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ABSTRACT 

Shoreline erosion is a problem at Lake Sakakawea and Lake Audubon, 

North Dakota. Land is lost, water quality is adversely affected, and 

reservoir storage capacity is decreased. 

Instrumentation of the eastern shores of both lakes began in 1983 to 

quantify bank erosion by process (e.g., wave erosion, rainsplash and 

runoff, and frost-thaw failure). Other data gathered included: pool 

level fluctuations; wind velocity, direction, and duration; precipita­

tion; soil moisture; frost penetration; freeze-thaw cycles; and geology 

(e.g., texture, clay mineralogy and structure). 

The magnitude of shoreline erosion is highly variable, especially 

within Lake Sakakawea. For the interval of May 1983 through August 1984 

the banks receded between 0.6 and 5.9m (0.5 to 4.6m/yr). Measurement of 

aerial photographs for 1966 to 1976 yielded similar average recession 

rates (0 to 4.3m/yr). 

The predominant activating cause of bank recession at Lake Sakakawea 

is wave erosion; it is responsible for about 87 percent of total bank 

recession. The most important variables include: pool level; wind 

velocity, direction and duration; bank orientation, geology, geometry and 

vegetation cover; natural rip-rap; offshore bathymetry; and near-shore 

islands. Results indicate that banks that are shorter than Sm, which 

face the north or northeast, and are composed of well-jointed till or 

mudstone, have the highest recession rates, especially during high pool 

levels. At Lake Audubon, the most important activating factors are lake 

ice-shove and subsequent wave erosion. These factors caused most of the 

0.8 to 1.4m (0.7 to l.2m/yr) of bank recession. 
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Because of the nearly vertical banks, the effects of rain on the 

primary sediment and bedrock are minor. Most of the 2 to 52mm of bank 

slope erosion at each lake occurred in colluvium at the toe of the banks. 

This colluvium, primarily derived from sublimation and thaw failure, 

ranged from 0.13 to 3.30m3 per metre of shoreline at Lake Sakakawea in 

spring 1984. Thaw failure accounted for about 13 percent of total bank 

recession and was greatest for those banks facing west and northwest, and 

which are composed of well-jointed till or mudstone. Measured colluvium 

volumes for Lake Audubon varied from 0.7 ta l.Sm3 per metre of shoreline. 

Erosion at Lake Sakakawea begins in late winter as frost sublimates. 

The loosened aggregates accumulate as a thin apron at the foot of steep 

banks. Spring thaw results in slab failures, followed by earthflows and 

mudflows. As summer approaches, the lake rises until maximum pool level 

is reached sometime in mid-summer. Storm waves easily erode the loose 

calluvium along the base of the banks. If all the colluvium is eroded, 

the waves can remove the primary sediment or bedrock, effectively under­

cutting the banks. At the top of such banks, extensional joints are 

initiated. The joints expand until bank failure releases the stresses. 

Bank failure continues until a relatively stable profile has formed. 

Late summer to early winter is an extended period of relative quiescence, 

after which time release of aggregates by sublimation again occurs. 

Ultimate bank recession at Lake Sakakawea primarily depends upon the 

wave energy that reaches unprotected banks. Thus, as long as the pool 

level is not kept at or below about 562.0m msl., the beaches and banks 

will not stabilize and bank recession will continue. 
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INTRODUCTION 

Statement of Problem 

In 1953 the Missouri River was dammed near Riverdale, North Dakota, 

creating Lake Sakakawea (Figure 1). This multi-purpose reservoir was 

developed by the United States Army Corps of Engineers (Corps of Engi­

neers) to help control floods, supply water for irrigation and 

municipalities, generate power, conserve fish and wildlife, and improve 

downstream water quality. The reservoir filled from 1953 to 1969, when 

the maximum normal pool level of 564.3m (1,850 ft) msl. was first 

achieved. 

Since the normal pool level was first reached, erosional processes 

have claimed a substantial amount of the shoreline, and have caused many 

other environmental problems. Some include altered water quality, 

decreased reservoir storage capacity, modified nearshore/shoreline 

habitats, and diminished aesthetic quality. Recent attempts by the Corps 

of Engineers to predict the time required for a slope to reach a non­

eroding equilibrium position have failed (Cordero, 1982). The assumption 

made was that material eroded from the upper section of the steep banks 

would ultimately accumulate at the base, mostly offshore, thereby dimin­

ishing the effectiveness of waves to erode the base of the banks. As a 

result, the upper banks wou.ld eventually become stabilized at a reduced 

angle and further recession of the top would cease. The problem, then, 

was to evaluate why this assumption was not valid. 

1 
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Purpose 

The purpose of this project was to examine the mechanics, causes, 

and magnitudes of erosion processes along the eastern shores of Lake 

Sakakawea and the adjacent Lake Audubon, located in Mercer and Mclean 

Counties, North Dakota (Figure 1). The processes were to be evaluated 

through data collected from a series of measurement stations installed at 

these lakes (Figure 2). 

Another objective was to lay the foundation for predicting the 

potential "ultimate" bank recession rates along Lake Sakakawea. Also, 

the observations and conclusions were to be compared with those from the 

Orwell Lake, Minnesota study recently completed by Reid (1984}. 

General 

Garrison Dam and Lake Sakakawea are located on the Missouri River 

about 121km (75 mi) upstream from Bismarck, North Dakota. Garrison Dam 

is one of the largest rolled earthfill dams in the world and the result­

ing Lake Sakakawea is one of the largest man-made lakes in the world 

(United States Government Printing Office, 1977). At maximum pool level, 

the lake reaches 286km (178 mi) upstream to just beyond Williston, North 

Dakota, and has a surface area of about 946,000 hectares (383,000 acres) 

(United States Government Printing Office, 1977). Table 1 summarizes 

some physical characteristics of the reservoir. Characteristics of Lake 

Audubon, an impoundment separated from Lake Sakakawea by the Snake Creek 

embankment, are listed in table 2. 

Climate 

The climate of the area is semi-arid, with about 400mm annual 

precipitation. The weather is typically variable (Table 3). Summer is 

.:, "" - _;., 
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Figure 1. Location of study area. 
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Figure 2. Bank erosion stations along the eastern shores of 
Lakes Sakakawea and Audubon, North Dakota. 
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TABLE 1 

Physical Characteristics of Lake Sakakawea, North Dakota, 
at Maximum Normal Pool Level, 564m (1850 ft.) msl. 

(from Gatto and Doe, 1983, and U.S. Army Corps of Engineers, 1983) 

Drainage area above dam 

Average wi cth 

Length 

Shoreline length 

Surface area 

Maximum depth 

Mean depth 

Volume 

Hydraulic reside.nee time 

Mean outflow 

469,624 sq km (181,322 sq mi) 

4.82km (3 mi) 

286km (178 mi) 

2,155km (1,339 mi) 

131,414 hectares (507 sq mi) 

54.9m (180 ft) 

21. 3m (70 ft) 

2.79 X 10lO m3 (98.7 X 10lO ft3) 

1.13 years 

774.3 m3/s (27,655 ft3/s) 

TABLE 2 

Physical Characteristics of Lake Audubon, North Dakota, 
at Maximum Pool Level, 564m (1850 ft.) msl. 

(from U.S. Army Corps of Engineers, 1983) 

Surface area 

Mean depth 

7076.2 hectares (27.3 sq mi) 

5.9m ( 19. 2 ft) 
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TABLE 3 

Riverdale, North Dakota Weather Summary 
* (January 1 through August 30, 1984, only) 

Precipitation Temperature 

Year Inches mm Average Maximum Minimum 

1980 14.04 356.6 40.4°F (4.7°C) 102°F (38.9°C) -35°F (-37.2°C) 

1981 16.30 414.0 43.1°C (6.2°c) 103°F (39.4°C) -22°F (-30°C) 

1982 19.36 . 491. 7 38.0°F (3.3°C) 95°F (35°C) -29°F (-33.9°C) 

1983 13.48 342.2 40.8°F (4.9°C) 990F (37.2°c) -32°F (-35.5°C) 

1984 13, 23* 336.0* 99°F (37.2°C) -33°F (-36.1°C) 
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warm and generally dry, even though it is the wettest season. Fall and 

spring are cool with variable precipitation. Finally, winters are 

usually cold and dry. The first frost normally occurs in early to mid­

October and the last frost generally occurs in late April or early May. 

Geologic Setting 

The banks of the eastern end of Lake Sakakawea range from about 2 to 

25m (6 to 82 ft) in height and typically are almost vertical. The banks 

consist of Tertiary and Quaternary sediments and sedimentary rocks. 

Figure 3 is a representative stratigraphic column for this area. The 

lowermost stratigraphic unit exposed in the study area is the Paleocene 

Sentinel Butte Formation (Ulmer and Sackreiter, 1973). It consists of 

lignite interbedded with sandstone, siltstone, mudstone, and occasional 

clinker ("scoria"). This formation is present in the lower parts of most 

banks and, in a few instances, it forms nearly the entire bank. Over­

lying the Sentinel Butte Formation are glacial sediments of the Pleisto­

cene Coleharbor Group and eolian silt of the Holocene Oahe Formation 

(Ulmer and Sackreiter, 1973) in which a haploboroll soil has developed 

(United States Department of Agriculture, 1978). Meyer (1979) and 

Bluemle (1971) have published summaries of the Tertiary and Quaternary 

geologic history of the area. 

The glacial sediments (till and sand) are over 10m (32.8 ft) thick 

in places, whereas the overlying eolian silt is typically less than 0.5m 

(1.6 ft) thick. Glacial sediments are the predominant bank lithology for 

13 of the 20 stations at Lake Sakakawea (Table 4). Tertiary sediments 

dominate only one station and six stations have banks with a mixed 

lithology. I 
' 
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Figure 3. Stratigraphic column and dominant lithology of 
formations cropping out in the study area (from 
Ulmer and Sackreiter, 1973). 
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' TABLE 4 ' 

A, Bank Recession Pin Site Installation Data 
and Physical Characteristics 

Maximum 
Bank Recession Number Total Bank 

Pin of Length Height Predominant 
Site Pins {m) (m) Orientation Lithology 

Lake Sakakawea 

1 14 115. 9 3.7 NE Till 
2 8 47.0 7.0 NE Mudstone (Ms) 
3 6 61.0 3.8 N Till 
4 4 36.6 4.5 NW Till 
5 4 18.3 5.0 SW-NW Till/sand 
6 3 18.3 18.0 N Till 
7 4 27,5 14.5 N Till 

50 5 24.4 20.9 NW Tii 1/Ms 
51 12 83.9 12.4 S-NW Till 
52 7 54.9 7.0 W-NW Till 
53 12 134.2 9.0 SE-SW Till 
54 " 24.4 6.2 SW Till ~ 

55 9 60.0 10.5 SW-W Ti 11 /Ms 
56 8 36.6 11.8 w Ti 11 /Ms 
57 8 42.7 11.2 w Til 1/Ms 
58 7 36.6 9.1 s Til 1 /sand 
59 4 22.9 8.2 SE-S Till 
60 1 7.9 E Till/Ms 
61 1 6.5 SE Ti 11/Ms 
62 6 24.4 12.1 w Till/Ms 

Total 128 874.0 

Lake Audubon 

·.~ Al 8 42.7 1. 7 w Ti 11 
A2 4 18.3 1.5 w Ti 11 
A3 4 18.3 1.0 NW Till 

Total 16 79 .3 
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In contrast to Lake Sakakawea, the banks at Laie Audubon are only 

about. 1 to 2m (3-7 ft) high. They, too, have a haploboroll soil 

I developed in eolian silt which overlies Pleistocene glacial sediment 

(till). 

Previous Work 

In 1982, Cordero reported on the conventional technique used by the 

Corps of Engineers for evaluating bank erosion at Lake Sakakawea. This 

tethnique is based on conservation of volume, where the amount of sedi­

ment eroded from the bank is equal to the amount deposited at the toe 

(Figure 4). Furthermore, it assumes that this sediment would form a 

stable beach and the slopes would then stabilize above maximum wave 

influence. The problem with this is that the toe sediment continues to 

be removed by wave and current action. Thus, a stable·beach is a rare 

occurrence at Lake Sakakawea. Cordero found that with the use of the 

conventional technique at each survey' section, the erosion had already 

exceeded the projected ultimate limit in 80 percent of the cases. 
/ 

Therefore, it was concluded that both the conventional technique and the 

ultimate erosion e_stimates were in need of re-evaluation. 

In the only other relevant study concerning erosion at Lake 

Sakakawea, Gatto and Doe (1983) reported on historical bank recession 

rates based on measurements from aerial photographs. They found that 

rates for 1958-1966 averaged 4.3m (14 ft) per year and rates for 

1966-1976 averaged 5.8m (19 ft) per year. Because of the scale of the 
I 

photographs, these rates were approximations, at best. Gatto and Doe 
1 

concluded that inundation and wave erosion·were the two most important 

causes of land loss at the reservoir from 1958-1976. They also tested 

the correlation between recession and other variables such as water ' 
I 
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Conventional procedure used to predict ultimate shoreline 
recession by the U.S. ~rmy Corps of Engineers (from Cordero, 
1982). 



DI 

"' . ..., ,... ... 
0 .. ... .., 
< z ,... 
c., ,... 
~ 

11, 

.. 
z ,... 
~ 

"' < 
"' .. .. 

15 

g 
" lal ;; 
z,... 
,... 0 

.l "" 
"' "' 0 .. 
=::, 
"' "' 



' I 

16 

level, and bank and reservoir characteristics. However, the regression 

results did not prove useful in evaluating the erosion processes and bank 

conditions that contribute to shore1ine erosion because significant 

correlations were generated only for variables that were obviously not 

important (e.g., duration of ice cover). 

Finally, preliminary results of this study were the basis of a 

report submitted to the Corps of Engineers in late 1984 (Reid and 

Millsap, 1984). 

.- . ..:··:· ,, 
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PROCEDURES 

Selection of Stations 

The first priority was to identify and establish measurement 

stations that were both relatively accessible and exhibited active 

erosion. Some sites that exhibited little or no erosion were also chosen 

as control sites. The eastern end of Lake Sakakawea was chosen because 

it is closer to Grand Forks, North Dakota and because relevant pool and 

weather data are collected at Riverdale. The stations selected are shown 

in figure 2. 

Three additional stations were established at the northeast end of 

Lake Audubon, whose level is regulated by the Snake Creek Pumping 

Station. This lake was included in the study primarily because it 

experiences only a small fluctuation in pool level compared to Lake 

Sakakawea. 

Wave Erosion 

Bank Recession Pins 

As at Orwell Lake (Reid, 1984), bank top recession due to wave 

erosion at each of the stations was measured by.inserting a series of 

pins, 152mm (6 in) long nails, about Jm back from the bank edge. 

Remeasurement of the pins revealed the amount of bank recession. Any 

extensional joints along the pin lines were also measured and recorded; 

the joint width was subtracted from the recorded recess ion measurement to 

arrive at a more accurate bank recession value. The locations of the 

bank recession pin sites are shown in figure 2. Sixty pins were inserted 

into north shore banks, seventy~two pins in south shore banks and sixteen 

17 
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at the Lake Audubon sites. The number of pins at each site, and other 

pertinent data, are given in table 4. The pins were measured each time 

the lakes were visited. 

Profiles 

Beach and bank profiles were measured at each erosion station by 

determining the average slope angle with a Brunton compass over given 

intervals (usually 0.8m) from the shoreline to the top of the bank. Each 

profile was tied in to a bank recession pin on the top of the bank. 

Table 5 lists the location and orientation of each profile site. The 

area of bank sediment eroded between profile dates was calculated using 

computer programs. 

Offshore profiles were also measured beginning in June 1984. They 

were measured in conjunction with the onshore profiles as often as 

possible. It was hoped these would provide some evidence as to where the 

eroded sediment was going. If a stable platform were being built up, it 

would help to dissipate wave energy before it reached shore. These 

profiles were measured from a boat with a Raytheon sonar recorder (May, 

1982). A stadia rod attached to the boat was read at about 15m (50 ft.) 

intervals from a transit onshore. The sonar operator marked the sonar 

readout sheet at each of these intervals. Thus, the depth and distance 

were known and could be plotted. 

Pool Levels and Wind 

Pool level data for Lake Sakakawea were obtained directly from the 

power plant at Garrison Dam for the period of January 1980 to August 

1984. Pool level data for Lake Audubon were not collected because the 
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TABLE 5 

Location and Orientation of Profile Sites, 
Lake Sakakawea, North Dakota 

Station 
and 

Location 

1, BRP #11 
2, BRP #1 
3, BRP #3 
4, BRP #2 
5, BRP #3 
6, Erosion Pins 
7, BRP #2 

50, BRP #4 
50, Erosion Pins 
51, Range Post 
52, BRP #4 
53, Erosion Pins 
53 ,- BRP #4 

-55, BRP #2A 
56, BRP #7 
57, BRP #2 
58, BRP #3 
59, BRP #1 
60, BRP #1 
61, BRP #1 
62, BRP #6 

Orientation 
(at right 

angle to slope) 

N66E 
N48E 
N4E 
N31W 
N43W 
N48W 
N5W 
N62W 
N67W 
S5DW 
N68W 
S66E 
S22W 
S30W 
S67W 
S67W 
S10E 
S64E 
N72E 
S48E 
S70W 
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pool level fluctuates very little. Wind data (four times daily) were 

obtained from the Riverdale weather station. 

Overland Erosion 

Erosion Pins 

Similar to Orwell Lake (Reid, 1984), measurement of erosion by 

rainsplash and overland flow was attempted by observing the changes in 

exposure of erosion pins at the stations (Figure 2). Forty-seven of 

these were along the banks of Lake Sakakawea, and the remaining five in 

the significantly smaller banks of Lake Audubon. The erosion pins, 

actually spikes 304mm (12 in) long, were inserted normal to the bank 

surface, protruding about 100mm (4 in). The number of erosion pins 

installed at a particular site was a function of bank height, slope, 

orientation, lithology and accessibility. Measurement of the length of 

the pin protruding from the bank was always done on the same side of the 

pin because sometimes there were significant differences between the two 

sides. The amount of erosion and deposition were determined by comparing 

measurements from different dates. The pins were reset as needed. 

Precipitation 

Historic weather data for west-central North Dakota were made 

available by Dr. John Enz, Department of Soil Science, North Dakota State 

University. Daily work-day meteorological observation records from the 

Riverdale weather station were provided by the Riverdale off~ce of the 

Corps of Engineers. 

In order to establish a data base to compare north-shore precipi­

tation with that at Riverdale and relate the effects of precipitation 

variations on slopewash erosion, one rain gauge was installed at Fort 

., ~ 
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Stevenson State Park. The park Rangers kindly recorded each precipita­

tion event there. 

Groundwater 

Piezometers 

Piezometers are co11111only used to monitor groundwater fluctuations 

along reservoirs (Reid, 1984) and lakes {Mickelson and others, 1977). 

Although no piezometers were installed for this study, a large slump site 

is included in the area covered by a network of water level monitoring 

stations installed by the Corps of Engineers. In order to analyze the 

importance of groundwater at the site, the data for the relevant piezo­

meters for the years 1982, 1983 and 1984 (partial) were obtained from the 

Riverdale office of the Corps of Engineers. 

Frost-Thaw 

Colluvium Volumes 

After spring thaw was complete, the volume of colluvium due to thaw 

failure was calculated using two techniques. The most accurate method 

required excavation of a trench at representative colluvium sections. The 

colluvium was removed by shovel and placed in a bucket of known volume. 

When the contacts with the undisturbed bank and beach were reached, the 

volume of the trench was ascertained by counting the number of buckets 

removed and multiplying by the bucket's volume. Using these trenches as 

standards, the volume of colluvium for the entire section was estimated 

by pacing along shore. This estimated value was probably a minimum value 

because sediment that had fallen on the ice over the winter and early 

spring was lost when the ice melted. It must also be understood that 
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some sediment included as thaw failure colluvium had actually fallen 

since cessation of thaw, due to other processes. 

The second technique utilized bank recession pins, bank heights and 

station length measurements. The amount of bank recession measured from 

the time of first frost was multiplied by both the average bank height 

and the station length to yield a volume of eroded sediment for a 

particular site. 

Finally, bank recession pins and bank profiles also were used to 

quantify erosion by frost-thaw processes. 

Frost Tubes and Thermograph 

In order to measure frost depth and duration, holes were drilled at 

five sites during the summer and fall of 1984 and 35mm PVC casing tube 

was installed. At a later date, a 15mm o.d. polyethylene tube filled 

with methylene blue-dyed water was inserted. To measure the frost depth, 

the tube was lifted up and the thickness of the frozen section measured, 

the base being equivalent to the depth of the zero degree isotherm. 

These tubes are similar to those used by Reid (1984), and Rickard and 

Brown (1972). 

Tubes 1, 2 and 3 were installed on level ground far from exposed 

banks. A fourth tube was installed into a bank and the last tube was 

installed in colluvium at the base of a bank. These last two frost tubes 

became inaccessible over the winter and data could not be collected. For 

the others, the frost depth was measured regularly from the time of the 

first frost until the time of complete thaw. 

A seven-day thermograph was installed at Fort Stevenson State Park 

in October, 1983; the chart was changed weekly by the Rangers there, 

-~~ ,,.,,., "'' ··.~)£' .. ,,. ~- ""·'1": .. ,.f;' - '1,"'·t 
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especially Brad Pozarnski. It recorded temperatures throughout the 

winter, enabling freeze-thaw cycles to be counted and recorded. 

Geology 

The banks at each station were examined, described, sketched, 

photographed and measured regularly throughout the project. In the fall 

of 1983, the banks were scraped clean and samples were collected for 

subsequent laboratory analyses. Joint orientations were also measured at 

that time. 

In June, 1984, additional sediment samples were collected for the 

purpose of determining their moisture content and dry density. There 

were two days of steady, light rainfall and one day of dry weather prior 

to the day the samples were collected. The surface of the bank was 

scraped clean and a metal cylinder of known volume was then pounded into 

the bank. When the cylinder was fully inserted and filled with sediment, 

it was removed. Next, more sediment was added if the cylinder was not 

completely full. Finally, the sediment in the cylinder was extruded into 

a sealable bag and weighed to the nearest gram at the close.of the day. 

Where the sediment was too hard, blocks were collected. These were 

measured and their volumes calculated and recorded. They were also 

stored in sealable bags and weighed to the nearest gram. 

Laboratory Analyses 

Most of the laboratory time was involved in analyzing sediments. The 

main. purpose was to describe and correlate stratigraphy, especially the 

glacial tills as many other researchers have done (Landon and Kempton, 

1971) .. ·In addition, clay mineralogy was determined because some clays 
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expand more than others and clay expansion may be an important factor in 

bank failure at the lakes. 

Other laboratory analyses involved aerial photograph measurements 

and computer-generated statistical analyses. Procedures for these anal­

yses are discussed in the sections entitled Historical Bank Recession and 

Regression Analysis. 

Color and Texture 

First, the Munsell Soil Color Chart (1973} was utilized, in natural 

light, to define the dominant color and mottles of the dry samples. 

Next, the standard North Dakota Geological Survey hydrometer and 

sieve method (Perkins, 1977) was used to determine the gravel, sand, silt 

and clay percentages of the samples. The hydrometer was used to find the 

amount of clay in each sample before the sand and gravel were separated 

by wet-sieving. Then, the separated sand and gravel were oven-dried and 

sieved at half-phi intervals, from -1.5 phi to 4 phi. The gravel weight 

was subtracted from the total weight and the sand, silt and clay weight 

percentages were normalized to 100 percent. The samples were then 

classified according to the United States Department of Agriculture 

textural ,classification (Walter, Hallberg, and Fenton, 1978). 

About 15 grams were saved from each sample for a subsequent Sedi­

graph analysis of the silts and clays. Each subsample was soaked in 50 

milliliters of 4 percent Calgon solution (dispersant). After soaking for 

about 24 hours the solution was wet-sieved through a 4-phi screen. Most 

of the clays and silts passed rapidly into a jar, leaving mostly sand and 

gravel. At this point, some distilled water was used to wash the remain­

ing silts and clays through the screen into a second jar. Next, after 

most of the silts and clays had·settled, the majority of the water in the 

' '", ,.,~· .,,.- ',>·,_._ ..• 
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jar was decanted. The remaining water, with the silts and clays, was 

then rinsed into the first jar. This wet-sieving technique was recommend­

ed (Forsman, 1984, oral communication) to produce an adequately dense 

solution for Sedigraph analysis. Next, this solution was allowed to 

settle for a few hours and then inspected for signs of flocculation. If 

flocculation existed the solution was centrifuged and re-inspected. If 

there was no apparent flocculation the solution was ready to be analyzed 

in the Sedigraph. This machine analyzes the samples using x-rays and 

produces a cumulative curve for a desired range of phi-sizes, in this 

case the 4 phi to 12 phi-size range. Thus, when the hydrometer, sieve 

and Sedigraph results were combined, the total data range for a sample 

was from -1.5 phi to 12 phi with a data point for every half-phi interval. 

Coarse Sand Lithology 

The lithology of the very coarse sand grains (1-2mm) from the till 

samples was determined for possible use as a till differentiation/ 

correlation tool. These grains were saved from the sieving procedure. 

The grains were grouped into seven lithologic categories: dolomite, 

limestone, crystalline (igneous and metamorphic), quartz and feldspar, 

shale, sandstone, and other (which included gypsum, chert and lignite). 

The grains were identified under a binocular microscope with 10 to 40 

power magnification. Dolomite and limestone grains were differentiated 

by degree of reaction with dilute hydrochloric acid. In all, 3789 grains 

from 17 till samples were identified. 

Matrix Carbonate 

A Chittick apparatus was used to determine the percentages of 

calcite and dolomite in the matrix of each of the 17 glacial till 
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samples. The apparatus and the procedure for using it are described by 

Boellstorff (1978), who modified a procedure developed by Dreimanis and 

others (1962). This procedure (and associated tables) was followed 

exactly. These data provided another tool for the possible correlation 

of till units. 

Clay Mi nera 1 ogy 

Clay mineralogy of the till and mudstone samples was detennined with 

a Phillips diffractometer, using copper radiation. In preparation, the 

samples were dispersed in distilled water for one to three days. (If 

calgon is used as a dispersant, it is impossible to differentiate sodium 

montmorillonite from calcium montmorillonite. The type of montmorillon­

ite (smectite) is important because sodium montmorillonite expands more 

than other types.) Next, the solution was stirred briskly and, after a 

predetermined settling time, the less than two micron fraction was 

pipetted and placed upon a glass slide which was fastened to a carbon 

plug. The appropriate settling time was detennined according to a 

formula defined by Folk (1980). 

Oriented non-glycolated and glycolated samples were x-rayed with 

copper radiation from 2 degrees through 35 degrees at 2 degrees per 

minute at a rate of 250 counts per second. Short scans of oriented 

glycolated samples, x-rayed from 24 degrees to 27 degrees at 0.25 degrees 

per minute, were also run. Diffractograms of the oriented non-glycolated 

samples were used to detennine whether sodium montmorillonite or calcium 

montmorillonite (or both) were present. At a later date, some samples 

were run at 0.25 degrees per minute from four to seven degrees as a check 

against the results from analysis of the non-glycolated samples. As a 

further check, a few samples prepared on glass slides were analyzed by a 
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scanning electron microscope. The short scans, from 24 to 27 degrees, 

were useful in separating the kaolinite and chlorite peaks. The results 

from these scans were extrapolated to the diffractograms of the oriented 

glycolated samples using a conversion factor. This factor was found 

after running several standards of both clay types at the previously 

mentioned speeds. Then, a calibrated chart was superimposed on the 

diffractograms of the oriented glycolated samples to determine the 

overall clay mineralogy. Next, peak heights were measured and, finally, 

relative percentages of various clay minerals were determined by compar­

ing their respective peak heights. Hallberg, Lucas and Goodman (1978) 

present a good outline of diffractogram analysis as well as sample 

preparation. 

Moisture Content and Dry Density 

The samples of known volume, collected in June 1984, were oven-dried 

at 40 degrees celsius for about six days and then weighed to the nearest 

gram. The difference between the initial weight and the oven-dried 

weight divided by the initial weight defined the moisture content 

(Fetter, 1980). The final dry weight of the sample was used to determine 

its dry density. 



DISCUSSION OF OBSERVATIONS AND RESULTS 

Reservoir Bank Erosion 

General 

There are many erosion processes active in seasonally frozen en­

vironments such as at lakes Sakakawea, Audubon and Orwell. These include 

wave erosion, rainsplash and runoff, and frost-thaw (Figure 5). 

Most bank erosion at Lake Sakakawea and other reservoirs takes place 

through bank failure rather than by surface erosion processes (e.g., 

corrasion, rainsplash and runoff) (Reid, 1984; Doe, 1980; Kachugin, 

1980). The stability of a reservoir bank depends on the balance of 

driving and resisting forces associated with the most critical mechanism 

of failure (Doe, 1980). A stable bank is one in which the net resultant 

driving forces (shear stress, tensile stress) are equal to or less than 

the net resultant resisting forces (shear strength, tensile strength). 

In most cases, bank failure will occur if, along a plane, the shear 

stress exceeds the shear strength. However, in other instances (e.g., 

overhangs), failure results when the tensile stress overcomes the tensile 

strength. 

The shear stress of the bank materials is determined primarily by 

gravitational forces resulting from the weight of the material, as well 

as any structure resting on it (Doe, 1980), the bank height and the slope 

angle (Mickelson and others, 1977). Shear strength is usually expressed 

in terms of the Mohr-Coulomb Failure Criterion: 

S = c + o tan~. 

28 
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Figure 5, Ero,sion processes active in seasonally frozen 
environments (from Gatto and Doe, 1983). 
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where Sis the shear strength, c is the cohesion of the material, o is 

the normal stress, and 0 is the angle of internal friction of the 

material. Higher c and 0 values each lead to greater shear strength and 

less likelihood of bank failure (Freeze and Cherry, 1979, p.467). There 

is a wide range inc and 0 values and thus, shear strength for different 

materials (Wu and Sangrey, 1978; Chandler, 1977). For example, for dry 

sands and fractured rocks, c + 0 and the shear strength is controlled 

mostly by the angle of internal friction. However, for saturated clays 

under undrained conditions, 0 + 0 and the shear strength is mostly 

predicated on cohesion (Freeze and Cherry, 1979, p.467). 

These generalizations ignore the factor of pore water, When the 

materials are saturated, effective stress rather than total stress is the 

critical factor in failure (Holtz and Kovacs, 1981, p.215; Terzaghi, 

1923). The effective stress (oe) must be calculated using the formula: 

0 = 0 - p, e 

where pis fluid pressure. Because the shear strength of rocks and soils 

is strongly influenced by drainage conditions, those conditions must be 

accounted for (Wu and Sangrey, 1978). Substituting in the Mohr-Coulomb 

equation: 

S = c + (o - p) tan 0, 

where c and 0 are determined for saturated conditions. Therefore, an 

increase in fluid pressure decreases the shear strength. 

Another important stability relationship is that concerning tensile 

stress and strength (Thorne and Tovey, 1981). Tensile stress is "a 

normal stress that tends to cause separation across the plane on which it 

acts" (Bates and Jackson, 1980). Most often this is caused by gravity 

(e.g., overhanging sediments) or forces exerted on tension joints (e.g., 
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ice growth) (Varnes, 1978). The ability of a material to resist this 

type of stress is its tensile strength. 

For a more thorough discussion of soil mechanics and slope stability 

see McCarthy (1977), Perloff and Baron (1976), Spangler and Handy (1973), 

Sowers and Sowers (1970), Terzaghi and Peck (1967) or Terzaghi (1950). 

Bank Movements 

When stress exceeds strength and bank failure occurs, there is a 

wide variety of movements that may take place (Varnes, 1978; Coates, 

1977). Varnes' (1978) classification (Table 6) is based on the kind of 

material being moved and the type of movement. In the following dis­

cussion, the types of bank movement are defined according to current 

usage. However, it should be understood that most bank movements are 

caused by many factors. As Sowers and Sowers (1970, p.506) explain, 

"In most cases a number of causes exists simultaneously and so 
attempting to decide which one finally produced failure is not 
only difficult but also incorrect. Often the final factor is 
nothing more than a trigger that sets in motion an earth mass 
that was already on the verge of failure. Calling the final 
factor the cause is like calling the match that lit the fuse 
that detonated the dynamite that destroyed the building the 
cause of the disaster." 

Fa 11 s 

Falls occur when a mass of overhanging earth material of any size is 

detached from a steep slope or bank and descends mostly through the air 

by freefall, bounding, or ricocheting (Varnes, 1978; Coates, 1977). 

Falls are most common in well-jointed materials that have been undercut 

by erosive agents and are the result of shear failure, tensile failure or 

beam failure (Thorne and Tovey, 1981). Resulting movements are very 
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Type of Movement 

Falls 

Topples 

Rotational 

Slides 
Translational 

Lateral Spreads 

Flows 
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TABLE 6 

Types of Bank Movements (from Varnes, 1978) 

Bedrock 

Rock fa 11 

Rock topple 

Few Rock Slump 
units 

Rock block slide 
Many 
units Rock slide 

Rock spread 

Rock fl ow 
(deep creep) 

Type of Material 

Engineering Soils 

Predominantly Predominantly 
Coarse Fine 

Debris fall Earth fa 11 

Debris topple Earth topple 

Debris slump Earth slump 

Debris block slide Earth block slide 

Debris slide Earth slide 

Debris spread Earth spread 

Debris fl ow Earth fl ow 
( soil creep) 

w 
w 

Complex Combination of two or more principal types of movement 
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rapid to extremely rapid (3 x 10-3 to >3 m/sec) and may be preceded by 

minor movements leading to failure of the mass (Varnes, 1978). Falls 

have been observed at Lake Sakakawea and Orwell Lake (Reid, 1984) as well 

as other reservoirs (Erskine, 1973), lakes (Mickelson and others, 1977; 

Hadley, 1976) and rivers (Thorne and Tovey, 1981; Hooke, 1979; Sharpe, 

1933) . 

Topples 

Toppling, caused by forward tilting of overturning moments, occurs 

when a mass rotates forward about some pivot point (below the center of 

gravity of the unit) under both the action of gravity, and forces exerted 

by fluids or ice in adjacent joints (Varnes, 1978; Coates, 1977). 

Toppling commonly occurs where tension joints have developed such that 

they occupy a significant proportion of the bank height (Thorne and 

Tovey, 1981). Because of this, tensile failure is the usual cause of 

topples. Movements are very rapid to extremely rapid (3 x 10-3 to >3 

m/sec) and also may be preceded by minor movements leading to failure 

(Varnes, 1978). 

This type of movement has only recently gained attention. The most 

detailed descriptions have been given by Thorne and Tovey (1981), de 

Freitas and Walters (1973), and Hoek (1972). Although no mention of 

topples was found in the literature concerned with reservoir bank fail­

ure, they surely exist and, in fact, are common at Lake Sakakawea. 

Slides 

Slides are initiated by shear failure along one of several planes 

(Coates, 1977). The character of the shear plane determines whether the 

slide is translational or rotational (Varnes, 1978). Translational, or 
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planar slides move approximately parallel to the bank surface and are 

commonly associated with structure. A planar slide in which the moving 

mass is not greatly deformed or broken up may be called a block slide or 

glide (Varnes, 1975). These slides generally move at extremely slow to 

slow rates (<3 x 10-10 to 3 x 10-7 m/sec) (Varnes, 1978). Planar slides 

which have resulted in deformation or break up of the mass can be 

subdivided further into slab failure and avalanches (Ritter, 1979, 

p.152). Movement of these types of slides may range from very slow to 

extremely rapid rates (3 x 10-9 to >3 m/sec) (Varnes, 1978). 

Rotational slides, or slumps, move along a shear plane that is 

concave upward. Upon failure, the mass is rotated and the block is 

tilted backward. Movements may be at extremely slow to moderate rates 

(<3 x 10-10 to 3 x 10-5 m/sec) and may be progressive (Varnes, 1978). 

Both planar and rotational slides occur at Lake Sakakawea and Orwell 

Lake (Reid, 1984), and other reservoirs (Doe, 1980; Erskine, 1973), and 

lakes (Sterrett, 1980; Mickelson and others, 1977). 

Lateral Spreads 

Spreads are "lateral extension movements in a fractured mass" 

(Varnes, 1978, p.236). The most common, best understood and most impor­

tant spreads owe their movement to liquefaction or plastic flow of basal 

material. Lateral spread, or lateral extension, is accommodated by shear 

or tensile fractures. The coherent upper units may rotate, translate, 

disintegrate or subside, or they may liquefy and flow. Lateral spread 

movements vary from extremely slow (e.g., gabbro) to very rapid (e.g., 

clay) rates (<3 x 10-10 to 3 m/sec) (Varnes, 1978). 

No lateral spreads have been identified along Lake Sakakawea and 

there were no descriptions of lateral spreading along reservoirs or lakes 
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found in the literature. However, Mitchell and Markell (1974), and Youd 

(1973) describe failures of this type in other areas and these failures 

also probably take place along reservoirs, especially in those banks 

composed of clay-till and fractured mudstone (e.g., Lake Sakakawea 

banks). 

Flows 

Flow movements in rocks are distributed among many fractures, 

causing folding or bulging and are generally extremely slow (Varnes, 

1978). No examples of rock flows along reservoirs were found in the 

literature nor were any recognized at Lake Sakakawea but many other 

examples have been described (Radbruch-Hall, 1975; Tabor, 1971). 

Debris flows and earthflows are the result of an increase in water 

content of the soil mass (Varnes, 1978). Co,rmonly, the soil mass 

actually liquefi~s and flows like a viscous fluid (Ritter, 1979, p.153). 

Flows often occur at the foot of slumps (Doe, 1980; Mickelson and 

others, 1977). Flow rates depend largely on the amount of water in the 

material and the texture of the materials but they can range from very 

slow (creep) to extremely rapid (3 x 10-9 to >3 m/sec) (Varnes, 1978). 

Reid (1984) observed debris flows, earthflows and mudflows at Orwell 

Lake. Such flows are also common at Lake Sakakawea and other reservoirs 

(Gatto and Doe, 1983; Doe, 1980; Erskine, 1973) and lakes (Mickelson 

and others, 1977). 

Complex Movements 

Most bank movements "involve a combination of one or more of the 

principal types of movement described above, either within various parts 

of the moving mass or at different stages in development of the move-
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ments" (Varnes, 1978, pp.20-21). A few of these are topple-slides, 

topp 1 e-fall s (Varnes, 1978), debris s 1 i de-earthfl ows (Hutchi nsoil and 

Bhandari, 1971) and slump-flows (Doe, 1980; Mickelson and others, 1977). 

Lake Sakakawea and Lake Audubon 

Bank Recession and Joint Propagation 

Bank recession at both Lake Sakakawea and Lake Audubon is ultimately 

caused by mass movement, i.e. the sudden failure of slabs, clumps or 

blocks of the bank material. Most failure planes correspond to joints, 

whether in till or in the Paleocene bedrock. 

Waves impacting at the base of steep slopes are the major activating 

cause of bank recession at Lake Sakakawea. The degree to which such 

erosion occurs, though, is highly diverse and there are numerous vari­

ables which affect it, especially wind direction, strength and duration, 

concurrent with high pool levels. One purpose of this study, then, was 

to identify the activating factors of bank erosion and their dependent 

variables. It has become clear that several major factors are involved 

in whether or not erosion occurs at a given site, and in the degree of 

that erosion. These are summarized in table 7. 

Bank movements which directly or indirectly result from these 

activating factors are summarized in table 8. The most collRllon movements 

are falls and planar slides caused by wave undercutting of the bank toe, 

whereas slumps are relatively rare and are primarily due to groundwater. 

Finally, flows are most common in the winter and spring due to frost­

thaw processes. 

Bank recession pin measurements have proven to be the most valuable 

technique in the documentation of erosion magnitudes. The cumulative 

average bank recession for a measurement interval was determined for each 
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TABLE 7 

Activating Factors and Associated Dependent 
Variables at Lakes Sakakawea and Audubon 

Activating Factor 

Wave Erosion 

Overland Erosion 
(Rainsplash and Runoff) 

Groundwater 

Frost-Thaw 

Lake Ice-Shove 

Vibrations 
(man-made, wave-induced 
or storm-induced) 

Dependent Variables 

bank orientation, geology 
and geometry; natural rip-rap 
and vegetative cover; offshore 
profile; offshore islands; 
pool levels; wind direction, 
strength and duration. 

pre-existing moisture condition; 
bank orientation, geology and 
geometry; vegetative cover; 
precipitation intensity, duration 
and direction. 

bank geology and geometry; 
topography; precipitation and 
snowmelt amounts; pool level 
fluctuations. 

pre-existing moisture condition; 
bank orientation, geology and 
geometry; vegetative cover; 
frost rate, depth and duration; 
volume and concentration of ice; 
freeze-thaw cycles; rate of thaw; 
snowmelt amounts. 

bank orientation, geology and 
geometry; pool level; degree of 
ice cracking and refreezing; wind 
strength, duration and direction. 

location, intensity and duration. 
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TABLE 8 

Activating Factors and Bank Movements, Lake Sakakawea, North Dakota 

Falls Topples 
Activating 

Factor rde* rde 

Wave Erosion BBB** BBB 
Overland Flow --- ---
Groundwater BBB BBB 
Frost-Thaw ODD ODD 
Lake Ice-Shove BBB BBB 
Vibrations ODD DOD 

Key: 
.* Type of material (Varnes, 1978): 

r = rock 
d = debris 
e = earth 

Planar 
Slides Slumps Flows 

rile rde rcle 

BBB BBB -DD 
--- --- -DD 
BBB BBB -DD 
DOD DOD -DD 
III -II -II 
ODD DOD -DD 

** D = usually factor directly causes the particular movement 
I= usually factor indirectly causes the particular movement 

Topple-
falls 

rde 

BBB 

BBB 
DOD 
BBB 
DOD 

B = factor can cause the particular movement either indirectly or directly 

Topple-
slides 

rile 

BBB 

BBB 
ODD 
BBB 
ODD 

Slide- Slump-
falls flows 

rde rde 

BBB -DD 

BBB -BB 
DOD -DD 
I II -II 
DOD -DD 

w 
<D 
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station by summing the bank recession values for all the pins and 

dividing that number by the number of pins measured. Graphs of the 

cumulative average bank recession for each station for the study period 

are provided in Appendix B. The total cumulative average bank recession, 

seasonal amounts, and yearly recession rates for each station are listed 

in table 9. For Lake Sakakawea, bank recession ranged from 0.63 to 5.87m 

(2.6 to 19.3 ft) and averaged 2.29m (7.5 ft) over the period of 15 to 17 

months. In their historical approach, Gatto and Doe (1983) found the 

average bank recession to be about 5.79m (19 ft) for the years 1966 to 

1976. This is significantly greater than the averages found from this 

study. 

According to Morton (1978), two conunon, but invalid, assumptions 

regarding bank recession rates are: 1) calculated rates of recession are 

constant over a particular time period; and, 2) the trend of recession is 

also invariant over the same period. However, upon examination of 

cumulative average bank recession graphs (Appendix B), it appears there. 

are uniform recession rates for certain periods. This is simply a 

"unction of the length of the measurement intervals. For example, if the 

pins could be measured every day, no doubt the amount of bank recession 

would vary. In fact, probably the only time rates would be uniform would 

be during periods of no erosion. 

A question may arise as to whether the average cumulative bank re­

cession values are typical of the majority of the remaining banks in the 

study area. From a new perspective in the summer of 1984 {from the water 

instead of just the land), it was concluded that the measured rates of 

recession are probably representative of rates for other active banks 

.,.,s.·,.,, 
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TABLE 9 

Cumulative Average Bank Recession at Each Station 
Lakes Sakakawea and Audubon, May, 1983 through August, 1984 
* (Warm Weather: 5/83 to 10/16/83 and 6/1/84 to 8/24/84; 

Cold Weather: 10/16/83 to 6/1/84.) 

Station 
Number 
of Pins 

Lake Sakakawea 

1 
2 
3 
4 
5 
6 
7 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

Average 

Lake Audubon 

Al 
A2 
A3 

Average 

14 
8 
6 
4 
4 
3 
4 
5 

12 
7 

12 
5 
9 
8 
8 
7 
4 
1 
1 
6 

8 
4 
4 

Cumulative 
Average Bank 

Recession 
(m) 

3.71 
1.95 
2.50 
2.14 
1.93 
0.87 
3.19 
1.01 
2.80 
2.39 
0.63 
3.17 
5.87 
3.57 
0. 77 
0.78 
0.96 
o. 71 
5.78 
1.13 

2.29 

1..44 
1.08 
0.81 

1.11 

Warm Weather 
Recession 

(m)* 

Cold Weather 
Recession 

(m)* 

3.70 (99.9%) 0.01 (0.1%) 
1.93 (99.2%) 0.02 (0.8%) 
2.49 (99.7%) 0.01 (0.3%) 
2.01 (94.1%) 0.13 (5.9%) 
1.89 (98.0%) 0.04 (2.0%) 
0.72 (82.5%) 0.15 (17.5%) 
2.77 (86.7%) 0.42 (13.3%) 
0.48 (47.6%) 0.53 (52.4%) 
2.69 (95.9%) 0.12 (4.1%) 
2.36 (98.8%) 0.03 (1.2%) 
0.50.(79.0%) 0.13 (21.0%) 
2.48 (78.4%) 0.68 (21.6%) 
4.74 (80.7%) 1.13 (19.3%) 
2.59 (72.6%) 0.98 (27.4%) 
0.63 (81.5%) 0.14 (18.5%) 
0.72 (92.1%) 0.06 (7.9%) 

0.62 (87.3%) 0.09 (12.7%) 
4.93 (85.3%) 0.85 (14.7%) 
0.99 (87.3%) 0.14 (12.7%) 

2.06 (87.3%) 0.30 (12.7%) 

0.20 (14.0%) 1.24 (86.0%) 
0.23 (21.4%) 0.85 (78.6%) 
0.29 (35.6%) 0.52 (64.4%) 

0.24 (21.7%) 0.87 (78.3%) 

Bank 
Recession 

Rate 
(m/y) 

3.05 
1.60 
2.05 
1.76 
1.59 
0.63 
2.32 
0.74 
2.04 
1.74 
0.49 
2.49 
4.61 
2.81 
0.61 
0.61 
0.76 
0.56 
4.54 
0.89 

1. 79 

1.22 
0.92 
0.69 

0,94 



r 

42 

beyond the station sites. The study by Gatto and Doe (1983) and this 

study each emphasized sites of active erosion. 

The cumulative average recession for Lake Audubon stations ranged 

from 0.81 to 1.44m (2.7 to 4.7 ft) and averaged 1.llm (3.6 ft). The 

banks of Lake Audubon are typically less than lm high (3.3 ft). So even 

if these recession rates are representative, the volume of erosion is a 

couple of orders of magnitude less than at typical Lake Sakakawea 

stations. 

Many of the bank failures are preceded by a period of vertical joint 

expansion, parallel to the bank. Most are opened because of undercutting 

of the bank by wave action, whereas others owe their origin to frost-thaw 

processes or desiccation. Table 10 provides joint width measurements for 

all the stations from June 1983 through August 1984. Generally, joints 

expand as bank failure progresses. Apparent periods of joint width 

reduction may be due to clay swelling., frost heave, or measurement error. 

Figures 6 and 7 summarize the joint data in terms of season and orienta­

tion. Most joints both initiated and failed during the warm weather 

months. 

Area Eroded 

Bank profiles were another method used to monitor bank changes due 

to erosion. From repeated profile measurements, the area between the 

initial and subsequent profile could be determined. Areas eroded ranged 

from 3.23 to 55.24m2 (34.75 to 594.38 ft 2) (Table 11) for similar inter­

vals. Profiles for selected sites and intervals are presented in 

Appendix C. 

The area eroded depends directly on bank height and bank recession. 

For a given distance of recession, the higher the bank the more the 
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TABLE 10 

Extensional Joint Development at Bank Recession Pin Sites, 
Lake Sakakawea, North Dakota 

(*=Joint Initiation; F = Joint Failure) 

l Station !! g !! !! !l 150 

D1te/pin .. 111 fl 12 /3 14 12 13 fl 13 14 15 

06/21/83 • 
I 

07/13/83 20 l'" 
07/28/83 2& I'" 6 I ... 
08/24/83 F 6

1

cm 

10/16/83 • • 
7 1""' I I • 05/09/84 • 1"' 2 I"' 8 lca s j'"" l ... 

2 1""' 
2 CIII* 1 cm• s 1"" F 

I I . l 
05/31/84 F F 

8 I'" 15 I'" 31 .. 4 l"' 1 
1 
... 1 

1 
.. 

6 1"' 
07/13/84 n I"' 3 ,- F 

50 1"' :c ,. 2,"' F 
3 1"" 

07/23/84 F F ,. F 3 CII 

08123/"' 17 cm• 5 , .. 

Statton lli 152' lli 
Date/pin 13 16 n 19 110 #11 IIZ 13 15 16 14 

06/21/83 
ll 1"" zo 1""' 151 .... 

07/13/83 • 13 I"' Z7 I"' 17 1'" I 07/28/83 F "I"' 1, I'" ll 1"' 
08/24/83 

25 1"' 14 1"' F '1 ... 
10/16/83 28lm II (" F 

05/09/84 v I"' 17 j"' 1 ... 6 ... 1 CIII* 1 CII* 

05/31/84 • ' I"' 
I ' I 

23 !"' 15 j'" ' F, S C11 6 (". • 1"'· I I 07/13/84 S cm• 11 
1 
... 1 i'"" F 

IS I"' s I'" F F 

07/23/"' ,. '1 "' F 
2" 

08/23/84 3 '" F 4 CIII*, 2 CII 
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TABLE 10 (continued) 

~ lli ill. !?! 
Date/pin IZ 14 " 17 II IZ 13 14 16 " 13 15 

06/24/83 • • • " I I 07/13/83 
15 1"' • l 11 .. 08/23/83 
14 '" 

1 r· 10 r 5 cm. 1 a,• 

08/24/83 ·r 10 I'" 8L 10/15/83 

Sr 8 r 3 r· 
1Z l.. ! 10/16/83 S tm* F 

05/10/M F ;'" F F F . r· 1 r 05/31/84 ... 
14 1 .. 06/01/84 l ·,:...5,}"· F, l /°"' 7 j'°" 3 t• s j"'' l j"' 

07/13/84 s ... 
3 I'" F IS r 6

r ·r 3r 7~\ 
. , .. 07/23/84 7 .... F 

07/24/84 
J I 12 QI 

4r ,2J'" -'° r·. Zr 2 f' F 08/23/84 ) .. 3 "' 13 "' 
08/24/84 9cm 14cm F F F 

!!!!!2!! .ru 1§! 
Date/pin 13 '' fl 12 13 14 " 
06/24/83 12 l'"" ZS J'°" " I'"" 07/13/83 F 24 1'" ;'"" F 

07/28/83 F. • 

IS t'" 08/23/83 
301- 22 r· 1 ... 

08/24/83 
l j- -I 10/15/83 F F, 'I cm F 

I 
05/10/84 s , .. 7 CII 

1• 1- F 1, 

1 

... 
05/31/84 F 

06/01/84 
16 I"' 22 I"' 14 an•• 

I 07/13/84 F 
19 r 'I'" <11/23/84 7r C7/24/B4 F F 

08/23/84 S cm 

08/24/84 8 cm' 4 ... 
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Figure 6. Relationship of extension joint initiation to 
orientation and season. 
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Figure 7. Relationship of extension joint plane failure 
to orientation and season. 
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TABLE 11 
• Area Eroded at Lake Sakakawea Bank 

Profile Sites for Similar Intervals 

Area 
Measurement Ero~ed 

Station I nterva 1 (m ) 

1 10/16/83 - 10/13/84 6.84 
2 10/16/83 - 10/13/84 21.60 
3 10/16/83 - 10/13/84 5.41 
4 10/16/83 - 10/13/84 8,87 
5 10/16/83 - 10/13/84 6,76 
7 06/13/83 - 05/31/84 7.90 

50 07/12/83 - 07/23/84 15.67 
51 10/15/83 - 10/13/84 55.24 
52 10/15/83 - 10/13/84 23.61 
53 06/01/84 - 10/14/84 43.04 
55 06/18/84 - 09/14/83 5.37 
56 10/15/83 - 10/14/84 20.15 
57 10/15/83 - 10/14/84 14.75 
58 08/22/83 - 10/14/84 14.78 
59 10/15/83 - 10/14/84 9.75 
60 10/15/83 - 10/14/84 9.26 
61 10/15/83 - 10/14/84 11.69 
62 10/15/83 - 10/14/84 30.03 

Average 17.26 
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resulting area that is eroded. For example, stations 1 and 56 have 

nearly the same average bank recession (Table 9), but the bank height and 

the area eroded at station 56 are about three times greater than those at 

station 1 (Figures 74 and 87, Appendix C). Also, for two banks of about 

the same height, the higher bank recession rate will result in a greater 

area eroded. Stations 1 and 3, each about the same height, display this 

relationship (Figures 74 and 75, Appendix C); station 1 has the greater 

bank recession (Table 9) and, therefore, the higher amount of area 

eroded. 

Another factor that affects the magnitude of area eroded is the 

amount (volume) of colluvium existing at the bank toe when measurements 

commenced. For example, sites 56 and 62 have similar orientations, 

heights, bank materials and bank recession rates, (Tables 4 and 9) but 

over 1 1/2 times· more area was eroded at station 62 (with less bank 

recession) (Table 11, and Figures 87 and 90, and Appendix C). The main 

reason for this was the presence of a large, loose colluvium slope at 

that station that was readily eroded in the sufliller of 1984. 

Thus, bank height, bank recession rate and the initial colluvium 

volume are the most important factors affecting the area of erosion as 

defined by repetitive profiling. It should be understood, however, that 

factors such as pool level fluctuations, freeze-thaw cycles, bank orienta­

tion and bank geology are also important in affecting bank erosion at the 

sites. 

Factors of Bank Erosion 

Geology 

Bank geology is one of the most important factors affecting reser­

voir bank stability (Doe, 1980; Edil and Val1ejo, 1980). Not only does 

~.· ~ ''1i' '_,_,, . 



bank geology define the strength of the bank but also the type of 

movement that will result upon bank failure (Varnes, 1978), and the mag­

nitudes of erosion processes (Reid, 1984, 1985). 

The stratigraphic units exposed in the study area are shown in 

figure 3. Only two of the formations, the Charging Eagle and Coteau, 

are absent from the erosion stations on Lake Sakakawea. Figure 8 

illustrates the stratigraphy at each of the bank profile sites. The 

stratigraphy at Lake Audubon is limited to the upper Snow School, and 

Oahe formations. 

Sentinel Butte Fonnation 

The Sentinel Butte Fonnation is the lowermost unit exposed in most 

parts of the study area. It generally comprises less than 50 percent of 

the exposed bank. The unit is areally extensive and where not visible it 

is probably present below water level. The thickness of the unit varies 

from about 75 to 200m (245 to 655 ft) (Jacob, 1976). 

Crawford ( 1967, p.10) describes the Sentinel Butte Formation as "a 

repetitive sequence of dark gray and brown sandstone, siltstone, and 

lignite beds with many brown limonitic sandstone concretions". It is 

characterized also by the presence of clinker, leaf molds and petrified 

wood. Jacob (1976) provides a more detailed description of the sediments 

and their depositional environments. 

Silty clay (poorly consolidated mudstone) is the most common lith­

ology of the Sentinel Butte Formation in the study area. The color 

varies from pale olive (5Y 6/3) to gray (10 YR 5/1) but is most often 

light brownish-gray (2.5Y 6/2). Changes in color can give the formation 

a banded appearance. Moisture content and density of the silty clays 

varies greatly (Table 26, /l.ppendix A). 



Figure 8. 

52 

Stratigraphy of profile sites at Lake Sakakawea. The 
station number is below each column. The bottom of 
the columns are at pool level (563.5m msl.) at the 
time of measurement. (See Figure 2 for locations.) 
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Textural analyses of 12 samples of the mudstone yielded average 

sand-silt-clay percentages of 2.2 percent, 47.4 percent and 50.4 percent, 

respectively (See Table 27, Appendix A for individual sample results). 

The sediments comprising the mudstone are extremely poor to poorly 

sorted, positive skewed or nearly symmetrical, and most often mesokurtic 

(the textural parameters used are as defined by Folk, 1980). The average 

median diameter is 7.7 phi (fine silt). Average clay mineral ratios of 

nine mudstone samples is given in table 28 (Appendix A); smectite is the 

dominant clay type. 

The bedding of the mudstone is essentially horizontal throughout the 

study area. Joints are developed both along bedding planes and nearly 

perpendicular to the bedding. Also, the unit is highly fractured in most 

places, typically forming blocks a few centimetres in diameter. There are 

also many normal faults developed in the unit. These are most easily 

seen by displaced lignite beds. The contact with overlying units is 

always sharp. 

Along the shores of Lake Sakakawea, the Sentinel Butte Fonnation is 

especially susceptible to wave erosion because of its stratigraphic 

position, high smectite content, and characteristic jointing, fracturing 

and faulting. 

Medicine Hill Fonnation 

The Medicine Hill Fonnation (Ulmer and Sackreiter, 1973) is composed 

of two distinct members. The lower member is not exposed at any erosion 

stations. According to Ulmer and Sackreiter (1973), who reported expo­

sures north of Riverdale, near Wolf Creek Bay, the unit consists of sand, 

pebbles and cobbles, and is locally cemented into conglomerate; most 

often the sediments are unconsolidated. Contacts with other units are 

• ""G 



sharp and undulating. 

where not cemented. 
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This member is likely to be a very erodible unit 

The upper member of the Medicine Hill Fonnation is a pebble loam 

(glacial till) and is exposed at a number of erosion stations, where it 

typically overlies the Sentinel Butte Fonnation and is overlain by the 

Snow School Formation. The contacts are sharp and undulating. The unit 

is extensive, and where not exposed it is probably present below lake 

level. It ranges from 1 to 15m (3.3 to 49.3 ft) in thickness along the 

bluffs of Lake Sakakawea (Ulmer and Sackreiter, 1973). The color of this 

member varies from light brownish-gray (2.5 Y 6/2) to light gray (10 YR 

7/1) (Table 26, Appendix A). The average sand-silt-clay percentages for 

four samples are 24.7 percent, 45.4 percent and 29.9 percent, respec­

tively (Table 12). These compare favorably to Ulmer and Sackreiter's 

(1973) average percentages, 23 percent, 47 percent and 30 percent. This 

upper member is extremely poorly sorted, nearly symmetrical (skewness), 

and mesokurtic with an average median diameter of 5.9 phi. For this 

unit, the average density is 2.98 gm/cc and the average moisture content 

is 7.5 percent (Table 13). Clay mineral ratios are given in table 14, 

and matrix dolomite and calcite percentages are provided in table 15. 

Finally, the results of the coarse sand identification are listed in 

table 16. See Appendix A for individual sample laboratory data. 

This upper member contains large inclusions of bedded silt (stations 

58 and 59). These presumably were ripped up from a nearby lake and 

incorporated into the till (Bluemle, 1971). Alternatively, the unit may 

have been deposited on ice and became deformed upon melting. 
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TABLE 12 

Average Texture and Textural Parameters of 
Glacial Till Units, Lake Sakakawea, North Dakota 

Number of % % % Median 
Formation Samples Sand Silt Clay Sorting Skewness Kurtosis Diameter 

Upper Snow 
Schoo 1 10 26.4 41.3 32.3 3.415 -0.013 0.837 6.2 0 

Upper Horseshoe 
Valley 2 32.5 35.0 32.5 3.495 0.153 0.627 5.7 0 

Upper Medicine 
Hi 11 4 24.7 45.4 29.9 3.148 0,010 0.927 5.9 0 u, 

01 
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TABLE 13 

Average Density and Moisture Content of 
Glacial Till Units, Lake Sakakawea, North Dakota 

Number 
Formation of Samples Density ( gm/cc) Moisture Content(%) 

Upper Snow 
School 10 2.94 1.0.2 

Upper Horseshoe 
Valley 2 1.64 0.5 

Upper Medicine 
Hill 4 2.98 7.5 

TABLE 14 

Average Clay Mineral Ratios for Glacial Till 
Units, Lake Sakakawea, North Dakota 

Number 
of I 11 i te/ 

Formation Samples Kaolinite Chlorite Muscovite Smectite 

Upper Snow 
School 10 .11 .07 .24 .58 

Upper Horseshoe 
Valley 2 .16 .05 .21 . 58 

Upper Medicine 
Hill 4 .20 .07 .21 .52 
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TABLE 15 

Average Matrix Dolomite and Calcite Percentages 
for Glacial Till Units, Lake Sakakawea, North Dakota 

Number 
of 

Formation Samples % Dolomite % Calcite % Total Carbonate 

Upper Snow 
School 10 11. 5 7.5 19.0 

Upper.Horseshoe 
Valley 2 11.0 5.1 16.1 

Upper Medicine 
Hill 4 10.3 4.2 14.5 
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Number 
Formation of Samples 

Upper Snow 
School 10 

Upper Horseshoe 
Valley 2 

Upper Medicine 
Hill 4 

,,C,,,ec,C""'.f.t~ 
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TABLE 16 

Average Coarse Sand Lithology of 
Glacial Till Units, Lake Sakakawea, North Dakota 

% % % % Quartz % % % Dolomite Limestone Crysta 111 ne & Feldspar Shale Sandstone Other 

10.5 8.9 22.9 28.4 18.1 10. 7 0.5 

11.2 9.2 27.4 24.3 18.3 8.3 1.3 

6.0 8.7 8.6 16.4 35.7 13.2 11.4 
01 
<O 
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This member is usually exposed low in the banks and, consequently, 

is subject to direct wave contact. However, its unjointed, massive 

nature helps it withstand wave erosion relatively well. Its high 

smectite content also is a factor affecting its erodibility. 

Horseshoe Valley Formation 

The Horseshoe Valley Formation (Ulmer and Sackreiter, 1973) also has 

two members. The lower member is discontinuous and is exposed at only 

one site in the study area, station 51 (Figure 2). Ulmer and Sackreiter 

(1973) reported other exposures near Wolf Creek Bay. At station 51, the 

lower member consists of an iron-stained conglomerate overlain by a light 

yellowish-brown (2.5 Y 6/4) dirty sand (Table 26, Appendix A). The 

conglomerate averages about 0.3m (l.O ft) thick and the sand about 0.8m 

(2.6 ft) thick. The sand is flat-bedded with some cross-bedding. The 

bedding planes generally dip north-northeast (Ulmer and Sackreiter, 

1973). Lignite fragments are concentrated along some bedding planes. 

Textural analysis of the sandy loam yielded sand-silt-clay percentages of 

68.4 percent, 14.1 percent, and 17.5 percent, respectively (Table 27, 

Appendix A). It is poorly sorted, positively skewed, and leptokurtic 

with a median diameter of 1.8 phi. Contacts with overlying and 

underlying units are sharp and undulating. The sand is very erodible 

when directly impacted by waves, whereas the conglomerate acts as natural 

rip-rap. 

The upper member of the Horseshoe Valley Formation is a pebble loam 

(glacial till) and is exposed at only two stations. At station 51 it 

overlies the lower member of the Horseshoe Valley Formation, whereas at 

station 52 it overlies the upper member of the Medicine Hill Formation. 

At both stations the unit is overlain by the upper member of the Snow 
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School Formation (till) and/or the Oahe Formation (loess). All contacts 

are sharp and undulating. The unit is also exposed in other banks along 

the shore north of Riverdale near Wolf Creek Bay (Ulmer and Sackreiter, 

1973). It ranges in thickness from about 2.5 to 5.0m (8 to 16.5 ft) at 

the stations but may be as thick as 6.Cm (19.7 ft) (Ulmer and Sackreiter, 

1973). 

The color of this member varies from light brownish-gray (2.5 Y 6/2) 

to light yellowish-brown (2.5 Y 6/4) (Table 26, Appendix A). The average 

sand-silt-clay percentages for two samples are 32.5 percent, 35.0 percent 

and 32.5 percent, respectively (Table 12). These results compare 

favorably with Ulmer and Sackreiter's (1973) average percentages which 

were 29 percent, 36 percent, and 34 percent, respectively. The unit is 

extremely poorly sorted, positively skewed, and platykurtic with an 

average median diameter of 5.7 phi. The average density is 1.64 gm/cc 

and the average moisture content is 0.5 percent (Table 13). The average 

clay mineral ratios, matrix dolomite and calcite percentages, and coarse 

sand lithologies are given in tables 14, 15 and 16. See Appendix A f~r 

individual sample laboratory data. 

Even though the upper member of the Horseshoe Valley Formation is 

never in direct contact with waves at any station, the unit displays 

strong columnar jointing which decreases its strength and, together with 

its high smectite content, contributes greatly to its erodibility. 

Snow School Formation 

The Snow School Formation (Ulmer and Sackreiter, 1973) consists of 

three members. The lowest member is exposed at stations 4, 5 and 7, and 

is also exposed at other scattered locales throughout the study area 

(Ulmer and Sackreiter, 1973). ·It is composed of a lower iron-stained 
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conglomerate overlain by flat-bedded and occasionally cross-bedded dirty 

sand. Lignite fragments occur along some of the bedding planes which 

generally dip east-northeast (Ulmer and Sackreiter, 1973). The color of 

the sand varies from light brownish-gray (2.5 Y 6/2) to pale brown (10 YR 

6/3) (Table 26, Appendix A) and may be iron-stained. Textural analyses 

of five samples yielded average sand-silt-clay percentages of 69.1 

percent, 19.1 percent and 11.8 percent, respectively (Table 27, Appendix 

A). The sand has a median diameter of 2.7 phi, is poorly sorted, 

positively skewed, and leptokurtic. ~/here exposed, the unit averages 

about lm (3.3 ft) thick and the contacts with overlying and underlying 

units are sharp and undulating. The sand is very susceptible to wave 

erosion, whereas the conglomerate forms natural rip-rap. 

The middle member of the Snow School Formation is not exposed at any 

erosion station -but is present at a few sites within the study area 

(Ulmer and Sackreiter, 1973). This unit averages about lm (3.3 ft) thick 

and contains beds of sand, silt, and clay, but the most abundant sediment 

is a reddish-brown, sandy pebble-loam (till) (Ulmer and Sackreiter, 

1973). Where exposed, this distinctive unit is a good marker bed. 

The upper member of the Snow School Formation is a very compact, 

columnar jointed pebble loam (till), and is exposed throughout the study 

area. This unit and the Sentinel Butte Formation are the two most 

co11JJJonly exposed units along the eastern end of Lake Sakakawea. It may 

be exposed at the water line or high above lake level. It is typically 

overlain by the Oahe Formation (loess), and is usually underlain either 

by the lowest member of the Snow School Formation, the upper member of 

the Medicine Hill Formation, or the Sentinel Butte Formation. The 

contacts are sharp and undulating. The thickness varies from 0.2 to 6.0m 
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(0.7 to 19.8 ft) (Ulmer and Sackreiter, 1973). Also, the till may have 

pockets of sand and gravel near the contact with the Oahe Formation. 

· The color of this member varies from light brownish-gray (2.5 Y 6/2) 

to pale olive (5 Y 6/3) (Table 26, Appendix A). Calcium carbonate 

precipitate is common along joint planes. The average sand-silt-clay 

percentages for 10 samples are 26.4 percent, 41.3 percent, and 32.3 

percent, respectively (Table 12). These results compare well with those 

calculated by Ulmer and Sackreiter (1973), which were 28 percent, 38 

percent, and 33 percent. The member is extremely poorly sorted, 

negatively or positively skewed, and platykurtic with an average median 

diameter of 6.2 phi. The average density is 2.94 gm/cc and the moisture 

content averages 10.2 percent (Table 13). The average clay mineral 

ratios, average matrix dolomite and calcite percentages, and average 

coarse sand lithologies are given in tables 14, 15 and 16. See Appendix 

A for individual sample laboratory data. 

This unit is very erodible because of its prominent Jointing and 

high smectite content. 

Oahe Formation 

This is the uppermost stratigraphic unit throughout the study area. 

It is interpreted to be wind-blown sediment (loess). The formation has 

beer. differentiated into four·members (Bickley, 1972), but distinguishing 

them was not relevant to this study. 

Textural analyses yielded average sand-silt-clay percentages of 7.8 

percent, 71.8 percent and 20.4 percent (Table· 27, Appendix A}. The 

average median diameter was 6.0 phi. The sediments are poorly sorted, 

positively skewed, and leptokurtic. The color of the loess ranges from 

light gray (SY 7/2) to dark grayish-brown (10 YR 4/2) (Table 26, Appendix 



64 

A). The thickness of the unit varies from about 0.2 to 0.5m (0.7 to 1.6 

ft) and averages 0.3m (1.0 ft). 

The Oahe Fonnation is highly subject to swelling and shrinking upon 

alternate wetting and drying because of its high smectite content 

(Groenewold, 1972). It also tends to draw water up to the freezing zone, 

causing frost heaving (Groenewold, 1972). Nevertheless, the loess is 

heavily root-bound which contributes to making the fonnation probably the 

most stable unit in the area. The underlying tills often break away at 

the contact leaving the Oahe Fonnation as an overhang. Thus, the bank 

failures characteristic of this unit are debris or earth falls. 

Criteria for Differentiating the Pleistocene Fonnations 

The lower members of the Pleistocene Medicine Hill, Horseshoe Valley 

and Snow School Fonnations are very similar and difficult to distinguish 

unless the upper members are also present. Because these are present in 

the study area, the lower members were identifiable. 

Only the Snow School Formation contains a middle member. Its 

massive structure, characteristic red color and high silt content combine 

to make it a very distinctive unit, a good marker bed (Ulmer and 

Sackr~iter, 1973). This unit was not present at any of the stations, 

however. 

The upper members of the three Pleistocene fonnations can be iden­

tified using several criteria. These include both observable and labor­

atory-derived criteria. 

1. Stratigraphy: Exposure of two or more of the formations at one 

site presents the opportunity to work one's way strati­

graphically downward or upward using other visible criteria, 
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such as jointing, color, etc. Good examples of this occur at 

stations 7, 51, 52, and 59 (Figure 2). 

2. Jointing: Both the Upper Horseshoe Valley and Upper Sno~, 

School Formations display columnar jointing; the Upper Medicine 

Hill Formation does not. Good examples of this are at stations 

7, 51, 52, and 59 (Figure 2). This is a major criterion for 

differentia.ting the Upper Medicine Hill Formation. Also, 

calcium carbonate precipitation is especially abundant along 

joint planes of the Upper Snow School Formation. 

3. Color: Without support, this usually is an unreliable differ­

entiation criterion. Generally, the Upper Medicine Hill 

Formation is the yellowest (or lightest) of the three units. 

Good examples of this are at stations 7 and 52. The Upper Snow 

School·Formation, on the other hand, commonly has a dark layer 

near the contact with the Oahe· Formation (paleosol?). Finally, 

the Upper Horseshoe Valley Formation often displays iron-stain 

mottling (stations 51 and 52). 

4. Texture: Table 12 indicates that each upper member has a 

characteristic texture. The higher percentage of sand and 

lower percentage of silt is a major differentiation criterion 

for the Upper Horseshoe Valley Formation. The Folk statistics 

are not different enough to be a reliable criterion, though. 

Also, the Upper Medicine Hill Formation appears to have the 

highest percentage of cobbles and boulders, contains the 

largest lignite clasts, and contains sand lenses. 

5. Density and Moisture Content: Table 13 lists the average 

density and moisture contents of the three upper members. It 



6. 

66 

can be seen that the Upper Horseshoe Valley Formation has a 

lower density and moisture content than the other two upper 

members. This is another major criterion for differentiating 

the Upper Horseshoe Valley Formation from the other two upper 

units, especially the Upper Snow School Formation. 

Clay Mineralogy: Average clay mineral ratios for the upper 

members are presented in table 14. The Upper Medicine Hill 

Formation can be differentiated by its relatively low smectite 

ratio. The Upper Horseshoe Valley Fon11ation usually ha.s a 

higher kaolinite ratio than the Upper Snow School Formation 

but, again, this should not be used as a distinguishing criter­

ion unless supported by other data. 

7. Matrix Dolomite and Calcite: Table 15 lists the average matrix 

8. 

dol omi.te and calcite percentages for the three upper members. 

In each case, the percentage of dolomite is about twice that of 

the calcite. Starting with the Upper Snow School Formation and 

moving down-section, the carbonate percentage decreases. Thus, 

the Upper Snow School till generally has the highest amount of 

matrix carbonate. However, this may be an unreliable criterion 

because it is unknown what percentage of calcite is primary. 

Coarse Sand Lithology: Table 16 provides coarse sand lithology 

percentages for the three members. The Upper Medicine Hill 

Fon11ation is easily differentiated because of its relatively 

high shale and "other" (lignite) content, and relatively low 

carbonate, crystalline/quartz and feldspar content. The 

results for the other two members were too similar to be 

utilized confidently without further supportive data. 
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The Upper Medicine Hill Formation, therefore, is .chiefly character­

ized by the absence of columnar jointing, a relatively light color, a low 

sand but high cobble con~ent, relatively large lignite clasts, a 

relatively high shale coarse sand fraction, a high kaolinite ratio, and a 

low matrix carbonate content. The Upper Horseshoe Valley Formation is 

characterized by columnar jointing, iron-stain mottling, a low density 

and moisture content, and nearly equal sand-silt-clay percentages. 

Finally, the Upper Snow School Formation is distinguished by columnar 

jointing, a low sand content, a high smectite but low kaolinite ratio, 

and a high matrix. carbonate content. 

Weathering 

A second factor affecting bank erosion is weathering. The strength 

of reservoir bank materials is reduced by physical and chemical weather­

ing processes (Kachugin, 1980). The ultimate influence of weathering on 

shear strength is to reduce the cohesion to a small value and, to a 

lesser extent, reduce the angle of internal friction (Spears and Taylor, 

1972). Weathering most affects those argillaceous rocks and sediments 

which have bonded structures (Kenny, 1975). 

Major weathering processes which cause a reduction in shear strength 

in glacial tills include fissuring, frost action, carbonate removal by 

leaching, and hydrolysis which produces new swelling clays (Quigley, 

1975). With subsequent weathering, these expandable clays are especially 

susceptible to progressive failure (Bjerrum, 1967). 

Finally, although weathering does reduce bank strength, it should be 

remembered that other factors (e.g., changes in pore water pressure) 
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produce much larger and faster reductions in strength. Thus, overall, 

weathering is a relatively minor process affecting bank erosion. 

Waves 

General 

A third factor of bank erosion is wind- and sometimes boat­

generated wave action (Carter and Guy, 1983; Quigley and Gelinas, 1976; 

Young, 1972). In fact, many recent studies have concluded that wind­

induced wave erosion is the dominant process along reservoirs (Reid, 

1984; Gatto and Doe, 1983; Kachugin, 1980), lakes (Sterrett, 1980; 

Hadley, 1976; Mickelson and others, 1976), and rivers (Gatto, 1982; 

Simons and others, 1979). 

The effect of wave action on the bank takes place in both active and 

passive ways. Active wave erosion is accomplished by three major 

processes (Ritter, 1979, p.534): attrition, corrasion and hydraulic 

action. Attrition decreases the size of particles, which allows 

subsequent waves to carry them to the bank face, thus causing .erosion by 

particle impact (corrasion). Hydraulic action is erosion caused by the 

water itself a.nd includes wave shock pressure and pneumatic quarrying by 

air trapped in joints. A final way waves can activate bank failure is 

through vibrations. 

Wave erosion is also a passive factor in many bank failures. The 

removal of material from the bank toe, and subsequent undercutting, is 

the underlying cause of most bank failures along Lake Sakakawea and other 

reservoirs (Reid, 1984; Doe, 1980) and lakes (Carter and Guy, 1983; 

Hadley, 1976). This reduces both underlying and lateral support (Varnes, 

1978) and indirectly causes falls, topples and slides. Mqst of these 

failures are progressive and many initiate as tension joints along the 
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bank top (Thorne and Tovey, 1981; Quigley and Gelinas, 1976). Further­

more, bank strength is reduced by saturation (Carter and Guy, 1983), and 

chemical action of the water (Kachugin, 1980). 

Many factors affect the magnitude of wave-induced erosion at a given 

site. Water level is the most important factor at Orwell Lake (Reid, 

1984) and most other reservoirs (Doe, 1980) and Takes (Quigley and 

Gelinas, 1976; Mickelson and others, 1976). When lake levels are high 

enough that waves can directly attack the banks, many factors control 

erosion rates. These include wave climate (wind velocity and duration, 

fetch, and water depth) (Reid, 1984; Hadley, 1976), bank orientation 

(Carter and Guy, 1983), bank geology (Quigley and Gelinas, 1976), beach 

and offshore sediments (Sunamura, 1982), offshore bathymetry (Edil and 

Vallejo, 1980), and vegetation cover (Hoffman, 1978). 

Although most studies support the importance of wave erosion along 

reservoir and Take shores, there are relatively few quantitative studies. 

Many workers advocate the use of repetitive profiling or similar survey­

ing techniques (Reid, 1984; Buckler and Winters, 1983; Cordero, 1982; 

Goldsmith and Oertal, 1978; Young, 1972; U.S. Army Corps of Engineers, 

1966, 1939). However, erosion pins (Hooke, 1979), the micro-erosion 

meter (Trudgill, High and Hanna, 1981; Robinson, 1977), and the contour 

gauge (Haigh, 1981) could be useful when daily measurement is possible, 

or especially before and after storms. In this study, a combination of 

methods was employed to measure wave erosion and the factors affecting 

wave erosion. 

Lake Sakakawea and Lake Audubon 

Wave erosion is the dominant erosional process at Lake Sakakawea as 

well as at Lake Orwell, Minnesota (Reid, 1984). Figure 9 shows wind-
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Figure 9. Waves eroding a bank of Paleocene mudstone and 
lignite overlain by till and a thin veneer of 
loess. Station 54, December 3, 1984. 

l 
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induced waves impacting the base of a bank along the west side of Fort 

Stevenson State Park. Relatively speaking, this process is minor at Lake 

Audubon both because the banks are low and because the pool level fluc­

tuations are small. Figures 10-13 depict a typical bank at Lake 

Sakakawea affected by wave erosion. Even though the photos were taken at 

different stations, they are typical of the sequence that occurs. Wave 

action removes accumulated colluvium and erodes the primary bank 

materials, leaving a vertical or undercut bank. Consequently, slides, 

falls and topples occur as the bank again stabilizes. 

As at Lake Orwell (Reid, 1984), the most important variables which 

affect the quantity of wave erosion are wind direction, duration and 

strength, concurrent with high pool levels. Other important variables 

are the offshore bathymetry, and bank orientation, geology and geometry. 

Bank R·ecession and Joint Propagation 

The amount of bank recession due to wave erosion is likely to be 

reflected in the amount of bank recession over the warm weather (high 

pool) months. Of course, there are other factors which cause minor bank 

recession over those months (e.g., groundwater, vibrations) but such 

Prosion is most likely offset by delayed, wave-induced failures which 

occur after the warm months. 

Bank recession due to wave erosion ranged from 0.48 to 4.93m (1.57 

to 16,17 ft) and averaged 2.06m (6.77 ft) for the 20 stations at Lake 

Sakakawea between May 1983 and September 1984 (Table 9). The high 

variation in bank recession is due to many interrelated factors. For 

example, stations 55 and 61 both receded about 5m (16 ft) because of wave 

erosion. Their banks are composed of Sentinel Butte siltstone and 

mudstone at the wave impact zone, overlain by Snow School till and Cahe 
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Figure 10. Relatively stable slope, characterized by vegetated 
colluvium. Station 59, July 14, 1983. 

Figure 11. During high pool levels, colluvium is removed by waves 
and subsequent undercutting of the primary sediment 
and/or bedrock occurs. Station 1, August 22, 1983. 
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Extension joints may be propagated due to wave under­
cutting and, subsequently, bank failure will result. 
Station 2, June 19, 1984. 

Figure 13. After the pool level recedes, the undercut, wave-worn 
banks will once again reach a relatively stable profile. 
Station 3, October 20, 1984 . 
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loess. But so are stations 2, 50, 53, 54, 56, 57, 60 and 62, whose 

recession ranged from 0.48 to 2.59m (1.57 to 8.49 ft). Also, stations 55 

and 61 ,have different bank heights. The reason they have similar bank 

recession amounts is probably their respective orientations. Although 

their orientations are different, both stations are headlands (Figure 2) 

which are oriented so that longshore currents and prevailing waves carry 

the eroded sediment into deeper parts of the lake. Thus, a stable beach 

and offshore profile is net being built and, therefore, because of the 

deeper water nearer shore, breaking wave energy at the bank is probably 

higher than at other stations. 

Wave erosion accounts for about 87 percent of the total bank 

recession at Lake Sakakawea (Table 9). Because of their low bank height, 

the banks around Lake Sakakawea State Park (stations 1-5, Figure 2) show 

the highest percentage of total bank recession due to wave erosion (Table 

9). In contrast, station 50, with one of the highest banks, has the 

lowest percentage. The small percentage at station 50 is explained by 

the presence of a large colluvium slope at the bank toe throughout 1983 

and most of 1984, although the higher pool levels of 1984 removed most of 

it (Figure 80, Appendix C). 

The majority of the joints along bank recession pin lines both 

initiated and failed over the warm weather months as an indirect result 

of wave erosion at the base (Figures 6 and 7). As the toes of banks are 

eroded and the banks are oversteepened, their center of gravity is raised 

and extension joints may be initiated. With time the stresses are 

released and a slide, fall or topple results. 
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Area Eroded 

Most of the area eroded at the profile sites was also due to wave 

erosion. For the 11 sites analyzed between mid-October 1983 and mid­

October 1984, over 83 percent of the erosion occurred from about June 1 

to October 14, 1984 (Table 17). The areas ranged from 4.42 to 44.94m2 

(47.58 to 483.73 ft2) and averaged 14.32m2 (154.14 ft2). 

Station 3 had the least area eroded by waves. This is primarily due 

to the its low bank height even though the bank recession rate there was 

above average (Table '9). The relatively high erosion at station 51 is 

not surprising. The profile site, a west-facing point (Figure 2), was 

especially susceptible to large northwesterly and westerly waves in 1984. 

The higher than usual pool level allowed waves to attack directly the 

highly erodible Lower Horseshoe Valley sand (Figure 14, and Figures 81, 

82, 83 and 84, Appendix C). Undercutting took place and subsequent upper 

bank recession occurred through slides and falls along joint planes. 

These failures continued even after the pool was lowered. Many of the 

failed blocks of Upper Horseshoe Valley and Upper Snow School till came 

to rest on the platform built by the more resistant Upper Medicine Hill 

till and Lower Horseshoe Valley conglomerate. Their removal will be 

facilitated next year as wave erosion again oversteepens the platform. 

This site is an excellent example of the significance of pool level and 

lithology to wave erosion. 

Pool Level 

In order for waves to erode the banks, the pool level must be high 

enough for the waves to impact the bank. The high pool levels for lakes 

Sakakawea, Audubon, and Orwell typically occur in the late spring and 

surm,er. These, then, are the times of greatest wave erosion. The effect 
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I. 
TABLE 17 

·:r 
Area Eroded at Lake Sakakawea Bank Profile 

J Sites During the Warm Weather Months 
i"':; 

:;. s 

Area Eroded (m2) ' 

and % of Total 
Measurement Area Eroded 

Station Interval for that Site 

1 05/30/84 - 10/13/84 5.43 (79 .4%) 
2 05/30/84 - 10/13/84 10. 51 (48.7%) 
3 05/30/84 - 10/13/84 4.42 ( 81. 8%) 
4 05/30/84 - 10/13/84 7.42 ( 83 .7%) 
5 05/30/84 - 10/13/84 6.65 ( 98. 4 %) 
7 

50 
51 05/31/84 - 10/13/84 44. 94 (81.4%) 
52 05/31/84 - 10/13/84 23.59 (99.9%) 
53 

< 55 
56 
57 
58 
59 06/01/84 - 10/14/84 6.18 (63.4%) 
60 06/01/84 - 10/14/84 7.91 (85.4%) 

·> 61 06/01/84 - 10/14/84 11.57 (99.0%) \ 

62 06/01/84 - 10/14/84 28.86 (96.1%) 

Average 14.32 (83.4%) 
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Figure 14. When the very erodible sand units are undercut by waves, 
subsequent upper bank failures occur. At station 51 
the Lower Horseshoe Valley sand (delineated by white 
lines) is overlain by the jointed Horseshoe Valley and 
Snow School tills and the Oahe loess, and is underlain 
by the massive Medicine Hill till. 



81 



82 

of pool level fluctuations on bank recession values can be seen in figure 

15 and on the bank recession graphs for Lake Sakakawea erosion stations 

(Appendix B). These show the characteristic sharp increases in bank 

recession during the high pool levels. The graphs for Lake Audubon 

(Appendix B) show an inverse relationship; ice-shove is the dominant 

factor in bank recession at Lake Audubon, at least for the east end of 

the lake in 1984. 

The pool level of Lake Sakakawea typically fluctuates seasonally 

(Figure 16) because of three general streamflow conditions that exist. 

Nonna] winter water contribution is largely from baseflow because water 

courses are frozen. The pool is lowered over the winter to accomplish 

flood control and water-management obligations downstream, and to make 

room for the usual spring runoff. The pool level typically reaches its 

yearly low by mid-March to mid-May. In the spring, two rapid rises in 

pool level .usually occur. The first is caused by snowmelt on the plains 

and the second by snowmelt in the mountains. The second is usually much 

greater (Figure 16). Either may be accelerated or modified by rainfall. 

Peak discharge is usually after the first spring rise, but maximum yearly 

pool level is commonly reached in July or early August (Pine and Johnson, 

1958). From late summer onward, discharge subsides and the pool level 

drops. 

The pool levels were unusually high during the spring and summer of 

1984, partly because water was being held back to aid already flooded 

central Plains states downstream. As a result of the high water that 

year, bank erosion was intense. Pool level data for Lake Audubon were 

not collected because pool levels fluctuate little compared to Lake 

Sakakawea. 
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Figure 15. Relationship of Lake Sakakawea pool level fluctuations 
(msl.) and bank recession (station 1), 1983-1984. 



fr;i·,;i'i1ffliflfil"I" {' t,' ,::ir'.f:tf'''~.· ·,; '! i ·-t{fifri/f~:·, 1· 1 H -r~rJ :Iii' t \' ·'_~;;.~ .. ,.,,-·, ·< .. ii; .·>.-'J'"' t ""' ;~--~·~·;_;=~~~ 

p 
0 
0 
L 

E 
L 
E 
V 
A 
T 
I 
0 
N 

(METRES) 

563.5 8 
A 
N 

BANK RECESSION - - -

POOL LEVEL 

(FEET) 

563 

562.5 

561.5 

561 

!l60.5 

20 K 
R 
E 
C 

1!1 E 
s 
s 

,, 
I \ 
I \ 
I \ 

1848 

&+1846 

5 

1844 

3-1-1942 

/, I ~ 
/ ' I '2 1840 

I __ / '--- / 's 
I i I --- / I I I I ---

' I I I --- I I I I 1838 
JUNE JULY AUG SEPT OCT NOV DEC I JAN FEB MAR APR MAY JUNE JULY AUG 

1983 1984 

()) ... 



Figure 16. 

85 

Lake Sakakawea pool level fluctuations 
(msl.), 1983 and 1984 (partial). 
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vii nd 

Directly related to pool levels in the assessment of wave erosion is 

wind direction, strength and duration. When strong winds accompany high 

pool levels, waves break at the base of the banks, initiating the process 

of undercutting (Carter and Guy, 1983). 

A dominant control on the erosion rate is the amount of ~,ave energy 

that strikes the bank (U.S. Anny Corps of Engineers, 1966). Quigley and 

Gelinas (1976) reported an approximate linear relationship between the 

150-year erosion rate and breaking wave energy at Lake Erie. Wave height 

is a measure of wave energy (Doe, i980) and the highest waves are 

produced by the strongest winds along the longest, widest fetch. Figure 

17 illustrates the frequency of daily high winds and those winds in 

excess of 40km/hr (25 mph) during the periods of high pool levels of Lake 

Sakakawea for 1983 and 1984 (through August). 

For Lake Sakakawea and Lake Audubon, the greatest fetch is achieved 

by westerly winds (Table 32, Appendix D). The frequency of strong winds 

from that direction is low; winds in excess of 40km/hr blew from the west 

only two days in both 1983 and 1984 (Figure 17). By far, the most 

frequent direction of strong winds was from the northwest and north. 

Southerly and southeasterly winds are also common, and precede low 

pressure systems. Once a cold front passes, the winds quickly switch to 

the north and northwest, which accounts for the other major direction of 

strong winds. 

The duration of strong winds is also a factor in wave generation. At 

Lake Sakakawea and Lake Audubon, strong southerly winds rarely lasted 

more than 24 hours, whereas northwesterly and northerly winds often 



Figure 17. 

88 

Highest daily wind direction during high pool 
levels, 1983 and 1984 (partial). 
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lasted for several days (U.S. Army Corps of Engineers, Riverdale, North 

Dakota, weather records). 

Bank Orientation 

Bank orientation is important because banks exposed to wind-driven 

1·1cves are the ones most susceptible to wave erosion. Buckler and Winters 

(1983) found that bluff retreat rates at Lake Michigan are highest for 

bluffs oriented facing the dominant high wind directions. This relation­

ship is also true at Orwell Lake during high pool levels (Reid, 1984). 

Thus, for lakes Sakakawea and Audubon, it would be expected that banks 

facing northwest and north (Figure 17) would have high amounts of reces­

sion, whereas banks facing east and southwest should experience low 

recession. 

Figure 18, and table 33 (Appendix E), show the relationship between 

cumulative average bank recession due to wave erosion according to bank 

orientation for Lake Sakakawea. Recession ranged from 3.06m (10.04 ft) 

for northeast-facing banks to 0.62m (2.03 ft) for east-facing banks. 

North-facing banks showed the second greatest recession but northwest­

facing banks showed less recession than four other orientations, includ­

ing southwest-facing banks. This indicates that wave refraction is 

important and that bank orientation, by itself, is not the primary factor 

affecting wave erosion. 

Analysis of extensional joint data (Figures 6 and 7) was somewhat 

more revealing. Joint initiation and failure were most frequent in west­

and south-facing banks (headlands on the north side of the lake) at Lake 

Sakakawea. This is primarily because banks facing those directions are 

subjected to waves generated from the west, the longest fetch direction. 

However, it should be noted, that west- and south-facing banks are also 
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Figure 18. Relationship of warm weather (high pool level) 
cumulative average bank recession to bank orientation. 
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most prone to desiccation-induced jointing because of greater solar 

exposure. 

Profile results also indicate west-facing banks to be highly suscep­

tible to wave erosion. The three sites with the highest areas eroded 

(stations 51, 52 and 62; Table 17) face westerly (Table 5). 

In conclusion, bank orientation is an important variable detennining 

the efficacy of wave erosion at Lake Sakakawea. 

Bank Geology 

In any study of shoreline erosion the physical characteristics of 

the bank sediment must be analyzed to detennine their importance and 

relationship to wave erosion (Reid, 1984; Buckler and Winters, 1983). 

As stated earlier, lithology at the wave impact zone during high pool 

level is of paramount importance in detennining recession rates. 

At Lake Sakakawea, one would expect the sand units to be more 

erodible than either the glacial tills, or the Paleocene siltstones or 

mudstones. Figure 19, and Table 34 (Appendix E), show cumulative average 

bank recession due to wave erosion compared to bank lithology at the wave 

impact zone. It can be seen that the Upper Snow School till is the most 

erodible, whereas the Upper Medicine Hill till is the least erodible. 

The Lower Horseshoe Valley sand is relatively erodible, but the Sentinel 

Butte siltstones and mudstones are as erodible as the Lower Snow School 

sand. 

There are several reasons why these relationships differ from what 

is expected based on lithology alone. First, the low recession value for 

the Lower Snow School sand is due to the fact that the only station where 

it is exposed is located in a sheltered bay (station 5, Figure 2). 

Secondly, the Lower Horseshoe Valley sand crops out only at station 51, 



Figure 19. 
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Relationship of wann weather (high pool level) 
cumulative average bank recession to bank lith­
ology at the wave impact zone. 

USS= Upper Snow School Formation 
LSS = Lower Snow School Fonnation 
LHV = Lower Horseshoe Valley 
UMH = Upper Medicine Hill 
SB= Sentinel Butte Formation 

l 
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on the edge of west-facing headland (Figure 2). Because of its relative­

ly high stratigraphic position (Figure 14), waves attack the sand only 

when pool level is near maximum, as in 1984. However, during that 

period, the banks at that station were eroded more than any others at 

Lake Sakakawea stations (Table 17). Thirdly, the degree of induration or 

consolidation of the bedrock or sediment is important. For example, the 

banks of stations 56 and 57 face west, are nearly the same height, and 

are composed of the same lithologies (Table 4). However, their 

cumulative average recession values vary greatly (Table 9). This is due 

mostly to the well-indurated, more massive lenses of siltstone which 

occur at, and slightly above, the wave impact zone at station 57, 

Finally, the erodibility of the glacial tills and Paleocene bedrock is 

control led mainly by structure rather than texture. 

Structure, i-.e. jointing and faulting, is a very important variable 

affecting wave erosion at Lake Sakakawea. Figure 20 shows the distinc­

tive columnar jointing in the Upper Horseshoe Valley and Upper Snow 

School Formations (tills). Most of these joints were probably formed 

because of crustal expansion due to deglaciation (Sterrett, 1980; Grisak 

and Cherry, 1975), although some joints are probably due to desiccation. 

Figure 21 illustrates the more complex horizontal and near-vertical 

joints in the Sentinel Butte Formation (mudstone); a blocky appearance 

results. Joints are not only important in weakening the bank materials 

but also they provide an avenue for exploitation by waves. Small caves 

or tunnels along vertical joints are common along the shoreline, espe­

cially during times of high pool levels. Another structure caused by 

wave erosion along joints, a narrow till ridge, was first observed in 

September 1984. Three of these extended outward from the bank at station 

,. -,· ,..,.,_."····;,·." .. /;-. ~.,., - ·---~ ,.;.i:; 
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Figure 20. Vertical jointing characteristic of the Horseshoe 
Valley and Snow School tills. Note large blocks 
at base. Station 51, May 16, 1983. 

Figure 21. Vertical and horizontal jointing typical of the mudstone 
and siltstone of the Sentinel Butte Formation. Note the 
fragments along the base of the bank. Station 53, 
December 3, 1983. 
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52 (Figure 2). It is hypothesized that these formed between caves which 

were expanding toward one another. The sediments above the caves then 

failed, leaving the till ridges projecting into the lake. 

Faulting is another important bank structure. Although faults are 

rare at Lake Sakakawea, where they do exist, the Sentinel Butte Formation 

is highly fractured along the fault planes. Thus, not only are the bank 

materials weakened by faulting, but once again an avenue is provided for 

wave exploitation and subsequent undercutting. Most of the faults 

observed in the study area are normal faults and are restricted to the 

Sentinel Butte Formation. There are two graben structures along the west 

shore of Fort Stevenson State Park (station 54). Both have been prefer­

entially eroded because of the resulting structural weakness. 

Thus, it can be concluded that lithology, jointing, and faulting are 

important variables controlling the amount of bank erosion at Lake 

Sakakawea. 

Clay mineralogy is another factor in bank failure because the amount 

and type of clay mineral determines the formation of water-stable aggre­

gates (Bryan, 1974). The clay mineralogy of all the exposed formations 

in the study area is dominated by expandable smectite clays. Laboratory 

analyses did not reveal whether the smectites were predominantly calcic 

or socic; they appear to be a mixture. The relationship of this to wave 

erosion at lakes Sakakawea and Audubon needs to be studied further. 

Nonetheless, when the smectites swell upon saturation by waves, the 

sediments should become more stable. However, when the pool level is 

lowered and the clays shrink, the sediments will become unstable again. 
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Bank Geometry 

Bank slope angle and length, and bank height also affect recession 

rates. Steeper slopes are generally more unstable than more gentle 

slopes (Edil and Vallejo, 1980). At Lake Sakakawea and Lake Audubon the 

banks are typically vertical. This greatly increases the probability of 

both undercutting by wave action, and subsequent mass wasting. Stable 

slopes rarely occur except in sheltered areas or during years of rela­

tively low pool levels. 

High banks can reach an unstable condition faster than lower banks 

with similar slopes as their slope angle changes by an equal amount (Edil 

and Vallejo, 1980). Also, achievement of slope stability for high banks 

generally requires more time than for lcw banks (~uckler and Winters, 

1983). However, long term bank recession rates at Lake Michigan appear 

not to be directly related to bank height; in fact, rates for high and 

lo~.· banks are similar { Buck 1 er and Winters, 1983) . 

The banks in the study area are variable in height. Lake Audubon 

banks are generally less than lm (3.3 ft) high, whereas Lake Sakakawea 

banks range from about 2 to 25m (6.5 to 82 ft) high, Figure 22, and 

table 36 (Appendix E), show the relationship between wave-induced cumula­

tive average bank recession and bank height for Lake Sakakawea; banks 

less that 5m (16.4 ft) high were eroded the most, and banks 5 to 10m (16 

to 33 ft) high were eroded the least. This is probably best explained by 

the comparison of volumes involved in these two extremes. Removal of a 

unit of sediment from a low bank will result in a rapid response at the 

top of that bank. Removal of the same unit from the base of a high bank 

will cause it to be replaced by sediment transferred from a larger area 

and the effect at the top of the bank generally will be smaller. 
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Figure 22. Relationship of warm weather (high pool level) 
cumulative average bank recession to bank height. 
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However, following this reasoning, banks more than 10m high should 

experience the least amount of recession. But this is not the case. 

It is concluded that although low banks will probably' be more 

susceptible to higher bank recession, bank height is just one of many 

complexly interrelated factors controlling wave erosion. 

Vegetative Cover 

The amount and type of vegetation on a bank also affects wave 

erosion (Mickelson and others, 1977). Once a semi-stable slope is 

allowed to fonn and vegetation is able to take root (Figure 23), the 

vegetation can contribute to subsequent bank stability. Vegetation not 

only can protect the surface but also roots help hold the sediment 

together (Figure 24). 

Natural Rip-Rap 

Indirectly related to bank characteristics is the presence of 

objects at the bank base which tend to absorb the wave energy. An 

example is the presence of lag concentrations of boulders (eroded from 

till) at some sections of the shore. Such concentrations are typically 

restricted to short segments of the shore, such as at stations 51, 52 and 

57 (Figure 2). In every case, though, the boulders are submerged during 

times cf high pool level. Concretions, which also accumulate at bank 

bases, are especially common at station 50 and immediately south of 

there. The~e concretions are up to lm in diameter. As the mudstones in 

which they are fonned are eroded, the concretions come to rest at the 

base. 

Natural rip-rap materials also include petrified logs. Logs are 

common near stations 2 and 61, and between stations 53 and 54. The logs 
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A stable slope (foreground), characterized by vegetation, 
and a slope in the process of becoming stable (background) 
as colluvium accumulates along the lower slope. Station 
59, December 3, 1983. 

Figure 24. Overhanging root-bound loess above more-erodible 
Snow School till. Station 1, July 14, 1983. 
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typically are compressed and resistant to erosion. Finally, there are 

the channel sands; these are linear ridges that formed as channel fill­

ings in former deltas {Jacob, 1976). Because the sand was less porous 

than the silts into which the channels were cut, subsequent dewatering 

and compaction of the sediments left the channel fillings as ridges. 

Such channel fillings are especially common at station 50 and are also 

present between stations 3 and 4. In conclusion, these resistant fea­

tures (boulders, concretions, petrified logs, and channel fillings) most 

effectively impede wave erosion before they become submerged by rising 

pool levels. 

Offshore Profile 

The form of the offshore profile is critical to the efficacy of wave 

erosion (Mickelson and others, 1977; U.S. Army Corps of Engineers, 

1966). In fact, some workers have concluded that the integration of 

storm waves with the nearshore sand system is the most important variable 

associated with site to site variations in bank recession (Buckler and 

Winters, 1983; Davis, 1976; Davis and others, 1973). The measurement 

of offshore profiles at Lake Sakakawea was begun in June of 1984. 

Insufficient data were collected to merit quantitative interpretations of 

what is happening offshore, but some general observations can be made. 

Littoral currents and river currents appear to be important in carrying 

much of the eroded sediment ( es pee i a 11 y from heac!l ands) to the deeper 

parts of the lake. Typically, the profile appears to be alternately 

eroded and built up at those sites, e.g., stations 53 and 61 (Figures 86 

and 89, and Appendix C). At other sites (especially bays), a relatively 

stable profile appears to be maintained, e.g., stations 4 and 56 (Figures 

79 and 88, and Appendix C). 
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Islands 

Islands also serve to reduce wave erosion and there are many such 

islands in the two lakes, especially in Lake Audubon. In Lake Sakakawea, 

Mallard Island, positioned north of stations 51 and 52 (Figure 2), 

effectively reduces the fetch of northerly wind-driven waves at these 

stations. The several small islands north and northwest of station 3 

(Figure 2) also reduce erosion of the main shore. Of course, these 

islands are being eroded themselves; once they are gone the full effect 

of wind-driven waves will be directed on the main shore. However, in the 

meantime, the the islands protect the main shore. 

Overland Fl ow 

General 

A fourth factor of bank erosion is rainsplash and overland flow. 

Reid (1984, 1985) and Sterrett (1980) both concluded that erosion caused 

by rainfall was the least significant of the dominant erosion processes 

at Orwell Lake and Lake Michigan, respectively. Bank slope erosion by 

rainfall involves the detachment of soil particles by raindrop impact 

and/or runoff shear, and transportation by raindrop splash and/or runoff 

(Ritter, 1979, p.158-160; Carson and Kirkby, 1972, p.188-194). Erosion 

usuaTTy begins ~rith the detachment of soil particles by raindrops (Carson 

and Kirkby, 1972, p.188) whose erosive potential depends on fall velo­

cities, total mass at impact, drop size distribution, and thickness of 

any surface water film (Hudson, 1971). Next, when the rainfall intensity 

exceeds the infiltration capacity, runoff or overland flow occurs 

(Kirkby, 1978; · Young, 1972, p.63) and interrill and rill erosion take 

pla.ce. Interrill, or sheetwash erosion, is the shearing of soil par­

ticles by the unconfined flow of water on a slope, primarily from 

. .... h•,,' . ,,_ ., ' l"" 
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raindrop impact and splash. Rill or gully erosion is the shearing of 

soil particles by concentrated runoff and is usually much more intensive 

than interrill erosion (Sterrett, 1980). 

Rainfall may have other destructive effects on soil. It may destroy 

soil structure and break apart clay aggregates, making soil more suscep­

tible to further erosion (Ritter, 1979, p.159). Furthennore, the dis­

persed clays may form a semi-impermeable crust which inhibits infiltra­

tion and promotes runoff (Bryan, 1976). 

The magnitude of bank slope erosion by rainfall depends mainly on 

the erosive potential of rain (Ritter, 1979, p.159; Hudson, 1971), wind 

velocity and direction (Reid, 1984; Churchill, 1982), surface conditions 

(Reid, 1984; Bryan, 1976), slope length (Evans, 1980; Linsley, Kohler 

and Paulhus, 1975), and slope angle (Morgan, 1983; Bryan, 1974). 

Besides causing interrill and rill erosion, rainfall events may also 

cause various types of flows (Varnes, 1978; Quigley and Gelinas, 1976). 

Furthermore, other bank movements may be activated (e.g., slides, falls, 

topples, spreads) through vibrations set up by raindrops and associated 

thunderstorms. 

Quantification of erosion by rainfall is commonly attempted. Al­

though some workers have ouantified rainsplash and runoff separately 

(Bryan, 1979), most workers measure the magnitude of erosion caused by 

the two processes together. Erosion pins are usually employed (Reid, 

1984; Haigh and Wallace, 1982; Haigh, 1977; Tinker, 1970) but alterna­

tives. include the linear erosion/elevation gauge (Toy, 1983), the contour 

gauge (Haigh, 1981) and sediment traps (Reid, 1984; Young, 1972). 

Many workers have also tried to estimate average annual slope 

erosion by using the Universal Soil Loss Equation (USLE) (Reid, 1984; 
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Sterrett, 1980; Wischmeier and Smith, 1978; Wischmeier, 1974). 

However, when the technique was used for the slopes at Orwell Lake, Reid 

found the results to be inconsistent with those derived from erosion pin 

measurements. He concluded that the bank slopes were too steep for 

reliable estimates even using the modified USLE. Because of the 

predominance of steep slopes at Lake Sakakawea and Lake Audubon this 

method of calculating overland erosion was not used. 

Lake Sakakawea and Lake Audubon 

In contrast to wave erosion, overland erosion by rainsplash and 

runoff is a minor process at both Lake Sakakawea and Lake Audubon. The 

steep banks, coupled with relatively dry summers, are the most important 

reasons for this. 

The effectiveness of erosion pins inserted normal to bank surfaces 

was poor, whereas at Orwell Lake they provided most of the erosion data 

(Reid, 1984). The problem was that the massive failure of the Lake 

Sakakawea banks tended to either remove pins along with blocks of sedi­

ment or tended to bury them. In either case the data collection from 

these pins was minimal. Figure 25 illustrates the rate of loss of pins 

at Lake Sakakawea. In late spring 1983, 48 pins were being measured. 

~lithin two months there were only 27 left. Of these, 25 lasted through 

the winter. But by May 1984, there were only 7 pins .• Of course, many of 

the pins were reset as soon as it was discovered they were missing. In 

the meantime, however, no data could be collected for those sites. On 

the basis of the collected data and other relevant observations, it was 

concluded that overland erosion is relatively unimportant and that bank 

erosion pins do not last long enough to define erosion rates anyway. 

Thus, no effort was made in 1984 to establish new bank erosion stations. 

.. ,,_ .. ,..,, .. _., .. •.... , 
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Figure 25. Rate of loss of bank erosion pins at Lake Sakakawea 
stations, 1983-1984. 
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It is just as well, because mass wasting of the banks was considerably 

greater that summer than the previous one. 

Figures 26 and 27 are the plots of bank surface erosion at Lake 

Sakakawea. The depth of erosion at these stations ranged from only 8mm 

(station 58) to a7most 48mm (station 50) (Figure 27) after the first 

summer of installation. The data show the typical 7ack of erosion over 

the winter, as was the case at Orwell Lake. 

Besides causing interrill and rill erosion, runoff may also cause 

earthflows and debris flows. Although they are rare at Lake Sakakawea, 

they can create cirque-like depressions extending beyond the bank edge. 

The wetting of a desiccated clay-rich soil or sediment often activates 

such failures (Quigley and Gelinas, 1976). 

Lake Audubon erosion was significantly lower, except for station A-1 

(Figure 28). The greater erosion at that station was due to spalling of 

the bank face along joints, not to rain erosion. 

Other variables, besides bank height and slope angle, which affect 

the ·quantity of overland erosion at the lakes are surface conditions, 

wind/bank orientation and rainfall erosivity. 

Rainfall 

The intensity and duration of rainfall are the most important 

factors affecting overland erosion (Ritter, 1979, p.158-161). Although 

no attempts were made to correlate rainfall statistically with bank slope 

erosion, the relationship is obvious. For example, most of the erosion 

at Station 50 (Figures 27 and 29) resulted from runoff accompanying a 

thunderstonn on June 19, 1983. Subsequent stonns also effected erosion 

.there. 
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Figure 26. Cumulative overland erosion, stations 1-7, 
Lake Sakakawea, 1983-1984. 
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Figure 27. Cumulative overland erosion, stations 50-59, 
Lake Sakakawea, 1983-1984. 
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Figure 28. Cumulative overland erosion, Lake Audubon, 1983-1984. 
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Figure 29. Rills developed as a result of rainsplash and 
runoff in colluvium. Wide angle photo of 
station 50, August 22, 1983. 
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Wind/Bank Orientation 

Wind velocity, direction and duration determine the speed and the 

direction of the rainfall. The most frequent directions of strong winds 

at Lake Sakakawea in 1983 were northwest and north (Figure 17). Not 

surprisingly then, the most bank slope erosion occurred on northwest- and 

north-facing slopes (Figure 30, and Table 37, Appendix F). 

Surface Conditions 

Another variable is the condition of the surface at the time of 

precipitation. For example, the pre-existing moisture content is a 

significant factor in the effectiveness of subsequent rain erosion (Reid, 

1984). Thus far, the moisture content of the units has been determined 

only once, in June 1984 after two days of precipitation. The moisture 

content of the samples is listed in table 26 (Appendix A). The values 

ranged from 0.5 to 30.0 percent and appear to be related to lithology as 

well as depth. For example, the Upper Horseshoe Valley Formation 

contained much less moisture than either of the other two tills, no 

matter what depth. 

North-facing banks generally have the highest moisture content 

because of minimum exposure to the sun (Churchill, 1982; Birkeland, 

1974, p.184). It was noted earlier that banks facing north or northwest 

had the highest amounts of overland erosion. However, the soil moisture 

will have to be measured more times in order to ascertain its 

relationship to erosional processes at Lake Sakakawea. 

Other important factors affecting surface conditions are surface 

crusting and water-stable aggregate (WSA) formation. Surface crust 

formation involves the disaggregation of sediment aggregates which are 

then either carried by runoff or forced by raindrop impact into available 
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Figure 30. Relationship of 1983 average overland erosion 
to bank orientation. 
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pore spaces (Luk, 1979). The presence of surface crusts on the banks at 

Orwell Lake affected the degree of rainsplash and runoff erosion (Reid, 

1984). Although the relationship has not been studied, surface crusts 

observed on Lake Sakakawea banks certainly affect overland erosion there. 

Fine-grained sediment is typically eroded as aggregates rather than as 

individual particles, so water-stable aggregates >O.Snun in diameter are 

important because they maintain their size and shape upon wetting (Bryan, 

1974, 1976). An increase in the percentage of WSA >0.5mm in diameter 

should result in an increase in stability and, thus, a reduction in 

rainsplash entrainment and bank slope erosion (Reid, 1984). The presence 

of smectite in the Lake Sakakawea bank sediments also contributes to WSA 

stability because it expands and closes the boundaries between aggregates 

(Bryan, 1974). 

Finally, the amount and type of vegetation is also important. It 

helps to decrease slope erosion by: 1) increasing storage capacity by 

acting as a water pump; 2) protecting the surface from raindrop impact; 

3) helping to bind the sediment together; 4) increasing the hydraulic 

roughness of the surface; 5) reducing the effective slope steepness by 

forcing the flow to meander; and 6) absorbing flow shear forces (Meyer, 

1976). Unfortunately, the vegetative cover on most Lake Sakakawea banks 

is minimal due to periodic inundation and, especially, to wave-induced 

oversteepening and mass wasting. However, where vegetation is present, 

it certainly plays a role in decreasing the overland erosion at the site. 

Bank Geometry 

A fourth factor that affects the quantity of overland erosion at a 

site is slope length (Evans, 1980). It is important because runoff is 

accumulative as it proceeds downslope, which increases the effective 
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water depth and, thus, basal shear. Therefore, the rate of soil loss 

should increase with an increase in slope length (Smith and Wischmeier, 

1957), especially on the lower parts of slopes. For example, station 50 

(Figures 27 and 29) had the longest colluvium slope of any of the 

stations, which is one of the reasons why that slope experienced the most 

erosion. 

A factor that obviously affects slope length is bank height. 

Generally, the higher the bank is, the longer the bank slope will be. 

Slope erosion for 1983 was analyzed with respect to bank height. The 

results, shown in figure 31, and table 38 (Appendix F), show a definite 

trend; the higher the bank, the more bank slope erosion. 

Slope erosion also tends to increase with increasing slope angle up 

to a point, and then decrease (Bryan, 1979). At Orwell Lake, erosion on 

gentle slopes (average 34 degrees) was almost twice that of steeper 

slopes (Reid, 1984). Although this relationship was not studied quanti­

tatively at Lake Sakakawea, observations indicate it is important. 

Because of the nearly vertical banks produced by wave erosion, the 

effects of rain on the primary sediment and bedrock are minor. Most of 

the 2-52mm of bank slope erosion recorded at each lake occurred in the 

gentler-sloping colluvium at the toe of the banks. 

Groundwater 

General 

Groundwater can greatly influence bank erosion along reservoirs 

(Gatto and Doe, 1983; Doe, 1980; Kachugin, 1980) and lakes (Sterrett, 

1980; Mickelson and others, 1977; Hadley, 1976). Groundwater generally 

flows toward the level of large water bodies, where it discharges. Thus, 

reservoir and lake banks are usually effectively drained (Doe, 1980). 
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Figure 31. Relationship of 1983 average overland erosion 
to bank height. 
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However, groundwater in the bank can lower bank stability and contribute 

to fa i 1 ure in severa 1 ways': 

1. By producing pore water pressures which reduce effective 

stress,es, thereby lowering shear strength (Freeze and Cherry, 

1979, p.471-472; Cedergren, 1977, p.340). Water table and 

pore pressure fluctuations are usually controlled by 

infiltration from rainfall and snowmelt, but for reservoirs, 

pool level fluctuations play an important role (Murphy and 

Kehew, 1984; Doe, 1980). Increases in rainfall, snowmelt or 

pool level lead to rises of the water table and, therefore, 

2. 

pore pressures. Also, rapid drawdown of pool level creates a 

pore pressure differential because drainage of water from the 

banks is slower than the rate of drawdown (Doe, 1980), and the 

lateral support has been removed. 

By generating hydrostatic pressures as tension joints are 

filled from runoff. This may trigger slides or topples 

(Chandler, 1977). 

3. By reducing or eliminating cohesive strength, especially if the 

cohesion is due to the existence of a soluble binder 

(Cedergren, 1977, p.340). This is particularly characteristic 

of loess (Terzaghi, 1950). Also, leaching of salts from clays 

results in a decrease of shear strength (LaRochelle, Chagnon 

and LeFebvre, 1970). 

,4. By increasing bank weight and, thus, increasing shear stress 

(Carter and Guy, 1983; Carson, 1971}. This can trigger 

slides, topples, falls or flows. 
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5. By producing horizontal and vertical seepage forces (Doe, 1980; 

Sterrett, 1980). Horizontal seepage, especially important 

where perched water tables exist, may result in sapping and 

subsequent bank failure. This process most often occurs in 

sands underlain by clay-rich sediments and is common along 

Great Lakes shorelines (Sterrett, 1980; Mickelson and others, 

1977; Hadley, 1976), 

The main factors affecting groundwater-induced bank failure are: 

topography (Patton and Hendron, 1974); bank geometry and materials 

(Buckler and Winters, 1983); type, abundance and orientation of joints 

and faults (Sterrett, 1980); rate of reservoir pool level fluctuations 

(Doe, 1980); and, the amount of rainfall and/or snowmelt (Chandler, 

1977). 

Lake Sakakawea 

Groundwater-induced failure appears to occur infrequently, but, as 

at Orwell Lake, it is likely to have caused the largest bank failure in 

the study area: the slump and accompanying earthflow below the 

maintenance buildings at Riverdale in the spring of 1983 (Figure 32). 

This failure appears to have been along an arcuate surface, resulting in 

a slump block with the characteristic downward and backward rotation of 

the mass. The displaced sediment at the toe was shoved up and 

subsequently, failed by flowage. The site continues to experience minor 

additional failures. 

The direct cause of the slump is probably related to an increase in 

pore pressures caused by an increase in groundwater level (Figure 33) 

which was most likely due to snowmelt. The increase in pore pressures 

decreased the effective stresses and, thus, the shear strength of the 
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Figure 32. Slump/earthflow failure below Riverdale. The irregular 
mass extending from bottom left to the center is the 
toe of the slump which subsequently failed by flowing. 
May 16, 1983. 
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Figure 33. 
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Head fluctuations, piezometer 010, December 13, 1982 
to August 1, 1984. (Measurement Day 1 = December 13, 
1982, Day 135 = April 2, 19e3, and Day 600 = August 1, 
1984.) 
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sediment. Also, the added weight in the bank caused an increase in shear 

stress. The failure occurred when the shear stress exceeded the shear 

strength along the failure plane. 

Data from a piezometer above the slump show a sharp increase in head 

between February 25, 1983 and April 2, 1983 (Figure 33). The next 

reading, taken May 25, 1983, revealed that the head had returned to the 

same level it was at on February 25th. Therefore, the failure probably 

took place between early April and late May. However no infonnation 

could be found to ascertain exactly when. 

The passive cause of the failure is related to stratigraphy. The 

exposure is characterized by almost 10m (33 ft) of glacial sediments 

(till and sand) overlying about 10m (33 ft) of Sentinel Butte mudstone. 

Within the mudstone is a thin lignite bed from which groundwater 

preferentially discharges; springs were observed to flow from that bed 

even in mid-winter 1983/84. Therefore, it is hypothesized that the plane 

of failure was probably along that lignite bed. 

The importance of groundwater at other sites is unknown. However, 

sites at which it may be particularly important are those where the Lower 

Horseshoe Valley and Lower Snow School sands crop out. For example, at 

station 51, the Lower Horseshoe Valley sand is underlain by the massive 

Medicine Hill till (Figure 14). Thus, that sand unit could be very 

susceptible to groundwater sapping, especially upon rapid drawdown of the 

reservoir pool. Although no springs or seeps have been observed except 

at the Riverdale slump, groundwater can influence bank stability in many 

ways and should be considered further in future studies at Lake 

Sakakawea. 
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Recent studies by Reid (1984, 1985), Sterrett (1980), and Mickelson 

and others (1976) have concluded that frost heave and thaw failure are 

primary contributors to reservoir and lake bank failure in cool-temperate 

climates. 

Frost heave in sediments is caused by ice segregation as moisture 

migrates toward the freezing plane (Chamberlin, 1981). Preferential 

growth of ice crystals is more important to frost heave than is volume 

increase upon freezing (Penner, 1963). In order for frost heave to take 

place, subfreezing temperatures (Chamberlin, 1981), a sufficient amount 

of moisture (Ritter, 1979, p.135) and a frost-susceptible sediment 

(Chamberlin, 1981) must exist. When frost heave occurs, it causes 

sediments to expand, resulting in disruption (Carter and Guy, 1983), 

jointing, or bank failure (Reid, 1984, 1985). 

Although none of the present theories for ice segregation and frost 

heave is universally accepted, each is in general agreement on the 

factors which affect frost heave: sediment texture (Reid, 1984; Nixon, 

1973), pore size (Chamberlin, 1981; Yong and Osler, 1971), moisture 

content (Ritter, 1979, p.135), number of freeze-thaw cycles (Trudgill, 

1983, p.47), rate of heat removal (Penner, 1972), temperature gradient 

(Gorle, 1980), and overburden stress (Chamberlin, 1981). At Orwell Lake, 

Reid (1984, 1985) also found snow depth, bank slope and bank orientation 

to be important. 

As temperatures rise above freezing, and thaw of ice and snow 

occurs, bank stability may be significantly affected (McRoberts and 

Morgenstern, 1974). Water that is generated may cause many types of 

••. -, .... ··,'-°'1''"'". 
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flows (Reid, 1984; McRoberts and Morgenstern, 1974). Also, soil 

aggregates (Harrison, 1970) and joint planes (Reid, 1984) which had been 

strengthened by ice formation may be weakened sufficiently such that 

falls, topples or slides may occur. Even if bank failure does not occur, 

thaw processes significantly weaken the bank making it more susceptible 

to other erosion processes (Carter and Guy, 1983). 

The most important factors affecting thaw failure at Orwell Lake are 

moisture content, number of freeze-thaw cycles, bank slope angle and 

orientation, and sediment texture and structure (Reid, 1984, 1985). 

Other important factors are pore pressures (Nixon, 1973), the thermal 

properties of the sediment (Morgenstern and Smith, 1973; Nixon and 

McRoberts, 1973) and the depth (McRoberts and Morgenstern, 1974) and rate 

of movement of the thaw front (Nixon and McRoberts, 1973). 

Relatively few workers have quantified erosion due to frost-thaw 

processes. In the only relevant study along reservoirs, Reid (1984, 

1985) used erosion pins, bank recession pins and colluvium excavations to 

measure the amount of frost-thaw failure. Erosion pins were also used by 

Hooke (1979) and Hill (1973) to quantify frost-thaw failure along river 

banks. 

Lake Sakakawea and Lake Audubon 

Frost-thaw processes are the second most important cause of bank 

erosion at Lake Sakakawea, as they are at Orwell Lake. During the 

winter, the banks are frozen and relatively stable. Little mass movement 

takes place until late winter, when segregation ice, which develops 

during the numerous freeze-thaw cycles, undergoes sublimation. This 

releases the previously bound sediment, resulting in accumulation of 
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aggregates along the base of the steep banks (Figure 34) (Reid, 1984; 

Harrison, 1970). 

Once thaw begins, however, rapid bank fai1ure fo11ows. Falls, 

planar slides, and topples along previously bound joints (Figures 35 and 

36), and various types of flow failure (Figures 36 and 37) succeed one 

another through the end of the thaw period, typically near the end of 

April. For another brief interval, the banks of Lake Sakakawea become 

relative1y stab1e. Only as the pool level of Lake Sakakawea begins to 

approach its maximum level does the water again impinge upon the toes of 

the banks. Wave action accompanying these high pool levels removes some 

or all of the sediment (colluvium) that has accumulated because of thaw­

failure. 

Frost-thaw failure is relatively insignificant at Lake Audubon 

because the short banks commonly are all but completely buried by winter 

snow drifts. The drifts reduce the number of freeze-thaw cycles, as well 

as· the penetration of the zero degree isotherm. 

Colluvium Volumes 

The measurement of colluvium volumes is highly relevant, because, to 

a large extent, the volumes reflect the amount of spring thaw failure. 

The determined volumes are minimum values, however, because any co11uvium 

which came to rest on the ice sank when the ice melted. The total length 

of Lake Sakakawea shoreline included in this study was 1.97km (1.22 mi). 

Only 79.3m (260.1 ft) of shoreline were studied along Lake Audubon. 

Because the high pool levels of 1982 were relatively low, little 

co11uvium was removed by the waves then; hand excavation of the colluvium 

in the late spring and early sununer of 1983 revealed an abundance of 

colluvium at the stations around Lake Sakakawea (Table 18). Only upon 
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Figure 34. Accumulation of aggregates at the base of a steep 
till bank. Particles were released upon sublimation 
of interstitial ice. Station 7, April 10, 1983. 

Figure 35. Blocks of till and loess resulting from thaw failure . 
. Station 56, May 17, 1983. 
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Figure 36, Mudstone and lignite fragments, and mudflow resulting from 
thaw failure. Riverdale slump site, February 25, 1984. 

Figure 37. 

rvre:r::arrs:rtn --r JiJ'' · 

Debris flow resulting from saturation of clay-rich sediment 
re-entrant. Station 56, February 25, 1984. (These failures 
also can be the result of rainwater runoff.) 
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TABLE 18 

Colluvium Volume for Each Site at Lake Sakakawea, 
and Lake Audubon, North Dakota, 1983 and 1984 

(* 1983 volumes include both old and recent colluvium; 
1984 volumes include only that colluvium added since June 1983.) 

Length of Volume 
Shore Date Vol~me* Date 

(m3) (m3/m) Station (m) (1983) (m) (1984) 

Lake Sakakawea 

1 131.9 6/14 77 6/12 90.3 0.68 2 72.8 6/14 331 6/12 52.7 o. 72 3 63.7 6/21 577 6/12 11.5 0.18 .:;. 4 49.1 6/21 76 6/13 35.7 0.73 .~ 

5 32.8 6/15 91 6/13 24.7 0.75 6 33. 7 6/21 729 6/13 37.6 1.12 7 37.3 6/21 285 6/13 21.8 0.58 50 70.0 6/7 3,787 6/13 230.9 3.30 51 159.3 6/23 2,051 6/13 62.3 0.39 
52 54.9 _ 6/13 14.9 0.27 

>~· 53 566,7 6/28 536 6/13 440.9 0.78 54 82.8 6/9 246 6/14 10.5 0.13 55 64.1 6/14 46.4 0.72 ;,~ . 56 113.8 6/9 927 6/14 101.3 0.89 
.': 57 109.2 6/28 1,063 6/14 52.1 0.48 
- ' 58 28.2 6/24 233 6/14 9.4 0.33 59 109.2 6/24 827 6/14 31.0 0.28 60 58.2 6/23 125 6/14 19.3 0.33 61 64.6 6/23 243 6/14 38.4 0.59 62 68.3 6/14 18.0 0.26 

Total 1,970.6 1,349.7 avg = 0.68 

' 
Lake Audubon ~ 

' Al 42.7 5/31 77 .8 1.82 A2 18.3 5/31 12.2 0.67 A3 18.3 5/31 13.6 0.74 

Total 79.3 103.6 avg = 1.31 
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observing the rate of colluvium accumulation over the next few months did 

it become apparent that those excavation volumes represented more than 

one year of accumulation. The measurements for the spring and early 

summer of 1984 therefore included only new colluvium, i.e. that which 

accumulated since the spring of 1983 (Table 18). Of all the stations, 

station 50 had the greatest colluvium accumulation per metre of shore­

line (3.30m
3
/m), whereas station 54 had the l.east (0.13m3/m). The 

intense wave erosion during the summer of 1984 was so great that even 

much of the colluvium that had accumulated prior to 1983 was removed by 

waves. This was especially evident at station 50 (Figure 82, Appendix 

C). 

Lake Audubon had a higher average colluvium accumulation per metre 

of shoreline than did Lake Sakakawea (Table 18). However, most of this 

accumulated upon .failure of banks weakened by ice-shove and not thaw 

failure. 

Bank Recession and Joint Propagation 

The amount of bank recession interpreted to be due to frost-thaw 

processes is likely to be slightly over-estimated by recession amounts 

for the cold weather months (October 16, 1983 to May, 31, 1984} (Table 

9}; the recession for that interval includes some caused by wave erosion, 

but most of it probably was a result of frost-thaw failure. Then, as 

seen in table 9, bank recession due to frost-thaw accounts for a maximum 

of 13 percent of the total bank recession at Lake Sakakawea. It ranged 

from 0.01 to 1.13m (0.01 to 3.72 ft) and averaged 0.30!! (0.98 ft). 

Shorter banks (stations 1-5) experienced both the least bank recession 

and the lowest percentage due to frost-thaw, whereas higher banks 

generally experienced high recession. Station 50 had the highest 

.. "'"."" ;-
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percentage of bank recession due to frost-thaw. This was partly a result 

of its great height, and consequent greater area. However, the main 

reason it had a higher percentage of its bank recession due to frost-thaw 

rather than wave erosion was because of the small amount of wave erosion 

of the primary sediment; it was protected by a large colluvium slope. 

Besides being an important activating factor of bank recession, cold 

weather and frost-thaw processes can be important to joint propagation 

and/or expansion. Less than 20 percent of the extension joints measured 

at Lake Sakakawea first appeared and/or failed over the cold weather 

months (Figures 6 and 7). Although joint initiation and failure due to 

frost-thaw processes was relatively minor, those processes were 

instrumental in widening and weakening existing joint planes. 

Again, at Lake Audubon, it is urknown how much of the total bank 

recession can be accounted for by frost-thaw processes because of the 

large amount of erosion of ice-shoved materials. However, because of the 

very low banks, the amount of bank recession at Lake Audubon due to 

frost-thaw processes is probably minor. 

Area Eroded 

For the 11 profile sites analyzed between October 1983 and October 

1984, only about 16 percent of the erosion occurred between October 1983 

and June 1984 (Table 19). Interpreted to be primarily the result of 

thaw, the areas eroded ranged from 0.02 to ll.09m2 (0.22 to 119.37 ft2) 

and averaged 2.87m2 (30.89 ft2). 

There appears to be no trend to these data. For example, short 

banks (stations 1, 3 and 4) showed as much erosion as tall banks 

(stations 60, 61 and 62). Also, profile sites at stations 51 and 52 have 

similar heights, orientations and freeze-thaw induced recession amounts 



Station 

1 
2 
3 
4 
5 
7 

50 
51 
52 
53 
55 
56 
57 
58 
59 
60 
61 
62 

Average 
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TABLE 19 

Area Eroded at Lake Sakakawea Bank Profile 
Sites During the Cold Weather Months 

Measurement 
Interval 

10/16/83 - 05/30/84 
10/16/83 - 05/30/84 
10/16/83 - 05/30/84 
10/16/83 - 05/30/84 
10/16/83 - 05/30/84 

10/15/83 - 05/31/84 
10/15/83 - 05/31/84 

10/15/83 - 06/01/84 
10/15/83 - 06/01/84 
10/15/83 - 06/01/84 
10/15/83 - 06/01/84 

Area Eroded (m2) 
and % of Total 

Area Eroded 
for that Site 

1.41 (20.6%) 
11. 09 ( 51. 3%) 
0.99 (18.2%) 
1.45 (16.3%) 
0.11 ( 1.6%) 

10.30 (18.6%) 
0.02 (0.1%) 

3.57 (36.6%) 
1.35 (14. 6%) 
0.12 (1.0%) 
1.17 (3 .9%) 

2.87 (16.6%) 
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but their areas eroded are much different (Table 19). Thus, from these 

data it appears the variables affecting frost-thaw processes must be 

highly interrelated. 

Frost 

The depth and duration of frost are critical factors affecting 

frost-thaw failure (Reid, 1984; Chamberlin, 1981; McRoberts and 

Morgenstern, 1974}. Frost penetration is generally deepest closest to 

exposed banks (Reid, 1984). During the winter and spring of 1984, 

evidence of frost weakening was abundant at Lake Sakakawea; joints were 

pushed apart by ice growth (Table 10), and the surfaces of the bank 

materials were disrupted. 

Only three of the frost tubes installed in the fall of 1983 provided 

data useful to the project, one each at Lake Sakakawea State Park and 

Fort Stevenson State Park, and one within the Corps of Engineers weather 

station just northeast of Riverdale. The data from the tube at Lake 

Sakakawea State Park showed rates of penetration of the zero degree 

isotherm similar to the other two sites, even though the site was in­

sulated by a deeper snow cover. Because a deep snow cover is not typical 

for this area, .only the graphs of the remaining two frost tubes 

(Riverdale and Fort Stevenson, Figures 38 and 39) are presented. As can 

be seen, the shapes of the two curves are similar, with the ground first 

freezing in late November and then thawing in late March to early April. 

The curves also show the characteristic melting from both top and bottom, 

as at Orwell Lake (Reid, 1984). Although the difference in maximum depth 

of frost penetration between the two Sakakawea sites is about 20cm, it is 

important to note that up until January 1, 1984 the frost depth at the 

two sites was almost identical.· The first week of January experienced 

. .. 
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Figure 38. Frost penetration, winter 1983-1984, 
Riverdale, North Dakota. 

Figure 39. Frost penetration, winter 1983-1984, Fort 
Stevenson State Park, North Dakota. 
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temperatures up to +9°C (48°F). The accompanying decrease in frost depth 

during that week was rapid at the Riverdale site; at Fart Stevenson the 

penetration merely ceased for that time. For this reason, it was con­

cluded that the thermal properties at the two sites are different. The 

surface sediment at Riverdale is till (disturbed); the surface at Fort 

Stevenson is vegetation-covered, which acts as an insulation blanket, 

subduing temperature fluctuations at depth and allowing cold to continue 

moving downward even after the surface temperatures increase. 

In conclusion, frost heave is important in triggering some bank 

failures but it is especially important in weakening the banks by expand­

ing joints and disrupting sediment structure. 

Freeze-Thaw Cycles 

The depth of freezing is not the most significant factor in thaw 

failure. Mare important is the number of fluctuations above and below 

the freezing point (Reid, 1985; Trudgill, 1983, p.47). Each cycle 

results in a weakening of the sediment structure (Bryan, 1971). Table 20 

summarizes the number of cycles over the past several years at Riverdale, 

North Dakota. The number varies greatly; during colder winters there are 

fewer fluctuations above and below the freezing point. Wanner winters 

are characterized by frequent fluctuations, freezing at night and melting 

during the day. It must be remembered, though, that these records are 

from daily maximum and minimum thermometer readings. The readings are 

taken from a standard weather shelter placed 1.2 to 1.5m (4 to 5 ft) 

above the ground surface. The temperatures at and below ground level 

fluctuate much less. The table, therefore, represents a maximum number 

of fluctuations that might occur at ground level. Exactly what this 

means with regard to thaw failure at Lake Sakakawea or Lake Audubon is 
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TABLE 20 

Winter Freeze-Thaw Cycles at Riverdale, North Dakota 

Winter (Oct. - April) 

1976-77 
1977-78 
1978-79 
1979-80 
1980-81 
1981-82 
1982-83 
1983-84 

Number of Cycles 

83 
54 
51 
70 

100 
71 
97 
99 
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not yet known. However, it can be hypothesized that the more freeze-thaw 

cycles there are, the more thaw failure there will be. Insufficient data 

have been collected to determine whether or not the amount of thaw 

failure during the late winter/early spring of 1984 was greater than 

usual. 

Snowmelt 

Although snowmelt is primarily important because of its effect on 

pool level, it can also contribute to thaw failure (Reid, 1984, 1985). 

Most of the surfaces above the banks at Lake Sakakawea are fairly level 

or slope toward the lake. It appears this is true of Lake Audubon also. 

Where a lakeward slope exists, me1twater can infiltrate and flow along 

the contact of the upper thawed zone and the underlying frozen zone. This 

contributes additional water to the banks and may cause various types of 

debris flows, earthflows and mudflows (Figure 37). 

Bank Orientation 

Bank orientation also affects the quantity of frost-thaw failure 

(Reid, 1984, 1985). Figure 40, and table 39 (Appendix G), show the 

relationship of bank orientation to thaw-derived colluvium volumes 

calculated for the winter and spring of 1983 and 1984. The values ranged 

from 0.33 to 1.18m3/m (3.55 to 12.71 ft3/ft). Banks facing northwest, 

northeast and north had the highest volumes of thaw-derived colluvium, 

whereas the east-, south- and west-facing banks all had much lower 

volumes. This difference is probably due to a higher remnant moisture 

content in the north-facing banks (Reid, 1984, 1985) because they are 

less·desiccated by solar energy over the winter. These same factors 

affect joint initiation and failure, and, in fact, joint data strongly 

support the colluvium data (Figures 6 and 7); primarily joints both 

:s.·, .. '• 
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Figure 40. Relationship of 1984 thaw-derived colluvium 
to bank orientation. 

_,, - tt...!-.~ ,._, ._, -



153 

I. 2 

' 
I. l 

1.0 

0.9 -

0.8 

M 
E 0.7 
T 
R 
E 
s 0.6 

C 
u 
B 0.5 
t 
0 

p o.q 
t 
R 

M 0.3 
t 
T 
R 
E 0.2 

0.1 

o.o 
H NE E SE 5 511 w NW 

ORJENTATIGtl 



154 

initiated and failed in north- and northwest-facing banks. Bank re~ 

cession data, on the other hand, show strikingly opposite results (Figure 

41, and Table 33, Appendix E); north- and northwest-facing banks showed 

less recession than south- and west-facing banks. These relationships 

reflect the importance of bank geometry to thaw failure. 

Bank Geometry 

The higher the bank is, the more bank material there is available 

for colluvium. The apparent anomaly in the bank recession/orientation 

relationship mentioned above may be explained by differing bank heights. 

The north-facing banks include stations 6, 7 and 50 (Table 4), the 

tallest banks in the study area. Large amounts of thaw failure may 

occur on a taller, gentler sloping bank without much bank-top recession, 

whereas comparatively lesser amounts of thaw failure may occur on a 

shorter, steeper bank but cause more recession. Thus, even though the 

taller, north facing banks receded a relatively small amount, they still 

produced the most colluvium. 

The relationship of bank height to thaw-derived colluvium and bank 

recession at Lake Sakakawea is depicted in figures 42 and 43, and surmnar­

ized in tables 41 and 36 (Appendices G and E). As expected, both data 

sets illustrate the dominance of thaw failure for the eight stations with 

banks >10m high. The lower banks not only have less available material 

for colluvium, but also are protected and temporarily stabilized by snow 

banks. 

Bank Geology 

The texture, clay mineralogy and structure of the bank sediments 

also affect frost-thaw (Reid, 1984, 1985). For example, clay and silt 
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Figure 41. Relationship of cold weather cumulative average 
bank recession to bank orientation. 
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Figure 42. Relationship of 1984 thaw-derived colluvium to bank height. 
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Figure 43. Relationship of cold weather cumulative average 
bank recession to bank height. 
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generally expand much more than sand and gravel (Journeaux and Coutard, 

1972). The tills at Lake Sakakawea would be tenned frost-susceptible by 

most definitions because of their typical clayey-silt texture. Clay 

mineralogy is important because clays are the minerals most susceptible 

to expansion during freezing (Reid, 1984). This factor is relevant at 

Lake Sakakawea because most of the clays in the sediments are smectites •. 

Structure may be the most vital of the geologic factors. For example, 

jointed tills are more susceptible to thaw failure than are massive tills 

(Hill, 1973) because joints act as planes of exploitation and reduce the 

shear strength of the till. 

The relationship between structure and thaw failure appears to be a 

significant one at Lake Sakakawea (Figures 44 and 45, and Tables 40 and 

35, Appendices G and E). The massive Upper Medicine Hill till is associ­

ated with the three lowest average amounts of colluvium and two of the 

four lowest average bank recession amounts, whereas the jointed Upper 

Snow School till is associated with the two highest average amounts of 

colluvium and the two highest average bank recession amounts. The 

jointed Upper Horseshoe Valley till, and Sentinel Butte siltstones and 

mudstones also are susceptible to thaw failure. 

In conclusion, then, bank geology, along with bank height, bank 

orientation, frost depth, freeze-thaw cycles and snowmelt runoff are the 

most important variables affecting thaw failure at Lake Sakakawea. 

Lake Ice 

Lakes Sakakawea and Audubon freeze over during most winters. Ice 

can protect reservoir and lake banks by reducing the effects of winter 

waves ar.d currents but it can also erode the banks if the pool level is 

high enough for the ice to shov~ the bank sediment directly (Gatto, 1982; 
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Figure 44. Relationship of 1984 thaw-derived colluvium 
to bank lithology. 

Key to bank lithologies on horizontal axis are as follows: 

l= Oahe and Upper Snow School Formations 
2= Oahe, Upper Snow School, Lower Snow School and Upper 

Medicine Hill Formations 
3= Oahe, Upper Snow School and Sentinel Butte Formations 
4= Oahe, Upper Horseshoe Valley, Lower Horseshoe Valley 

and Upper Medicine Hill Formations 
5= Oahe, Upper Horseshoe Valley and Upper Medicine Hill 

Formations 
6= Oahe and Upper Medicine Hill Formations 
7= Oahe, Upper Medicine Hill and Sentinel Butte 

Formations 
8= Oahe and Sentinel Butte Formations 
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Figure 45. Relationship of cold weather cumulative average 
bank recession to bank lithology. 

Key to bank lithologies on horizontal axis are as follows: 

1 = Oahe and Upper Snow School Formations 
2 = Oahe, Upper Snow School, Lower Snow School and Upper 

Medicine Hill Formations 
3 = Oahe, Upper Snow School and Sentinel Butte Formations 
4 = Oahe, Upper Horseshoe Valley, Lower Horseshoe Valley 

and Upper Medicine Hill Formations 
5 = Oahe, Upper Horseshoe Valley and Upper Medicine Hill 

Formations 
6 = Oahe and Upper Medicine Hill Formations 
7 = Oahe, Upper Medicine Hill and Sentinel Butte 

Formations 
8 = Oahe and Sentinel Butte Formations 
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Hadley, 1976). Even if the pool level is low enough that the ice is not 

in direct contact with the bank, the ice can stil1 remove beach and 

nearshore sediment and, thus, steepen the offshore profile. Many lakes 

experience ice-shoving as the ice contracts during cold snaps and the 

infilling water freezes and expands laterally (Pessl, 1969; Kovacs, 

1983). Additional ice-shove may occur in the spring when wind-driven ice 

blocks are blown onto the shores. 

At Lake Sakakawea, however, these mechanisms merely redistribute 

off-shore sediment because the pool level is low during that time. How­

ever, at Lake Audubon, winter ice-shove was the dominant cause of bank 

recession in 1984. The pool level that winter was maintained higher than 

usual and the expanding lake ice impinged directly on the banks. Ice­

shove ridges resulted, especially along the east end where the erosion 

stations were located. Figure 46 shows one such ridge along a low area 

between stations Al and A2. The ice effectively weakened the bank such 

that even slight wave action was sufficient to cause bank failure. If 

future pool levels are kept high during the winter at Lake Audubon 

additional rapid bank recession can be expected. 

Snow also affects bank erosion. The amount of snow on a bank slope 

and top influences bank stability in three ways. First, the weight of 

the snow may increase the shear stress of the bank enough to trigger 

failure (Varnes, 1978). Secondly, the snowcover thickness is a factor in 

the rate and depth of freezing (Reid, 1984). Finally, the amount of 

water produced upon melt may greatly affect bank stability (McRoberts and 

Morgenstern, 1974). 
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Figure 46. Ice-push ridge of grass, tree saplings and till at east end 
of Lake Audubon. Between stations Al and A2, May 31, 1984. 
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The amount of snowfall in the winter of 1983-1984 at Lake Sakakawea 

was small. There were some isolated drifts and, at times, a light 3 to 

8cm (1 to 3 in) blanket on the ground which may have had some effects, 

although minor overall, on freezing rate and meltwater production. 

Human and Animal Activity 

Finally, human and animal activity also can weaken banks. 

Fisherman, beachcombers and even geologists climb on the banks, releasing 

colluvium into the water and loosening primary sediment and bedrock. 

Also, in a few places, trails leading down a slope have diverted runoff, 

causing increased erosion, creating small gullies. Finally, many birds 

and animals use the banks as their home. Their burrowing, tunneling and 

other activities locally weaken the banks considerably. 
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REGRESSION ANALYSES 

Purpose 

According to D.P. Hauser (1974, p.149), "Stepwise regression may be 

regarded essentially as a search procedure to identify which independent 

variables, previously thought to be of some importance, actually appear 

to have the strongest relationship with the dependent variable." Regres­

sion analysis can be applied to predict or explain the relationships 

between variables in many aspects of geology. For example, it can be 

used to define the most important variables associated with shoreline, or 

bank erosion. Both Hooke (1979) and Hill (1973) used this technique to 

analyze river bank erosion in Great Britain. 

The purpose -of regression analyses in this study was to define 

statistically the importance of some of the variables associated with 

bank erosion at Lake Sakakawea. This was already attempted by Gatto and 

Doe (1983) who applied multiple regression to analyze some variables 

they thought to be associated with historical bank recession. However, 

they concluded that their results were unreasonable because they 

"suggested relationships between the variables that are contradictory to 

accepted results of related studies." For example, bank recession had a 

strong correlation with the duration of ice cover but no correlation with 

wind direction or bank sediment type. 

The danger of research by correlation rather than by analysis of 

mechanisms and processes has been pointed out by Quigley (1976). In this 

study, stepwise regression is used only to further test observations and 

results of field work. 

170 



I,. 171 

Variable Selection and Preparation 

The dependent variables used in the regression analyses were: 1) 

average bank recession per measurement interval; and, 2) cumulative 

average bank recession. (The former was used in regression analyses of 

individual stations, whereas the latter was used in the regression 

analysis of all stations.) Average bank recession was calculated for 

each measurement interval. The sum of the recession amounts for all the 

pins at a given station was divided by the number of pins. This yielded 

the average bank recession for that station during that interval. 

Cumulative average bank recession values for each station during the 

study are listed in table 9. 

Variables which could be quantified and which were observed to 

influence bank recession were chosen as independent variables. Variables 

used in the regression analyses are listed in tables 21 and 22. The data 

for each variable are listed in Appendix H. 

The variables must be quantified in such a way that they are rele­

vant or meaningful. One problem was interval length. The measurement 

intervals varied from 10 to 207 days. In order to alleviate this irregu­

larity, any values of variables affected by interval length were divided 

by the interval length to yield daily averages. Those variables affected 

were average bank recession, rainfall and freeze-thaw cycles. Other 

problem variables were wind direction and lithology at the zone of wave 

impact. Wind direction was finally measured as the angle between the 

wind direction and the bank face. The lithology at the zone of wave 

impact was given a value based on relative erodibility by waves. 

Next, Statistical Analysis Systems (SAS) normal distribution and 

collinearity tests were performed on each variable to help ensure the 

r-· 
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TABLE 21 

Variables Used in Regression Analyses 
of Individual Stations and Results of Nonnal 

Distribution and Collinearity Tests 

Nonnal (N) 
or 

Variable Not Nonnal (NN) 

Average bank recession (cm/day) N 
Maximum pool level (m) N 
Mean pool level (m) N 
Rainfall (mm/day) N 
Freeze-thaw cycles (number/day) NN 
Maximum frost depth (cm) NN 
Mean high wind speed (km/hr) N 
Dominant wind direction 
(< with bank face) N/NN 
Duration of ice cover (months) NN 
Maximum bank height (rn) NN 
Lithology at wave impact zone 
(erodibil ity) NN 
Station orientation 
(compass degrees) NN 
Northward fetch (km) NN 
Northeastward fetch (km) NN 
Eastward fetch (km) NN 
Southeastward fetch (km) NN 
Southward fetch (km) NN 
Southwestward fetch (km) NN 
Westward fetch (km) NN 
Northwestward fetch (km) NN 

Co 11 inear 
Variables 

(C) 

C(l,2) 
C(2,1} 
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TABLE 22 

Variables Used in the Regression Analysis 
of All Stations and Results of Normal 
Distribution and Collinearity Tests 

Variable 

Z : Cumulative average bank 
recession (cm) 

X 9: Maximum bank height (m) 
XlO: Lithology at wave impact zone 

( erodi bi1 ity) 
Xll: Station orientation 

(compass degrees) 
X12: Northward fetch (km) 
X13: Northeastward fetch (km) 
X14: Eastward fetch (km) 
Xl5: Southeastward fetch (km) 
X16: Southward fetch (km) 
X17: Southwestward fetch (km) 
X18: Westward fetch (km) 
Xl9: Northwestward fetch (km) 

Normal (N) 
or 

Not Normal (NN) 

N 
N 

N 

N 
NN 
NN 
NN 
N 
N 
N 
NN 
NN 

Co 11 i near 
Variables 

(C) 
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best possible results from stepwise regression. A normal distribution is 

important because it is an underlying assumption of the F-test used in 

regression analysis (Davis, 1973). If the variable's skewness was 

between +land -1 and/or the probability statistic was 0.05 or greater, 

the data were assumed to be normally distributed. If a variable was not 

normally distributed, the log of the values was taken and the variable 

was re-tested. If it was still not normally distributed, it was deleted. 

Results of the normal distribution tests for individual stations are 

given in table 21. Table 22 lists the results for variables for all the 

stations together. 

If two independent variables are collinear, higher standard errors 

and biased coefficient estimates may result (Hauser, 1974; Gunst and 

Mason, 1980). For the Sakakawea data, if two variables had correlation 

coefficients of 0,8 or greater (Hauser, 1974), they were tested further 

with a collinearity procedure. Their eigenvalues, condition indices, and 

portions explained were analyzed and if a high condition index existed 

which explained the majority of both variables, the variables were 

declared collinear (SAS Statistics User's Guide·, 1982). The variable 

with the lowest R
2 value was deleted from the particular analysis. The 

only two variables that were collinear in any of the tests are maximum 

pool level (Xl) and mean pool level (X2) (Tables 21 and 22). 

/l.fter performing the tests, the variables Y, Xl or X2, X3, X6, and 

sometimes X7, were the only ones available for regression analyses of the 

individual stations (Table 21). Only Z, X9, XlO, Xll, Xl5, X16, and X17 

were available for regression analysis of all the stations together 

(Table 22). 
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Stepwise Reqression Analysis 

All 20 stations were individually analyzed over nine measurement 

intervals in separate stepwise regression analyses (nine variable 

values/station}. In another analysis, the stations were analyzed as a 

group over the entire study period (one variable value/station). Again, 

SAS procedures were utilized to compute the models that best explained 

bank recession at the stations. The FORWARD and MAXR options of PROC 

STEPWISE were used. (See the SAS Statistics User's Guide (1982) for 

description of these procedures}. Critical F-values for 95 percent 

confidence limits used are listed in Davis (1973). 

Results 

The results of the individual station stepwise regression analyses 

are summarized in table 23. Mean pool level (X2) is the one variable 

which best explains average daily bank recession at station 1; it ex­

plains about 69 percent of the bank recession. Mean pool level (X2}, 

together with wind direction (X?), explain about 72 percent of the bank 

recession. This explanation of the results can be extrapolated to table 

23 for each of the stations. Unfortunately, there were no significant 

models generated from regression involving all the stations together. 

Discussion 

Stepwise regression analyses have defined statistically the most 

important variables associated with bank recession at Lake Sakakawea. 

They are, in order of apparent importance: mean pool level (X2), maximum 

pool level {Xl), rainfall (X3), wind speed (X6), and wind direction (X7) 

(Table 24). Overall, pool level (Xl + X2) is the most important variable 

in explaining the amount of bank recession at most stations. As stated 



Station 

1 
2 
3 
4 
5 
6 
7 

50 
51 
52 
53 

54-56 
57 
58 

59-61 
62 

Variable 

XI 
X2 
X3 
X6 
X7 
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TABLE 23 

Results of Stepwise Regression 
for Individual Stations 

l-Variab2e 
Model/R 

2-Variab2e 
Model /R 

3-Variab2e 
Model/R 

X2/0.687 X2, X7 /0. 716 
X2/0.696 X2, X3/0.814 
X2/0.485 
Xl/0.508 
Xl/0.916 Xl, X3/0.922 Xl, X3, X6/0.922 

X3/0.738 X3, X6/0.899 X3, X6, Xl/0.918 

X2/0.447 
X2/0. 713 X2,· X7/0.808 
X2/0. 723 X2, X7/0.780 X2, X7, XJ/0.825 

X6/0.670 X6, XJ/0.726 
. X2/0.818 X2, XJ/0.896 X2, X3, X6/0.926 

X2/0.842 X2, X7/0.895 X2, X7, XJ/0.945 

TABLE 24 

Summary of Regression Model Placings for Each Variable 

1-1.'ariable 2-Variable 3-Variable 
Model Model Model 

2 1 2 
8 6 3 
1 5 5 
1 2 3 
0 4 2 
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earlier, results of field study have indicated that wave erosion is 

respcnsible for over 87 percent of the bank recession at the stations. 

The most important variable affecting wave erosion is pool level, with 

wind direction, wind speed, bank face orientation, bank lithology and 

structure also important. Thus, the regression analyses do indeed 

support field observations and measurements. 

The results for the individual st;;_ticns, depicted in table 23, vary 

considerably. For example, significant R2 values for one-variable models 

cover a broad range, from 0.447 to 0.916. Also, stations 5, 7, 53, 58 

and 62 have significant 1-, 2-, and 3-variable models, whereas stations 

50, 54-56 and 59-61 have no significant models at all. These variations 

are due to the timing of bank failure events and reflect the erosion 

processes acting upon the banks of Lake Sakakawea. An examination of the 

cumulative average bank recession curves for stations 1 and 56 best 

explain the situation. The curve for sta.tion 1 (Figure 51, Appendix B) 

is nearly horizontal during the late fall and winter, reflecting the 

relatively small amount of bank recession due to freeze-thaw failure, and 

shows sharp rises over the late spring and summer, reflecting the 

significance of wave erosion. The other stations that have models 

significant at the 95 percent confidence level have cumulative curves 

similar to station 1. Thus, bank recession (Y) increases during the 

summer, as does pool level ((1 ,ind J:?) ard rainfall (X3). These values 

correlate positively at various levels for each station and significant 

regression equations are generated. 

The cumulative curve for station 56 (Figure 64, Appendix B) shows a 

signfficant rise during the late fall and winter, and sharper rises 

during the late spring and summer. Two possible reasons for this are: 
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1) delayed bank failure, due to wave erosion, but activated hy another 

process after the last measurement prior to freeze-up; and, 2) signifi­

cant thaw failure before the first spring measurement date. The latter 

is probably the case at station 56, because in March 1984, a large amount 

of colluvium was observed on the lake ice at that station (Figure 47), 

Thus, there was no strong positive correlation between bank recession (Y) 

and the dependent variables used, and no significant models were gener­

ated. 

The results of this analysis also indicate that rainfall (X3) is 

relatively significant. However, observations and field measurements 

have indicated that bank recession due directly to rainfall (rainsplash 

and rainwash) is insignificant. But, the regression analyses results are 

obviously due to a positive correlation between rain events and bank re­

cession events. Rainfall may be an important activating factor, ulti­

mately causing the failure of undercut or jointed banks. Four possible 

ways rainfall can activate bank failure are: 1) through saturation of 

the soil on top of the bank (this increases the weight of the bank top); 

2) through increasing pore pressures, and reducing effective stress; 3) 

through vibrations caused by heavy rainfall or associated thunderstorms; 

and, 4) through flushing and widening of extensional joints. 

Finally, there were no significant models generated in the regres­

sion analysis using all the stations. That is, none of these variables 

appears to be statistically important in explaining bank recession for 

the entire set of stations. However, observations indicate otherwise. 

For example, lithology at the zone of wave impact (XlO), station 

orientation (Xll), and fetch direction (X12 through Xl9) are all impor­

tant in affecting the quantity of wave erosion (and thus, bank recession) 
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Figure 47. Colluvium apron on ice resulting from frost-thaw. 
The mode of failure was probably toppling. 
Station 56, March 31, 1984. 
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that will occur at a particular site /See Waves in DISCUSSION OF RESULTS 

AND OBSERVATIONS). 

In conclusion, after evaluation and preparation of the variables, 

stepwise regression analyses were used to define statistically the most 

important variables associated with bank erosion, or recession, at Lake 

Sakakawea. ~esults reveal that pool level is the most important variable 

and, also, that the magnitude of erosion processes varies from station to 

station. These results support field observations and measurements . 

. ,, ~,,.. 
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HISTORICAL BANK RECESSION 

Procedures 

United States Department of Agriculture vertical aerial photographs 

of parts of the study area were gathered for the purpose of measuring 

historical bank recession. These photographs were taken between May 19, 

1958 and August 21, 1976. 

The selection process for choosing appropriate aerial photographs 

was controlled largely by the availability.of photographs. Photographs 

of most of the erosion stations were avai1able for the years 1958, 1966 

and 1976 (Appendix I). To minimize photographic distortions, the stereo­

pairs used were those with a site closest to the center of the photo­

graph. 

The nominal scales for the selected aerial photographs were either 

1:20,000 or 1:40,000. The smaller scale (1:40,000) photographs were much 

more difficult to measure precisely. The actual scale of each photograph 

varies due to distortions (e.g., radial, relief and tilt) within the 

photograph (Tanner, 1978; Wolf, 1974). Because of the variation in 

scale, the average scale was determined for the site portion of each 

photograph (Wolf, 1974). First, stable reference points (e.g., 

buildings, road intersections, etc.) were located on both the aerial 

photograph and the corresponding U.S. Geological Survey topographic map 

(scale of 1:24,000). Next, distances between like points were measured 

on both the photograph and the map. Then, the scale for that portion of 

the.photograph was calculated by using the following formula: scale~ 

(photo distar.ce/map distance) x (map scale). Three scales of measurement 
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were made from the site portion of each photograph and, thus, three 

scales were obtained. Those three scales were then averaged for the site 

portion of the aerial photograph. 

Measurements were made using dividers and the 60th scale of an 

engineer's scale under stereoscopic magnification. Readings were made to 

the nearest 0.21mm. This corresponds approximately to the strict limit 

of measurement which the human eye can accurately measure, as defined by 

Tanner (1978). He listed in table form the "smallest field distance 

measurable" for various scales using the strict (0.2mm) limit. The 

minimum measurable distance (mmd.) was calculated for each photograph, 

using the table. Because two photographs were used to find the change in 

distance at a site, their respective mmd.'s were combined (Tanner, 1978). 

Before any measurements could be made, however, the bluffline at 

each erosion site-had to be located on the photographs. Once this was 

done, the distance along each transect from a known point (usually a road 

intersection) to the erosion station bluffline was measured on the 

photograph. This distance was measured twice. The average of the two 

measurements was then converted to an equivalent ground distance using 

the average photograph scale. These measurements were made for each year 

for which photographs were available. The shortening of the distance, 

then, eoualed the total amount of land lost due to inundation and/or bank 

erosion. This value was then compared to the combined mmd. of the 

photographs. If the measured distance exceeded the combined mmd., the 

value .was considered to be significant. 

Because the reservoir was filling until 1969, when it first reached 

the maximum normal pool level of 564.3m (1850 ft) msl., most of the land 

lost between 1958 and 1966 was due to inundation. However, for the 

,· ,...,,, ··,,,,r;· , '•r :'' . 
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period 1966 to 1976, it was assumed most of the transgressional inunda­

tion had taken place. Although seasonal (l-3m; 3-10 ft) fluctuations 

occur annually, the water will never rise above the 564.3m (1850 ft) 

level because that is the control level of the dam. Using the appropri­

ate U.S. Geological Survey topographic maps ·(complete with contours 

mapped before reservoir closure) the distance from the same known point 

that was used on the aerial photograph to the 1850-foot contour was 

measured. This distance was then converted to an equivalent ground 

distance and compared to the ground distance from the known point to the 

bluffline on the photograph. If it was greater than the distance to the 

bluffline on the photograph, the difference (if larger than the combined 

rrnnd.) was recorded as bank recession. This was done for both intervals 

but was more useful for the period of 1966 to 1976 because prior to 1966 

there was little bank recession. 

Results 

The results of aerial photograph measurements are given in table 25. 

Bank recession rates for 1966 to 1976 ranged from 1.2 to 4.3m/y (3.9 to 

14.1 ft/y) and averaged 2.2m/y (7.2 ft/y). These values correspond very 

well to the rates determined from bank recession pin measurements (Table 

9). Thus, it may be concluded that bank recession rates have been 

relatively uniform from 1966 to 1984. 

Rates for the same years, as calculated by Gatto and Doe (1983), are 

much different, ranging from 1.8 to 13.lm/y (5.9 to 43.0 ft/y) and 

averaging 5.8m/y (19.0 ft/y). This discrepancy between the two studies 

reflects: 1) the inaccuracy of measuring small scale changes on small 

scale aerial photos; and/or, 2) the variability of erodibility for each 

shoreline segment because of changing orientation, bank materials, etc.; 



TABLE 25 

Results of Aerial Photograph Analysis 
(Actual Bank Recession is defined as the change beyond the 564,3m contour.) 

1958 - 1966 1966 - 1976 1958 - 1976 

Minimum Minimum 
Actual Bank Actual Bank Total Bank Total Bank Combined Recession Total Bank Combined Recession Total Bank Recession Chan}e Recession MMD Rate Chan)e Recession MMD Rate Change Recession Rate Station (m (m) (m) (m/y) (m (m) (m) (m/y) (m) (m) (m/y) 

1 184.5 25.0 8.1 3.1 42.7 42.7 12.0 4.3 227.2 67.7 3.8 2 96.6 7.6 8.1 <1.1 21.9 21.9 12.0 2.2 118,5 29.5 1.6 3 195.9 4.1 8.1 <1.1 18.0 18.0 12.0 1.8 213.9 22.1 1.2 ..... 4 52.6 0 8.1 0 6.9 4.0 12.0 <1.2 59.5 4.0 0.2 00 5 39.0 0 8.1 0 15.0 7.3 12.0 <1.2 54.0 7.3 0.4 
0, 

50 174.5 0 8.2 0 55.9 24.4 12.1 2.4 230.4 24.4 1.4 51 77 .4 0 8.2 0 NOT AVAILABLE NOT AVAILABLE 52 135.3 0 8.2 0 NOT AVAILABLE NOT AVAILABLE 

1958 - 1976 

53 227.0 23.8 12.3 1.3 
54 142.8 0 12.3 0 
55 95.3 41.0 12.3 2.3 
56 196.6 31.5 12.3 1.8 
57 201.5 54.0 12.3 3,0 

i: 

t· 



-~ 
! 

186 

and/or, 3) the lack of proper differentiation between inundation and bank 

recession. 

In summary, figures 48, 49 and 50 illustrate the dynamic changes 

which occurred at Lake Sakakawea State Park between 1958 and 1976. 
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Figure 48. Aerial photograph of Lake Sakakawea 
State Park, July 1, 1958. 

Figure 49. Aerial photograph of Lake Sakakawea State Park, 
September 14, 1966. Note the amount of change 
since 1958 due to inundation • 
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Figure 50. Aerial photograph of Lake Sakakawea State Park, July 14, 
1976. Note the amount of change since 1966. This was 
probably primarily due to shoreline erosion by waves. 
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BANK EVOLUTION AND ULTIMATE BANK RECESSION 

Another purpose of this study was to lay the foundation for predict­

ing the {probable) ultimate bank recession rates along the eastern end of 

Lake Sakakawea. Although much more data must be collected before reli­

able predictions can be made, the data accumulated during this study have 

laid that foundation. But how does one predict ultimate recession? 

A necessary step is the evaluation of the modes of bank evolution. 

The majority of the banks along eastern Lake Sakakawea basically evolve 

the same way as the majority of till b~nks along the Great Lakes (Carter 

and Guy, 1983; Sterrett, 1980; Mickelson and others, 1977; Quigley and 

others, 1977; Hadley, 1976; Quigley and Gelinas, 1976). This dominant 

mode of bank evolution at Lake Sakakawea is illustrated by bank profiles 

from stations 3 and 51. The cycle begins in late fa11 as the pool level 

is lowered and the lake begins to freeze; the sites have steep upper 

banks, possibly with gentler colluvium slopes at the toe (Figures 75 and 

81, Appendix C). Varying degrees of thaw failure over the winter and 

spring causes more colluvium to accumulate at the toe and, by late 

spri r.g, the banks tend to become relatively stab 1 e { Figures 75 and 81, 

Appendix C). Then, the pool level typically rises rapidly in response to 

the influx of snowmelt. Accompanying wave erosion removes toe colluvium 

and may even attack the primary bank material, causing undercutting and 

subsequent upper bank failure (Figures 76, 77, 82 and 83, Appendix C). 

Finally, in late summer or early fall, the pool level is lowered again 

and the banks once again become more stable as the colluvium slope 

expands to~1ard the top of the banks (Figures 78 and 84, Appendix C). 
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There are various methods for predicting bank evolution and bank 

recession. They include computer modeling and bank stability analyses. 

Computer Applications 

Ahnert (1971) developed a program which predicts slope profile 

development based on several user-defined variables (e.g., lithology, 

structure). A modified version of such a program (including variables 

like pool level, and bank orientation vs. wind direction) may be useful 

at Lake Sakakawea. Another computer modeling procedure involves 

generating equations by using multivariate regression. These can be used 

to predict the bank recession at a site, within certain confidence 

limits, based on key dependent variables. Each of these computer 

techniques may be applicable to Lake Sakakawea, but more data are needed 

before either can be attempted, because the variables first must be 

defined statistically. Although they reflect the rates for the study 

period, the data collected thus far are only by coincidence statistically 

representative of long term erosion rates and causes. 

Bank Stability Analysis 

Another commonly used method for predicting bank evolution involves 

analyzing bank stability. The distribution of principal stresses in a 

slope is typically skewed, which causes planes of shear failure, or slip 

surfaces, to be curved (Carson and Kirkby, 1972, p.150). Methods of 

analyzing the stability of slip surfaces in slopes have been discussed by 

Fredlund and Krahn (1977), Patton and Hendron (1974), Sowers and Sowers 

(1970), and Terzaghi and Peck (1967). The most common methods derive the 

safety factor (SF) which is the ratio of measured shear strength to 

calculated shear stress. Theoretically, when the SF is less than one, 

• <O< -,.,,. -;;. .', 
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failure will occur. Limit equilibrium methods, consisting largely of 

variations of methods of s1 ices, and which use effective stresses, are 

the most commonly used techniques for computing the SF (Fredlund and 

Krahn, 1977). Because these methods take into consideration complex 

geometry and the reduction in soil strength along the slip surface due to 

pore pressures, they are the ideal techniques to use when measuring the 

SF for slumping in saturated, cohesive banks. However, as Patton and 

Hendron (1974) point out, pore pressure distributions should be evaluated 

carefully because they are often grossly underestimated. 

Edil and Haas (1980), Mickelson and others (1977), and Edil and 

Vallejo (1980), have successfully used modified versions of Bishop's 

method of slices to calculate the SF along Great Lakes shorelines. They 

showed that slope evolution in coastal bluffs can be predicted with 

successive applications of the analysis. 

In some cases the method of slices may be inadequate and analysis of 

other faiiure mechanisms may be necessary. This is especially true of 

wave-cut, overhanging banks, where the cri tica 1 failure mechanisms 

commonly are translational shear, tensile failure or beam failure, 

Thorne and Tovey (1981) analyzed these types of fattures and produced 
" dimensionless stability charts which may be used to calculate the SF for 

each of the three failure mecharrisms. Tney also developed stability 

equations for blocks that have previously fallen on slopes. Bank angle 

was found to be the most important parameter. 

Finally, bank stability analyses may be useful in analyzing slope 

evolution at Lake Sakakawea but most methods do not account for wave 

erosion, overland erosion or thaw failure, which must also be considered 

in determining the ultimate stability of a bank. Because of the lack of 
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geotechnical data, bank stability analyses could not be computed for Lake 

Sakakawea banks. 

Other 

fl. third technique for estimating ultimate recession involves using 

both erosion measurements and field observations. An example is the 

conventional technique used by the Corps of Engineers (Figure 4). How­

ever, as discussed ear1ier, this procedure did not work for the majority 

of range lines; the original ultimate recession predictions have been 

exceeded. But in the summer of 1984, during reconnaissance along the 

eastern end of Lake Sakakawea, it was observed that some range lines are 

characterized by relatively low, vegetated, stable banks. Therefore, 

further investigation of the range lines may provide better insight as to 

what are the important variables affecting ultimate recession at Lake 

Sakakawea. 

By using field observations and analyzing profiles, aerial photo­

graphs, and bank recession data, an approximation of bank recession rates 

can be calculated for particular sites. Using these rates, bank reces­

sion or ban~ stability maps may be delineated. Given similar pool levels 

and wind parameters, this type of map should be genera 1 ly accurate 

perhaps for up to five years but they would need to be updated as more 

data become available and shoreline conditions change. These maps can be 

used to plan land-management or to identify areas which should be 

artificially stabilized. For example, if a map of this type were 

delir.eated for Fort Stevenson State Park, it would be apparent that the 

banks south and west of the maintenance area are highly susceptible to 

erosion (bank recession rates are >3m/y, Table 9) and serious 

consideration should be given to.stabilizing those banks. 
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Black (1981) also used recession maps in conjunction with an ex­

tended beach slope evolution model to predict the time in which a bank 

would ultimately stabilize. The model is similar to the Corps of Engi­

neers technique and appears to be working for some sites at Rathbun Lake, 

Iowa. 

In conclusion, although some of the data collected so far have 

provided a basis for evaluating bank erosion, much more data are needed 

and many factors must be considered before a serious attempt at predict­

ing ultimate bank recession at lake Sakakawea can be made, Some of these 

factors are: bank recession, profile and historical data, geotechnical 

data, stability analyses, statistical models, sedimentation rates, 

changing shoreline geology and geometry due to erosion, and future plans 

for the reservoir, including both upstream and downstream reaches. 

However, one fact is clear, ultimate bank recession at Lake Sakakawea 

depends primarily upon the amount of wave energy that reaches the 

unprotected banks. As long as the present pool management continues, the 

beaches and banks will not stabilize and bank recession will continue, 



BANK STABILIZATION ALTERNATIVES 

Protection of the bank toe from wave erosion is imperative to bank 

stabilization along most of the eastern end of Lake Sakakawea. The 

easiest way to prevent such erosion would be to keep the pool level at or 

below about 562.0m (1843.4 ft) msl. This would greatly reduce toe 

erosion and allow the banks to begin to stabilize. Bank recession would 

continue for many years but the rate and ultimate magnitude would be much 

less than if higher pool levels were maintained. The problem with this 

procedure is that a critical percentage of reservoir capacity would be 

lost. 

Many alternative methods are available. A widely used approach is 

to protect the bank directly with rock fill, rip-rap, retaining walls, 

bulkheads or revetments (U.S. Army Corps of Engineers, 1980; Hadley, 

1976). These methods are costly, though, and would be impractical for 

some of the higher banks. The use of groins and breakwaters should be 

restricted; although they can be successful, they must be well planned to 

avoid causing erosion by altering littoral drift and sediment deposition 

processes (Mickelson and others, 1977). 

Regrading banks (Hadley, 1976) may be another viable alternative. 

This involves removing material from the top of the bank and regrading to 

an adequately stable profile. Of course, if the toe is not protected 

from .further wave erosion, this method is impractical. 

Another method involves artificial beach widening and nourishment 

(Carter and Guy, 1983). However, if not coupled with pool level regu-
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lation, this would be only a temporary protective measure because waves 

and currents would eventually remove the sediment. 

Another solution may lie in the construction of diversion canals 

along the Missouri and Yellowstone rivers, and lake Sakakawea. Excess 

water could be discharged into these canals rather than increasing pool 

level above 562.0m (1843.4 ft) msl. Besides helping to stop bank erosion 

at Lake Sakakawea, these canals would also supply water for farmers and 

municipalities. Unfortunately, the canals would undoubtedly create 

serious political problems. 

Finally, various types of fast-growing, well-rooted vegetation could 

be used for protecting the base of some banks (Hoffman, 1978). Again, 

though, without concurrent pool level regulation, this method would be 

only a temporary deterrent at best. 

In conclusion, the easiest, least expensive, and ultimately the most 

aesthetically pleasing method for promoting bank stabilization is pool 

level regulation at or below about 562.0m (1843,4 ft) msl. However, 

because this is probably not viable, the best methods for protecting and 

stabilizing problem areas would be: 1) armoring the toe of the bank with 

rip-rap or rock fill, or construction of revetments, retaining walls or 

bulkheads or, 2) a combination of regrading the bank, armoring the toe, 

and planting vegetation on the unprotected upper slope. Both of these 

methods may also require periodic sediment nourishment to prevent 

undercutting of the protective structure at the toe. 



SUMMARY 

1. Bank erosion is an important environmental problem at Lake Sakakawea 

and Lake Audubon. Not only is land lost, but water quality is 

adversely affected and reservoir storage capacity is decreased. 

2. A typical sequence for erosion at Lake Sakakawea begins in late 

winter as frost, binding some of the sediment, undergoes 

sublimation. The loosened aggregates accumulate as a thin apron at 

the foot of steep banks. Spring thaw results in slab failures, 

fo11o~ed by earthflows and mudflows. As summer approaches, the lake 

rises because of the snowmelt influx until the maximum pool level is 

reached sometime in mid-summer. Waves, generated by strong winds, 

easily erode_ the loose colluvium along the base of the banks. 

However, not all of the col1uvium is eroded every year; sometimes 

the pool level does not reach the base of the banks and at other 

times, duration of high pool level is too brief for the removal of 

all the colluvium. But, if all the colluvium is eroded (as was the 

case during the summer of 1984), the waves can remove the primary 

sediment or bedrock, effectively undercutting the banks. At the top 

of such banks, extensional joints are initiated. The joints expand 

until bank failure releases the stresses. If the pool level is 

still high enough, the blocks tumble into the water. Otherwise, 

they accumulate along the base of the bank. Bank failure continues 

until a relatively stable profile has fanned. Finally, late summer 

to late winter is an extended period of relative quiescence, after 

which time release of aggregates by sublimation again occurs. 
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3. The most important activating factor at Lake Sakakawea is wave 

erosion. It is responsible for about 87 percent of the total bank 

recession, which ranges from 0.6 to 5.9m (0.5 to 4.6m/yr). 

Measurement of aerial photographs for 1966 to 1976 yielded similar 

recession rates (1.2 to 4.3m/yr). Results indicate that banks with 

the highest recession rates are shorter than 5m, are composed of 

well-jointed till or mudstone, and face north or northeast. Also, 

regression analyses confirm the relationship between pool level and 

bank recession at Lake Sakakawea. 

4. Thaw failure accounts for most of the remaining 13 percent of total 

bank recession at Lake Sakakawea. It is greatest for those banks 

facing west or northwest and which are composed of well-jointed till 

or mudstone. 

5. At Lake Audubon, the most important activating factors are lake 

ice-shove and subsequent wave erosion. Those factors caused most of 

the 0.8 to 1.4m (0.69 to 1.22m/yr) of recorded bank recession there. 

6. Ultimate bank recession at Lake Sakakawea depends primarily upon the 

amount o-F wave energy that reaches unprotected banks. As long as 

the present pool management continues, beaches and banks will not 

stabilize and, therefore, bank recession will continue. 

7. The processes at the two lakes, but especially Lake Sakakawea, are 

similar in importance to those processes acting along the banks of 

Orwell Lake, r.innesota (Reid, 1984, 1985). 
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RECOMMENDATIONS FOR FURTHER STUDY 

1. Although much information has been gathered about erosion rates and 

causes in the past 15 months, there are some voids in the data and, 

perhaps more important, there is little appreciation for the 

statistical validity of the data. To assume that the data collected 

are representative of typical long term rates of erosion for the two 

lakes is statistically without foundation. Therefore, any addition 

'to the data would help to evaluate how representative they are. 

Also, future studies should be expanded farther west on both lakes. 

From casual observations and the study of aerial photographs, it is 

apparent that the conditions (e.g., maximum fetch and glacial till 

thickness) farther west along Lake Sakakawea are different from 

those in the study area. Furthennore, the range lines established 

by the Corps of Engineers should be further investigated and 

evaluated. 

2. The interrelationship of the erosion variables needs to be assessed 

further. Control sites should be chosen such that two or three 

variables are held constant. To investigate the significance of 

bank geology to wave erosion, for example, sites which have similar 

bank orientation, bank geometry, and offshore conditions but differ­

ent stratigraphy should be sought and studied. However, this may be 

more easily said than done be.cause of problems in identifying and 

reaching such sites. 
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3. The significance of erosion variables which were not studied (or 

only very briefly studied) needs to be evaluated. These include the 

following: 

a) Wave energy and wave types: How much wave energy is generated 

by winds during high pool levels and, how does that relate to 

bank erosion? How important is fetch and refraction in affect­

ing wave energy at Lake Sakakawea? Do certain types of waves 

cause more erosion than others when they break against the 

banks? 

b) Offshore sediments: How does the type and amount of offshore 

sediment that is available for corrasion affect erosion magni­

tudes? How does the type and amount of offshore sediments 

affect the offshore bathymetry? 

c) Offshore bathymetry: Where is the eroded sediment going; are 

stable offshore platforms being built or is the sediment being 

transported into deep water? If offshore platforms are being 

built, how does their size affect wave energy? How closely 

related are variations in bank recession and the interaction of 

storm waves with the offshore bathymetry and sediment system? 

d) Precipitation: ~ow do differences in precipitation around the 

lake affect the magnitudes of overland erosion and the moisture 

content of sediments? 

e) Moisture content: How does the antecedent moisture content of 

the different lithologies at Lake Sakakawea affect the magni­

tude of erosion processes? 

f) Frost: How does the depth of frost at specific sites affect 

the quantity of thaw-induced failure at those sites? 
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g) Freeze-thaw cycles: Do more freeze-thaw cycles indeed cause 

more thaw failure? 

h) Stratigraphy: How will the stratigraphy change at a site as 

the bank recedes? If it does change, how will it affect 

erosion rates? (Also, much more work needs to be done on 

correlotion and interpretation of the glacial stratigraphy.) 

4. The role of groundwater needs to be evaluated. Piezometers should 

be installed at certain sites to assess groundwater flow, ground­

water fluctuations due to pool level fluctuations (especially rapid 

drawdown), and the role of groundwater in slope stability. Detailed 

analysis of the large slump below Riverdale may provide insight into 

the role of groundwater at that site. 

5. Expansion of the analysis of geotechnical properties, as well as 

bank stability analyses should be undertaken. Although detailed 

analyses cf texture, structure and mineralogy have been completed, 

other properties are also important to bank stability. These 

include: the amount of water stable aggregates, unconfined compres­

sive strength, Atterburg limits, angle of internal friction, co­

hesion, and, because most bank failures occur along joint planes, 

the shear strength along joint planes. Also, the depth of secondary 

joints in relation to bank height may be another important factor to 

consider in bank stability analyses. 

6. Regression analyses should be repeated and erosion prediction 

equations should be generated when adequate data are collected to 

ensure statistically valid equations. 

7. Probable ultimate bank recession maps should be made using histori­

cal data (aerial photo and range line), slope stability analyses, 

' 
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statistical techniques, field measurements, observations, sedimenta­

tion and reservoir-use projections, and other pertinent data. 

8. Using bank recession predictions, etc., particularly susceptible 

sites should be identified and stabilization alternatives should be 

studied. 
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Physical Characteristics of Bank Samples 
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EXPLANATION 

In the following tables the samples analyzed are defined by a letter 

which is preceded by the station number (Figure 2). The letters refer to 

the stratigraphic position at the sites. The letter A defines the lowest 

visible unit, irrespective of its actual age. 

The formations are abbreviated in the following tables (and follow­

ing appendices) as follows: 

O. = Oahe Formation 

U.S.S. = Upper Snow School Formation 

L.S.S. = Lower Snow School Formation 

U.H.V. = Upper Horseshoe Valley Formation 

L.H.V. = Lower Horseshoe Valley Formation 

U.M.H. = Upper Medicine Hill Formation 

L.M.H. = Lower Medicine Hill Formation 

S.B. = Sentinel Butte Formation 

206 
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TABLE 26 

Color, Moisture Content and Dry Density of Bank Samples, 
Lakes Sakakawea and Audubon, North Dakota 

Moisture 
Content(%) Dry 

Sample Predominant and Density Formation 
Dry Color Depth (m) (gm/cc) 

Lake Sakakawea 

. lA gray (10 YR 5/1) S.B . 
,1 

1B lt. brownish gray 
(2.5 Y 6/2) 

16.8 (1.3) 2.56 u.s.s. 

lC dk. grayish brown 
(10 YR 4/2) 

o. 

2A gray (5 Y 6/1) 1.1 (3.0) 1.99 S.B. 

28 lt. gray (2.5 Y 7/2) S.B. 

2C lt. gray (5 Y 6/1) u.s.s. 
20 grayish brown o. 

(10 YR 5/2) 

3A pale brown 11.6 (0.6) 2.82 u.s.s. 
(10 YR 6/3) 

4A lt. brownish gray L.S.S. 
(2.5 Y 6/2) 

48 lt. yellowish brown 13.8 (2.D) 2.61 u.s.s. 
(2.5 Y 6/4) 

5A red (2.5 Y 5/8) L.S.S. 

58 lt. gray (2.5 Y 7/2) 5.8 (1.5) 3.02 L.S.S. 

5C lt. brownish 5ray 2.3 
(2.5 Y 6/2 

( 1. O) 2.83 u.s.s. 

7A grayish brown 
(2.5 Y 5/2) 

11.3 (6.0) 3.22 U.M.H. 

78 pale brown (10 YR 6/3) L.S.S. 
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TABLE 26 (continued) 

Moisture 
Content ( %) . Dry 

Sample Predominant and Density Formation 
Dry Color Depth (m) {gm/cc) 

Lake Sakakawea 

7C lt. brownish gray u.s.s. 
(2.5 Y 6/2) 

50A lt. brownish gray 11.9 (6.1) 2.37 S. B. 
(2.5 Y 6/2) 

51A lt. yellowish brown 
(2.5 YR 6/4) 

L.H.V. 

518 lt. brownish gray 0.5 (5.3) 1.42 U.H.V. 
(2.5 Y 6/2) 

52A lt. brownish gray 10.0 (4.5) 3.18 U.M.H. 
(2.5 Y 6/2) 

528 .lt. yellowish brown 
(2.5 Y 6/4) 

0.4 (4.0) 1.86 U.H.V. 

52C dk. grayish brown o. 
(2.5 Y 4/2) 

53A lt. yellowish brown S. B. 
(2.5 Y 6/4) 

538 lt. gray (2.5 Y 7/2) 4.6 (2.5) 2.43 LI.M.H. 

56A 1t. gray ( 5 Y 7 / 1) S.B. 

568 lt. brownish )ray S.B. 
(2.5 Y 6/2 

56C lt. yellowish brown 
(2.5 Y 6/4) 

u.s.s. 

57A pale olive (5 Y 6/3) S.B. 

578 lt. brownish )ray 7.0 (5.5) 2.87 S.B. 
(2.5 Y 6/2 

57C pale yellow (2.5 Y 7/4) 2.3 (5.4) 2.55 S.B. 

57D pale olive (5 Y 6/3) 2.8 (5.0) 3.61 u.s.s. 
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TABLE 26 (continued) 

Moisture 
Content(%) Dry 

Sample Predominant and Density Formation 
Dry Color Depth (m) (gm/cc) 

Lake Sakakawea 

57E lt. gray (5 Y 7/2) 0. 

58A lt. gray (10 YR 7/1) 3.9 (6.0) 3.09 U.M.H. 

60A lt. brownish gray 
(2.5 Y 6/2) 

u.s.s. 

61A pale olive (5 Y 6/3) 11.1 (5.0) 1. 70 S.B. 

61B lt. brownish 
5
ray 30.0 

(10 YR 6/2 
( 1. 3) 4.51 S.B. 

Lake Audubon 

IA lt. brownish 
5

ray 
. (2.5 Y 6/2 

13.8 (0.4) 3.19 u.s.s. 



TABLE 27 

Texture of Bank Samples, Lakes Sakakawea and Audubon, North Dakota 

% % % Textural Median 
Sample Sand Silt Clay Name Sorting Skewness Kurtosis Diameter Formation 

Lake Sakakawea 

lA 0.7 41.2 58.1 silty clay 1.647 -0.003 0.964 8. 2 0 S.8. 
18 18.7 53.4 27.9 silty clay loam 2. 770 -0.078 1.195 6.5 0 u.s.s. 
lC 9.7 72.4 17.9 silt loam 1.934 0.222 1.556 5.8 0 o. 
2A 0.3 43.1 56.6 silty clay 1.653 4.828 1.112 8.3 0 S.B. 
28 0.9 67.5 31.6 silty clay loam 2.551 0.176 0.662 7.3 0 S.B. 
2C 27.0 39.1 33.9 clay loam 2.884 -0.148 0.882 6.8 0 u :s. s. 
2D 7.0 58.2 34.8 silty clay loam 3.172 -0 .147 1.104 7.4 0 o. 
3A 24.9 47.6 27.5 clay loam 2.960 0.175 0.639 5.4 0 u.s.s. N ..... 
4A 80.9 10.1 9.0 loamy sand 2.003 0.577 4.971 2.1 0 L.S.S. 0 

48 24.8 42.4 32.8 clay loam 3.735 -0 .137 0.767 6.8 0 u.s.s. 
5A 64.7 24.4 10.9 sandy loam 2.072 0.736 1.807 3.3 0 L.S.S. 
58 70.2 14.5 15.3 sandy loam 2.132 0.797 4.134 2.8 0 L.S.S. 
5C 31.7 32.7 35.6 clay loam 3.233 0.179 0.501 5.8 0 u.s.s. 
7A 28.5 46.9 24.6 loam 3.500 0.045 0.918 5.5 0 U.M.H. 
78 58.4 31.0 10.6 sandy loam 2.546 0.677 1.642 3.2 0 L.S.S. 
7C 24.2 42.2 33.6 clay loam 3.233 0.080 0.927 6.3 0 u.s.s. 
50A 1.4 70.0 28.6 silty clay loam 2.141 0.360 0.922 6.8 0 S.B. 
51A 68.4 14.1 17.5 sandy loam 2.741 0.612 1.388 1.8 0 L.H.V. 
51B 31.3 36.4 32.3 clay loam 4.074 0.069 o. 731 5.8 0 U.H.V. 
52A 22.7 51.3 26.0 silt loam 3.148 -0.077 0.982 5.9 0 U.M.H. 
52B 33.6 33.5 32.9 clay loam 2.916 0.237 0.522 5.5 0 U.H.V. 
52C 7.2 82.0 10.8 silt 1.640 0.357 1.567 5.4 0 0. 
53A 9.6 18.9 71.5 clay 2.142 0.493 1.304 5.5 0 5.8. 
538 20.9 45.4 33.7 clay loam 2.542 0.074 0.990 5.8 0 U.M.H. 
56A 0.1 28.0 71.9 clay 2.983 0.102 0.552 8.3 0 S.B. 
56B 2.2 52.0 45.8 silty clay 2.754 -0.890 0.597 8.0 0 S.B. 
56C 30.7 37.6 31. 7 clay loam 3.937 0.029 0.988 5.1 0 u.s.s. 
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TABLE 27 (continued) 

% % % Textural Median 
Sample Sand Silt Clay Name Sorting Skewness Kurtosis Diameter Formation 

Lake Sakakawea 

57A 0.6 47.8 51.6 silty clay 1.835 0.128 0.923 8. 5 0 S.B. 
578 1.8 33.1 65.1 clay 1.998 0.133 1.234 8. 2 0 S.B. 
57C 0.5 48.9 50.6 silty clay · I. 730 0.070 0.977 8. 5 0 S.B. 
57D 31.3 35.3 33.2 clay loam 3.563 -0.012 0.844 5.6 0 u.s.s. . 57E 7'.5 74.6 17.9 silt loam 1. 756 0.432 1.385 5.4 0 0. 
58A 26.7 37.9 35.4 clay loam 3.403 -0.001 0.817 6.5 0 U.M.H. 
60A 25.1 39.5 35.4 clay loam 3.898 -0.054 0.781 7.7 0 u.s.s. 
61A 0.2 58.1 41. 7 silty clay 1.828 0.121 0.946 7 .8 0 S.B .. 
618 7.6 59.8 32.6 silty clay loam 2.978 0.204 0.714 6.7 0 S.B. 

Lake Audubon 

' 1A 25.4 43.3 31.3 clay loam 3.937 -0.166 0.845 6.5 0 u.s.s. "" ..... ..... 
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TABLE 28 

Average Clay Mineral Ratios for the 
Sentinel Butte Formation, Lake Sakakawea, North Dakota 

Number 
of Samples Kao 1 i nite Chlorite 

Ill i te/ 
Muscovite 

9 .08 .08 .18 

TABLE 29 

Comparison of Clay Mineral Ratios for Glacial Till Samples, 
Lakes Sakakawea and Audubon, North Dakota 

Ill ite/ 

Smectite 

.66 

Sample Kaolinite Chlorite Muscovite Smectite Formation 

Lake Sakakawea 

lB .06 .02 .11 .81 u.s.s . 
2C .16 . 09 .35 . 40 u.s.s . 
3A • 11 .04 .24 .61 u.s.s . 
48 .09 .04 . 27 .60 u.s.s . 
SC .13 • 10 ,35 .42 u.s.s . 
7A .30 0 .27 .43 U.M.H . 
7C .11 .09 . 35 • 45 u.s.s . 
518 .12 .10 .22 .56 U.H.V. 
52A .11 0 .12 • 77 U.M.H . 
528 .20 0 . 20 . 60 U.H.V • 
538 .30 .25 • 28 .17 U.M.H • 
56C .11 .02 . 13 .74 u.s.s . 
570 .13 . 10 .22 .55 u.s.s . 
58A .08 .05 . 17 .70 U.M.H . 
60A .09 .09 • 13 .69 u.s.s . 

Lake Audubon 

lA .11 .08 .29 . 52 u.s.s . 

". -~:t;,, 

.. ----... · ·-. 
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TABLE 30 

Matrix Dolomite and Calcite Percentages for Glacial Till Samples, 
Lakes Sakakawea and Audubon, North Dakota 

% % % Total 
Sample Dolomite Calcite Carbonate Forrnati on 

Lake Sakakawea 

1B 10.5 9.2 19.7 u.s.s. 
2C 7.1 3.4 10.5 u.s.s. 
3A 14.0 6.8 20.8 u.s.s. 
4B 11.3 2.7 14.0 u.s.s. 
SC 12.6 12.2 24.8 u.s.s. 
7A 11.1 5.5 16.6 U.M.H. 
7C 8.2 15.9 24.1 u.s.s. 
518 10.0 5.9 15.9 U.H.V. 
52A 10.6 3.6 14.2 U.M.H. 
52B 11.9 4.3 16.2 U.H.V. 
538 9.8 4.0 13 .8 U.M.H. 
56C 13.5 6.3 19.8 u.s.s. 
57D 14.0 2.9 16.9 u.s.s. 
58A 9.7 3.5 13.2 U.M.H. 
60A 12.3 6.0 18.3 u.s.s. 

Lake Audubon 

lA 11.3 9.6 20.9 u.s.s. 
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TABLE 31 

Coarse Sand Lithology of Glacial Till Samples, Lakes Sakakawea and Audubon, North Dakota 

% Total 
% % % Quartz & % % % Number 

Sample Dolomite Limestone Crysta 11 i ne Feldspar Shale Sandstone Other of Grains Fonnation 

-
Lake 

Sakakawea 

1B 5.2 6.1 30.0 15.0 12.2 31.5 0 213 u.s.s. 
2C 12.9 4.3 18.3 39.8 10. 7 14.0 0 93 u.s.s. 
3A 9.5 10.2 19.7 36.1 19.7 13. 3 1.9 274 u.s.s. 
4B 9.0 10.3 15.5 27.5 28.7 6.4 2.6 233 u.s.s. 
5C 9.2 9.8 27.2 29.2 16.4 6.2 2.0 305 u.s.s. 
7A 3.8 6.9 5.4 8.8 21.1 14.0 40.0 317 U.M.H. 
7C 12.4 16.3 7.8 23. 5 30.1 6.5 3.3 153 u.s.s. 
518 16.1 12.9 16.1 30.4 18.6 5.4 0.7 280 U.H.V. 
52A 4.7 9.9 10.4 13.7 47.6 9.0 4.7 212 U.M.H. 
52B 6.3 5,7 38.8 18.3 18.0 11.1 1.8 333 U.H.V. 
538 9.1 10.4 11. 7 28.6 22.1 18.2 0 77 U.M.H. 
56C 12.1 6.6 30.0 26.9 17. 2 6.9 0.3 290 u.s.s. 
57D 12.2 6.9 18.3 36.6 17.2 4.1 4.7 344 u.s.s. 
58A 6.4 7.6 7.2 14.7 51.8 11.5 0.8 251 U.M.H. 
60A 9.6 10.5 34.3 19. 7 15.5 9.6 0.8 239 u.s.s. 

Lake Audubon 

IA 12.5 8.2 27.6 29.2 13.6 8.9 0 257 u.s.s. 

N ..... ,,. 



APPENDIX B 

Cumulative Average Bank Recession 
for Each Station 



EXPLANATION 

Measurement dates are at inflection points. 

Day 1 = April 9, 1983 
Day 267 = January 1, 1984 
Day 503 = August 24, 1984 
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FIGURE 51. 
CUMULATIVE AVERAGE BANK RECESSION, STATION 1 
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FIGURE 52. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 2 

1. 8 

1. 6 

1. 4 , 

1. l 

o. 8 

0. 6 

o. 4 

0. 2 

0. Q 

TOTAL=l. 945M PINS=8 LENGTH=47. OM 
PREDOMINANT LITHOLOGY=MUDSTONE AVERAGE ORIENTATION=NE 

MAXIMUM BANK HEIGHT=7. OM 

I 

_______ _) 

""!''' I' I I I I' rTTfT ''I'' I I I' j 'TT'''' I'' I I I'' I 'ITTn"f' n1·1nnpTTTrl"Tl"T'fT''TTfT'TT'T .... 

1 1 .1 1 2 2 2 2 3 3 3 3 4 4 4 
2 5 7 0 2 5 7 0 2 5 7 0 2 5 7 0 2 5 
6 1 6 1 6 1 6 1 6 1 6 1 6 6 1 6 1 

DAYS OF MEASUREMENT 

I 
I 

I 

I 

4 5 5 
7 0 2 
6 1 6 



I 
I 
I 

I 
l 

I 

I 
I 
I 

219 

FIGURE 53. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 3 
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rIGURE 54. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 4 
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FIGURE 55. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 5 
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FIGURE 56. 
CUMULATIVE AVERAGE BANK RECESSION, STATION 6 
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FIGURE 57. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 7 
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FIGURE SB. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 50 
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FIGURE 59. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 51 
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FIGURE 60. 
CUMULATIVE AVERAGE BANK RECESSION, STATION 52 
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F"IGURE 61. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 53 
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FIGURE 62. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 54 
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FIGURE 63. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 55 
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FIGURE 64. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 56 
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FIGURE 65. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 57 
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FIGURE 66. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 58 
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FlGURE 67. 
CUMULATIVE AVERAGE BANK RECESSION, STATION 59 
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FIGURE 68. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 60 
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FIGURE 69. 
CUMULATIVE AVERAGE BANK RECESSION, STATION 61 
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FIGURE 70. 

CUMULATIVE AVERAGE BANK RECESSION, STATION 62 
TOTAL=\. 130M PINS=6 LENGTH=24. 411 

PREDOMINANT LITHOLOGY=TILL/MUDSTONE AVERAGE ORIENTATION=W 
MAXIMUM BANK HEIGHT=12. lM 

12 

1. I I 
1. 0 ( 
0 9 I 

I 

o e I 
0. 7 

M 
E 
T 0.6 
R 
E 
s 

0 5 

0 4 

0.3 

0.2 I 

0. I _) 
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 

2 5 7 0 2 5 7 0 2 5 7 0 2 5 7 0 2 5 7 0 2 
6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 

DA.YS OF MEASUREMENT 



L 

237 

FIGURE 71. 

CUMULATIVE AVERAGE BANK RECESSION, STATION A 1 
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fIGURE 72, 
CUMULATIVE AVERAGE BANK RECESSION, STATION A2 
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fIGURE 73. 
CUMULATIVE AVERAGE BANK RECESSION, STATION A3 
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APPENDIX C 

Selected Bank and Offshore Profiles, 
Lake Sakakawea 
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EXPLANATION 

Each figure defines the profile at the site and the relative pool 

level for two respective dates.. The pool levels are indicated by the 

lines which extend across the figure and are parallel to the bank top. 
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FIGURE 79. 

OFFSHORE AND BANK PROFILE 
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APPENDIX D 

Maximum Fetches for Lake Sakakawea Stations 
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TABLE 32 

I Maximum Fetch Distances (km) 
for Lake Sakakawea Stations 

' (as measured from topographic maps) r 

Station Fetch Direction 

N NE E SE s SW w NW 

1 9.76 15.36 5.80 5.52 1. 70 0 0 0 
2 7.39 12.48 5.60 0 0 0 0 0 
3 0.32 1.28 0 0 0 0 0 0.16 
4 1. 76 0.26 0.32 0.16 0 0 0.27 1.76 
5 0.16 0 0 0 0 0.32 0.16 0.40 
6 5.28 0.32 0.16 0 0 0 0.13 0.14 
7 5.28 0.32 0.16 0 0 0 0.13 0.14 

50 11.20 1.00 0 0 0 1.00 3.00 5.50 
51 0 0 0 0.56 3.84 6.24 6.40 7.60 
52 0 0 0.10 0.14 0.14 6.40 6.40 0 
53 0 0 0 5.44 9.10 5.30 12.40 0.32 
54 0 0 0 0 9.28 7.20 4.96 1.42 
55 0 0 0 0 9.31 6.72 5.00 1.31 
56 0 0 0 0 0 7 .10 1.30 0.90 
57 0 0 0 0 9.66 8.96 0.80 0.70 
58 0 0 6.21 6.85 4.80 9.17 2.62 0 
59 0 0 6.26 6.98 4.94 9.20 2.75 0 
60 0.16 0.16 0.80 5.92 5.78 0 0 0 
61 0 0 0.83 6.29 5.76 2.38 3.63 0 
62 0 0 0 0 5.97 2.43 0.10 0 
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APPENDIX E 

Relationship of Cumulative Average Bank Recession 
to Erosion Variables 



' 

. I 
EXPLANATION 

Cumulative average bank recession (CABR) during warm weather or 

highest pool levels is defined as that recession for the periods May 1983 

to October 16, 1983 and June 1, 1984 to August 24, 1984. CABR during 

cold weather or low pool levels is defined as that recession for the 

period October 17, 1983 to May 31, 1984. Because station 59 was not 

measured at the end of May 1984 it was only used for the warm weather 

CABR calculations. 
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TABLE 33 

Relationship of Cumulative Average Bank Recession (CABR) 
to Bank Orientation 

(* Station 59 was not measured over cold weather interval) 

Warm Cold 
Pins Used Total Weather Weather 

Orientation (Station, pins) CABR (m) CABR (m) CABR (m) 

N 3, all; 6, all; 2.34 2.17 (92.8%) 0.17 (7.2%) 
7, all 

NE 1, all; 2, all 3.07 3.06 (9.7%) 0.01 (0.3%) 

E 60, a 11 0.71 0.62 (87.3%) 0.09 (12.7%) 

SE 53, 1-3; 59*, 1-2; 1.64 1.50 0,30 
61, all 

s 51, 1-9; 58, all; 2.15 2.05 0.11 
59*, 3-4 

SW 5, 1-2; 53, 4-12; 2.45 2.00 (81.5%) 0.45 ( 18.5%) 
54, all; 55, 1-6 

w 52, 1-2; 55, 7-9; 2 .10 1.59 (75.7%) 0.51 (24.3%) 
56, all; 57, all; 

62, a 11 

NW 4, all; 5, 3-4; 1.85 1.68 (91.0%) 0.17 (9.0%) 
50, all; 51, 10-12; 

52, 3-7 
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TABLE 34 

Relo.tionship of Cumulative Average Bank Recession (CABR) 
to Bank Lithology at the Wave Impact Zone 

(only important during wann weather months) 

Bank 
Lithology 

(Fonnation) Stations 

u.s.s. 1, 3, 4 

L.S.S. 5 

l.H.V. 51 

U.M.H. 6, 7, 52, 58, 59 

S.B. 2, 50, 53, 54, 55, 
56, 57, 60, 61, 62 

Warm 
Weather 

CABR (m) 

3.15 

1.89 

2.69 

1.55 

1.90 
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I TABLE 35 

I Relationship of Cold Weather Bank 
l Recession to Overall Bank Lithology 

(Data was unavailable for station 59) 

Bank Average 
Lithology Bank 

(Formation) Stations Recession (m) 

o.-u.s.s. 1,3,4,5 0.03 
i (Stations 4 and 5 
I also have L.S.S.) I 

I 
0.-U.S.S.-L.S.S.- 6, 7 0.31 
U.M.H. 

I 
0.-U.S.S.-S.B. 50, 54, 55, 56, 0.63 

57, 60, 61, 62 

0.-U.H.V.-L.H.V.- 51 0.12 
U.M.H. 

0.-U.H.V.-U.M.H. 52 0.03 

0.-U.M.H. 58 0.06 

0.-U.M.H.-S.B. 53 0 .13 

0.-S.B. 2 0.02 
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TABLE 36 

Relationship of Cumulative Average Bank Recession (CABR) 
to Bank Height 

(Data for station 59 was unavailable for cold weather months) 

Warm Cold 
Bank Total Weather Weather 

Height (m) Stations CABR (m) CABR (m) CABR (m) 

<5 1,3,4,5 2.97 2.94 (99.1%) 0.03 (0.9%) 

5-10 2, 52, 53, 54, 1.59 1.44 0.16 
58, 59*, 60, 61 

>10 6, 7, 50, 51, 2.70 2.22 (82.3%) 0.48 (17.7%) 
55, 56, 57, 62 
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APPENDIX F 

Relationship of 1983 Average Overland Erosion 
to Erosion Variables 
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TABLE 37 

Relationship of 1983 
Average Overland Erosion (AOE) 

to Bank Orientation 

Stations 

7 

1, 2 

53A 

538, 58, 59 

51 

4, 5, 52, 50 

TABLE 38 

Relationship of 1983 
Average Overland Erosion (AOE) 

to Bank Height 

Stations 

1, 4, 5 

2, 52, 53A-B, 
58, 59 

7, 50, 51 

AOE (mm) 

23.33 

13.00 

11.67 

17.25 

13.33 

27.84 

AOE (mm) 

13 .11 

15.74 

32.33 
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APPENDIX G 

Relationship of Thaw-Colluvium to Erosion Variables 
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TABLE 39 

Relationship of Thaw-Colluvium 
to Bank Orientation 

Stations 
(*partial) 

3, 6, 7 

1, 2 

60 

53*, 59*, 61 

51*, 58, 59* 

5*, 53*, 54, 55 

52*, 56, 57, 62 

4, 5*, 50, 51*, 52* 

Co1 3uvium 
(m /m) 

0.63 

0.70 

0.33 

0.36 

0.34 

0.50 

0.44 

1.18 
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TABLE 40 

Relationship of Thaw-Colluvium 
to Overall Bank Lithology 

Stations 

1, 3, 4, 5 

6, 7 

50, 54, 55, 56, 
57, 60, 61, 62 

51 

52 

58, 59 

53 

2 

Co1 3uvium 
(m /m) 

0.59 

0.85 

0.84 

0.39 

0.23 

0.31 

0.78 

0.72 



Bank 
Height (m) 

<5 

5-10 

>10 
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TABLE 41 

Relationship of Thaw-Colluvium 
to Bank Height 

Stations 

1,3,4,5 

2, 52, 53, 54, 
58, 59, 60, 61 

6, 7, 50, 51, 
55, 56, 57, 62 

Coljuvium 
(m /m) 

0.59 

0.43 

0.97 
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Data Used in Regression Analyses 
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TABLE 42 

Data Used in Refression Analyses for Variables Common to All the Stations 
See Appendix B for interval definitions.) 

Variables Interval 

. 1-76 76-96 96-137 137-190 190-397 397-419 419-461 461-472 472-503 

Maximum 
Pool Level (m) 562.0 562.8 563.2 562.9 562.3 561.8 564.1 564.1 564.0 

Mean Pool 
Level (m} 561.2 562.4 563.1 562.4 561.4 561.5 562.8 564.1 563.9 

Rainfall 
(mm/day) 0.54 3.49 1. 31 0.16 0 0.38 2.56 0 2.65 NI -.., 

.p ' 

Freeze-Thaw 
Cycles 
{number/day) 0 0 0 0 0.48 0 0 0 0 

Maximum Frost 
Depth (cm) 0 0 0 0 79.5 0 0 0 0 

Mean High Wind 
Speed (km/hr) 35.6 26.8 34.4 34.0 30.5 42.6 23,8 25.8 27.5 

Duration of 
ice cover 
(months) 0 0 0 0 4.2 0 0 0 0 
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TABLE 43 

Dominant Wind Direction (angle with bank face) Data Used in Regression Analyses 
(See Appendix B for interval definitions.) 

Station Interval 

1-76 76-96 96-137 137-190 190-397 397-419 419-461 461-472 472-503 

1 24 -21 24 -21 -21 -21 21 -24 -21 
2 45 0 45 0 0 0 0 -45 0 
3 90 45 90 45 45 45 -45 -90 45 
4 70 65 70 65 65 65 -65 -70 65 
5 45 90 45 90 90 90 -90 -45 90 
6 90 45 90 45 45 45 -45 -90 45 
7 85 50 85 50 50 50 -50 -85 50 

50 24 -21 24 -21 -21 -21 21 -24 -21 N ...., 
51 -10 35 -10 35 35 35 -35 10 35 01 

52 -10 35 -10 35 35 35 -35 10 35 
53 -58 -13 -58 -13 -13 -13 13 58 -13 
54 -30 15 -30 15 15 15 -15 30 15 
55 -30 15 -30 15 15 15 -15 30 15 
56 -5 30 -5 30 30 30 -30 5 30 
57 -5 30 -5 30 30 30 -30 5 30 
58 -90 -45 -90 -45 -45 -45 45 90 -45 
59 -20 -25 -20 -25 -25 -25 25 20 -25 
60 24 -21 24 -21 -21 -21 21 -24 -21 
61 -45 -90 -45 -90 -90 -90 90 45 -90 
62 -20 25 -20 25 25 25 -25 -20 25 
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TABLE 44 

Data for Constant Variables Used in Regression Analyses 
(See Table 32 for maximum fetches and Table 4 
for maximum bank heights and orientations.) 

Station 

1 
2 
3 
4 
5 
6 
7 

50 
51 
52 
53 
54 

. 55 
56 
57 
58 
59 
60 
61 
62 

Relative Erodibility of Lithology 
at Wave Impact Zone 

(1-10; 10 = most erodible) 

7 
2 
7 
7 
9 
5 
5 
2 
8 
5 
2 
2 
2 
2 
2 
5 
5 
2 
2 
2 
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TABLE 45 

Average Bank Recession (cm/day) Data Used in Regression Analyses 
(See Appendix B for interval definitions.) 

Station Interval 

1-76 76-96 96-137 137-190 190-397 397-419 419-461 461-472 472-503 

1 0.01 0.31 1.35 0.29 0,001 0.21 3.99 6.84 1.45 
2 0 0 0.41 0.03 0.01 0 .17 o. 77 1.36 3.97 
3 0.11 0,06 0.09 0,002 0.003 0.07 1.41 11.32 1.80 
4 0,02 0.13 0.03 0.005 0.06 0.13 1.62 4.10 2.54 
5 0.02 0,13 0.10 0.04 0.02 0.02 2.25 2.75 1.66 
6 0.40 0.81 0.03 0.35 0.07 0 0.10 0.01 0.01 
7 0.38 2.24 0.70 0.64 0.21 0.84 1.16 0.15 2.02 

50 0.19 0.22 0.22 0.25 0,26 0.05 0.06 0.09 0.09 N ..... 
51 0.23 0.01 0.96 0.06 0,06 0.10 1.07 5.38 3.48 ..... 
52 0.14 0.20 1.12 0.02 0.01 0 0.45 5.61 3.17 
53 0.01 0.17 0.09 0.02 0.06 0.05 0.13 0,88 0 .81 
54 0 1. 73 0.56 0,40 0.33 3.45 1.43 1.01 1.01 
55 0.04 4.05 1.66 0.95 0.55 3.40 3.29 5.29 0.70 
56 0.73 0.42 1.73 0.72 0.47 1.33 I. 72 0.12 0.32 
57 0.07 0.10 0.02 0.03 0.07 0 0.49 1.35 0.67 
58 0 0.04 0.09 0,05 0.03 0.01 0.04 3.73 0.70 
59 0.28 0.09 0.03 0.02 0 0.26 1.64 0.05 0.21 
60 2.50 0.50 0.10 0 0.04 0 0 0.18 0 
61 1.94 0,05 5.01 0 0.41 0 5.14 0 0 
62 0 0 0.89 0.23 0.08 0.03 0.30 2.58 0.54 

•!! 
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TABLE 46 

Aerial Photographs Used in Analysis 
of Historical Bank Recession 

(The Average Scales are as measured near the stations) 

Average 
Stations Frame No. Date Scale 

1-5 BA0-5V-85 July 1, 1958 1:19,919 
BAO-lGG-107 September 14, 1966 1:20,418 

i 38057-176-155 
'1 

July 14, 1976 1:39,553 

50 BAQ-2V-60 May 19, 1958 1:20,616 
BAQ-4GG-185 August 25, 1966 1:20,535 

38055-376-136 July 17, 1976 1 :40,003 

51-52 BAQ-2V-124 May 19, 1958 1:20,478 
BAQ-4GG-37 August 25, 1966 1:20,649 

53-57 BAQ-3V-14 May 22, 1958 1:21,219 
38055-576-66 August 21, 1976 1:40,447 
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