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ABSTRACT 

Most borehole paleodimate studies have been based on the assumption that the 

exchange of temperature between the air and ground surface remains constant. However, 

secular changes in boundary-layer factors can generate anomalous ground temperatures. 

This dissertation is an investigation of factors that cause separation of air and ground 

temperatures on a seasonal to inter-annual time scale, including snow cover duration, 

latent energy of ground freezing, daily sunlight, precipitation, and vegetation. 

Continual records of surface air and near-surface ground temperatures from five 

sites in North Dakota show similar trends in seasonal air-ground temperature separation. 

Statistical regressions of mean annual ground temperatures from Fargo and Bottineau 

sites indicate respective warming trends of 0.93+.09°C / 9 years and l. l 7+.15°C / 6 

years. Mean annual air temperatures and ground temperatures calculated with a 

conduction model assuming direct air-ground coupling do not display any significant 

trends. 

The effect of snow cover duration on air-ground temperature exchange was tested 

by comparing average winter air-ground temperature differences (Tscm -Tair) with annual 

duration of snow cover. The correlation coefficients between these variables are: 

Bottineau: r2 = .84 (6 years), Fargo: r2 = .71 (9 years), Langdon: r2 = .56 (6 years), 

Minot: r2 = .79 (6 years), and Streeter: r2 = .87 (6 years). Best-fit latent energy of 

ground freezing values were determined with a conduction model and compared with 

total fall precipitation. The correlation coefficients between these variables are: 

Bottineau: r2= .38, Fargo r2= .66, Langdon: r2= .69, Minot: r2= .95, and Streeter: r2= .01. 

Xll 



A least-squares linear regression of mean annual air temperatures recorded in 

northwestern North Dakota from 1895 to 1995 indicates a warming magnitude of 

l.57+.23°C per century. This temperature time series was forced into the ground with 

direct coupling to generate a synthetic temperature-depth profile. Inversion of this profile 

yielded a ground-surface warming magnitude of l.7°C per century. Total fall 

precipitation is used as a proxy for latent energy of ground freezing. Latent energy 

effects were modeled with direct coupling of the regional air temperature record and a 

temperature dependent constraint for snow cover insulation. This generated a 0.4°C per 

century signal. 

Xlll 



CHAPTER 1 

INTRODUCTION 

During the last two decades there has been a growing interest in the impact of 

human activities on the composition of the atmosphere and its effect on climate. Climate 

models project that the mean annual global surface temperature will increase by l-3.5°C 

by 2100, that global mean sea level will rise by 15-95cm, and that changes in the spatial 

and temporal patterns of precipitation would occur (IPCC, 1997). The average rate of 

warming probably would be greater than any seen in the past 10,000 years (IPCC, 1997). 

Because of the social, economic and scientific significance of such effects, the study of 

climate change has become increasingly important in order to derive predictive models. 

Unfortunately, few instrumentally acquired surface air temperature records that would 

test the models exist prior to the 20th century (Harris and Chapman, 1997). However, 

ground surface temperature histories inferred from boreholes extend farther back than 

recorded air temperatures without any statistical noise due to interannual variability. The 

solid earth continually records a thermally averaged and robust transient signal of long­

period temperature variations at the ground surface. Analyses of 358 subsurface 

temperature measurements indicate that the average surface temperature of the Earth has 

increased by about 0.5°C in the 20th century and that the 20th century has been the 

warmest of the past five centuries (Pollack et al., 1998). The superposition of the 

climatic effect and anthropogenic activity effect upon ground warming is a very 

complicated process requiring additional research (Majorowicz, 1993 ). 
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Most borehole paleoclimate studies have been based on the assumption that a 

consistent 1: 1 relationship exists between air and ground surface temperatures. However, 

the number of processes governing the energy transfer between the ground surface and 

the near-surface air layer is large, and the interrelationship between processes is 

extremely complex (Oke, 1987). A continual exchange of energy occurs between the 

Earth surface and the air layer near the ground involving incident solar radiation, emitted 

long and short wavelength radiation, energy flow within the ground, diffusion and mass 

exchange, and latent energy effects, mainly evaporation (Geiger et al., 1995). Boundary 

layer variables influencing the energy exchange include snow cover, soil moisture, 

inundation, latent energy due to moisture phase changes, vegetation, wind exposure, 

ground-surface albedo, proximity to urban structures, and topographic and terrain effects 

(Farouki, 1981; Majorowicz, 1993). Local variations of ground temperatures and 

differences in mean annual air and ground temperatures are due to microclimatic and 

boundary layer factors (Geiger et al., 1995). Therefore in addition to climatic data, 

records of air and ground temperatures are needed to study the variations of ground 

temperatures in relation to the changing climatic environment (Majorowicz, 1993 ). 

Changing boundary layer factors can produce anomalous subsurface temperatures similar 

to those expected from climatic changes (Lewis and Wang, 1992). If these effects are not 

recognized, climatic changes inferred from subsurface temperatures may be incorrect 

(Lewis and Wang, 1992). 

Recent climate change studies in areas of North America subject to snow cover 

and ground freezing have revealed regional discrepancies in warming magnitudes 

inferred from borehole temperatures and statistical analyses of recorded air temperatures 
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(Beltrami and Mareschal, 1991, Gosnold et al., 1997, Majorowicz and Skinner, 1997). In 

a study of climate change in the Northern Plains, Gosnold et al. (1997) observed that 

ground surface temperatures underwent significantly greater warming in the last century 

than recorded air temperatures north of 46° N latitude. Because this region was not 

subject to any deforestation or terrain effects, the discrepancies are attributed to ground 

temperatures retaining a record of temperature, combined with the thermal effects of 

snow cover and latent energy of ground freezing and thawing. 

The goal of this dissertation is to better understand the factors that cause 

separation of air and ground temperatures on a seasonal to inter-annual time scale. 

Factors examined in this study include vegetation, snow cover, total daily precipitation, 

and latent energy associated with moisture freezing and thawing processes in the 

subsurface. The following hypotheses are tested: 1) Ground-surface factors are capable 

of generating trends in mean annual ground temperatures that do not occur in mean 

annual air temperatures during 6 and 9-year periods; 2) Annual air-ground temperature 

differences averaged during winter months are mainly controlled by total duration of 

winter snow cover; 3) Modeled latent energy of ground freezing is a function of 

precipitation totaled 2-3 months prior to the onset of ground freezing; 4) The thermal 

effects of latent energy of ground freezing determined by observed fall precipitation 

values are capable of generating a transient subsurface temperature signal in a 100-year 

period. 



CHAPTER2 

GROUND-SURFACE TEMPERATURE EXCHANGE 

Ground-surface temperature exchange in soils and rock is a complex interaction 

of radiation absorption and emission, conduction, moisture exchange, moisture phase 

changes, and vegetation cover (Farouki, 1981). Heat transfer in soils is complicated by 

embedded stones, tree roots, dead organic matter, soil organisms, ionic concentration, and 

water passages (Geiger et al., 1995). Thermal properties of soils are strongly affected by 

the presence of water and air in pore spaces (Farouki, 1980). Soil water can be 

transported by gravity, capillary action, soil water te.nsion, and differences in vapor 

pressure (Geiger et al., 1995). Moisture content of soil varies in response to climatic 

events, varying ground surface albedo, density, permeability, porosity, and thermal 

diffusivity (Geiger et al., 1995). Not only does the variable water content of soil 

determine its temperature, the temperature regime of the soil affects the water distribution 

in it (Geiger et al., 1995). Surface air temperatures vary much more during the day than 

ground temperatures. This is because the thermal capacity of soil is 1000-3000 times that 

of air, depending on the moisture content of the soil (Geiger et al., 1995). 

Although ground surface temperature indirectly controls the boundary condition 

for the conductive flow of heat into the earth, the interactions at the ground surface are 

greatly influenced by the type of surfaces (Roy et al., 1972, Geiger et al., 1995). These 

may produce lateral variations in the ground surface temperature of several degrees over 

tens of meters (Blackwell et al., 1980). Lateral variations in air-ground temperature 
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exchange can either be abrupt due to deforestation, vegetative cover changes, inundation, 

groundwater advection, proximity to urban structures, or gradual due to long-term 

changes in variables at the ground surface. These factors are considered terrain effects 

and influence the relation of''effective" ground surface temperature to the air temperature 

(Lewis and Wang, 1992). Secular changes in average snow cover or precipitation also 

influence the average ground surface temperature even if the average air temperature 

remains constant (Lewis and Wang, 1992). Unfortunately, screening the thermal effects 

of the boundary layer and terrain from the transient component of the geothermal 

gradient is difficult. 

In the case of gradual changes in ground-surface variables, the time scale and 

magnitude of change are main determinants of whether or not the Earth records a 

spurious or accurate climatic signal. Depth and time are linked nonlinearly by thermal 

diffusivity. High frequency signals diffuse with time, leaving a temporally '"smeared" 

direct signal of long-wavelength temperature variations at the Earth's surface. The 

temporal resolving power of the borehole inversion scheme to past climatic events 

contains inherent uncertainties that increase with time, due to the diffusive nature of heat 

conduction (Clow, 1992). The propagation depth of a signal from the ground surface is 

proportional to thermal diffusivity and duration of the signal. Thermal diffusivity in soils 

is largely a function of moisture content and varies from 3 x 10-4 to 8 x 10·7m2/s (Farouki, 

1981). Thermal diffusivity of rock varies from 6 x 10-6 to 1 x 10-7m2/s (Touloukian et al., 

1981). Diurnal and annual signal waves are attenuated in the upper 20 - 30m of the 

ground. For example in bedrock having a thermal diffusivity of lxl0·6m2/s, a 10°C 

annual signal is attenuated to .012°C at 20m and .0002°C at 30m depth. 
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Regional description of study area 

The Northern Plains region is semi-arid and experiences a wide range of seasonal 

temperatures. The topography of North Dakota has a minimal effect on the state climate. 

Although the soils at all temperature sites in North Dakota were formed from glacial tills, 

the boundary layers from all sites exhibit different temperature exchange properties due 

to varying moisture content, organic matter, grain size, porosity, mineral composition, 

surface roughness, elevation, slope and vegetative density. 

Thermal properties of the Northern Plains 

Most of the central and northern Great Plains is underlain with Pierre Shale. The 

Minot borehole in this study is in the eastern facies of Pierre Shale, a clay-rich Upper 

Cretaceous marine shale having an effective thermal conductivity of 1.2 wm-1K-1 

(Gosnold, 1990). The conductivity of shales in the Northern Plains ranges from about l .O 

to 2.4 wm-1K-1
, due to differences in quartz content (Gosnold, 1990). Shales with higher 

quartz content have a higher thermal conductivity. In general the thermal conductivity 

and diffusivity of sedimentary material is lower than igneous and metamorphic material 

(Touloukian et al., 1981). A typical granite has a conductivity of 2.5 to 3.5 wm-1K- 1 

(Turcotte and Schubert, 1982). 

Site descriptions 

Continuous records of air and ground temperatures from five NDA WN (North 

Dakota Agriculture Weather Network) stations in North Dakota are used in this study, 

including Fargo, Bottineau, Langdon, Minot, and Streeter (Figure 1 ). Air and ground 
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Figure 1. Map of North Dakota showing the location of data recording sites, including 
Fargo, Bottineau, Langdon, Minot, and Streeter. 



8 

temperatures at Fargo were recorded from October 10, 1980 to April 21, 1989 at 19 

depths (Table 1). Ground temperatures at the remaining sites were recorded from 

October 5, 1992 to Jan 1, 2000 at 13 depths (Table 1). All temperatures were recorded 

hourly and averaged into a single daily-mean value. Air temperatures at all sites were 

recorded at heights of 1.5m. 

Data recording 

Ground temperatures were recorded by sets of two thermocouples wired in 

parallel for determining the average temperature at each depth. The thermocouples were 

attached to a wooden rod placed into a hole made with a 4cm-diameter soil-coring 

device. After placement of the rod in the ground, the holes were filled and packed with 

soil slurry. Wooden rods were chosen as a thermocouple attachment due to the low 

thermal conductivity of wood. The approximate uncertainty in thermocouple 

measurements is +0.2°C (Enz, personal communication). 

Climatic data, including total daily precipitation and daily measured snow cover, 

were recorded and archived at National Climatic Data Center stations (NCDC, NOAA). 

Daily percent sunlight was recorded at the Fargo NCDC station. Four of the five NCDC 

stations were within l-4km of the NDAWN stations. The NDAWN station at Bottineau 

is 38km from the NCDC station, creating the possibility of a different microclimate at the 

NDA WN and NCDC stations. All five NDA WN stations are on grass-covered sites in 

areas of level to gently sloping topography. Soil parent material is glacial till and salinity 

levels are low at all sites. All soils are greater than 20m deep and well drained with low 

to moderate permeability ranges of0.5 - 5 cm/hr (USDA, 1992). Low annual rainfall and 
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Table 1. Thermocouple depths and vertical spacing between thermocouples from Fargo 
and Bottineau, Langdon, Minot, and Streeter sites. 

Thermocouple depth Vertical Thermocouple depth Vertical 
Fargo spacing Bot, Lan, Min, Strt spacing 
(cm) (cm) (cm) (cm) 

1 1 5 5 
5 4 10 5 

10 5 20 10 
20 10 30 10 
30 10 40 10 
50 20 50 10 
60 10 60 10 
80 20 80 20 

125 45 100 20 
150 25 125 25 
200 50 150 25 
250 50 175 25 
270 20 
300 30 
370 70 
470 100 
770 300 
970 200 
1170 200 
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cold temperatures have in resulted in a vegetation cover of mixed grasses and favored the 

accumulation of organic matter in the soils of North Dakota (USDA). Site elevations and 

properties are given in Table 2 (USDA, 1990). 
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Table 2. Elevation and soil properties of temperature recording sites. 

Site: Elevation (m) Soil description 
Bottineau 494 clay loam 

Fargo 273 black silty-clay loam 

Langdon 542 fine clay loam 

Minot 590 fine loam 

Streeter 650 fine sand and silt loam 

Site: Available water capacity Water table depth (m) 
Bottineau high >2 

Fargo high 0-3 

Langdon high >2 

Minot moderate >2 

Streeter high l - 2 



CHAPTER3 

SEPARATION OF AIR AND GROUND TEMPERATURES 

Observed air and ground temperature differences 

The tracking and decoupling of air and ground temperatures can be closely 

studied during all times of the year with continual records of air and ground temperatures. 

Seasonal trends in air and ground temperature differences are observable in one year of 

daily mean air and 50cm-depth temperatures from all five NDA WN sites (Figs. 2-6). 

These data reveal a significant insulation of ground temperatures during winter periods 

and a varied separation of air and ground temperatures during non-freezing periods. The 

complete 6 and 9-year time series of daily mean air and 50cm-depth ground temperatures 

from all sites are shown in Figures 7-11. 

To quantify differences between air and 50cm-depth ground temperatures at 

specific times of the year, temperature differences (Tair - Tsocm residual temperatures) 

were averaged for each month. Daily mean air and 50cm-depth temperatures at Fargo 

recorded from January 1, 1981 to December 31, 1981 are plotted with monthly-averaged 

residual temperatures to show how the separation of air and ground temperatures varies 

during the year (Fig. 12). 

To understand the relationship of air and ground temperatures on an intra-annual 

time scale, monthly-averaged residual temperatures were calculated for the 6 and 9-year 

measurement periods. These periods include 1981-1989 at Fargo and 1994-1999 at 

Bottineau, Langdon, Minot, and Streeter. Figures 13-17 show monthly averaged air and 
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Figure 2. Daily mean air and 50cm depth temperatures recorded at Fargo from 3/15/82 to 
3/10/83. 
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Figure 3. Daily mean air and 50cm depth temperatures recorded at Bottineau from 
3/15/94 to 3/10/95. 
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Figure 4. Daily mean air and 50cm depth temperatures recorded at Langdon from 
3/15/94 to 3/10/95 
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Figure 5. Daily mean air and 50cm depth temperatures recorded at Minot from 3/15/94 
to 3/10/95. 
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Figure 6. Daily mean air and 50cm depth temperatures recorded at Streeter from 3/15/94 
to 3/10/95. 
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Figure 7. Daily mean air and 50cm depth temperatures recorded from 10/10/1980 to 
4/16/1990 at Fargo showing annual separation of air and ground temperatures. 
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Figure 8. Daily mean air and 50cm depth temperatures recorded from 11/25/1993 to 
1/1/2000 at Bottineau showing annual separation of air and ground temperatures. 
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Figure 9. Daily mean air and 50cm depth temperatures recorded from 10/1/1993 to 
1/1/2000 at Langdon showing annual separation of air and ground temperatures. 
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Figure 10. Daily mean air and 50cm depth temperatures recorded from 10/1/1993 to 
1/1/2000 at Minot showing annual separation of air and ground temperatures. 
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Figure 11. Daily mean air and 50cm depth temperatures recorded from 10/1/1993 to 
1/1/2000 at Streeter showing annual separation of air and ground temperatures. 
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Figure 12. Daily mean air and 50cm depth temperatures from Fargo recorded from 
1/1/1981 to 12/26/1981. Monthly averaged residual temperatures (resid temps) are also 
shown. 
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Figure 13. Monthly air and 50cm-depth temperature differences from Fargo averaged 
from 1981 to 1989. 
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Figure 14. Monthly air and 50cm-depth temperature differences from Bottineau averaged 
from 1994 to 1999. 
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Figure 15. Monthly air and 50cm-depth temperature differences from Langdon averaged 
from 1994 to 1999. 
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Figure 16. Monthly air and 50cm-depth temperature differences from Minot averaged 
from 1994 to 1999. 
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Figure 17. Monthly air and 50cm-depth temperature differences from Streeter averaged 
from 1994 to 1999. 
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50cm-depth temperature differences from all sites. The seasonal reversal of net ground­

surface energy from negative (winter) to positive (summer) is recognizable in the 

sinusoidal trend of monthly mean residual temperatures (Figs. 13-17). 

Factors decoupling air and ground temperatures 

Vegetation and snow cover significantly influence air-ground temperature 

exchange by introducing an energy-absorbing layer between the air and ground surface. 

Fresh snow cover often reflects more than 90% of incident radiation (Enz, 1985). 

Vegetation adsorbs incident energy and takes part in radiative, conductive and moisture 

exchange processes (Geiger et al., 1995). There is a general decrease in mean annual 

ground temperatures with increasing vegetation (Smith, 1975). The total surface area of 

vegetation in a meadow is 20-40 times the area of the ground on which it grows (Geiger 

et al., 1995). The quantity of solar radiation penetrating the ground depends upon the 

density and structure of the plant cover (Oke, 1987). 

The Fargo NDAWN site has a 4-12cm-high grassy cover. All other NDAWN 

sites are covered by moderate-density prairie grass. The onset of vegetative cover at all 

sites varies seasonally depending on temperature, sunlight, cloud cover, humidity, 

moisture conditions, and the timing of spring thawing (Geiger et al., 1995). Active 

vegetation at these sites occurs from about April to September (Enz, personal 

communications). However, resolving the effects of vegetation on daily-mean air-ground 

temperature differences is difficult for the following reasons: 1) Vegetation effects are 

cumulative over periods of several months. The onset and decrease of vegetative activity 

is very gradual compared to the diurnal averaging period; 2) The diurnal averaging period 
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includes night times with no photosynthesis or evaporation effects; and 3) Because 

vegetation adsorbs a significant amount of energy at the boundary layer, its influence is 

not completely restricted to either air or ground temperatures. 

Incident solar radiation 

Incident solar radiation is susceptible to changes in cloud cover, solar angle, and 

seasonal changes (Enz, 1985). The ground surface does not store energy, but a 

considerable exchange of energy occurs across it (Geiger et al., 1995). Air temperatures 

during the summer are warmer than ground temperatures because of higher incident 

radiation causing an excess of net energy in the ground surface (Geiger et al., 1995). The 

excess energy during the summer is conducted into the soil, re-radiated into the 

atmosphere, and involved in water phase changes at the boundary level (Geiger et al., 

1995). Winter ground temperatures are warmer than air temperatures because of a net 

energy deficit at the ground surface (Geiger et al., 1995). Winter ground temperatures 

are insulated by the snow layer and latent energy of freezing effects. The deficit of 

ground surface energy during the winter means that heat is conducted upward toward the 

boundary layer. 

A plot of monthly averaged incident solar radiation recorded from 1953 - 1975 in 

Bismarck, ND shows the annual radiation variability ranging from maximum during July 

to minimum during December (Fig. 18, Enz, 1985). Average incident radiation values 

during June and July are four times that of December and January (Fig. 18). Average 

annual incident radiation recorded in Bismarck during 1985 was 14277 KJ m·1 day ·1
• 
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Figure 18. Monthly averaged incident solar radiation recorded from 1953 to 1975 in 
Bismarck, ND. 
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The relationship between daily mean air temperatures and daily solar radiation 

values recorded at Bismarck shows significant seasonal variation (Enz, 1985). During 

the period May to October, there is a direct correlation between daily mean air 

temperatures and average daily solar radiation (Enz, 1985). The days with high solar 

radiation tend to be the warmest because of intense surface heating. High radiation days 

during the winter are associated with cold dry air from the arctic and clear skies. 

However, because of reflection from snow cover, radiation causes little surface heating 

and air temperatures remain low (Enz, 1985). Winter storm periods are associated with 

warm, humid air moving up from the south. These conditions produce maximum 

cloudiness, low solar radiation, and temperatures near freezing (Enz, 1985). If there is 

little or no snow cover on the ground and a dry, mild air mass present, skies are usually 

clear. The combination of clear skies and high solar heating causes relatively high air 

temperatures (Enz, 1985). 

Daily mean air and 50cm-depth temperatures (Figs. 7-11), monthly averaged 

residual temperatures (Figs. 13-17), and monthly average incident radiation (Fig. 18) are 

referenced for the following points: 

1). The magnitude of winter separation of air and ground temperature significantly 

exceeds the separation during any other time of the year. The magnitude of residual 

temperature in January is more than twice that of any summer month. Monthly averaged 

ground temperatures are higher than monthly averaged air temperatures at all sites for the 

period September to March. All sites have been subject to armual snow cover and ground 

freezing effects from November to April. Winter factors causing insulation of ground 
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temperatures are susceptible to secular changes, including snow cover, latemt energy of 

phase changes, and changes in thermal parameters of the subsurface due to "the presence 

of pore ice (Farouki, 1981). The 9 percent volumetric increase in converting~ water to ice 

causes soils to expand and reduces the volume of air in pore spaces (Far,"-Ouki, 1981 ). 

When soil freezes, its thermal diffusivity will typically increase from 20 to 50 percent 

(Geiger et aL, 1995). The observed separation of winter air and ground tennperatures at 

all sites is attributed to a combination of these insulating factors. Snow cov,er and latent 

energy of freezing effects are examined more closely in Chapters 5-7. 

2). Monthly ground temperatures are cooler than monthly air temperatures fi:om April to 

August. This period coincides with the time of highest monthly-averaged incident 

radiation. Net ground surface energy as well as vegetation effects are therefore highest 

during these months. The highest monthly residual temperatures during a non-winter 

period occur during May and June. Most residual temperatures are closest to 0°C during 

September. This is also the first fall month when average ground temperartures exceed 

average air temperatures. Average incident radiation during September (15,377 KJ m-2 

day-I) is about halfway between minimum (4,229 KJ m-2 day-I during Deacember) and 

maximum (24,782 KJ m-2 day-I during July). The ground surface during September is 

subject to lower incident radiation and vegetative effects than during surI1It1er months. 

It's normal for vegetation in North Dakota to have extracted all the available water from 

the root zone by late summer (Fanning et al., 1981). Soil moisture conten1l tends to be 

lowest in Fargo during the fall, depending on summer precipitation (Emz, personal 

communication). 
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3). The greatest increase in residual temperatures occurs between the months of March 

and April at all sites. Spring periods are times of high radiation adsorption, moist, dark, 

low albedo soils, and no vegetation effects (Geiger et al., 1995). Dark surfaces tend to 

adsorb more radiation than light surfaces. Several nonconductive effects occur during the 

spring, including meltwater infiltration effects, latent energy effects of freezing and 

refreezing, thawing, condensation, evaporation, and sublimation, and ionic diffusion due 

to melting of pore ice (Oke, 1987, Outcalt, 1990). These factors are controlled by the 

timing of spring snowmelt (Geiger et al., 1995). Spring is the time of highest soil 

moisture with a gradual decrease occurring during summer and fall (Enz, personal 

communications). The combination of these factors causes the abrupt increase in 

monthly-averaged residual temperatures. 

Residual temperatures and precipitation 

Because of the influence of water on soil temperatures and thermal properties, the 

correlation between daily residual temperatures and daily total precipitation was tested 

for one to five-month periods with data from all sites. This correlation was also tested 

with monthly mean residual temperatures and monthly precipitation totals. No 

correlation coefficient greater than r2 = .1 was determined for either time scale. Possible 

explanations for this are: 1) The timing of infiltration effects on ground temperatures may 

not coincide with the 24-hour temperature averaging periods. The influence of 

precipitation infiltration on ground temperatures can extend for several days depending 

on the precipitation event (Fanning et al., 1981). Infiltration occurring during the last few 

hours of the averaging period could significantly influence the daily mean temperature. 
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The thermal effects of precipitation infiltration would be more easily discerned with 

continually recorded hourly temperatures; 2) Antecedent moisture content influences 

infiltration rates and amounts (Fanning et al., 1981). If the water table is already at the 

ground surface, it is possible that little to no infiltration of precipitation will occur; and 3) 

Precipitation may cause a gain or loss of energy, depending on the relative temperature of 

the ground (Geiger et al., 1995). Because of their interconnectedness, air and ground 

temperatures can be simultaneously influenced by precipitation. In this case daily mean 

temperature differences would not indicate any anomalous event. 



CHAPTER4 

AN ANALYSIS OF AIR AND GROUND TEMPERATURES 

Fargo 

Because the Fargo data extend longer and contain deeper ground temperatures 

than the other sites, they are described separately. The surface air temperature record 

from the NCDC station in Fargo extends to 1884, with a 4.75°C average mean-annual air 

temperature for the period 1884-1999 (Fig. 19). A least-squares linear regression of 

mean annual air temperatures during this time indicates a slope of +l.61 2: .24°C during 

the period of record (Fig. 19). Three of the four highest mean annual air temperatures 

occurred in the past 13 years, including 7.97 (1987), 7.69 (1931), 7.56 (1998), and 

7.17°C (1999). The average mean annual temperature from 1981 to 1989 was higher 

than the average mean-annual air temperature from 1884 to 1999 (6.02 versus 4.75°C). 

Attenuation of seasonal temperature fluctuations and successive phase lag with 

depth can be seen in the time series plot of daily mean temperatures at depths of 80, 250, 

470, and 1170cm (Fig. 20). The annual temperature signal of about 35° at 1cm depth is 

attenuated to 1 ° at 1170cm depth. The thermal diffusivity that generates this attenuation 

of the annual temperature wave at 1170cm depth is 3.62xl0-7m2/s. The l l 70cm-depth 

temperature displays a visible warming trend during the period of record (Fig. 20). 

Seasonal ground freezing was confined to the upper Im of the soil for all winters. 
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Figure 19. Mean annual air temperatures recorded at Fargo from 1884 to 1999. A least­
squares linear regression line is shown. 
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Figure 20. Daily mean 80cm, 250cm, 470cm, and 1170cm depth temperatures recorded 
at Fargo from 10/10/1980 to 4/16/1990. Phase lag and attenuation of the annual 
temperature signal with depth are observable. 
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To better understand soil temperatures at varying depths on a decadal scale, air 

and individual ground temperatures were averaged over the period January 1, 1981 to 

December 31, 1989. These values are given in Table 3 and plotted as a function of depth 

in Figure 21. All average ground temperatures were higher than the average air 

temperature (6.02°C) (Fig. 21). The highest average temperature for the 9-year period 

(9 .54 °C) occurred at the 1 cm depth (Fig. 21 ). The greatest energy adsorption and 

emission occurs at this depth in the soil column. The differences between average air and 

ground temperatures decrease with increasing depth (Table 3). 

Integrated heat flux 

Average ground temperatures in the upper 50cm of Figure 21 are plotted with a 

steady-state background heat flow measured at a borehole within 75km of Fargo (Fig. 22, 

Scattolini, 1978). The 60m-deep borehole was logged in 1976 and indicated a measured 

temperature gradient of 15.8°C/km (Scattolini, 1978). The borehole is located at 46° 

15.75' N latitude and 96° 56.75' W longitude. The total amount of heat retained in the 

upper 50cm of the soil column during the period of record at Fargo is the area between 

the curves in Figure 22. The total amount of heat, Q, retained by the soil column during 

the period of record is 

Q = f0 z pc T(z) dz (1) 
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Table 3. Air and ground temperatures averaged from 1/1/8::J. to 12/31/89. Differences 
between air and ground temperatures and warming magnitm.des per decade determined 
by least-squares linear regression lines are also shown. 

Average temp Warming magnitude 
Depth 1/1/81-12/31/89 T ground • T air per decade 
(cm) (deg.C) (deg. C) (deg. C) 

Air 6.15 
1 9.54 3.39 
5 8.79 2.65 
10 8.90 2.75 
20 8.55 2.41 
30 8.66 2.51 
50 8.47 2.32 
60 8.15 2.00 
80 8.29 2.14 
125 8.08 1.93 0.98 +.12 
150 8.25 2.11 1.10 +.11 
200 8.03 1.88 1.15 +.10 
250 8.04 1.89 1.11 +.09 
270 7.99 1.84 0.96 +.09 
300 7.90 1.75 1.12 +.08 
370 7.88 1.74 1.07 +.07 
470 7.67 1.52 1.01 +.05 
770 7.69 1.54 1.04 +.04 
970 7.20 1.06 1.00 +.03 
1170 7.39 1.24 0.75 +.03 

Average 8.18 2.04 0.93+.08 
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Figure 21. Air and ground temperatures from all measurement depths averaged over the 
period 1/1/81 to 12/31/89 and plotted as a function of depth. 
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Figure 22. Ground temperatures in the upper 50cm of the ground at Fargo averaged over 
the period 1981 to 1989. An exponential smoothing curve is plotted for ground 
temperatures. The steady-state background heat flow from a 60m-deep borehole is 
shown. 
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where pc is the volumetric heat capacity and z is the depth to which the anomalous 

temperature extends (Lachenbruch and Marshall, 1986). In this case T(z) is not a known 

function, but is an average temperature at given depths representing the 9-year period. 

To graphically approximate the area between the curves an exponential smoothing curve 

is added to Figure 22. Assuming pc= 0.Scal cm-3 K-1 (Lachenbruch and Marshall, 1986), 

the total heat retained by the soil during the period of record is 3 x 105 J m·2s·1
, or 8 x 1012 

J m-2 yr-1
• Assuming the steady-state heat flow and gradient used in this calculation is 

equivalent to that of the Fargo site, the upper 50cm of the ground recorded a net positive 

energy flux during the period of record. However, a 76m-deep borehole within 90km of 

Fargo logged in 1976 indicates a temperature gradient of 20.5°C/km with a surface 

intercept of 8.67°C (Scattolini, 1978). Therefore estimates of background heat flow 

values can vary significantly over short distances. 

Linear regressions of mean annual temperatures 

Mean annual ground temperatures from all depths were plotted for the 9-year 

period and analyzed with least-squares linear regressions. All l 25- l l 70cm-depth 

temperatures displayed significant-fit regressions at the 95% confidence level. Warming 

per decade magnitudes are shown in Figure 23. The temperatures from 770-l l 70cm 

depths displayed low variation and nearly linear increases during the decade. Mean 

annual ground temperatures in the upper 80cm exhibited higher variability that reduced 

the reliability of the regression. The high variability of near-surface ground temperatures 

is due to low attenuation of the varying climatic signal and ground-surface effects 

including incident radiation, precipitation, wind speed, vegetation effects, runoff. 
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Figure 23. Warming magnitudes per decade of Fargo mean annual ground temperatures 
from 125- l l 70cm depths plotted as a function of depth. 
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infiltration, evaporation, condensation and soil cracking during extensive dry periods. 

The warming per decade magnitudes of mean-annual ground temperatures from 125-

l l 70cm suggest inaccurate calibration of the 270cm-depth thermocouples (Fig. 23). The 

greatest temperature increase during the period of study (1.15::0.10°C) occurred at 

200cm depth. Warming rates per decade of individual depths from 125-l l 70cm are 

given in Table 3. 

Mean annual ground temperatures from all measurement depths were averaged 

into a single mean annual value and plotted for the period 1981-1989 (Fig. 24). A least­

squares linear regression of these temperatures yields a slope of +0.93::0.09°C per decade 

(Fig. 24). Mean annual air temperatures plotted from 1981-1989 do not generate a 

significant-fit regression line at the 95% confidence limit due to high variability. The 

hypothesis that mean annual air and ground temperatures yield different warming 

magnitudes per decade is tested. Mean annual air and ground temperatures are plotted to 

determine the confidence limits on the correlation coefficient of regression lines for each 

data set. This test did not generate a significant-fit correlation at the 95% confidence 

limit. The hypothesis that mean annual air and ground temperatures show different trends 

during the 9-year period is therefore rejected. Although mean annual ground 

temperatures display a significant-fit trend during the period of record, the high 

variability in the linear regression of air temperatures yields too much uncertainty to state 

that warming during the decade occurred only in ground temperatures. 
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Figure 24. Mean annual air and ground temperatures averaged from all depths from 
Fargo. A least-squares linear regression line is shown on ground temperatures. 
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Ground-surface influence 

To test the influence of ground-surface factors, recorded air temperatures were 

forced into the ground using a conduction model with direct air-ground surface coupling 

(see Appendix and Chapter 6 for a model description). Nodal spacing was set at ground 

temperature measurement depths. The model was run from January 1, 1981 to December 

31, 1989 with the observed temperature profile of January 1, 1981 used as the initial 

profile. Best-fit thermal conductivity values averaged over all modeling periods were 

chosen (k00 = 0.67 and krr = 1.30 wm-1K-1
). Mean annual modeled and observed 

temperatures averaged from 10-l l 70cm depths are shown in Figure 25. Similar to mean­

annual air temperatures, air-temperature forced model temperatures are lower than 

recorded ground temperatures and show no significant-fit linear regression trend for the 

decade (Figs. 24 & 25). Mean annual surface air temperatures commonly display high 

variability (Oke, 1987). Modeled ground temperatures have too much intra-annual 

variability to accurately claim that linear regressions of modeled and observed 

temperatures display different slopes. Although linear regressions of modeled and 

observed ground temperatures do not show different trends, the fact that only observed 

ground temperatures show a definite warming trend is important. The incongruity of fit 

is due to nonconductive boundary-layer factors. 

Analytical model 

The warming trend present in mean annual ground temperatures is approximated 

by a 0.93°C per decade ramp-function ground-surface signal. To determine the effect of 

this 0.93°C signal on ground temperatures deeper than 12m an analytical model with a 
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Figure 25. Mean annual modeled and recorded ground temperatures averaged from l O­
l l 70cm depths at Fargo. Mean annual air temperatures are also shown. 
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10-year ramp-function increase in the ground-surface forcing signal was used. A thermal 

diffusivity of 1 x 10-6m2/s was chosen (thermal conductivity= 2.2wm-1K-1
), giving an 

annual signal propagation depth of 13m. With a constant background heat flow, this 

transient signal has an effect of O. l 6°C at 20m, 0.07°C at 30m, and 0.03 °C at 40m-depth 

after 10 years. 

Bottineau, Langdon, Minot, and Streeter 

Compared to the last century, the period 1994-1999 was a time of high 

precipitation and above average air temperatures for Bottineau, Langdon, and Minot. 

Long-term air temperatures were recorded at Bottineau (1898-1999), Langdon (1896-

1999), and Minot (1906-1999) (Figs. 26,27,28). Average mean-annual air temperatures 

from these periods are 2.87 (Bottineau), 1.81 (Langdon), and 3.47°C (Minot). Least­

squares linear regressions of mean annual air temperatures indicate warming per century 

magnitudes of 1.15 + 0.17 (Bottineau), 1.16 ! 0.17 (Langdon), and 0.49 ! 0.07°C per 

century (Minot) (Figs. 26,27,28). Two boreholes near Minot, ND, and one near 

Bottineau, ND (Fig. 1), indicate ground-surface warming magnitudes of 1.9, 2.4, and 

2.7°C per century, respectively (Gosnold et al., 1997). The warmest year from the air 

temperature record was 1998 for Langdon, Minot, and Streeter, and 1999 for Bottineau. 

Average air temperatures during the period 1994-1999 are 3.15 (Bottineau), 2.71 

(Langdon), 4.62 (Minot), and 4.37°C (Streeter). Average annual precipitation from the 

period 1931-1993 and 1994-1999 is 43.12 and 46.18 (Bottineau), 46.02 and 54.74 

(Langdon), and 44.16 and 52.03 cm (Minot). 
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Figure 26. Mean annual air temperatures from Bottineau. 
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Figure 27. Mean annual air temperatures from Langdon. 
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Figure 28. Mean annual air temperatures from Minot. 
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Mean annual air and ground temperatures averaged from all 12 depths are shown 

in Figures 29 - 32 for the period January 1, 1994 to December 31, 1999. All sites show a 

good correlation between mean annual air and ground temperatures (average r2 = .84). 

Bottineau shows the best tracking between mean annual air and ground temperatures in 

this six year period (r2 = .91). Bottineau is also the only site that shows a significant six­

year increase in average ground temperatures (Fig. 29). 

Bottineau 

Mean annual ground temperatures from Bottineau were averaged from all depths 

to determine a single mean-annual ground temperature. Mean annual air and average 

ground temperatures from the 6-year period were plotted (Fig. 29). A least-squares linear 

regression of ground temperatures yields a slope of+l.17::0.15°C (Fig. 29). In an 

analysis similar to the Fargo data, the correlation coefficient of best-fit linear regression 

lines for air and ground temperatures was tested. As with the Fargo data, mean annual air 

and ground temperatures cannot be shown to have different best-fit regression lines. 

Recorded air temperatures from January 1, 1994 to December 12, 1999 were 

forced into the ground with a conduction model assuming direct air-ground coupling. 

The observed subsurface temperature profile from January l, 1994 was the starting 

profile. Average best-fit thermal conductivity values of k 00 = 0.67 wm·1K·1 and krr = 

1.30 wm-1K·1 were chosen for the model and nodal spacing was set at temperature 

measurement depths. Mean annual modeled and observed temperatures averaged from 

all depths are shown in Figure 33. Modeled temperatures are lower than observed 
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Figure 29. Mean annual air and ground temperatures averaged from all depths at 
Bottineau. A least-squares linear regression line is shown on ground temperatures. 
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Figure 30. Mean annual air and ground temperatures averaged from all depths at 
Langdon. 
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Figure 31. Mean annual air and ground temperatures averaged from all depths at Minot. 
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Figure 32. Mean annual air and ground temperatures averaged from all depths at 
Streeter. 
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Figure 33. Mean annual recorded air and ground and modeled ground temperatures 
averaged from all depths at Bottineau. The least-squares linear regression line shows the 
l. l 7+0. l 5°C warming trend in recorded temperatures during the 6-year period. 



59 

temperatures and show no significant warming trend for the decade (Fig. 33). Similar to 

the Fargo data. the significant-fit warming signal occurs only in observed ground 

temperatures, due to nonconductive boundary-layer factors. 



CHAPTERS 

SNOW COVER EFFECTS 

A number of snow cover effects influence air-ground temperature exchange. The 

high surface albedo and emissivity of snow cause a reduction in absorbed solar energy 

and insulate the ground from outgoing long-wave radiation (Zhang et al., 1996). The low 

thermal conductivity of snow insulates the ground from snow surface temperature 

changes and conserves latent heat released in the soil (Oke, 1987). Local and regional 

duration and areal coverage of snow cover are the largest factors accounting for 

variations in winter ground surface temperatures (Desrochers and Granberg, 1988). 

Ground temperatures in regions of snow cover are determined mainly by the number of 

days in the spring and fall with snow cover and by the air temperature regime (Beltrami 

and Mareschal, 1992). 

Snow cover is susceptible to variations due to drift patterns, slope of the ground 

surface, vegetation, incident radiation, and topography. Density and water content of 

snow tend to increase as it becomes older (Geiger et al., 1995). Warmer winters involve 

more melting and refreezing of snow, causing a denser snowpack with a higher thermal 

conductivity and total water content. In general, this type of snowpack provides less 

insulation than a lower density snowpack containing more air (Geiger et al., 1995). A 

thicker snowpack usually restricts heat loss from the ground to a greater extent than a 

thinner snow cover (Smith and Riseborough, 1996). 

60 
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The snow-related variable available during the time of record from all NDA WN 

sites is daily-measured snow depth. This variable includes any amount of measurable 

snow cover greater than 0.1 inches. Unfortunately no record of snow parameters 

(density, thermal conductivity, water content) was available. Days with measurable snow 

cover are summed to determine the annual duration of winter snow cover. The duration 

of winter snow cover at all sites ranged from 29 to 185 days / winter. 

To study the influence of snow cover on air-ground temperature exchange, 

seasonal duration of snow cover is compared with air-ground temperature differences 

averaged from November 15 to April I. This period is chosen because it encompasses all 

periods of measurable snow cover from all sites. The average air-ground temperature 

difference is an indicator of overall snow cover insulation during a given period. 

Fargo 

Total days of measurable snow cover per winter correlate (r2 = 0.71) with 

temperature differences (T scm - Tair) averaged from November 15 to April 1 of each year 

(Fig. 34). This average air-ground temperature difference varied by as much as 6.52°C 

(Fig. 34). Although 1cm depth temperatures show a similar correlation (r2 = 0.69), 

temperature differences between air and the 5cm depth were chosen to minimize ground­

surface effects at the 1cm depth. The data points in Figure 34 diverge during the last four 

years of the decade, due to possible changes in snow cover properties, spring snowmelt 

effects, or winter air temperatures. A graph of seasonal temperature trends from Fargo 

indicates that winter air temperatures decreased by 0.51 °C during the 9-year period (Fig. 

35). 
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Figure 34. Total days with snow cover (days) and ground - air temperature differences 
(Tscm -Tair) from Fargo averaged annually from November 15 to April 1. 
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Figure 35. Seasonal air temperature trends, including summer (June-Aug), fall (Sep­
Nov), winter (Dec-Feb), and spring (Mar-May). Changes per decade in mean seasonal 
temperatures are: +2.43+0.78 (summer), -0.75:±:_0.24 (fall), -0.51:±:_0.16 (winter), and 
+1.26:±:_0.41 °C (spring). Least-squares linear regression lines are shown for winter and 
summer temperatures. 
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The numbers of days with any measurable snow cover for each winter averaged 

82.2 days/winter including non-consecutive days (Fig. 34). A:n incremental sum of all 

greater-than-zero daily measured snow depth values was calcl!.llated for each winter in 

units of total meters per winter. These values are cumulative: sums of daily-measured 

snow depth values. The cumulative measured snow depths raraged from 1.63m ( 43 day 

snow cover, 1981) to 32.36m (130 day snow cover, 1989), ancl. averaged 15.03m for all 

winters during the decade. 

Annual changes in winter percent sunlight values can affect the melting and 

refreezing and overall albedo of the snowpack. Monthly a""Verages of daily percent 

sunlight values are plotted from January 1, 1981 to DecembeT 12, 1989 (Fig. 36). A 

linear regression of these monthly averages indicates no significant trend during the time 

of study. Winter averages of daily percent sunlight (Dec - Feb) during the time of study 

also indicate no significant trend. 

The correlation between average air-ground temperature differences and duration 

of winter snow cover (Fig. 34) has some complicating factors~. The period of average 

temperature difference also encompasses times of snowmelt ancl. infiltration due to spring 

warming. Snow cover reduces spring warming effects and creates a competing effect 

with cold period insulation (Majorowicz and Skinner, 1997). Because the number of 

spring thawing days in this time period changes annually, the timing and magnitude of 

these competing factors change annually. Snowpack insulatio.n properties can vary on 

time scales ranging from diurnal to monthly (Oke, 1987). Hlowever one-dimensional 

conduction models of temperature exchange through snoVN cover show that soil 

temperatures are more sensitive to the presence or absence of snow cover than to 
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Figure 36. Monthly averaged values of total percent daily sunlight recorded in Fargo 
from 1/ 1/81 to 12/3 1/8 9. 
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variations in snow depth (Gosnold et al., 1997). Mean annual ground temperatures may 

be increased several degrees by changes in the duration of snow cover, but snow 

parameters have little effect on these increases (Goodrich, 1982). Mild winter air 

temperatures can lead to decreased ground-air temperature differences. Despite these 

factors, the observed correlation (r2 = .71) between duration of winter snow cover and air­

ground temperature differences demonstrates the influence of snow cover duration on 

winter air-ground temperature decoupling. 

Bottineau, Langdon, Minot, and Streeter 

Temperature differences (Tscm -Tair) averaged from November 15 to April 1 are 

plotted with total days of winter snow cover from all NOA WN sites for the 6-year period 

(Figs. 37 - 40). Correlation coefficients are r2= .84 (Bottineau), r2= .56 (Langdon}, r.!= 

.79 (Minot), r2= .87 (Streeter), and r2= .77 (average) at the 95% confidence level (Figs. 37 

- 40). Differences between mean annual air and 5cm depth temperatures (Tscm - Tair) 

were also plotted with duration of snow cover for the four sites. However, mean annual 

temperature differences (average r2 = .63) do not correlate as well as seasonal 5cm-air 

temperature differences (average r2 = .77). 

The high correlation between these variables with relatively few data points 

indicates that winter decoupling of air-ground temperatures is controlled mainly by 

duration of winter snow cover. These observations are consistent with the interpretations 

of Beltrami and Maraschel (1992), that ground temperatures in regions of snow cover are 

determined by the number of days with snow cover and the air temperature regime. 



67 

180 -
r 2 = .84 

10 
9 

160 -temp cliff 8 (J 
0 -

140 7 Q) 
---------- .. rn days ::, 

~ 6 .. 
ca "' C 120 -

.. 
- - 5 Q) 

Q. 

4 E 
100 -

- Q) 
t-

3 
80 - 2 

94 95 96 97 98 99 

Year 

Figure 37. Total days of measurable snow cover per winter plotted with T5cm - Tair values 
averaged from 11/15 to 4/1 at Bottineau. 
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Figure 38. Total days of measurable snow cover per winter plotted with Tscm - Tair values 
averaged from 11/15 to 4/1 at Langdon. 
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Figure 39. Total days of measurable snow cover per winter plotted with Tscm - Tair values 
averaged from 11/15 to 4/1 at Minot. 
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Figure 40. Total days of measurable snow cover per winter plotted with Tscm - Ta1r values 
averaged from 11/15 to 4/1 at Streeter. 



CHAPTER6 

THE CONDUCTION MODEL 

Modeling recorded ground temperatures enables the determination of best-fit 

thermal properties including thermal conductivity, latent energy of freezing and thawing, 

and evapotranspiration. This gives an understanding of how thermal properties vary on a 

seasonal scale and if the variation can be related to climatic variables. A one­

dimensional finite-difference numerical heat conduction algorithm was used to model 

subsurface temperatures. Partial differential equations are expressed in finite difference 

form as a numerical implementation of the heat conduction equation. 

The equation describing time dependent heat conduction in one dimension is: 

p Cp iJT/iJt = iJ/iJz(k iJT/iJz) (2) 

where z = depth, T = temperature, t = time, k = thermal conductivity, p = soil density, and 

Cp = specific heat (Carslaw and Jaeger, 1959). The heat flow Q from each node into an 

adjacent node is: 

Q=kA LJT/L (3) 
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where A = area per unit depth perpendicular to the direction of heat flow and L = vertical 

spacing between nodes. 

An initial temperature is assigned to each node and the appropriate equation is 

solved to determine subsequent nodal temperatures based on the forcing signal at the 

ground surface. The resultant temperature profile is then used as an initial profile for the 

next set of calculations. The forcing signal is the incremental difference between 

successive recorded daily-mean air or l or 5cm-depth temperatures. Vertical nodal 

spacing was set at 10cm. For a more detailed description of the model, see Appendix. 

Latent energy of freezing, thawing, and evapotranspiration is entered in the model 

as positive or negative heat production values as appropriate at specified nodes. The data 

sets were divided into seasonal modeling periods based on the latent energy requirement 

of the subsurface. These periods include freezing periods (positive latent energy at the 

freezing boundary), thawing periods (negative latent energy at the thawing boundary), 

and summers (negative latent energy for evapotranspiration in upper 40cm). 

Evapotranspiration was only modeled with the Fargo data. Freezing and thawing 

modeling periods are constrained by when the forcing signal goes below 0°C and 

decreases with time (freezing periods) to when the forcing signal begins increasing and 

all subsurface melting has occurred (thawing periods) (Fig. 41). The initial temperature 

profile ascribed to the model nodes is determined from the recorded temperature profile 

on the first day of each modeling period. Trial values of thermal conductivity and latent 

energy are entered in a best-fit 'tuning' method and remain constant throughout a 

modeling period. 
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Figure 41. Daily mean lcm-depth temperatures recorded from 11/25/84 to 3/22/85 at 
Fargo. The black line indicates the division between freezing and thawing periods. 
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A temperature-dependent step function is assumed for thermal conductivity. 

Thermal conductivity is homogeneous throughout the model and changes abruptly from 

k00 (unfrozen) to krr (frozen) when nodal temperatures go below zero. Values held 

constant in the model include specific heat (1000 J kg-10c-1>, and density (2200 kg m-3
). 

Variations of the thermal conductivity distribution in the upper meter were tested 

for summer modeling periods with the Fargo data. Although increasing the number of 

variables in the modeling scheme decreases the total degrees of freedom, summer 

temperatures modeled with an upper (kup: l-40cm) and lower (k10 w: 40-l 170cm) thermal 

conductivity produced the best fit to recorded temperatures. A term for latent energy of 

evapotranspiration was also included in the upper 40cm of the ground. The 40cm depth 

does not represent any stratigraphic or soil discontinuity, but provides the best fit for a 

latent energy of evapotranspiration and thermal conductivity boundary at Fargo. The 

soils at all sites including Fargo are uniform for the entire depth of the measurement rods 

(Enz, 1998). Regardless of the choice of conductivity and evapotranspiration depths in 

the model, temperatures in the upper meter of the ground from Fargo were difficult to 

model accurately. Temperatures in the upper meter of the ground are influenced most by 

nonconductive effects such as water movement, air pressure changes, wind speed, 

vegetation, changes in solar radiation, evaporation and condensation. Although many 

factors can influence near-surface ground temperatures on an hourly scale, these factors 

also affect daily-mean temperatures. 

Latent energy is constrained m the model by examining each node at the 

beginning of every iteration. If the temperature is negative above a node but positive 

below the node during a freezing period, the program activates a positive latent energy 
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value for the nodal temperature calculation at the solidification boundary to simulate 

freezing effects. A negative latent energy value is also activated when the temperature is 

positive above a node and negative below the node to simulate near-surface spring 

melting. The choice of an exact 0°C phase change in the model is an approximation. 

The presence of unfrozen water in frozen soils has a significant effect on the thermal 

properties of the soil, particularly influencing moisture migration to the freezing front 

(F arouki, 1981 ). 

Best-fit residual temperatures 

To determine how well modeled temperatures match recorded temperatures, 

residual temperatures (T calc - T obs) from each depth were averaged for entire modeling 

periods. Modeling heat conduction with two free parameters eliminates the possibility of 

a unique solution for both parameters. The two parameters are therefore continually 

adjusted until a minimum-average residual temperature is obtained for a modeling period. 

Thermal conductivity and latent energy values producing an average residual temperature 

closest to zero are considered best-fit values for a modeling period. Best-fit thermal 

conductivity values are considered 'effective' conductivities due to the nonconductive 

effects operating in the soil column, including advection, water vapor movement and 

phase changes. 

Despite the non-unique nature of the conduction model, maximum-average 

residual temperatures for all modeling periods for all sites were as low as +0. l 8°C 

(freezing), ~0.30°C (summer), and ~0.70°C (thawing) for depths greater than one meter. 

Recorded 1 and Scm-depth temperatures are very effective model-forcing signals in spite 
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of any near-surface effects. These average residual temperatures are within the 

uncertainty of the thermocouples for freezing periods. Summer modeling periods were 

longest and included times of high incident radiation, giving the highest residual 

temperatures. Because nonconductive factors are not included in model calculations, the 

upper meter of the ground had a maximum-average residual temperature of +0.9°C for all 

modeling periods. 

Best-fit thermal parameters 

Best-fit thermal conductivity values from winter periods m Fargo were low, 

ranging from 0.52-0.72 (unfrozen) to 1.07-1.57 wm-1K-1 (frozen). The average thermal 

conductivities for all winter modeling periods were kun = 0.64 and krr = 1.33 wm·1K-1 

(Table 4). The average effective thermal conductivity values for all summer modeling 

periods were kup = 0.66 and k10w = 0.73 Wm-1K-1 (Table 4). 

Best-fit thermal conductivity values from winter periods in Bottineau, Langdon, 

Minot, and Streeter were also low, ranging from 0.52-0.72 (unfrozen) to 1.01-1.57 wm-

1K-1 (frozen). The average effective thermal conductivity values for all winter modeling 

periods were kun = 0.62 and krr = 1.12 wm-1K-1 (Table 5). The average thermal 

conductivity for all summer modeling periods was k = 0.61 wm-1K-1 (Table 5). 

Differences in seasonal thermal conductivity values at individual sites are attributed 

mainly to changes in in situ soil moisture. Thermal conductivity of a soil depends upon 

porosity, moisture content, and thermal properties of the soil particles, but moisture 

content is the only property that varies on short time scales (Oke, 1987). Thermal 

conductivity of frozen soil is greater than unfrozen soil, depending on porosity and 
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Table 4. Average best-fit thermal conductivity (k) and latent energy of freezing (LE) 
values from Fargo, including unfrozen (unfr), frozen (fr), upper (up) and lower (low) 
thermal conductivity and evapotranspiration (evapotrans). 

Modeling Winter Winter Best-fit LE Summer Summer Best-fit LE 
period best-fit kun best-fit ktr of freezing best-fit kup best-fit k1ow of evapotrans 

(year) (W m·11e1) (W m·11e1i (J s·1m..:s! (W m·11e1) iW m·1K-1) (J s·1m..:s) 
1981 0.71 1.32 90 0.58 0.69 6 
1982 0.60 1.23 195 0.62 0.72 9 
1983 0.64 1.12 70 0.58 0.69 7 
1984 0.72 1.57 205 0.70 0.77 11 
1985 0.65 1.42 123 0.68 0.74 9 
1986 0.65 1.38 115 0.72 0.78 7 
1987 0.61 1.32 107 0.71 0.75 6 
1988 0.52 1.07 115 0.66 0.72 6 
1989 0.65 1.51 131 0.69 0.72 7 

Average: 0.64 1.33 128 0.66 0.73 8 

Table 5. Average best-fit thermal conductivity (k) and latent energy of freezing (LE) 
values from four sites, including unfrozen (unfr) and frozen (fr) thermal conductivity. 
These values are averaged over all modeling periods. 

k summer k winter, unfr k winter, fr LE freezing 

Site (W m·1 K"1} (W m·1 K"1) (W m·l K.1) (W m::1} 

Bottineau 0.57 0.58 0.67 88 
Langdon 0.54 0.59 1.20 94 

Minot 0.60 0.60 1.14 88 
Streeter 0.72 0.71 1.45 84 

AVERAGE 0.61 0.62 1.12 89 
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moisture content of the soil (Farouki, 1981). Thermal conductivity of an unfrozen soil 

increases with increasing soil moisture content (Farouki, 1981). Differences in effective 

thermal conductivity values may also be attributed to changes in nonconductive effects, 

including internal distillation, advection, evaporation, and condensation (Hinkel and 

Outcalt, 1994). 

Saturated soils may have a latent energy budget during ground freezing in the 

upper lm that is greater than the total solar daily flux (Putnam and Chapman, 1996). 

Saturated soils generally have higher thermal conductivity than dry soils but provide 

greater insulation from extreme cold temperatures due to latent energy extracted in the 

freezing process (Farouki, 1981 ). This insulating effect causes soil temperatures to be 

held at 0°C until all the moisture present freezes, isolating the region below the freezing 

front from subzero temperatures (Lewis and Wang, 1992). This "zero-curtain" effect 

initially is due to freezing effects but maintaining it involves internal evaporation, 

condensation and vapor transport processes (Outcalt et al., 1990). Water drawn from 

below the freezing front alters the thermal properties of the frozen and unfrozen zones 

(Farouki, 1981). Latent energy of freezing is known to have an insulating effect on 

subsurface temperatures (Goodrich, 1978), but the interannual variability and magnitude 

of this effect on subsurface temperatures is not well known. 

Despite the complexity of ground freezing, the assumption of an abrupt 

conductivity change at the 0° isotherm and latent-energy terms in the model produce a 

good fit to observed temperatures. Figure 42 shows the modeled 125cm depth 

temperatures from the 1982-freezing season at Fargo calculated with and without a latent 

energy component. In addition to showing the necessity of the latent energy term in the 
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Figure 42. Observed 125cm-depth temperatures (observed temp.) for the 1982-freezing 
season at Fargo. Model temperatures shown are calculated with and without a term for 
latent energy. 
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modeling scheme, Figure 42 shows the discrepancy between 125cm depth temperatures 

calculated with and without latent energy increasing with time. This increase is due to 

the cumulative warming effects of latent energy release as the freezing isotherm reaches 

greater depths. 

Model sensitivity 

The freezing period extending from 12/10/81 - 2/9/82 was used to determine 

model sensitivity to choices of thermal conductivity and latent energy (LE). The best-fit 

thermal conductivity and latent energy of freezing values for this period are kun = 0.60, 

krr = 1.23 wm-1K-1 and LE= 195 wm-3
, respectively. These best-fit parameters produce 

an average residual temperature from all depths of0.005°C for this 58-day period. 

Daily residual temperatures from all depths calculated with the best-fit latent 

energy value are plotted for three trial thermal conductivity values (Fig. 43). The 0.63 

Wm-1K-1 difference between kun and krr is maintained for all trial values of thermal 

conductivity. The average residual temperatures (T av res) for this modeling period are T av 

res= 0.187°C (kun = 0.50, krr = 1.13 Wm-1K-1
), Tav res= 0.005°C (kun = 0.60, krr = 1.23 

Wm-1K-1
, best-fit k values), and Tavres =-0.163°C (kun= 0.70, krr = 1.33 Wm-1K-'). 

Average residual temperatures from all depths are plotted as functions of trial 

thermal conductivity and latent energy values in Figures 44 and 45, respectively. Best-fit 

latent energy is held constant while trial thermal conductivity values are entered in the 

model (Fig. 44), and best-fit thermal conductivity values are held constant while trial 

latent energy values are entered in the model (Fig. 45). The linear regression line in 

Figure 44 indicates a thermal conductivity variance of+ 0.058 W m-1 K-1 (2: 9.7%), 
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Figure 43. Daily residual temperatures calculated with three trial thermal condmctivity 
values from the winter 1982 modeling period. Residual temperatures averaged during 
this modeling period are Tav res= 0.187°C Ckun = 0.50, krr = 1.13 Wm-1K-1), T.av res= 
0.005°C Ckun = 0.60, krr = 1.23 Wm-1K-1), and Tav res= -0.163°C (kun = 0.70, krr = 1.33 
Wm-1K-1). 
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Figure 44. Average residual temperatures from all depths plotted as a function of trial 
thermal conductivity values with latent energy held constant at LE= 195 wm-3

• Thermal 
conductivity is varied around best-fit values of kun = 0.60, krr = 1.23 wm-1K-1

, with a 
constant difference of 0.63 wm-1K-1 maintained between kun and krr. A linear regression 
line is shown. 
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Figure 45. Average residual temperatures from all depths plotted as a function of trial 
latent energy. Thermal conductivity is held constant at kun = 0.60, krr = 1.23 wm-1K·1

• A 
linear regression line is shown. 
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corresponding to a Tav res variance of +0.10°C. The linear regression line in Figure 45 

indicates a latent energy variance of + 52 W m-3 
( + 26.7%), corresponding to a T av res 

variance of :!:0.10°C. The average residual temperatures for this modeling period show a 

much greater sensitivity to choices of thermal conductivity than to choices of latent 

energy. The choice of thermal conductivity influences temperature calculations at all 

nodes in the model, whereas latent energy is released only at the freezing isotherm. 

When the model is run with and without a latent energy term for this period, the 

average residual temperature from all depths increases from Tav res = 0.005°C (with LE) 

to Tav res = -0.578°C (without LE). The influence of latent energy on calculated 

temperatures for this period occurs entirely within the upper 2.Sm of the ground. The 

latent energy of fusion term in the model is necessary to match subzero temperatures near 

the freezing front accurately, but inclusion of this term does not change the magnitude of 

the average residual temperature greatly (0.58°C / 58-day period). Latent energy of 

fusion provides an insulating effect by holding soil temperatures near the freezing point, 

but does not seem to alter average residual temperatures significantly. A similar study of 

ground-surface temperature exchange using a numerical conduction model with latent 

energy of freezing and temperature dependent thermal conductivity produced similar 

results on subsurface temperatures (Goodrich, 1978). The nonlinear effects of snow 

cover and latent energy of freezing were shown to reduce the amplitude of ground 

temperature fluctuations with depth and increase mean annual ground temperatures 

(Goodrich, 1978). 
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Modeling spring temperatures 

The thermal effects of spring thawing are influenced by several nonconductive 

factors, including gravity-driven infiltration, runoff, water table fluctuations, downward 

vapor migration, and latent energy of freezing, melting, evaporation, condensation, and 

sublimation (Outcalt, 1990). High-moisture soils freeze more slowly and to a lesser 

depth than dry soils, because of the latent heat released, but they also thaw more slowly 

in the spring (Geiger et al., 1995). Recorded ground temperatures tend to remain around 

0°C for several weeks until all the subsurface ice melts. Average residual temperatures 

during spring modeling periods were as high as +O. 70°C. Spring melting of pore ice 

occurs above and below the frozen section of the ground. Negative heat production terms 

for latent energy of melting are therefore entered both above and below the frozen section 

of the ground. The thermal effects of meltwater consistently exceeded modeled latent 

energy of thawing effects, and spring temperatures were impossible to model accurately. 

Advective effects 

A major difficulty in modeling near-surface ground temperatures is accounting for 

the thermal effects of water movement, including precipitation, infiltration, and changes 

in the depth of the water table. Figure 46 shows subsurface warming of almost l °C due 

to infiltration of over 7.5cm of rainfall from May 24-27, 1984 at Fargo. The thermal 

effects of this infiltration extend beyond four meters in depth. It should be noted that this 

event might also be due to a malfunction in the thermocouple junction box relating to the 

rainfall (Enz, personal communications). Although this was the most significant 

precipitation event during the period of record, the effects of precipitation and water table 
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Figure 46. Subsurface warming due to a three-day precipitation event at Fargo, 
beginning 5/27/1984. Daily residual temperatures (Teak - Tobs) are shown for 150, 250 
and 3 70cm depths. 
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movement on near-surface ground temperatures limit the accuracy of temperature 

modeling in this region. Modeling the effects of these nonconductive factors 1s 

complicated because of the many variables involved that are difficult to estimate. 



CHAPTER 7 

LA TENT ENERGY AND PRECIPITATION 

The possible correlation between total fall precipitation and annual latent energy 

of freezing values was tested for each site during the 6 and 9-year measurement periods. 

Because infiltration rates at the ground surface depend largely on antecedent moisture 

content, the time duration for "totaling" precipitation is relevant in determining soil 

moisture content at the onset of freezing. The freezing front will take longer to penetrate 

into soil with high water content because a greater amount of latent heat has to be 

extracted (Farouki, 1981). The insulating effect oflatent energy release is different than 

snow cover insulation in that it influences varying depths of the ground depending on the 

position of the freezing front. Energy released at the freezing boundary is conducted 

upward to cooler areas of the ground. Therefore insulation effects of latent energy are 

not as pervasive as winter snow cover insulation. 

Fargo 

Modeled latent energy of freezing values averaged 128 Wm -3 and ranged from 70 

- 205 wm-3 for all freezing seasons. These values represent latent heat released per 

second per cubic meter averaged over the period of a day. Best-fit latent energy values 

from each freezing season are plotted with precipitation totaled 60 days prior to the onset 

of ground freezing (r2 = .66, Fig. 4 7). The correlation between modeled latent energy 

values and prior precipitation decreases to r2 = .36 if precipitation was totaled for 30 
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Figure 47. Modeled annual latent energy of fusion (energy) versus precipitation (precip) 
totaled 60 days prior to the onset of ground freezing from Fargo. 
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days prior to freezing, and r2 = 0.63 for total fall precipitation (Aug, Sep, Nov). Total fall 

precipitation at Fargo decreased by 10.32 cm from 1981-1989 despite a long-term trend 

of increasing fall precipitation in the Northern Plains (Gosnold et al., 1997). 

Bottineau, Langdon, Minot, and Streeter 

Modeled values oflatent energy of ground freezing averaged 89 wm-3 and ranged 

from 55-175 wm-3 at all sites. Best-fit latent energy values are plotted with total fall 

precipitation (Aug, Sep, Nov) from each site in Figures 48 - 51. Modeled values of latent 

energy due to freezing vary annually and show a mixed dependence on total fall 

precipitation among sites (average r2 = .51, Figs. 48 - 51). The variables correlate well at 

Minot and Langdon sites (r2 = .95 and r2 = .69, respectively). Bottineau and Streeter 

showed poor correlations (r2 = .38 and r2 = .01, respectively). 

Regional differences in correlations 

Because latent energy of freezing and total fall precipitation show a \·aried 

correlation between sites, the hypothesis that latent energy released during ground 

freezing is strictly a function of total fall precipitation is rejected. The discrepancy in 

correlations is probably due to the number of factors that influence total soil moisture, 

including water table depth, antecedent moisture content, incident radiation, precipitation, 

permeability, porosity, evapotranspiration, vegetative cover, and infiltration. Depending 

on the ground-surface forcing temperature, total water content at the onset of freezing is 

probably the main factor controlling latent energy release. Other possible factors are low 
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Figure 48. Modeled annual latent energy of fusion (energy) versus total fall precipitation 
(precip) from Bottineau. 
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Figure 49. Modeled annual latent energy of fusion (energy) versus total fall precipitation 
(precip) from Langdon. 
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Figure 50. Modeled annual latent energy of fusion (energy) versus total fall precipitation 
(precip) from Minot. 
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Figure 51. Modeled annual latent energy of fusion ( energy) versus total fall precipitation 
(precip) from Streeter. 
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model sensitivity to choices in latent energy of freezing and the short nature of this study 

(n = 6 and 9) making correlation coefficients very sensitive to latent energy values. 

The occurrence and timing of fall precipitation events can influence soil moisture 

at the onset of ground freezing, but the extent of these effects is largely a function of 

baseline antecedent water content. An extremely low antecedent moisture content may 

have a much higher or lower sensitivity to fall precipitation events. Secular trends in 

precipitation on the scale of years to decades can also affect water table depth and 

relative moisture content of the ground (Enz, personal communication). Since soil dries 

from the surface downward, there is normally an increase in the amount of water present 

with increasing soil depth (Geiger et al., 1995). The Northern Plains is characterized by 

large interannual and intra-annual variability of all hydroclimatological parameters, 

including soil moisture (Todhunter, 1995). Soil moisture content of an area of any size is 

difficult to measure and is subject to high variation (Geiger et al., 1995). 



CHAPTERS 

A FORWARD MODELING ANALYSIS 

This chapter describes a forward modeling analysis of recorded air temperatures 

with direct air-ground coupling. A surface air temperature time series is used as a 

boundary condition for the ground-surface forcing signal to generate a synthetic transient. 

The forcing signal is a century long record of monthly mean air temperatures averaged 

from climate stations in northwestern North Dakota (NCDC, NOAA). A 100-year record 

of total fall precipitation averaged from climate stations in this region is used as a proxy 

to model latent energy release during ground freezing. 

Regional study of climate change 

Differences in warming magnitudes of recorded surface air temperatures and ground­

surface temperatures north of 46° latitude in the Northern Plains are attributed to changes 

in variables including snow cover, latent energy of ground freezing and thawing, and 

total fall precipitation (Gosnold et al., 1997). Total fall precipitation averaged from 

climate stations in northwestern North Dakota has undergone significant variability (Fig. 

52). The 10-point moving average in Figure 52 indicates that total fall precipitation 

nearly doubled between the periods 1935 to 1950 and 1970 to 1985. Increased fall 

precipitation leads to greater soil moisture content at the onset of ground freezing, and 

therefore increased latent energy released during ground freezing. Although precipitation 

records for the Northern Plains show that in recent decades winter precipitation has 
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Figure 52. Total fall (Sep, Oct, Nov) precipitation averaged from climate stations in 
northwestern North Dakota. A 10-point moving average is shown. 
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decreased (Groisman and Easterling, 1994), the duration of winter snow cover in all 

regions of the Great Plains has increased from the 1920s to the late 1980s (Hughes and 

Robinson, 1996, Hughes and Robinson, 1993). Duration of snow cover in the Great 

Plains region shows significant annual and decadal scale variability as well as significant 

spatial variability (Hughes and Robinson, 1996, Hughes and Robinson, 1993). 

The forcing signal for the modeling analysis is the time series of mean annual air 

temperatures averaged from climate stations in northwestern North Dakota from 1895 to 

1995 (Fig. 53). A least-squares linear regression of these temperatures yields a slope of 

+1.57 + 0.23°C (Fig. 53). Four temperature-depth borehole profiles logged in 1995 are 

used to determine a regional ground-surface temperature history. Boreholes in the study 

include Minot N (101.3°, 48.5°), Landa (100.9°, 48.9°), Glenburn (101.2°, 48.5°), and 

Wawanesa (99.8°, 49.4°). Ground-surface temperature histories are determined with a 

least-squares functional space inversion algorithm as described by Shen, et al., 1995. 

Ground-surface temperature histories from individual borehole profiles are shown in 

Figure 54. The magnitude of warming averaged from the boreholes is l .8°C per century 

(Fig. 55). The average ground surface warming (Fig. 55) is shown with error bars that 

represent + 1 standard error about the mean. 

Forward modeling with direct coupling 

The numerical conduction model used in this analysis is described in Chapter 6 

and Appendix. Nodal spacing near the ground surface is set at 20cm to closely match 

freezing conditions and increased to Sm at 15 to 250m depths (Table 6). The bedrock at 
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Figure 53. Mean annual surface air temperatures averaged from climate stations in 
northwestern North Dakota. A least-squares linear regression line indicates a slope of 
l.57+0.23°C. 
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Figure 54. Individual ground surface temperature histories from Minot N, Landa, 
Glenburn, and Wawanesa boreholes. 
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Figure 55. Average ground surface temperature history from the four boreholes showing 
a warming magnitude per century of l.8°C. The error bars are the standard deviation of 
mean warming. 
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Table 6. Nodal depth and spacing. 

Depth (m) Nodal spacing (m) 
0 

0.2 0.2 
0.4 0.2 
0.6 0.2 
0.8 0.2 
1 0.2 

1.2 0.2 
1.4 0.2 
1.6 0.2 
1.8 0.2 
2 0.2 

2.2 0.2 
2.4 0.2 
2.6 0.2 
2.8 0.2 
3 0.2 

3.3 0.3 
3.75 0.45 
4.4 0.65 
5.3 0.9 
6.6 1.3 
8.5 1.9 
11.3 2.8 
15 3.7 
20 5 
25 5 

30-270 5 
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Minot is low thermal conductivity Pierre Shale (k = 1.2 + o.2wm-1K-1
; Gosnold et al., 

1997). Thermal conductivity is assumed to be uniform at all depths and equal for all 

boreholes. 

Direct coupling explicitly correlates borehole transient temperatures with the air 

temperature time series. Any variation in the resultant temperature-depth profile from the 

initial steady-state profile is assumed to be due solely to time-variation in the surface 

temperature. For an individual site, the synthetic temperature-depth profile generated by 

direct-coupling will be offset from the actual temperature-depth profile by an amount 

equal to the time averaged difference between air and ground surface temperatures at the 

NCDC station and borehole site respectively (Chapman et al., 1992). The only time 

averaged air and ground temperature data available in this region are from the Minot 

NDAWN site. For the period 1994 - 1999, the ground temperature at the Minot site 

averaged from 12 depths ranging from 5 - 175cm was 7.57°C (Fig. 31). The average air 

temperature during the same period was 4.62°C, giving an offset of 2.95°C. Ground 

temperatures commonly exceed air temperatures in winter in regions with snow cover, 

because snow cover maintains ground temperatures near 0°C while air temperatures are 

much colder. Fall ground temperatures also exceed air temperatures (Fig. 16) because of 

the higher thermal capacity of soil and the ability of air near the ground to mix and cool 

by convection. The offset of air and ground temperatures is not relevant for climate 

change studies provided that ground temperatures track air temperatures through time. 

However, secular changes in the offset due to boundary layer factors such as snow cover 

and latent energy of ground freezing must be considered. 
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Warming or cooling rates of synthetic temperature-depth profiles are sensitive to 

the choice of initial ground-surface temperature. An initial z = 0 temperature 

significantly different from the time averaged forcing signal will generate spurious 

warming or cooling. To reduce this effect, mean-annual air temperatures were averaged 

from the first ten years of record. This average value (2. 70°C) was used as the ground 

surface temperature for the initial steady-state temperature-depth profile. 

The ground surface temperature history of the synthetic profile generated by 

forcing the recorded air temperatures into the ground indicates a warming magnitude per 

century of 1. 7°C (Fig. 56). This warming magnitude is not statistically different from the 

linear regression of mean annual air temperatures (+1.57 :!: 0.23°C). 

Latent energy of ground freezing 

The hypothesis that modeled latent energy of ground freezing effects as 

determined by recorded fall precipitation totals are capable of generating a transient 

subsurface temperature signal is tested. Modeled latent energy of ground freezing values 

for Minot ground temperatures demonstrated a high correlation (r2 = .95) with total fall 

precipitation (Fig. 57, see chapter 7). This correlation is assumed to hold for the regional 

modeling analysis of latent energy of ground freezing effects. The least-squares linear 

regression line in Figure 57 is used to determine annual latent energy of ground freezing 

values from the record of total fall precipitation. 

In order to closely match the subsurface freezing regime at the Minot site, the 

observed depth and duration of ground freezing are taken as constraints to model snow 

cover insulation effects. Snow cover effects were incorporated into the model by 
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Figure 56. Ground surface temperature history of the transient generated with direct air­
ground coupling. 
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activating a very low thermal conductivity for all below-freezing nodes near the ground 

surface. This reduction in thermal conductivity has the net effect of reducing the depth 

and duration of ground freezing and preventing extreme lows from occurring in ground 

temperatures. The subzero-temperature thermal conductivity that closely reproduced the 

observed ground freezing regime was k = 0.033 wm-1K-1
• Snow cover insulation 

properties vary significantly depending on factors such as snow density, age, and 

moisture content (Oke, 1987). Snow cover insulation is only activated in the model when 

near-surface ground temperatures go below 0°C. This approximation is necessary due to 

lack of snow cover data. 

Latent energy release at the freezing boundary is assumed to occur during the 

entire duration of ground freezing, including spring thawing periods. This assumption is 

made because spring thawing periods in observed ground temperatures are very brief 

compared to freezing periods, and ground temperatures are warmed in the spring by 

meltwater infiltration (Farouki, 1981). These meltwater effects exceed latent energy 

effects and cause high residual temperatures during spring modeling periods (see Chapter 

6). 

To isolate the thermal effects of latent energy of ground freezing, the signal 

resulting from direct coupling of the surface air temperatures and snow cover insulation 

was subtracted from the resultant profile. A least-squares functional space inversion of 

the resultant profile indicates a ground-surface warming signal of 0.4°C per century 

attributed solely to latent energy release during ground freezing (Fig. 58). The 

hypothesis that modeled latent energy of ground freezing effects based on observed total 

fall precipitation are capable of generating a transient subsurface warming signal is 
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Figure 58. Ground surface temperature history of the transient resulting solely from the 
effects of latent energy of ground freezing. 
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therefore not rejected. This 0.4°C warming signal is significant to borehole climate 

change studies because it links changes in fall precipitation with the generation of a 

transient temperature signal. The signal represents a component of ground warming 

attributed to long-term changes in soil moisture at the onset of freezing, and is unrelated 

to the warming signal generated by direct coupling of recorded air temperatures. 

It is possible that the 6-year correlation of modeled latent energy of ground 

freezing and total fall precipitation from Minot is unique to a particular hydrogeologic or 

climatic condition. In this case the magnitude of the warming signal due to latent energy 

of freezing could vary regionally. Unfortunately this is not testable due to the lack of 

continual temperature and boundary layer data prior to and during the modeling period. 



CHAPTER9 

CONCLUSIONS 

This dissertation is an investigation of factors that cause separation in air and 

ground temperatures on a seasonal to multi-annual time scale. Assuming a consistent I: l 

coupling of air and ground temperatures and heat transfer purely by conduction, climate 

change inferred from ground temperatures is a reliable complement to the instrumental 

air temperature record. Resolving any boundary layer effects on air-ground temperature 

exchange is complicated because of the number of variables involved, the 

interconnectedness of the variables, and limited boundary layer data. 

Ground-surface variables examined in this study include daily percentage 

sunlight, incident radiation, vegetation, daily total precipitation, annual snow cover 

duration, and latent energy of ground freezing and thawing. The following hypotheses 

were tested: 1) Ground-surface factors are capable of generating trends in mean annual 

ground temperatures that do not occur in mean annual air temperatures during 6 and 9-

year periods; 2) Annual air-ground temperature differences averaged during winter 

months are mainly controlled by total duration of winter snow cover; 3) Modeled latent 

energy of ground freezing is a function of precipitation totaled 2-3 months prior to the 

onset of ground freezing; 4) The thermal effects of latent energy of ground freezing 

determined by observed fall precipitation values are capable of generating a transient 

subsurface temperature signal in a 100-year period. 
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The data support the following conclusions: 

i). Statistical regressions of mean annual ground temperatures from Fargo and Bottineau 

sites indicated respective wanning trends of 0.93::!:_0.09°C / 9 years and 1. l 7::!:_0. l5°C I 6 

years. Mean annual air temperatures and modeled ground temperatures generated with 

direct air-ground coupling do not display any significant-fit trends. Because the modeled 

ground temperatures do not show any significant trend, the warming of recorded ground 

temperatures is attributed to nonconductive ground-surface factors. 

ii). Annual duration of measurable snow cover was compared with temperature 

differences (Tscm - Tair) averaged from November 15 to April 1. The correlation 

coefficients are: Bottineau: r2 = .84 (6 year period), Fargo: r2 = .71 (9 year period), 

Langdon: r2 = .56 (6 year period), Minot: r2 = .79 (6 year period), and Streeter: r2 = .87 

(6 year period). These correlations demonstrate the influence of winter snow cover 

duration on air-ground temperature exchange. 

iii). Continually recorded ground temperatures from five sites were modeled with a one­

dimensional heat conduction algorithm. Best-fit thermal parameters including thermal 

conductivity and latent energy of freezing were determined with a trail and error 'tuning' 

method. Maximum average residual temperatures during the modeling periods are: ::!:_0.2° 

(freezing), ::!:_0.5° (summer), and ::!:_0.7°C (thawing). Modeled latent energy of ground 

freezing values from each winter were compared with total fall precipitation at four sites 

in North Dakota during 6-year periods. Correlation coefficients from these period are 

Bottineau: r2= .38, Langdon: r2= .69, Minot: r2= .95, Streeter: r2= .01. Modeled values 
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of latent energy of ground freezing were compared with precipitation totaled 60 days 

prior to ground freezing at Fargo during a 9-year modeling period (r2= .66). The sites 

show a mixed dependency of modeled latent energy of ground freezing on total 

precipitation prior to ground freezing. The discrepancy is attributed to low model 

sensitivity to choices of latent energy, the brevity of the study, and the high dependency 

of soil moisture on antecedent moisture content and water table depth. 

iv). The least-squares linear regression of mean annual air temperatures recorded in 

northwestern North Dakota from 1895 to 1995 indicates a warming magnitude of 

l.57~.23°C per century. A forward modeling analysis of this temperature series with 

direct air-ground coupling generated a synthetic temperature-depth profile indicating 

ground-surface temperature warming of 1. 7°C per century. Recorded fall precipitation 

totals were used as proxies for latent energy of ground freezing. The thermal effects of 

latent energy of ground freezing are modeled for the 100-year period of record. The 

resultant ground-surface temperature history yielded a 0.4°C warming signal attributed to 

latent energy effects. 



APPENDIX: MODEL DESCRIPTION 
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Several factors influence three-dimensional heat transfer in the subsurface, 

including spatial variation in terrain (topography, lateral changes in ground cover and 

vegetation), temporal changes to the terrain (deforestation, agriculture, post-glacial lakes, 

urbanization, roads, sedimentation, erosion, distribution and thickness of snow cover. 

water table depth, ground water movement, and latent energy due to water freezing). and 

anisotropy of thermo physical parameters (Lewis and Wang, 1992, Roy et al., 1968). In 

the absence of terrain effects and thermal conductivity anisotropy, the three-dimensional 

problem is reduced to one-dimensional heat conduction in a semi-infinite half space. 

z 

Boreholes used in this study were chosen for having uniform vertical thermal 

conductivity, negligible topographic and groundwater effects, and no vegetation or 

ground surface changes in the past century. The assumption of one-dimensional heat 

flow is therefore appropriate. 
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For a homogeneous, continuous, source-free half space, the equation governing 

heat conduction in the z direction is: 

p Cp of !at= ataz (k of/&) + A(z) (2) 

where z = depth, T = temperature, t = time, k = thermal conductivity, p = density, Cp = 

specific heat, and A(z) = heat production due to latent energy release (Carslaw and 

Jaeger, 1959). The solution to Equation 2 can be analytical or numerical. The model 

used in this dissertation is a finite-difference numerical algorithm. Partial differential 

equations in Equation 2 are expressed in finite difference form for spatial variation of 

temperature. The time steps for temperature calculations within the model are iterated for 

a specified period. For the given nodal distribution: 

a• b• c• 

d• e• f• 

g• h• I• 

the heat flow Q into each node from any adjacent node is calculated as: 

Q=kA~T/L (3) 
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where A = area per unit depth perpendicular to the direction of heat flow and L = 

horizontal or vertical spacing between nodes. Heat flow is assumed to be constant within 

the model. The sum of heat flow into a node from the surrounding four nodes causes the 

temperature change of the node. The values p, Cp and k are held constant for each time 

step but can be varied within the model. An initial temperature is assigned to all nodes 

on the grid. The resultant temperature distribution is then used in calculations for the 

successive step. 

The model consists of three nodes at every depth. Horizontal spacing of the nodal 

columns was set at 10cm. The condition of no horizontal heat flow into the model is 

applied to the outer two columns of nodes. The condition for a constant heat flow 

boundary for basal heat flow is of/8z = constant. 

Latent energy effects are incorporated into the model by ass1 gnmg a heat 

production value that accounts for the enthalpy change that occurs during a phase change. 

The assigned heat production value is converted to a volumetric heat production per 

given time interval. The model incorporates the positive or negative volumetric heat 

production into the inter-nodal heat flow calculations at the specific nodes. In the case of 

freezing or thawing, the effect is applied at the nodes adjacent to the freezing isotherm. 

Positive heat production values represent the release of latent energy due to freezing or 

condensation, while negative heat production values represent latent energy adsorption 

due to thawing or evaporation. 
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rv1odelcomparison 

The results of the numerical model are compared to an analytical solution of 

Equation 4. The vertical discretization was taken as lm. Temperatures were calculated 

to 250m depth. The condition of a 'boxcar' forcing signal is applied to the half space. 

The solution to this problem is well-documented (Lachenbruch and rv1arshall, 1986): 

T(z,t) = ~Ts erfc z /(4Kt) 112 (4) 

where z = depth, Ts= temperature at z = 0, K = thermal diffusivity, t = time. and erfc = 

complementary error function. The temperature distribution in the subsurface is the 

solution to the equation subject to the condition: 

T = Ti at t = O, z > 0 

T = Ts at z = 0, t > 0 

T ~ Ti as z ~ oo, t > 0 

For comparison, the following values were used: 

Ti= 0, Ts= l0°C, t = 20 years, K = l0"6m2/s, k = 2.2 wm·1K·1
, C = lOOOkJ kg·1 K· 1

• The 

resultant temperature-depth profiles are shown below. The results show excellent 

agreement between the analytical solution (black dots) and the numerical solution (gray 

line). 
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