture surfaces are 10 MPa and 10MPa, respectively. Thermal loading 

remains the same with previous example, which is cooling on the wellbore from 200oC to 

0oC. Therefore, the temperature field and cooled region at time = 105 sec is the same as 
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the one shown in Figure 49. The difference between the total major and minor principle 

stresses is plotted in Figure 51. One can see that in the cooled region, the difference 

between the total major and minor principle stresses is reduced greatly. Note that the 

original difference of the principle stresses is 30 MPa everywhere, and with cooling it is 

reduced to less than 10 MPa in most areas of the cooled region. Exceptions occur in two 

cases: when the examined points are in the vicinity of the wellbore, where stresses fields 

are significantly affected by the mechanical boundary conditions; when the examined 

points are in the areas near the fracture ends, where stress singularity happens. 

 When the fracture extends further, a flatter shape of cooled region would form 

around the whole system. This would cause the stresses parallel to the fracture to become 

less than those perpendicular to the fracture. As a result, secondary fractures 

perpendicular to the primary main fracture will open in this situation, as shown in Figure 

52 (Perkins and Gonzalez, 1985). 
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Figure 47. Temperature field around an injection well and a short fracture 
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Figure 48. Difference between thermally induced principle stresses around an injection 
well with a short fracture 
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Figure 49. Temperature field around an injection well and a long fracture 
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Figure 50. Difference between thermal induced principle stresses around  
an injection well with a long fracture 
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Figure 51. Difference between total principle stresses around an injection well and a short 
fracture 
 

 

 

 

 

 

 

Figure 52. Formation of secondary fractures within cooled region 
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Maximum Crack Opening under Poro-thermo-mechanical Loading 

 The opening of a crack under combined poro-thermo-mechanical loading is 

considered in this section. To examine the effects of cooling and hydraulic injection, 

three different solutions are given to this problem, which are thermoelastic, poroelastic 

and thermo-poroelastic.  

Assume crack length is 2.0 m. The in-situ major and minor stresses and pore 

pressure are 41.4 MPa, 20.7 MPa and 1.7 MPa, respectively. The crack is perpendicular 

to the direction of the minor principle stress. Normal stress and pressure applied caused 

by the injection fluid on the crack surface are 19.9 MPa and 19.9 MPa, respectively. 

Formation temperature is 200oC, while the crack is suddenly cooled to 0oC. The crack is 

modeled by 39 displacement discontinuity elements. 

Figure 53 shows the maximum opening of the crack as time increases. The 

poroelastic solution predicts the crack will “close” with time under a pore pressure 

loading, that is the width of the crack opening becomes negative. This is because the 

diffusion of the injection fluid into the porous formation would increase the pore pressure 

around the crack; and the increased pore pressure would consequently induce a dilatation 

of the rock formation. In reality, it’s obvious this “closure” of the crack surfaces is 

physically impossible. The thermoelastic solution shows the crack will open up gradually 

as time increases. This is a result of the shrinking of the rock formation caused by 

cooling. The thermo-poroelastic solution illustrates the combined effects of hydraulic, 

thermal and mechanical loading. As can be seen, the crack also opens up with time, 

which implies the thermal effect dominates. Also note at any given time, the opening is 
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less than the one predicted in thermoelastic solution. The difference between them is 

caused by the closing effect of the hydraulic loading. This example also shows that the 

thermo-poroelastic solution will provide the most accurate estimate for crack opening in 

hydraulic fracturing process. 
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Figure 53. Maximum crack opening under poro-thermo-mechanical loading 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

A two-dimensional transient indirect boundary element model has been developed 

to solve coupled thermo-poroelastic problems. The model is based on the thermo-

poroelastic theory, which is developed from the fully coupled poroelastic theory extended 

to non-isothermal conditions. The model has been tested and verified using a variety of 

examples that have analytical solutions. A number of applications related to borehole 

stability and hydraulic fracturing were illustrated in the thesis. Stress and pore pressure 

fields around the examined borehole or crack were calculated by taking into account the 

poromechanical loading and thermal loading. 

Two sub-formulations of the indirect BEM, both displacement discontinuity (DD) 

model and fictitious stress (FS) model were developed in order to treat different problems. 

The two models are combined in a mixed FS-DD model to examine the interactions of 

underground opening and fractures under thermo-hydro-mechanical loading. A graphic 

user interface (GUI) with functions like data input and visualization was developed and 

integrated with the numerical FS-DD model. Contour mapping of temperature field, pore 

pressure field and stress field in studied area is available. 

Borehole under non-hydrostatic stress loading was studied using the fully coupled 

poroelastic FS model. As expected, the result shows that fluid injection results in a time 
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dependent compressive stress zone around the borehole, while draining creates a 

tangential stress zone (total stress). Under deviatoric stress loading, a radial gradient of the 

pore pressure forms at early times, which is triggered by the rapid drainage. This pressure 

peak decays with time, and moves away from the borehole wall. It was found that at the 

instant of drilling, the peak of the tangential stress occurs inside the rock instead of the 

borehole wall, as predicted by the elastic analysis.  

 The impact of thermal effect on borehole stability was analyzed using the FS 

model. It has been shown that cooling reduces pore pressure around the borehole. A 

tensile stress zone develops because of the shrinkage of the rock material. Cooling 

increases the potential of fracturing because of the existence of the tangential tensile 

stress based on a traditional strength approach. The fracture will be initiated from the 

borehole wall because the maximum tensile stress always occurs there. The tensile stress 

zone formed inside the formation with time will encourage the time-delayed fracture 

development. These results agree with analytical solutions.  

 Crack behaviors under poroelastic loading and thermal loading were studied. 

Crack openings and stress intensity factors were calculated using the DD model. Cooling 

the crack will increase the opening and stress intensity factor, which implies higher 

potential of fracture propagation. Draining in the crack from the formation has the same 

effect. The results show good agreement with analytical solutions.  

 Two examples were used to verify the combined FS-DD model in analyzing the 

interaction of borehole and pre-existing cracks. Tangential stresses for field points around 
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the hole, and the stress intensity factors for the cracks were calculated for the borehole-

crack system. The results also agree very well with other published solutions. 

The influence of borehole ellipticity on stability has been examined while 

considering thermal and hydraulic effects. Effective hoop stresses for circular and 

elliptical boreholes are compared. It has been found that in certain cases an elliptical 

borehole will be more likely to fail in tension due to the pressure of the mud column and 

cooling. Hence a mud with a higher temperature and/or lower density than that for a 

circular well need be used.  

Another example showed how cooling the borehole wall encourages tensile 

failure when drilling in high temperature formations. The effective tangential stress field 

around the borehole shows that large tensile stresses are induced on the opposite sides of 

borehole wall at the azimuth of major in-situ stress. Therefore, tensile fractures are very 

likely to occur in the borehole wall when the effective tangential stress exceeds the 

tensile strength of the rock. In addition, a tensile radial stress zone inside the formation 

encourages tensile fracturing in the circumferential direction. 

 The effect of thermoelastic stresses on the injection well fracturing was also 

analyzed. It has been found that cooling can reduce the stresses around the well 

substantially, causing it to fracture at much lower pressure. A cooled region around the 

well with an initial short fracture is found to be near circular. As the fracture grows, the 

cooled region elongates. Thermal induced stresses will reduce the difference of the 

original in-situ principle stresses presented in the formation. As a result, when the total 
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stress parallel to the fracture becomes less than the stress cross the fracture, secondary 

fractures perpendicular to the main fracture could form. 

Finally, the maximum opening of a crack under combined poro-thermo-

mechanical loading has been examined. It has been shown that the crack is more likely to 

grow under cooling because of the contraction of the formation; while the pore pressure 

loading due to injecting water in the crack would have a “closure” effect. This example 

also shows that the thermo-poroelastic solution will provide the most accurate estimate 

for crack opening in long-term simulation of geothermal reservoirs. 

 The applications mentioned above indicate that coupled thermal and 

poromechanical processes play an important role in borehole stability analysis and 

hydraulic fracturing in high temperature formations. The stress and pore pressure fields in 

the formation are significantly altered during borehole drilling or hydraulic fracturing. 

Thermal effect is found to be much more significant than hydraulic effect in some cases.  

The boundary element model presented in this thesis has proven suitable for the 

coupled thermo-poroelastic problems in borehole drilling and hydraulic fracturing. 

Interactions between borehole and pre-existing cracks can be analyzed using the 

combined FS-DD model.  

 For the future work, it is recommended that the model be improved in the 

following respects: 1. In the current model, hydraulic boundary condition is limited to 

known pressures, fluid flux should be added in the boundary condition options to study 

impermeable boreholes; 2. Heat flux should be considered as a thermal boundary 

condition in addition to temperature; 3. Tip elements should be added in the DD model in 
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order to get more accurate results around the crack tips; 4. Joint elements should be added 

in the DD model to better simulate the behavior of discontinuities; 5. Node-centric 

method should be adopted in the DD model to better estimate the tangential stresses.  
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Appendix A 
Two-dimensional Fundamental Solutions for a Continuous Heat Source 

 in Thermo-poroelastic Problems 
 

 

Fundamental solutions (Green functions) corresponding to a continuous heat 

source can be derived by the integral transform (e.g. Smith and Booker 1993) technique. 

Laplace transform with respect to time and Fourier or Hankel transforms with respect to 

the spatial domain are commonly used. Another approach is based on dimensional 

analysis and self-similarity, which has more obvious physical meanings. The second 

approach is used by Berchenko (1998) to derive the fundamental solutions for continuous 

heat source in thermo-poroelastic media; and is briefly described below. 

Suppose Λ is the strength of a continuous heat source in [Watt/m2], qT is the heat 

flux in [oC · m/sec]. Relationship of Λ and qT is: 

CqT ρ=Λ      (A1) 

where ρ is the density and C is the heat capacity.  

The volumetric strain ε in thermo-poroelasticity can be obtained: 
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Substituting the above expression into the diffusion equation for pore pressure in 

equation (14) results in: 
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where cf is fluid diffusivity, given by 
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found in Chapter 2. 

 Equation (20) can be written in cylindrical system of coordinates as: 
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where r is the distance between the influenced point (the point of interest) and the 

influencing point (where the singular source located). r is defined by 2
2

2
1

2 xxr +=  in two-

dimensional co-ordinates system.  

Thermal diffusion equation (12) can also be written in cylindrical system as: 
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Together with the boundary conditions 
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 Then, the solution to (A5) is given by: 
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)( 2ξ
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 The latter is used in (A4) to find: 
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where ξ2 is called a self-similar variable written as: 
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and ω2 is the ratio of hydraulic diffusivity to thermal diffusivity, ω2 = cf/cT. 

 Substituting equation (A8) and (A9) into equation (A4) and (A5) yields: 
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These two equations can be integrated to get the final expression for singular 

solutions for the temperature and the pore pressure induced by a continuous point heat 

source of unit strength: 

 )Ei(
4

1 2ξ
πκ T

ch T
T =

Λ
=       (A13) 

 1          )
 

Ei(- )Ei(
)1(4

2
2

2
2

2
0 ≠�

�

	


�

�

−
=

Λ
= ω

ω
ξξ

ωπκ
β
S

p
p

T
ch   (A14) 

1                                              
4

20 2

==
Λ

= − ω
πκ
β ξe

S
p

p
T

ch   (A15) 



 
 111

 According to Berchenko (1998), the singular solution for stress field can be 

obtained from equation (3), (A2), (A13), (A14) and (A15): 
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In the above equations, Ei is exponential integral function, which is defined as: 
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Function F and F1 are given by: 
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 Constants λ1 is given by
0

1 αβ
βλ SK s= , while ( ) 1

211 λωλ −+= . 

 
 The spatial integration of the fundamental solutions for a continuous point heat 

source over a straight-line element of length 2a yields: 
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For 12 =ω
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Appendix B 
Derivation of the Long-term Crack Opening and Stress Intensity Factor under Pore 

Pressure Loading 
 

 
The long-term effect on the fracture caused by a pore pressure loading has been 

studied by Detournay and Cheng (1991) using the following approach.  

Consider a fracture of length 2L subjected to hydraulic loading p. At large times, 

the pore pressure in the region surrounding the fracture reaches a constant value 

characterized by axial symmetry (Detournay and Cheng, 1991). In the absence of a 

fracture cut, this pore pressure would have induced an irrotational displacement field 

(Detournay and Cheng, 1991).  

Navier equation for poroelasticity can be given as: 

( ) iii pKGuG ,,
2 3

3
1 αε =++∇     (B1) 

Since volumetric strain kku ,=ε , equation (B1) can also be written as: 

( ) ikiki puKGuG ,,
2 3

3
1 α=++∇    (B2) 

Consider now the particular case of an irrotational displacement field. According 

to the Helmholtz decomposition of a vector field, the displacement can then be expressed 

as the gradient of a scalar potential Ψ  

iiu ,Ψ=      (B3) 
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Insert (B3) into (B2): 
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Integration of this equation yields: 
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where g(t) is an unknown function of time that has to be determined from boundary 

conditions. For the infinite/semi-infinite domains, g(t) remains to be zero. 

Now look at the stress-strain equation for poroelasticity: 
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Contraction of equation (B6) leads to: 
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Consider kkεε = , equation (B7) becomes: 
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Introduce (B5) into equation (B8), and after some manipulation, we get the stress 

field related to long-term hydraulic loading: 

pkk ησ 2−=       (B9) 
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As ∞→t , a uniform confining stress develops (Detournay and Cheng, 1991): 

pyyxx ησσ 2−=+        

pyyxx ησσ −==      (B10) 

Now consider the fracture (-L<x<L) subjected to hydraulic loading on the 

surfaces, the long-term effect on the fracture opening caused by pore pressure rise p is 

equivalent to the application of a tensile stress pyy ησ −= (Detournay and Cheng, 1991). 

The long-term opening can be calculated by the classic Sneddon’ s solution for 

pressurized fracture: 

��
�

�
��
�

�
−

−
−= 2

2

1
)1(2

L
x

G

Lp
D f

n

ν
     (B11) 

where pf  represents the normal stress applied on the fracture surfaces. 

Let pp yyf ησ −== , the crack maximum opening for long-term hydraulic loading 

is: 

p
G

L
Dn

)1(2
)( max

νη +−=      (B12) 

 The expression of stress intensity factor of a pressurized fracture (-L<x<L) can be 

found in Detournay and Cheng’ s work (1991): 

LpK f π=1       (B13) 

 Let pp yyf ησ −== , the crack stress intensity factor for long-term hydraulic 

loading is: 

LpK πη−=∞)(1      (B14) 
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Appendix C 
Derivation of the Long-term Crack Opening and Stress Intensity Factor under Thermal 

Loading  
 

 
This appendix considers the long-term effect of temperature change on the 

fracture width and SIF.  The problem of a fracture of length 2l subjected to thermal 

loading T, can be studied using the same approach used for poroelasticity. At large times, 

the temperature in the region surrounding the fracture reaches a constant value 

characterized by axial symmetry. In the absence of a fracture cut, this temperature would 

have induced an irrotational displacement field. 

Navier equation for thermoelasticity can be obtained by taking off the pore 

pressure term in thermo-poroelasticity, and then can be given as: 

( ) isii TKKGuG ,,
2 3

3
1 βε =++∇    (C1) 

Since volumetric strain kku ,=ε , equation (C1) can also be written as: 

( ) iskiki TKuKGuG ,,
2 3

3
1 β=++∇    (C2) 

In the particular case of an irrotational displacement field, according to the 

Helmholtz decomposition of a vector field, the displacement can then be expressed as the 

gradient of a scalar potential Ψ  (Detournay and Cheng, 1993) 

iiu ,Ψ=      (C3) 
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Insert (C3) into (C2): 

( ) isikk TKKGG ,,3
3
1 β=Ψ��

	

�

� ++  

 Consider 
)1(2 ν+

= E
G , and 

)21(3 ν−
= E

K , it gives: 

i
s

ikk T,, )1(3
)1(
ν
βν

−
+=Ψ      (C4) 

Integration of this equation yields: 

)(
)1(3

)1(
, thTu s
ii +

−
+==

ν
βνε     (C5) 

where h(t) is an unknown function of time that has to be determined from boundary 

conditions. For the infinite/semi-infinite domains, h(t) remains to be zero. 

Now look at the stress-strain equation for thermoelasticity: 

( ) ijsijijij TKGKG δβεδεσ −−+= 23
3
1

2    (C6) 

Contraction of equation (C6) leads to: 

( ) TKGKG skkkk βεεσ 223
3
2

2 −−+=    (C7) 

 

 

Consider kkεε = , equation (C7) becomes: 
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Introduce (C5) into equation (C8), and after some manipulation, we get the stress 

field related to long-term thermal loading: 

T
E s

kk )1(3 ν
βσ
−

−=      (C9) 

As ∞→t , a uniform confining stress develops: 

T
E s

yyxx )1(3 ν
βσσ
−

−=+  

T
E s

yyxx )1(6 ν
βσσ
−

−==     (C10) 

Now consider the fracture (-L<x<L) subjected to thermal loading on the surfaces, 

the long-term effect on the fracture opening caused by temperature change T is equivalent 

to the application of a tensile stress T
E s

yy )1(6 ν
βσ
−

−= . The long-term opening can be 

calculated by the classic Sneddon’ s solution for pressurized fracture: 
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where pf  represents the normal stress applied on the fracture surfaces. 

Let T
E

p s
yyf )1(6 ν

βσ
−

−== , the crack maximum opening for long-term thermal 

loading is: 

T
L

D s
n 3

)1(2
)( max

νβ +−=      (C12) 

 The expression of stress intensity factor of a pressurized fracture (-L<x<L) can be 

found in Detournay and Cheng’ s work (1991): 
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LpK f π=1       (C13) 

 Let T
E

p s
yyf )1(6 ν

βσ
−

−== , the crack stress intensity factor for long-term thermal 

loading is: 

LT
E

K s π
ν

β ∆
−

−=∞
)1(6

)(1      (C14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 121

 
 
 
 
 
 

Appendix D 
Two-dimensional Fundamental Solutions for a Unit Continuous Fluid Source 

in a Poroelastic Medium 
 

 
The two-dimensional fundamental solutions for pore pressure and stresses 

induced by a unit continuous fluid source in poroelasticity are given by (Cheng and 

Detournay, 1998): 
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where 222 yxr += ; 
tc

r
f4

2
2 =ξ . It should be noted that in this thesis the strength of the 

continuous point fluid source is defined by ( ) ( )τδµφ −−= t
k

c f
c H�x , where H(x) is the 

Heaviside function. The fundamental solutions listed in Cheng and Detournay’ s (1998)  

are in different forms because they define the strength of the continuous point source as 

( ) ( )τδφ −−= tc H�x . 

 The spatial integration of the above fundamental solutions for a continuous point 

fluid source over a straight-line element of length 2a yields: 
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where ( ) 222 ' yxxr +−= ; 
tc

r
f4

2
2 =ξ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 123

 

 
 
 
 

Appendix E 
Two-dimensional Fundamental Solutions for a Unit Continuous Heat Source  

 in a Thermoelastic Medium 
 

 
The two-dimensional fundamental solutions for temperature and stresses induced 

by a continuous heat source in thermoelasticity are given by (Berchenko, 1998): 
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where 222 yxr += ; 
tc

r
T4

2
2 =ξ . The strength of the continuous point heat source is 

defined by ( ) ( )τδϕ −−= tc H�x .  

 The spatial integration of the above fundamental solutions for a continuous point 

heat source over a straight-line element of length 2a yields: 
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NOMENCLATURE 
 

ui [m] Displacement 
εij  Solid strain 
σij [MPa] Total stress 
KI [MPa·m1/2] Stress intensity factor 
p [MPa] Pore pressure 
q [m/sec)] Fluid flux 
T [oC] Temperature 
qT [oC·m/sec] Heat flux 
φ [Pa·m/sec] Continuous fluid source strength density 
ϕ [Watt·m2] Continuous heat source strength density 
G [MPa] Shear modulus 
E [MPa] Modulus of elasticity 
M [MPa] Biot modulus 
ν  Poisson's ratio 
νu  Undrained Poisson's ratio 
ζ  Fluid content variation per unit volume 
K [MPa] Rock bulk modulus 
Ks [MPa] Solid bulk modulus 
Kf [MPa] Fluid bulk modulus 
cf [m2/sec] Fluid diffusivity 
cT [m2/sec] Thermal diffusivity 
C [Joule/(kg·oC)] Heat capacity 
α  Biot’ s coefficient 

βs [1/oC] 
Solid volumetric thermal expansion 
coefficient  

βf [1/oC] Fluid volumetric thermal expansion 
coefficient 

n  Porosity 
γf [N/m3] Unit weight of fluid 
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κT [Watt/(m·oC)] Thermal conductivity 
k [darcy] Intrinsic permeability 
B  Skempton’ s constant 
µ [Pa·sec)] Fluid dynamic viscosity  
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