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ABSTRACT 

A study of high- and low-sodium lignite of the Beulah-Zap bed 

sampled at the Indian Head Mine, Pit 11 and 12, respectively, in 

Mercer County, North Dakota and fly ash derived from utilization tests 

on the lignite, indicates the fly-ash composition and related 

utilization potential can be correlated to coal geochemistry. 

Average lithotype abundances for each of the sampling sites were 

estimated to be vitrain 50%, attritus 45%, and fusain 5%. Attritus 

occurs more frequently in the upper part and vitrain in the middle and 

lower parts of the seam. Macera] groups, identified microscopically, 

were (in order of decreasing abundance): huminite, inertinite, and 

liptinite. The percentage of huminite macerals increased toward the 

bottom and inertinite macerals toward the top of the seam at each 

sampling location. Similar abundances and trends for l ithotypes and 

maceral groups between the high- and low-sodium lignites indicate 

similar depositional processes. 

Scanning electron microscopy and electron microprobe analysis 

were used to determine the abundance and distribution of major 

elements in the lignite. Sodium concentrations were found to be an 

order of magnitude higher in Pit 11 than in Pit 12. Calcium and 

magnesium concentrations were also higher in Pit 11 and iron, sulfur, 

aluminum, and silicon concentrations were higher in Pit 12. A 

distinct correlation between iron and sulfur abundance was noted in 

Pit 11, consistent with high pyrite content as determined during field 

descriptions and microscopic evaluation of the samples. 
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The differences in sodium concentrations at the two sampling 

locations relate to a hydrogeochemical model presented in the 

literature. High-sodium coal corresponds with fine-textured 

overburden sediments. The source of the sodium in the high-sodium 

coal is believed to be sodium montmorillonite clays in the overburden 

at Pit 11. 

Combustion tests at flue-gas temperatures of 1300°c and 1500°c 

were made on a composite lignite sample from each of the two sampling 

locations. Fly-ash samples were analyzed by point-count techniques 

with an electron microprobe and by energy-dispersive X-ray 

fluorescence analyses. The chemical composition of fly-ash particles 

was extremely variable indicating the complexity of reaction 

mechanisms involved in the fonnation of the fly ash. Average oxide 

concentrations of fly ash correlate with oxide concentrations in the 

lignite indicating that the fly-ash composition and utilization 

potential can be related directly to the lignite composition. The 

specific mineral and amorphous phases present in the fly ash are 

interpreted to be detennined by the elemental composition of 

the 1 ignite and the temperature at which the fly-ash particles are 

formed. 

xi 



INTRODUCTION 

Purpose 

The purpose of this study is to obtain an increased 

understanding of the petrographic and geochemical variation of high­

and low-sodium lignite and to investigate how geochemical and 

geological properties of lignite affect utilization. The Beulah-Zap 

bed is a major lignite in the Sentinel Butte Formation (Paleocene) of 

the North Dakota part of the Fort Union Region. The lignite was 

studied petrographically and through chemical analysis to: 1) 

determine vertical variations within the lignite seam, 2) determine 

variations between the lignite samples collected in high- and low­

sodium areas of a mine, 3) to relate fly-ash composition to high­

and low-sodium lignite properties, and 4) to evaluate possible 

relationships between lignite properties and depositional and post­

depositional processes. 

Enormous quantities of low-rank coal (lignite and subbituminous 

coal) are present in the United States. Over 100 trillion tons of 

identified resources have been located and inferred (Low Rank Coal 

Study, 1981). Major low-rank coal deposits in the United States 

include lignite in the Fort Union Region and US Gulf Coast Region, 

and subbituminous coal in the Powder River Region, San Juan Basin,· 

1 
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and Northern Alaska Region. These coals are distinguished from high­

rank, eastern, bituminous coals by lower heating value, higher 

moisture content, dissimilar physical properties, generally lower 

sulfur content and a predominance of alkaline rather than acidic ash 

components. These properties of low-rank coals affect their 

utilization potential. 

The focus of this study is the Beulah-Zap lignite bed of the 

Fort Union Region. The Fort Union Region has been referred to as the 

largest coal basin on earth (Low Rank Coal Study, 1980). Large 

strippable lignite deposits are found in western North Dakota and 

eastern Montana. The lignite is primarily used as boiler fuel at 

mine-mouth electric utility generating stations. Many boilers become 

severely fouled because of the high-sodium content of the lignite. 

In addition to the use of the lignite for boiler fuel, it is the feed 

stock for the Great Plains Gasification Plant that produces synthetic 

natural gas. Efficient utilization of this lignite and expansion of 

marketing potential requires a basic understanding of lignite 

properties and their affect on utilization. 

Lignite is a heterogeneous, carbonaceous rock composed of 

megascopically observable, dominantly organic components 

(lithotypes). The lithotypes consist of _non-crystalline constituents 

(macerals) and minor crystalline constituents (minerals) (Kleesattel, 

1985). The purpose of this study is to investigate the interactions 

between megascopic, microscopic, and chemical properties, and to 

determine possible relationships of these properties to depositional 

and post-depositional processes and to final utilization of the 

lignite. 
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Study Area Location 

The study area is in the Knife River drainage basin, within the 

Williston Basin (Figure l) of the Fort. Union Region. The Williston 

Basin is a broad structural and sedimentary basin containing strata 

from the Cambrian to Tertiary systems. The Beulah-Zap lignite occurs 

as a subsurface unit in Mercer and Oliver Counties of North Dakota. 

The study area was restricted to mining exposures at the North 

American Coal Corporation's Indian Head mine near the town of Zap in 

Mercer county (Figure 2). Samples were collected at two locations in 

the Indian Head mine. · The high-sodium 1 ignite samples were collected 

from Pit 11 in the southeast quarter of Section 16, Township 144 N., 

Range 88 W. The low-sodium lignite samples were collected from Pit 

12 in the northeast quarter of Section 21, Township 144 N., 

Range 88 W. 

General Geology 

The following discussion on the geology of the Beulah-Zap 

lignite follows that of Kleesattel {1985). The Beulah-Zap lignite 

bed was named by Leonard et al. {1925) after the towns of Beulah and 

Zap where it was being mined at that time. The Beulah-Zap lignite 

bed is one of several laterally extensive, thick lignites occurring 

in the Sentinel Butte Formation (Paleocene) in North Dakota. The 

Sentinel Butte Formation is a nonmarine unit of the Fort Union Group 



Figure 1. 
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Location of the Williston and Knife River Basins {after 
Groenewold et al., 1979). 
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Figure 2. Generalized map of study area location. 
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consisting of alternating beds of clay, silt, sand, and lignite which 

is in general gray and brown (Jacob, 1976). Nine major lignite beds 

are recognized in the Sentinel Butte Formation, two of which are 

presently mined on a commercial scale, the Beulah-Zap and the Hagel 

beds {Groenewold et al., 1979). 

The topography of the study area is of gently rolling, grassy 

uplands. Spring Creek, the principal tributary of the Knife River, 

flows eastward through the study area. A thin glacially-deposited 

veneer of sediments covers areas not eroded by stream activity 

(Groenewold et al., 1979). 

The Golden Valley Formation, Paleocene-Eocene in age, 

conformably overlies the Sentinel Butte Formation (Figure 3) but 

occurs only in a few scattered locations as erosional remnants in the 

Knife River Basin (Hickey, 1972). The Sentinel Butte Formation 

(Paleocene) conformably overlies the Bullion Creek (Paleocene) 

Formation {Clayton et al., 1977). 

The Beulah-Zap bed is black to brownish-black coal; it is 

locally continuous with as many as five lignite and carbonaceous clay 

seams separated by clay, silt, or sand (Groenewold et al., 1979). At 

the Indian Head mine, two seams are present. The upper seam, called 

the "Main Beulah", is the focus of this study and is the most 

economically important seam in the Indian Head mine. The lower seam 

is separated from the "Main Beulah" by a clay parting. The thickness 

of the "Main Beulah" is 3.2 to 3.6 metres at the study site. The 

lower seam, commonly high in inorganic content and saturated with 

water, was not completely exposed at either sampling location and 

could not be measured. The thickness of the clay parting between the 
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Figure 3. Stratigraphic nomenclature of upper Cretaceous, 
Paleocene, and lower Eocene strata in western North 
Dakota (from Steadman, 1985). 



10 

EOCENE WHITE RIVER FM.<:::E:-DEN VALLEY FM. 

SENTINEL BUTTE FM. 

a. BULLION CREEK FM. ::, 
0 

w a: 
z (!) 
w z SLOPE FM. 0 0 
0 -
w z 
.....l 

::, 

l I-
a: 
0 
I.I. CANNONBALL FM. 

LUDLOW FM, 

HELL CREEK FM. 

(/) 
:::, 
0 
w 
0 FOX HILLS FM. 

~ 
w 
a: 
0 
a: 
w 
0.. 
0.. 
:::, PIERRE FM. 



11 

two seams is 0.5 to 0.9 metres. The thickness of the overburden at 

sampling sites in Pit 11 and Pit 12 is approximately 20 metres and 15 

metres, respectively. 

Previous Work 

Previous studies on geochemical variation of lignite 

characteristics in the Fort Union Region have been summarized in the 

literature (Low-rank Coal Study, 1980). Variability of specific 

geochemical constituents within and between mines has been reported 

by Sondreal et al. (1968). Data presented in these reports focus on 

average compositions (proximate, ultimate, and heating value data) 

for the coals· from the different mines and the range of variability 

for each coal. 

Previous work on the vertical and horizontal distribution of 

elements within a lignite seam is limited. Karner et al. (1983) 

investigated the distribution of a number of major, minor, and trace 

elements in the Kinneman Creek Bed, which is also in the Sentinel 

Butte Formation. It was determined in that study that patterns of 

element distribution include I) concentration in the margins of the 

seams, 2) concentration in the lower part of the seam, 3} even 

distribution throughout the seam, and 4} for some elements, 

indefinite or irregular patterns. 

In a later study of the Kinneman Creek and Beulah-Zap lignites, 

Karner et al. (1984) reported on the patterns of distribution of 
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inorganic elements and related occurrence to geochemical properties 

and depositional and post-depositional processes. 

Schobert et al. (1984) summarized the distribution of 40 

elements, including sodium, in the Beulah-Zap lignite seam. Six 

categories of inorganic distributions were used which included 

concentration at the top of the coal seam, at the center, at the 

base, or at both margins; an even or uniform distribution; and an 

apparently random distribution. They relate the distribution of 

inorganic elements within the seam to inorganic and organic 

affinities and ionic potential. Sodium is found to have a strong 

organic affinity. Factors controlling the occurrence and 

distribution of the inorganic constituents include depositional 

processes, post-depositional processes, and the type of original 

vegetation. 

Karner et al. (1985) investigated the distribution and 

occurrence of inorganic constituents in samples of high- and low­

sodium Beulah-Zap lignite. Results indicate relationships between 

some inorganic constituents and the sodium content and also indicate 

an organic affinity for sodium. 

Miller et al. (1986, 1987) and Given et al. (1987) reported on 

a comprehensive study of major, minor, and trace elements within 

lignites. They found that the distribution of minerals and major, 

minor, and trace elements within the lignite seams different from 

those in the enclosing sediments and partings. They developed a 

model for the incorporation of inorganic components in peat which 

they consider to be the major source of mineral matter in the 

lignite. 
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Ting (1972) found a strong correlation between the sodium 

content and the rock type of the immediate overburden of the lignite. 

The sodium content of the lignite was usually low when the immediate 

overburden was sandstone and high when the immediate overburden was 

shale. In a later study, Ting (1987) found the sodium cations in 

lignite to be inversely proportional to calcium cations. The 

presence and concentration of the calcium cations in the lignite 

relate to the concentration of the calcium cations and permeability 

of the immediate roof rocks. 

Groenewold et al. (1981) related depositional settings to 

groundwater quality in coal-bearing sediments in western North 

Dakota. They interpreted the deposition of sediments to have 

occurred in various settings in alluvial flood plain environments. 

Coal beds res·ult from deposition of organic materials in reducing 

environments in swamps of broad flood plains that flank stream 

channels. Sand and coarse silt are deposited in largely oxidizing 

environments on point bars in channel areas; coarse to fine silt is 

deposited under generally oxidizing conditions in natural levee 

settings adjacent to channels; and clayey, fine-grained sediments are 

deposited farthest from channels in largely reducing environments in 

flood basins. Clay minerals, particularly sodium montmorillonites, 

are much more abundant in the flood basin deposits than in the 

sediments of channel or natural levee origin. Carbonate minerals, 

particularly dolomite and calcite, are more abundant in point bar and 

natural levee deposits. The critical hydrogeochemical processes 
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include pyrite oxidation, carbonate mineral dissolution, gypsum 

precipitation and dissolution, cation exchange, and sulfate 

reduction. 

Groenewold et al. (1983) summarized and further refined this 

hydrogeochemical model and presented additional evidence supporting 

the concept that hydrogeochemical processes operate almost 

exclusively in the zone above the water table. They also 

demonstrated the regional applicability of the hydrogeochemical 

model. Alternate wetting and drying of the upper portion of the 

landscape is the key mechanism in the chemical evolution of the 

subsurface water in this region and controls the quality of water in 

shallow(< 150 metres) aquifers. 

Zimmer-Oauphinee (1983) analyzed samples from the Hagel, 

Beulah-Zap, and·Lehigh Beds (Sentinel Butte Formation) and the Harmon 

Bed (Bullion Creek Formation) for 24 major, minor, and trace elements 

including sodium. She relates high concentrations of sodium at the 

top of seams to deposition by groundwater. 

Fulton (1987) related the sodium content in lignite to 

hydrogeologic controls including the texture, lithologic composition, 

and thickness of the overburden and the position of the water table. 

In general, sodium-rich.coals are associated with low hydraulic 

conductivity in both overburden and coal and with clayey overburden 

rich in exchangeable sodium. Low concentrations of sodium are 

associated with thin or coarse-textured overburden. 

In addition to studies on the chemical characteristics of 

lignite, several investigations have been made on the physical 

characteristics. Lithotype is a term used for classifying coal on 
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the basis of recognizable physical characteristics. Schobert et al. 

(1984} and Kleesattel (1984) reported on the concentrations of 

lithotypes in the Beulah-Zap lignite. Schobert reported average 

concentrations for vitrain, fusain, and attritus of 35-40, 5, and 40-

60 percent, respectively, and Kleessattel reported average 

concentrations of 35, 5, and 60 percent, respectively. Kleessattel 

(1985} reported on the vertical distribution patterns of the 

different lithotypes in the Beulah-Zap lignite. He found that fusain 

occurs more frequently at the top of the lignite seams, vitrain 

occurs most frequently in the middle and at the very bottom of the 

seams, and attritus occurs more frequently in the lower one-third and 

at the top of the lignite. 

Kleesattel (1985) also investigated the macerals in the Beulah­

Zap lignite ana related the maceral groups to the lithotypes present. 

He reported that the maceral groups, in decreasing order of 

abundance, were huminite, inertinite, and liptinite. Associations 

between the maceral groups and the lithotypes includes the following 

patterns: l} vitrain is composed of mainly huminite group macerals, 

2} fusain is predominately inertinite group macerals, and 3) attritus 

is composed of detrital macerals of all three groups, but 

predominately huminite. Data obtained in his study were.also used to 

interpret the depositional environment of the Beulah-Zap lignites. 

One of the problems associated with the combustion of low-rank 

coals is the build-up of ash fouling deposits on convective pass heat 

exchange surfaces. The University of North Dakota Energy and Mineral 

Research Center (formerly the Grand Forks Energy Technology Center) 

has studied the mechanisms involved in the ash fouling process for 
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more than 30 years. The most important factors in determining the 

fouling potential of a lignite is the ash content of the coal, the 

sodium content of the ash, and to a lesser extent the silicon and 

calcium contents in the ash. Sondreal et al. (1977) reviewed these 

relationships in the ash fouling process. They also relate the 

fouling process to the formation of alkali and alkaline earth 

aluminosilicates. 

Silicates present in the fly ash of most western low-rank coals 

are amorphous or glass-like (Benson, 1987). Stevenson et al. (1988) 

used general trends of the individual ash grain composition as 

revealed on ternary Cao~s;o2-A1 2o3 and Ca0-Na20-Mg0 plots to evaluate 

lignite fly ash. 



METHODS 

Study Site Selection 

The study site selection was based on two major criteria. The 

first of these criteria was the sodium content of the lignite. The 

availability of both high- and low-sodium lignite was desired. Data 

on the sodium content of the lignite at different locations within 

the study area was required for selection of the sampling sites. The 

second criterion required correlation of the seam at the sampling 

locations. 

The Beulah-Zap bed lignite at the Indian Head mine was 

selected. The Beulah-Zap is a laterally extensive, thick lignite 

unit consisting of two seams easily correlated between different 

locations at the mine site. Mining operations are closely controlled 

by analytical results on sodium in the lignite. Based on mine data, 

samples could be collected from two locations providing the maximum 

range of sodium content available at the time. 

In addition, a large data base is available for the Beulah-Zap 

lignite. The University of North Dakota Energy and Mineral Research 

Center (EMRCJ has done considerable work on this coal and established 

a large data base, including chemical characteristics, and megascopic 

and microscopic properties. 

17 
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lignite Sampling Procedures 

Each of the two sets of samples to be collected was from a 

different mining pit at the Indian Head mine. Based on mine chemical 

data, low-sodium lignite was collected from Pit 12 and the high­

sodium lignite was collected from Pit 11. Selection of sampling 

areas for the measured sections in each of the pits was based on 

several factors. First and most important was safety. Unstable 

highwalls in strip mines are a serious problem. Slides due to 

unconsolidated overburden are common and several locations within 

each pit to be sampled had areas where slides had occurred. In 

addition, significant rainfall had preceded the sampling trip, 

requiring extra caution in selecting the areas for sampling. Each of 

the sampling areas was selected well away from overhangs or areas 

where previous slides had occurred. As an added safety precaution, 

mine personnel back-sloped the overburden above the sampling site in 

Pit 12. 

The second factor for selection of a sampling site within each 

pit was accessibility. Both pits were actively being mined and 

considerable coal transportation activities were underway. large 

areas of both pits contained water which excluded access to them. 

Water from the recent rains and drainage from the lignite beds 

obscured contacts that would have made sampling difficult. Also, 

water would have resulted in unsafe conditions for ladder placement 

or footing. 
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The third factor in sample collection was based on the 

freshness of the exposed section. Both pits were actively mined with 

exposures in Pit 11 less than one week old and exposures in Pit 12 

less than one day old. Collection of samples from fresh exposures 

avoided excessive loss of moisture and oxidation of the lignite. 

After selection of the specific areas for sample collection 

within each of the mine pits, a channel was prepared to expose a 

fresh non-weathered surface free from extraneous matter due to mining 

operations and material that may have fallen from the overburden. 

The channel, which was approximately 20 to 30 centimetres wide and 8 

to 10 centimetres deep, was prepared with the use of rock pick, 

hammer, and chisel. The channel was then cleaned by use of a broom 

to remove loose material. 

The seam-was measured and samples were collected at 

approximately IS-centimetre intervals throughout the seam. A 

megascopic description was made of each sample collected. Adjacent 

underclays and overburden were collected separately and described. 

Samples were collected beginning at the base of the seam and 

working upwards to avoid contamination of the channel. Approximately 

two kilograms of lignite were collected from each sampling interval 

and placed in double plastic bags. 
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Sample Preparation and Characterization Techniques 

Characterization of samples included field descriptions, 

microscopic analyses, and chemical analyses for the lignite, 

overburden, and underclay samples and chemical analyses of the ash 

derived from the utilization portion of this study. 

Chemical characterization of the lignite included electron 

microprobe analysis at the University of North Dakota Department of 

Geology and Geological Engineering and reflected light and 

fluorescence microscopy, proximate analysis, ultimate analysis, 

heating value determinations, and energy-dispersive X-ray 

fluorescence spectrometry at the University of North Dakota Energy 

and Mineral Research Center. 

Ash characterization was done by electron microprobe analysis 

at the Energy and Mineral Research Center. 

Field Descrjptions 

Two sets of channel samples were taken from the "Main Beulah" 

seam at the Indian Head mine: one set from Pit 11, which contained 

high-sodium lignite, and the other from Pit 12, which contained low­

sodium·lignite. The cleared channels were first measured and then 

megascopic descriptions were made of the freshly exposed coal face. 

Twenty one channel samples were collected from the "Main 

Be.ulah" seam in Pit 11 at 5.5- to 6.5-inch (14.0- to 16.5-centimetre) 

intervals. Twenty were collected from the "Main Beulah" seam in Pit 

12 at 7.0- to 8.0-inch (17.8- to 20.3-centimetre) intervals. Since 

the main purpose in collecting these samples was to determine the 
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vertical distribution of elements within the seam at each location, 

it was decided that the samples should be taken at regular intervals. 

A secondary objective was to separate the samples based on lithologic 

characteristics which accounts for the minor variance in sampling 

intervals presented above. 

Megascopic properties used in describing the lignite samples 

included luster, color, fracture patterns, hardness, mineral 

occurrences, and lithotypes. A background into the development of 

lithotype terminology is given by Kleesattel (1985). Lithotype 

terminology is based on the megascopic components of the coal, 

however, a lithotype nomenclature system for low-rank coals has not 

yet been agreed upon internationally. As a result, the terminology 

used in this study is based on the system used by Kleesattel (1985). 

Kleesattel used three terms to describe the megascopic components of 

coal, those being vitrain, fusain, and attritus. In addition, clay 

and/or silt partings within the seam can also be referred to as a 

lithotype. A description of each of the three lithotypes is given 

below. 

Vitrain. Vitrain can be identified on the basis of four main 

characteristics being 1) a bright luster, 2) smooth surfaces, 3) 

fractures which are at a 90 degree angle to the bedding planes, and 

4) extreme brittleness. Vitrain is commonly found as discontinuous 

lenses, from 5 to 30 millimetres thick, within the dull granular 

ma.trix of the coal (Kleesattel, 1985). Due to its fracture pattern 

and brittle property, it forms blocky fragments which can easily be 

separated from surrounding material. Vitrain is also clean to the 

touch and can be distinguished from fusain which "dirties" the hand. 
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Vitrain forms in areas of steady, rapid subsidence. Material 

deposited is buried rapidly under anaerobic conditions which inhibits 

physical and biological degradation. 

Fusain. Fusain is composed of fragmental chips and fibers, 

occurring as fine lensos less than 2 centimetres in thickness on . 

bedding plane surfaces (Kleesattel, 1985}. It is extremely friable 

and is responsible for producing more fine particulates than other 

lithotypes. Fusain's characteristic friability is responsible for 

many horizontal partings found in the seam. 

Fusain forms in the driest of swamp environments in areas of 

slow subsidence or low groundwater levels. Subaerial exposure is 

assumed as a contributing factor in its formation (Kleesattel, 1985). 

Attritus. Attritus is the.term used for the dull to moderately 

bright, granular, finely laminated portions of the seam. It's 

granular texture distinguishes it from other lithotypes. Attritus 

also has the characteristic of being resistant to physical weathering 

which can result in visual distinction on the highwall face. 

Attritus forms in relatively deep, stagnant water where 

subsidence and burial rates are low. The original plant material is 

more characteristic of a deep water environment and the plant 

material has undergone extreme degradation. 

Macerals Group Analysis 

Stopes {1935) suggested using the term 'macerals' for the 

microscopically discernible constituents of coal. Nomenclature 

introduced by Stopes later became the basis for an international 

classification of the megascopi.c and microscopic components of coal. 
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This classification, referred to as the Stopes-Heerlen System, was 

established by the Congress on Coal Nomenclature and is currently the 

most widely accepted system (Kleesattel, 1985). 

The three major maceral groups found in lignites are 1) 

huminite, 2) liptinite, and 3) inertlnite (Ting, 1981). Each of 

these groups can be distinquished on the basis of characteristic 

ranges of reflectance and fluorescence. The reflectance and 

fluorescence characteristics of each maceral group are due to the 

chemical composition of the macerals (carbon and hydrogen content). 

Specific macerals in each group are identified on the basis of 

morphology and reflect the type of original plant material. For the 

purposes of this study, only the different maceral groups were 

determined to aid in the interpretation of depositional and post­

depositional processes affecting lignite formation. 

Huminite Maceral Group. The huminite maceral group is 

microscopically medium-grey under reflected light and very dark brown 

to black under fluorescent light. Huminite macerals form in 

moderately deep water under weakly oxidative conditions (Stach et 

al., 1982). This group is indicative of depositional conditions in 

which the plant material is highly degraded by physical and chemical 

processes. 

Ljptinite Maceral Group. The liptinite maceral group is 

microscopically reddish-brown to dark-grey to black under ~eflected 

light and yellow to orange under fluorescent light. Macerals of this 

group show little diagenetic alteration through the lignite stage. 

Inertinite Maceral Group. The inertinite maceral group is 

microscopically light-grey to white under reflected light and black 

• 
i-
• 
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under fluorescent l ig.hL Inertinite mac era ls are typically formed ; n 

shallow water to subaerially exposed conditions (Klessattel, 1985). 

For maceral group analysis the samples were first vacuum dried 

to reduce the moisture content and to make crushing easier. 

Approximately four grams per sample was used in the drying process, 

which took 24 to 48 hours at a pressure of 10 to 15 microns of 

mercury. The process of vacuum drying, although not commonly used 

for the preparation of most biological specimens, does not seem to 

alter the maceral morphology (Kleesattel, 1985). After drying, the 

lignite samples were crushed by hand with a mortar and pestle and 

passed through a 20-mesh screen. This particle size allows complete 

impregnation in the epoxy-embedding mixture without excessive 

reduction of the particle size. 

Pellets were formed by mixing approximately two grams of sample 

with a premixed epoxy and hardner. The amount of epoxy used was 

limited to that needed to impregnate the lignite. The epoxy and coal 

mixture was then placed in a 2.5-centimetre inner diameter mold. 

Additional epoxy was poured over the epoxy and coal mixture to form a 

pellet approximately 2.0 centimetres thick. The pellets were allowed 

to cure for a period of 8 to 12 hours before being removed from the 

molds. 

The coal/epoxy pellets were polished using a lapidary wheel and 

various size polishing compounds. Initial grinding-was done with a 

400 grit sand paper disk w.ith water lubrication. The pellets were 

further polished with nine, six, three, and finally one micron 

diameter diamond paste. After each polishing step, the samples were 

cleaned in an ultrasonic bath for approximately five minutes. After 

-
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final polishing, the pellets were placed in protective plastic caps 

to minimize moisture absorbance by the lignite from the air. 

Maceral group identifications were by standard reflected light 

and fluorescence microscopy techniques (Stach et al., 1982). A Nikon 

Labophot microscope with a 40x oil immersion objective was used for 

quantitative point-count analysis. The point-count method for 

maceral identification used here was developed by Stach et al. 

(1982), and consisted of 500 counts on each of the samples. The 

epoxy component of the pellets was not considered in the point 

counts. 

Chemical Characterization 

Lignjte. Chemical characterization of the lignite was 

accomplished by electron microprobe analysis. Samples were ground by 

hand with a mortar and pestle to a fine powder and passed through a 

60-mesh screen. The ground lignite was then vacuum dried for 24 to 

48 hours at 10 to 15 microns of mercury. Approximately two grams of 

dried sample was then placed in a mold and compressed under 20 tons 

pressure to form a pellet 3.0 centimetres in diameter and 

approximately 0.3 centimetres thick. The pellets were carbon-coated 

for electron microprobe analysis. 

A JEOL JSM-35C scanning electron microscope/electron probe 

microanalyzer was used to examine the Beulah-Zap lignite samples to 

determine concentrations of inorganic elements. The procedure used 

was that developed by Karner et al. (1986). An energy-dispersive 

system was used for quantitative elemental analysis. Operating 

conditions included: l} a beam current at 15 kev, 2) a sample 
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current of approximately 1000 picoamps, and 3) an analysis time of 

200 seconds. All data collected were stored by a Tracor Northern 

2000 data reduction system. A ZAF program (Z c atomic number factor, 

A= absorption factor, and F = characteristic fluorescence factor) 

was used to correct for effects such as 1) differences between 

specimen and standard for electron scattering and retardation, 2) 

absorption of X-rays within the specimen, and 3) fluorescence effects 

(Goldstein et al., 1984). Elements determined by this procedure were 

sodium, magnesium, aluminum, silicon, phosphorous, chloride, 

potassium, calcium, titanium, manganese, and iron. Carbon, hydrogen, 

nitrogen, and oxygen contents were combined into one value and 

determined by difference. Between two and four analyses were made 

per sample and the data averaged. 

A composite lignite sample from each pit was used in the 

utilization portion of this study. Each of the two composite samples 

were dried and crushed to pass through a 60-mesh sieve. Ultimate, 

proximate, and heating value analyses were done on each sample. The 

proximate analysis determines the moisture, ash, volatile matter, and 

fixed carbon content. Ultimate analysis determines the total carbon, 

hydrogen, sulfur, nitrogen, ash, and oxygen contents. A Fisher Coal 

Analyzer was used for the proximate analysis (ASTM, 1983a) and a 

Perkin Elmer 240 Elemental Microanalyzer was used for the ultimate 

analysis (ASTM, 1983b). The heating value, which is reported in 

British Thermal Units (BTU), was determined in an adiabatic oxygen 

bomb calorimeter (ASTM, 1980). 

The two composite lignite samples were also examined by energy­

dispersive X-ray fluorescence spectrometry to determine the oxide 
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weight percents for sodium, magnesium, aluminum, silicon, 

phosphorous, potassium, calcium, titanium, and iron. The energy­

dispersive X-ray fluorescence analysis was done according to Benson 

et. al. {1980}. 

Utilization Products. Each composite sample was tested at two 

combustion temperatures resulting in four ash samples being generated 

during the test program. The ash samples were collected on glass 

fiber filters .. A description of the combustion test equipment and 

sample collection system are provided in the utilization experiments 

section of this report. 

The ash samples were transferred from the glass fiber filters 

to carbon-based-polymer double-stick tape and then carbon-coated. A 

JEOL JSM-35 scanning electron microscope/electron probe rnicroanalyzer 

was used for elemental analysis. The procedure used was that 

developed by Kalrnanovitch et al. {1987}. An energy-dispersive system 

was used with a point-counting technique to obtain quantitative 

analysis. Operating conditions included: l} a beam current at 15 

kev, 2) a sample current of approximately 350 picoarnps, and 3) an 

analysis time of 50 seconds. The sample stage was automated and 

controlled by a dedicated Tracor Northern 5500 computer system. The 

stage was programmed to move over a raster pattern, stopping at 

predefined intervals in order to collect and analyze X-rays produced 

from the sample. The data for each mineral point were processed by 

the computer using ZAF procedures. 



28 

Utilization Experiments 

Test Equipment 

A.drop-tube furnace was used for combustion of the Beulah-Zap 

composite lignite samples. The drop-tube furnace is a bench-scale, 

laminar-flow tube furnace that can be used to simulate a commercial 

utility boiler. Combustion parameters such as initial hot-zone 

temperature, residence time, and gas-cooling rate can be closely 

controlled and monitored (Benson, 1987). 

A diagram of the drop-tube furnace facility is presented in 

Figure 4. Coal, pririiary air, and secondary air are introduced into 

the furnace by means of an injector. Coal and primary air enter the 

furnace at ambient temperature through a water-cooled probe. 

Secondary air .is preheated to approximately 1000°c before entering 

the furnace. The coal and preheated secondary air travel down the 

length of the furnace tube in a laminar-flow regime where the coal is 

combusted. 

The fly ash produced from the combustion of the lignite samples 

is cooled by means of a fly-ash quenching probe and collected on a 

glass-fiber filter system. 

Experimental Design 

Composites of the lignite samples from each pit were made for 

the utilization portion of this study. The two composite samples 

were dried and crushed to pass through a 60-mesh sieve. Ultimate, 

proximate, and heating value analyses were done on each sample. The 

remaining portions of each of the two samples were further crushed to 



Figure 4. Schematic of drop-tube furnace system (from Benson, 
1987). 
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pass through a 200-mesh sieve. This coal particle size, commonly 

referred to as utility blend, was used for the utilization tests. 

Each of the composite Beulah-Zap lignite samples was burned at 

two combustion temperatures, 1300°C and 150o0c (temperature of the 

flue gas}. These temperatures were selected because they bracket the 

range found in commercial utility boiler operations. Secondary air 

was maintained at 1000°c for both furnace conditions and added at a 

rate designed to provide 30 percent excess air in order to provide 

realistic combustion conditions. Residence time of the particles of 

coal in the combustion tube was 1-2 seconds. 



RESULTS 

Field Descriptions 

General 

The thickness of the "Main Beulah" seam in Pit 11 was 3.17 

metres and the thickness of the "Main Beulah" seam in Pit 12 was 3.66 

metres. Overburden thickness at the sampling site in Pit 11 was 

approximately 20 to 25 metres and at the sampling site in Pit 12 was 

approximately 15 metres. The Schoolhouse bed, approximately 0.5 

metres thick, occurred about 15 metres above the "Main Beulah" seam 

in Pit 11. 

Observations 

Megascopic descriptions of the samples from the "Main Beulah" 

seam lignite, overburden, and underclay for each sampling location in 

the Indian Head mine are included in Appendix A. 

In Pit 11, the location of the high-sodium lignite, the 

overburden consisted of clay grading downward into interbedded shale 

and clay. The lowest layer of overburden collected consisted of a 

banded layer of shale, clay and lignite. The lignite contained 

numerous shale clasts. Between the "Main Beulah" and the overburden, 

a sandy band rich in quartz was noted. 

32 
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In Pit 12, the location of the low-sodium lignite, the 

overburden consisted of sand grading downward into silty clay. Much 

of the sand showed cross-bedding and the silty clay was finely 

laminated. Between the overburden and the "Main Beulah", a layer 

rich in pyrite was noted. 

The underclay in Pit 11 consisted of a silty clay rich in 

pyrite. The underclay in Pit 12 consisted of a finely laminated 

carbonaceous clay. 

The approximate average percentages of the three lithotypes in 

both pits were the same with attritus being 45, vitrain 50, and 

fusain 5. Vertical distribution patterns at both sampling sites 

showed that attritus was more abundant in the upper part of the seam 

and vitrain in the middle and lower parts of the seam. Preserved 

plant structur_es wer.e observed in much of vitreous coal. In Pit 11, 

clay 1 enses were observed in five of the lignite samples and pyrite 

nodules were observed in sixteen of the lignite samples. In Pit 12, 

a cherty concretion layer was found in the upper part of the seam and 

pyrite nodules were observed in two of the lignite samples. 

Macerals 

General 

Appendix B presents the percent occurrence of the maceral 

groups and the minerals, if present, in each of the samples studied. 

Minerals identified in some of the samples were clay, quartz, and 

pyrite. Figures 5 and 6 depict the maceral group vertical 
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Figure 5. Distribution pattern for maceral groups identified in 
Pit 11 Beulah-Zap lignite samples. Compiled from 
Appendix A. 
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Distribution patterns for maceral groups identified in 
Pit 12 Beulah-Zap lignite samples. Compiled from 
Appendix A. 
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distributions in Pits 11 and 12. The tables and appendices present 

the data and graphs are used only to illustrate data points. 

Maceral Distribution and Occurrence 

The huminite and inertinite maceral groups have characteristic 

vertical distribution patterns. Inertinite percentages tend to 

increase upwards within the seam and the huminite percentages tend to 

increase downwards within the seam. A decrease in the the percentage 

of huminite accompanied by an increase in inertinite was found at 

approximately 2.4 metres above base at each of the sampling 

locations. 

The huminite group is the dominant maceral group in both 

sampling locations. A higher overall average huminite maceral group 

percentage was found in Pit 11 than in Pit 12 (approximately 80 

percent versus 65 percent). The vertical huminite maceral group 

percentage for samples was more variable in Pit 12 than in Pit 11. 

A higher average inertinite maceral group percentage was found 

in Pit 12 than in Pit 11 (approximately 20 percent versus 16 

percent). The vertical.inertinite maceral group percentage for 

samples was also more variable in Pit 12 than in Pit 11. 

The liptinite maceral group had the lowest concentrations of 

the three groups at both sampling locations. A higher variability in 

the percentage and a slightly lower overall liptinite concentration 

was noted in Pit 12. 

..... 
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Chemical Characterization 

Lignite and Overburden 

Electron microprobe analysis data from the overburden samples 

from Pit 11 and Pit 12 are presented in Table 1. The results are 

shown as average oxide weight percents and Appendix C provides the 

raw data. The oxide percentages do not total 100 percent because the 

organic portion of the samples remains unaccounted for in the 

microprobe analysis. Therefore, water, carbon dioxide, carbon, 

nitrogen, oxygen, and probably other minor constituents do not appear 

in the chemical profile. 

Sodium is found in slightly higher concentrations in the Pit ll 

overburden. Sodium content decreases in the overburden samples at 

both sampling .locations toward the contact with the lignite. Sulfur 

concentrations increase dramatically at the interface with the 

lignite. Higher concentrations of magnesium, calcium, and iron are 

found in the overburden samples at Pit 12. 

Averaged chemical data for the Beulah-Zap lignite samples from 

electron microprobe analysis are presented in Tables 2 and 3 and the 

raw data are presented in Appendix C. 

Sodium concentrations are higher in Pit 11 than in Pit 12. 

Figure 7 shows the vertical distribution of sodium in Pit 11 and 

Figure 8 shows the vertical distribution of sodium in Pit 12. In Pit 

11, the high~sodium lignite, there is an overall increase in sodium 

toward the top of the seam. No specific trend can be seen in the 

low-sodium lignite vertical profile. Figures 9 and 10 show the 

vertical distribution of calcium in Pits 11 and 12, respectively. 
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Table l. Average chemical oxide weight percentages for overburden sediments from electron 
microprobe analysis (top to bottom vertical sequence for samples). 

Sample Na2o MgO Al 20 3 Sio2 Pz05 so3 ClO K 0 2 cao Tio2 MnO 

PIT 11 

2 0.9 2.8 17.3 55.2 0.4 0.2 0.0 3.0 1. 2 0.9 0.3 
3 0.8 1.2 14.6 18.3 0.2 0.8 0.0 2.0 0.8 0.8 0.0 
7 0.5 1.4 16 .1 65.5 0. 2 0 .1 0.0 2.4 0.4 1.1 0.1 
8 0.4 1.0 14.0 59.2 0.2 0.4 0.0 2.2 0.5 1.1 0 .1 

11 0.4 1.1 16.7 67.1 0. 2 0.2 0.0 2.5 i). 3 1.0 0. I 
12 o. 7 1.2 14.9 52.3 0.1 0.4 0.0 1. 9 0.8 0.9 0.0 
13 0.3 0.2 13.4 65.5 1.6 2.2 0.0 0. 7 0.8 2.2 0.0 

PIT 12 

l o. 5 3.5 15. 5 57.2 0.4 0.1 0.0 2.3 3.4 0.8 0.2 
2 0.8 3 " . ., 16.9 57.5 0.4 0.5 0.0 2.8 2.1 0.9 0.2 
3 0.6 3.0 17 .9 56. 6 0.5 0.3 0.0 2.9 1.1 0.8 0.2 
4 0.4 3.0 18.7 58.5 0.4 0.5 0.0 3 .1 0.8 0.9 0.0 
5 0.5 1.3 13.0 53.7 0.2 1.3 o.o 1. 7 1.3 0.7 0.1 

---· ------· 

FeO Total 

8.0 90.0 
1.8 41.3 
1. 7 89.5 
1.3 80.5 
2.0 91.4 ... 

0 
2.1 75.3 
1.7 88.7 

6.4 90.2 
6.7 92.2 
6.6 90.4 
9.7 95.9 
3. l 76.9 



Table 2. Averaged chemical data for Beulah-Zap lignite samples from electron microprobe 
analysis at Pit 11 (top to bottom vertical sequence for samples). 

SAMPLE NA MG AL SI p s . CL K CA TI MN 

42 0.8 . 0.4 1.3 2.0 0 .1 0.4 0.0 0 .1 1.3 0.1 0.0 
41 0.8 0.4 0.8 1.1 0 .1 0.3 0.0 0 .1 1.0 0.0 o.o 
40 1.1 0.5 0.6 0.9. 0.0 0.3 0.2 0 .1 1.1 0.1 0 .1 
39 0.8 0.4 0.5 0.4 0. l 0.3 0.0 0.0 1.3 0.1 0.0 
38 0.8 0.4 0.3 0.3 0.0 0.8 0.0 0 .1 0.8 0.0 0.0 
37 0,8 0.4 0.5 0.4 0 .1 0.3 0.0 o.o 1.3 0.1 0.0 
36 0.7 0.3 0.3 0.3 0.0 0.3 0.0 0.0 1. 7 0.0 0.0 
35 0.6 0.3 0.2 0.2 o.o 0.2 o.o 0.0 0.4 0.0 0.0 
34 0.7 0.4 o. 2 0.1 0.0 0.2 0.0 0.0 0.7 0.0 0.0 
33 0.7 0.3 0.3 0 .1 o.o 0.3 0.0 o.o 0.7 0.0 0.0 
32 0.6 0.3 0.3 0.1 o.o 0.5 0.0 0.0 0.5 o.o 0.0 
31 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 o.o 
30 0.8 0.4 0.4 0.3 0.0 1.3 0.0 o.o 1.8 0.0 0.0 
29 0.7 0.3 0.6 1.0 o.o 0.4 o.o 0.0 1. 2 0.0 0.0 
28 0.0 o.o o.o o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
27 0.8 0.4 0.6 0.6 o.o 1.7 0.0 0.0 I. 2 0. l 0.0 
26 0.1 0.9 8.8 23.2 0.0 0.2 0.0 2.3 0.6 0.4 0.0 
25 0.0 0.4 0.5 0.7 0.0 0.7 0.0 0.0 1.6 0.0 0.0 
24 0.4 0.4 0.4 0.4 0.0 0.6 0.0 0.0 1.2 0.0 0.0 
23 0.4 0.4 0.4 0.2 0.0 0.2 0.0 0.0 1.3 0.0 0.0 
22 0.0 0.7 0.8 0.7 o.o 0.3 0.0 0.0 2.7 0.0 0.1 

FE 0 

0.2 93.4 
0.2 95.3 
0.2 95.0 
0.2 95.9 
0.4 96.3 
0.2 95.9 
0.2 96.3 
0.0 89.1 
0 .1 97.6 ,I> 

I-' 
0.1 97.6 
0.2 97.4 
0.0 99.6 
0.8. 94.3 
0.2 95.3 
0.0 100.0 
1.2 93.4 
2.3 61.3 
0.4 95.6 
0.3 96.4 
0.2 97.2 
0.9 93.8 



Table 3. Averaged chemical data for Beulah-Zap lignite samples from electron rnicroprobe 
analysis at Pit 12 (top to bottom vertical sequence for samples). 

SAMPLE NA MG AL SI p s CL K CA TI MN 

6 0.0 0.7 6.0 16.2 0.0 0.7 0.0 0.9 1.0 0.4 0.0 
7 0.0 0.7 7.4 19.7 o.o 0.3 0.0 1.2 1.1 0.4 0.1 
8 0.1 0.7 5.7 12.6 0.0 0.5 0.0 0.8 1.6 0.4 0.0 
9 0.0 0.6 6.3 21.6 o.o 0. 2 0.0 0.7 1.3 0.6 0. I 

10 o.o 0.7 2.4 4.7 0.0 0.5 0.0 0.1 2.4 0.1 0.0 
11 0.0 0.7 0.8 0.9 0.0 0.5 0.0 0.1 2.3 0.0 0.0 
12 0.0 0.8 1.0 1.8 0.0 0.4 0.0 0.1 2.7 0 .1 0 .1 
13 o.o 0.5 0.3 0.2 o.o 1.1 0.0 0.0 2 .1 0.0 0.1 
14 0.1 0.6 0.4 o. 2 0.0 1.8 0.0 o.o 3.3 0.1 0.0 
15 0.0 0.6 0.3 0.3 o.o 0.6 o.o 0.0 2.3 0.0 0.0 
16 0.1 0.7 0.4 0.3 0.0 0.4 0.0 0.0 2.6 o.o 0.0 
17 0.0 0.5 0,2 0.1 0.0 0.6 0.0 0.0 1.3 0.0 0.0 
18 0.1 0.8 0.7 0.5 0.0 0.5 0.0 0.0 3.6 0 .1 0.1 
19 0.0 0.7 0.5 0.6 o.o 0.4 0.0 o.o 3.0 0. I 0.0 
20 0. l 0.7 0.7 ]. l 0.0 0.4 0.0 0.0 2.9 0. l 0.0 
21 0.1 0.8 0.8 0.6 0.0 0.5 0.0 0.0 3.6 o.o 0. l 
22 0.0 0.8 1.0 1.0 0.0 0.3 o.o 0.0 3.6 0. I 0. l 
23 0.1 0.7 0.7 0.5 0.0 0.3 0.0 o.o 2.9 0.0 o.o 
24 0.0 0.4 0.4 0.3 o.o 0.4 0.0 0.0 1.4 0.0 o.o 
25 0. I 0.5 0.7 0.7 0.0 0.7 0.0 0 .1 1. 7 0.0 0.0 

FE 0 

1.2 72.9 
1.0 68.0 
1.0 76.8 
1. 5 67 .1 
1.1 88.1 
1.6 93.3 
0.8 92.3 
0.2 95.4 
0.7 92.9 ,. 
2.3 93.6 "' 
0.8 94.7 
0.3 96.8 
3.7 90.1 
0.9 93. 7 
1.0 93.2 
1.6 92.0 
1.3 91.8 
0.9 94.0 
0.3 96.8 
0.5 95.2 
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Figure 7. Vertical distribution of sodium content for Beulah-Zap 
lignite samples from Pit 11. Compiled from Table 2. 
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Figure 8. Vertical distribution of sodium content for Beulah-Zap 
lignite samples from Pit 12. Compiled from Table 3. 
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Figure 9. Vertical distribution of calcium content for Be~lah-Zap 
·lignite samples from Pit 11. Compiled from Table 2. 
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Figure 10. Vertical distribution of calcium content for Beulah-Zap 
lignite samples from Pit 12. Compiled from Table 3. 
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Calcium content is variable in both pits with a slight decrease in 

concentration toward the top of the seam in Pit 12. 

Sulfur content is slightly higher in the lignite samples from 

Pit 12 than those from Pit 11. No distinct vertical trend is evident 

in either sampling location (Figures 11 and 12). Certain samples 

within the vertical sampling sequence have high sulfur contents. 

Iron concentrations are also higher in Pit 12 than in Pit 11 

(Figures 13 and 14). A decrease in iron is observed toward the 

bottom of Pit 12 whereas the iron content in Pit 11 increases toward 

the lower part of the seam. 

Figures 15 and 16 present the vertical distribution of calcium 

versus sulfur concentrations in Pits 11 and,12, respectively. 

Figures 17 and 18 present the vertical distribution of iron versus 

sulfur concentrations in Pits 11 and 12, respectively. Iron and 

sulfur contents of the lignite samples in the middle and upper part 

of the seam in Pit 11 correlate well, indicating the presence of 

pyrite. The lower part of the seam seems to indicate a correlation 

between calcium and sulfur. No specific trends are evident between 

iron, calcium, and sulfur in Pit 12. 

Aluminum and silicon concentrations in Pits 11 and 12 (Figures 

19 and 20, respectively) show increases at identical locations within 

each of the vertical profiles indicating the predominance of clay 

rather than quartz. In Pit 12, there is a significant increase in 

the content of these two elements which follows an earlier 

observation that there is a gradational boundary between the lignite 

and the overburden. The contact between the lignite and the 

overburden in Pit 11 is sharper without as significant an increase in· 



Figure 11. 
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Vertical distribution of sulfur content for Beulah-Zap 
lignite samples from Pit 11. Compiled from Table 2. 
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Figure 12. Vertical distribution of sulfur content for Beulah-Zap 
l.ignite samples from Pit 12. Compi1ed from Table 3 . 
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Figure 13. Vertical distribution of iron content for Beulah-Zap 
lignite samples from Pit 11. Compiled from Table 2. 
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Figure 14. Vertical distribution of iron content for Beulah-Zap 
lignite samples from Pit 12. Compiled from Table 3. 
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Figure 15. Vertical distribution of calcium versus sulfur content 
for Beulah-Zap lignite samples from Pit 11. Compiled 
from Table 2. 
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Figure 16. Vertical distribution for calcium versus sulfur content 
for Beulah-Zap lignite samples from Pit 12. Compiled 
from Table 3. 
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Figure 17. Vertical distribution of iron versus sulfur content for 
Beulah-Zap lignite samples from Pit 11. Compiled 
from Table 2. 
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Figure 18. Vertical distribution of iron versus sulfur content for 
Beulah-Zap lignite samples from Pit 12. Compiled 
from Table 3. 



IJ 
f' 
1-

67 

IO • -

C'I 

0 

- IO 0 
ci 

--

....... 
:: LL. ... -• ::I; 

'-'<> 
• ., 
a 

IXI 

• 
~ Ill 

.D 
-4; 

j:+ 
m 

"i 
:::i:; 



! 

I 
I 
I. 

t 
I 
i, 
i> 
;,; 

... 

68 

Figure 19. Vertical distribution of aluminum versus silicon 
content for Beulah-Zap lignite samples from Pit 11. 
Compiled from Table 2 . 
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Figure 20. Vertical distribution of aluminum versus silicon 
content of Beulah-Zap lignite samples from Pit 12 . 

. Compiled from Table 3 . 
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these elements. Pit 11 does have a clay-rich zone at approximately 

two-thirds of a metre above the base that corresponds to field 

observations of a thin clay parting at this location. 

The proximate, ultimate, and heating value data obtained from 

analysis of each of the composite lignite samples used in the 

combustion tests is presented in Table 4. All reported values in 

Table 4 are on a moisture-free basis. The Pit 11 composite lignite 

sample is distinquished from the Pit 12 composite sample by a higher 

carbon content and BTU value and a lower sulfur and ash content. The 

ash contents and BTU values, which are inversely related, are 7.98 

percent and 10,597 BTU/lb, respectively, in Pit 11 and 21.52 percent 

and 8,729 BTU/lb, respectively, in Pit 12. Sulfur content in the Pit 

12 composite lignite sample is higher at 1.40 percent than in the 

composite Pit 11 lignite sample (0.59 percent). 

The values shown in Table 5 are presented as oxide weight 

percent of the ash. The sodium concentration in Pit 11 is an order 

of magnitude higher than in Pit 12. Calcium and magnesium are also 

present in higher concentrations in Pit 11 than in Pit 12. Aluminum, 

silicon, and potassium have higher concentrations in Pit 12 than in 

Pit 11. Iron is present in a slightly higher concentration in Pit 12 

than in Pit 11, also. 

Fly-Ash Composition 

The elemental compositions for the fly-ash samples are provided 

in Appendix D. Average chemical oxide weight percentages for each of 

the four fly-ash samples are shown in Table 6. Sodium, calcium, 

magnesium, and iron concentrations are higher in the ash samples 
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Table 4. Proximate, ultimate, and heating value data from 
composite Beulah-Zap lignite samples used in 
combustion tests (percent, moisture-free basis). 

Component Pit 11 

Volatile Matter 42.25 

Fixed Carbon 49.77 

Ash 7.98 

Hydrogen 4.20 

Total Carbon 63.72 

Nitrogen 0.84 

Sul fur 0.59 

Oxygen 22.65 

BTU/LB 10,597 

Pit 12 

38.35 

40.13 

21.52 

3.87 

53.27 

o. 77 

1.40 

19.15 

8,729 
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Table 5. Chemical oxide weight percents in composite 
Beulah-Zap lignite samples. 

Component Pit 11 

Na2o 12.l 

MgO 8.4 

Al 2o3 13.5 

Si02 21.2 

P205 1.5 

K20 0 .1 

Cao 34.1 

Ti02 1.3 

Fe203 7.8 

Pit 12 

0.0 

4.3 

20.3 

50.9 

0.6 

I. 4 

12.7 

1. 2 

8.7 
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Table 6. Average chemical oxide weight percents in fly-ash 
samples from utilization tests by electron 
microprobe analysis. 

Pit 11 Pit 12 
Composite Sample Composite Sample 

Component 130o0 c 1soo0c 1300°c 1soo0c 

Na20 4.7 0.6 0.9 0.8 

MgO 8.3 8.1 1.5 1.5 

A1203 14.3 15.1 16.1 15.9 

Si02 21.0 23.9 57.9 57.4 

P205 0.6 0.6 0.1 0.1 

ClO 0.0 0.0 0.0 0.0 

K2o 0.0 0.0 0.4 0.2 

CaO 40.7 43.0 19.4 21.2 

Ti02 1.2 1.0 0.8 0.8 

Fe203 9.3 7.8 2.8 2.0 
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derived from the high-sodium lignite and aluminum, silicon, and 

potassium are present ln higher concentrations in the ash samples 

derived from the low-sodium lignite, 



DISCUSSION 

Correlation of Ash Properties and Lignite Geochemistry 

From proximate, ultimate, and heating value data presented in 

Table 4, the lignite from Pit 11 would make a better industrial 

boiler feed than the lignite from Pit 12 because of higher heating 

value and lower ash and sulfur contents. Chemical analysis of the 

two composite lignite samples (Table 5), however, shows that the 

sodium content in the Pit II composite lignite sample is an order of 

magnitude higher than in the Pit 12 sample. The high sodium content 

in the Pit II lignite sample is an important factor in determining 

the fouling potential of this coal and its desirability as a fuel. 

In addition to higher sodium content in the Pit 11 sample, the 

magnesium and calcium contents were also higher than in the Pit 12 

lignite. Aluminum, silicon, potassium, and iron contents were higher 

in the Pit 12 sample .. 

Each of the two composite lignite samples was burned at two 

combustion temperatures, 130o0c and 1500°c. Average chemical oxide 

compositions, calculated on a so3-free basis, are similar for the two 

different temperature ashes from a specific coal. Comparisons are 

made on a so3-free basis because of the volatility and subsequent 

77 
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loss of sulfur during.combustion. As expected, the combustion (flue 

gas) temperature does not affect the chemical composition of the ash. 

The average chemical oxide compositions for the fly-ash samples 

(Table 6), when calculated on a so3-free basis, are very similar to 

the compositions of the original composite lignite samples (Table 5), 

with the exception of sodium in Pit 11 and iron in Pit 12. The lower 

concentrations of sodium in the Pit 11 fly-ash samples, when compared 

to the original sodium concentration in lignite, are believed to 

result from the loss of volatile sodium in the flue gas during the 

combustion tests. The concentration of sodium in the Pit 12 

composite lignite sample was low and loss of sodium during combustion 

of this sample would not be as noticeable. The concentration of iron 

in the Pit 12 fly-ash samples was lower than in the original Pit 12 

lignite sample .. The iron concentrations in the Pit 11 fly-ash 

samples was similar to the original iron concentrations in the Pit 11 

lignite sample. An explanation for the differences is related to the 

form of iron in each of the lignite samples. From field 

descriptions, electron microprobe analysis, and petrographic 

examination of the Pit 11 li.gnite samples, much of the iron occurs as 

pyrite. In the Pit 12 lignite, less pyrite was found although the 
' iron concentration was found to be slightly higher than in Pit 11. 

It is suggested that a greater percentage of iron is associated with 

organic material in the Pit 12 lignite. Combustion of the Pit 12 

lignite could result in the loss of a greater percentage of the iron 

because of concentration in the smaller particulates which are not 

collected as efficiently by the fly-ash sampling probe. This would 

then be reflected in the fly-ash analysis. 
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Although the chemical composition of the fly ash reflects the 

chemical composition of the original lignite, the mineralogical 

composition of the fly ash is a function of the original lignite 

chemical composition and the combustion temperature at which the fly 

ash was produced. The crystalline species identified in fly ash from 

the combustion of lignite are different from those of the respective 

ash deposits and most silicates are amorphous or glass-like (Benson, 

1987). Scanning electron microscope/electron microprobe point-count 

analysis of the fly-ash samples provides elemental data but does not 

identify the crystalline phases present. Chemical composition and 

molar ratios at points determined by a point-count scheme may 

indicate compositions similar to certain minerals (Kalmanovitch, 

1987). 

Montmorillonite- and illite-type compositions, which were 

identified in the Pit 12 fly-ash samples, and kaolinite-type 

compositions, which were identifed in the Pit 11 fly-ash samples, are 

not believed to be crystalline phases. It is not likely that these 

minerals would survive the combustion temperatures used in the 

utilization tests and they are interpreted as phases formed from the .. 
original clay minerals. For discussion purposes, however, these 

compositions will be referred to as minerals. The mineral phases 

present in each of the fly-ash samples are summarized in Table 7. A 

greater number of mineral ·phases are present in the lower temperature 

· fly ashes. Estimates for quantity of mineral phases also indicated 

higher contents in the lower temperature fly ashes. 

The data .derived from scanning electron microscope/electron 

microprobe point-count analysis. of the fly-ash samples were also 
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Table 7. Mineral-type phases inferred from scanning 
electron,microscope/electron microprobe analysis 
of fly-ash samples derived from the utilization 
tests. 

Pit 11 

1300°c 

Calcium Oxide 

Iron Oxide 

Kaolinite 

Analcime 

Melilite 

Nepheline 

1soo0c 

Calcium Oxide 

Kaolinite 

Melilite 

Pit 12 

1300°c 1 soo0c 

Hauyne Montmorillonite 

Montmorillonite Quartz 

Il 1 ite 

Iron Oxide 

Quartz 

Melilite 
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applied to a classification scheme developed by Stevenson et al. 

(1986). This scheme is based on the major chemical components of 

ASTM C-618 Class C fly ash (CaO, Si02, Al 2o3, and Fe-oxide) and is 

illustrated by oxide weight percent Ca0-SiD2-A1 2o3 ternary diagrams. 

Oxide weight percent CaD-Si02-Al 2o3 ternary diagrams for the 

four fly ashes (Figures 21-24) illustrate the chemical composition of 

the fly-ash particles in each of the fly-ash samples. Although a 

complete evaluation of these diagrams is not within the scope of this 

study, several observations can be made. The first observation 

regards the general patterns shown by the lignite fly ashes on the 

ternary diagrams. Stevenson et al. (1986) reported that general 

patterns were evident for lignite, subbituminous, and bituminous fly 

ashes derived from utility boilers when the chemical compositions 

were plotted on ternary diagrams. The patterns observed in the Ca0-

SiD2-Al2o3 ternary diagrams (Figures 21-24) from the Pit 11 and Pit 

12 lignite-derived fly ashes fit the general pattern for lignite fly 

ashes {Stevenson et al., 1986) when the chemical compositions of Pit 

11 and 12 fly ashes are plotted on the same diagram. When plotted 

separately, the Pit 11 fly ash plots in the CaO-rich area of the 
• 

ternary diagram and the Pit,12 fly ash plots in the Si02-rich area. 

Because high-sodium lignite causes fouling in utility boilers, high· 

and low-sodium coals are blended to maintain sodium concentrations at 

levels which will minimize the fouling potential. Fly ashes derived 

from utility boilers operating on these blended coals would not show 

the patterns found in this study. 

Specific trends are evident for the Pit 11 and Pit 12 fly ashes 

to plot along lines that would indicate a relationship between the 
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Figure 21. Oxide weight percent Ca0-Si02-Al 2o3 ternary diagram for 
Pit 11 fly-ash particles der1ved from combustion tests at 
a flue-gas temperature of 130o0 c (S = smectite/illite, K = 
kaolinite). 
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Figure 22. Oxide weight percent Ca0-Si02-Al 2o3 ternary diagram for 
Pit 11 fly-ash particles derived from combustion tests at 
a flue-gas temperature of I5oo0c (S = smectite/illite, K; 
kaolinite). 
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Figure 23. Oxide weight percent Ca0-Si0z-Al 2o3 ternary diagram for 
Pit 12 fly-ash particles derived from combustion tests at 
a. flue-gas temperature of 13oo0c (S = smectite/illite, K = 
kaolinite). 
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Figure 24. Oxide weight percent Cao-s;o2-A1 2o3 ternary diagram for 
Pit 12 fly-ash particles derived from combustion tests at 

.a flue-gas temperature of I50o0 c (S = smectite/illite, K = 
kaolinite). 
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fly-ash composition and the clay minerals originally present in the 

lignite. The compositions of smectite/illite {S} and kaolinite (K} 

are shown on each of the ternary diagrams. Lines drawn on the 

diagrams indicate that the Pit 11 fly ashes plot along the line drawn 

for kaolinite-derived minerals and the Pit 12 fly ashes plot along 

the line drawn for smectite/illite-derived minerals. In order to 

determine whether the characteristic trends for the fly ashes seen in 

this study are true of all high- and low-sodium lignites, additional 

samples should be tested. Also the original clay minerals in high­

and low-sodium lignites should be identified in addition to 

mineralogical characterization of the fly ashes derived from 

combustion of the high- and low-sodium lignites. Finally, the 

interaction between different sodium concentrations and the different 

clay minerals should be studied to determine possible affects in 

fouling potential of the fly ash. 

One final observation is made regarding the fly ash samples 

analyzed by point-count techniques with a scanning electron 

microscope/electron microprobe. Although general trends for each of 

the fly-ash samples are evident from the average chemical 

characterization data (Tab]~ 6), considerable variation is seen in 

the chemical composition of the fly-ash particles within a specific 

fly-ash sample (Appendix D). This reflects the complexity of 

reaction mechanisms involved in the formation of the fly ash. 
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Depositional and Post-depositional Processes 

Recent work on the Sentinel Butte Formation has placed more 

emphasis on lacustrine depositional models. Logan (1981) and Wallick 

(1984) have suggested lacustrine systems with fluvial involvement as 

the primary depositional environment. This study did not focus on a 

depositional environment for the "Main Beulah" seam lignite. Rather, 

the study was directed toward the determination of possible 

relationships between lignite properties and depositional and post­

depositional processes. 

Depositional conditions, mainly relative to water depth, can be 

deduced from the lithotype distribution and abundance (Kleesattel, 

1985). The "Main Beulah" seam sampled at the two locations in the 

Indian Head min.e showed the same general trends of attritus being the 

dominant lithotype in the upper part of the seam and vitrain being 

the dominant lithotype in the middle and lower parts of the seam. 

Vitrain is representative of deposition at moderate (l to 1.5 metres 

deep) water depths under conditions of steady, rapid subsidence 

(Kleesattel, 1985). Attritus is representative of deposition in 

deeper water where subsidence and burial rates are lower. Based on 

this information, it appears that during the period of deposition for 

the "Main Beulah" seam, there was a tendency for increasing water 

depth. Attritus dominated by fusain fragments at the top of the seam 

in both sampling locations would indicate that there was a major 

decrease in water depth towards the end of the lignite deposition 

sequence. 



92 

In addition to the same general vertical trend for lithotype 

abundances at each sampling location, the average percentages for the 

lithotypes at each location, were the same with attritus being 45, 

vitrain 50, and fusain 5. These values were identical to those 

observed by Kleesattel (1985) in his study of the Beulah-Zap lignite 

sampled at nine locations. 

Maceral groups, because they are to some extent related to 

certain lithotypes, can also be used to determine depositional 

conditions. The huminite group was the dominant maceral group in Pit 

11 and Pit 12. Huminite macerals typically form in moderately deep 

water under weakly oxidative conditions (Stach et al., 1982). The 

dominance of the huminite macerals also indicates that humification 

was the dominant coalification process. The humification process, by 

means of bacteria and fungi, hydrolyzes the starches, celluloses, and 

proteins of the plants to form humic acids. 

Maceral group abundances at both sampling locations in the 

Indian Head mine showed a similar vertical trend. lnertinite 

percentages tended to increase upwards within the seam and the 

huminite percentages tended to increase downwards within the seam. 

This trend has also been noted by Kleesattel (1985}. 

Based on the maceral group and lithotype trends and abundances, 

depositional processes for the "Main Beulah" seam lignite at both 

sampling locations are believed to be the same. Differences in the 

Beulah-Zap lignite in Pit 11 and Pit 12 should then be due to post­

depositional processes. The most obvious difference in the chemical 

composition of the lignite from the two sampling areas is the sodium 

content. The average sodium concentration for the lignite from Pit 
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11 is an order of magnitude higher than for the lignite from Pit 12. 

Calcium and magnesium concentrations are also higher for the Pit 11 

lignite. 

Analysis of coal (Kalmanovitch et al., 1987) has shown that 

sodium, calcium, and magnesium are generally associated with the 

organic matrix of lignite whereas silicon, aluminum, iron, potassium, 

and titanium are associated with mineral phases. The Pit 12 Beulah­

Zap lignite has a higher inorganic content and would be expected to 

have higher concentrations of those elements associated with mineral 

phases. The Pit 11 Beulah-Zap lignite would be expected to have 

higher sodium, calcium, and magnesium concentrations because of lower 

ash content or more organic material. The concentration of sodium in 

the Pit 11 lignite, however, is considerably higher than seen in the 

Pit 12 lignite. 

Groenewold et al. (1983) presented a conceptual 

hydrogeochemical model for groundwater quality in coal-bearing 

sediments in western North Dakota. The critical hydrogeochemical 

processes include CO2 production in organic horizons of the soil, 

oxidation of pyrite, dissolution of calcite and dolomite, 

precipitation and dissolution of gypsum, and cation exchange (Ca2+ 

for Na+ on clay). The' hydrogeochemical processes operate almost 
I 

exclusively in the zone above the water table. Alternate wetting and 

drying of the upper portion of the landscape is the key mechanism in 

the chemical evolution of subsurface water and controls the quality 

of water in shallow (<150 metres) aquifers. 

Groenewold et al. (1983) reported that movement of water 

through fine-textured sediments is generally vertical and downward. 
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They also found that the dominant clay mineral in the fine-textured 

sediments ,is sodium montmorillonite. The conceptual hydrogeochemical 

model developed by Groenewold et al. (1983) provides an understanding 

of the hydrogeochemical processes that appear to be responsible for 

the formation of high- and low-sodium coals. According to the model, 

clay is a likely source of sodium found in the high-sodium coal. 

Downward movement of water through the clay during periods of 

recharge results in cation exchange (Ca2+ for Na+ on clay). The 

high-sodium waters move through the lignite where there is a strong 

organic affinity for the sodium (Karner, 1985). 

The overburden above the high-sodium lignite in Pit 11 consists 

mainly of clay grading downward into interbedded clay and shale. The 

overburden above the low-sodium lignite in Pit 12 consists mainly of 

sand grading downward into interbedded clay and silt. Based on the 

sodium concentrations in the lignite at each sampling location and 

the characteristics of the overburden, it appears there is a 

correlation between the lignite sodium concentration and the 

overburden using the model presented by Groenewold et al (1983). 

To verify the mechanisms for development of high-sodium coals, 

samples of water from the overburden and coal should be collected and 

analyzed in both high-' and low-sodium coal areas. The chemistry of 

the water will provide further evidence for mechanisms and the source 

of major cation concentrations present in the coal. In addition, 

samples of lignite should be collected relative to major fractures 

present in the coal seam and overburden to determine the effect of 

the fractures and subsequent groundwater flow on sodium levels in the 

lignite. 
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SUMMARY AND CONCLUSIONS 

Sodium concentrations were found to be an order of magnitude 

higher in the Beulah-Zap lignite in Pit 11 than in Pit 12. Calcium 

and magnesium concentrations were also found to be higher in Pit 11 

lignite. Iron, aluminum, silicon, and sulfur concentrations were 

found to be higher in Pit 12 lignite. 

Iron and sulfur contents in Pit 11 were consistent with high 

pyrite content as determined during field descriptions and in 

microscopic ev~luation of the samples. 

The overburden at Pit 11 was mainly clay grading downward into 

interbedded clay and shale and at Pit 12 was mainly sand grading 

downward into clay and silt. The overburden thickness in Pit 11 was 

approximately 20 to 25 metres and in Pit 12 was approximately 15 

metres. 

Average lithotype abundances for each of the sampling sites 

were estimated to be vitrain 50%, attritus 45%, and fusain 5%. 

Attritus occured more frequently in the upper part and vitrain in the 

middle and lower parts of the seam. 

95 



96 

Maceral groups, identified microscopically, were (in order of 

decreasing abundance): huminite, inertinite, and liptinite. The 

percentage of huminite macerals increased toward the bottom and 

inertinite macerals toward the top of the seam at each sampling 

location. 

Similar lithotype and maceral group abundances and trends 

between Pit 11 and Pit 12 lignites indicate similar depositional 

processes for both locations. 

Differences in sodium concentrations at the two sampling 

locations relate to the hydrogeochemical model presented by 

Groenewold et al. (1983). High-sodium coal corresponds with fine­

textured overb.urden sediments. The source of the sodium in the high­

sodium coal is believed to be sodium montmorillonite clays in the 

overburden at Pit 11. 

Scanning electron microscopy/electron microprobe analysis of 

fly-ash particles indicates.extremely variable chemical compositions. 

This reflects the complexity of reaction mechanisms involved in the 

formation of the fly ash. 

Average oxide concentrations of the fly ash reflect oxide 

concentrations in the lignite, indicating the fly ash composition can 

be directly related to the lignite composition. 
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Mineral and amorphous phases present in the fly ash are 

interpreted to be a function of elemental composition of the lignite 

and combustion conditions, specifically the temperature. 
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DESCRIPTIONS OF MEASURED SECTIONS 

These descriptions of the Beulah-Zap lignite were compiled from 

both field and laboratory examination of the samples. 

, 
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Measured Section in PIT 11 

Measured section in the Indian Head mine, Pit 11, "Main Beulah" 
seam. Total thickness of the "Main Beulah" seam at this location was 
3.17 metres. Overburden and underclays were collected as part of the 
sample series. 

SAMPLE 

2 

3 

7 

8 

11 

12 

13 

42 

41 

INTERVAL 
( HT. ABOVE BASE 

in METRES) 

6.12--20 

5.76-6.12 

5.41-5.76 

4.98-5.41 

4.34-4.98 

3.48-4.34 

3.17-3.48 

3.01-3.17 

2.84-3.01 

DESCRIPTION 

OVERBURDEN; Grey shale, laminated, 
grading upward into light-grey clay; 
"Schoolhouse" lignite bed about 0.5 
metres thick near top. 

OVERBURDEN; Light-grey, laminated 
shale interbedded with carbonaceous 
shale; some pyrite; intermixing of 
layers; middle layer approximately 
12 centimetres thick; well 
consolidated. 

OVERBURDEN; Grey, non-laminated 
clay with fusain clasts; well 
consolidated. 

OVERBURDEN; Dark-grey, carbonaceous 
shale with layers of clayey shale 
about 12 centimetres thick. 

OVERBURDEN; Grey, fibrous, shaly 
clay with fusain clasts; contact 
with lower blackjack lignite is 
gradational. 

OVERBURDEN; Blackjack lignite; 
dull, dark-grey, massive, 
carbonaceous shale; gradual contact 
with lower banded clay, shale and 
lignite. 

OVERBURDEN; Banded clay, shale and 
lignite; shale clasts in lignite 
bands; sandy clay band high in 
quartz at contact with lignite. 

LIGNITE; Dull, hard, attrital coal; 
thin vitrain layers. 

LIGNITE; Dull, hard, attrital coal; 
thin vitrain layers. 
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40 2.70-2.84 LIGNITE; Dull, massive, friable, 
attrital coal; thick vitrain layers; 
fusain fragments abundant on bedding 
plane surfaces; highly fractured; 
clay lenses; iron stained. 

39 2.56-2.70 LIGNITE; Moderate to bright, 
massive, friable, attrital coal; 
thick vitrain layers; fusian 
fragments abundant on bedding plane 
surfaces; highly fractured; iron 
stained; some pyrite nodules. 

38 2.42-2.56 LIGNITE; Moderate to bright, 
attrital coal; thick vitrain layers; 
fusain fragments abundant on bedding 
pl-ane surfaces; highly fractured; 
finely laminated; some pyrite 
nodules. 

37 2.28-2.42 LIGNITE; Moderate to bright, 
attrital coal; thick vitrain layers; 
fusain fragments abundant on bedding 
plane surfaces; highly fractured; 
finely laminated; some pyrite 
nodules; clay lenses. 

36 2.13-2.28 LIGNITE; Moderate to bright, 
massive, soft, attrital coal; thick 
vitrain layers; fusain fragments 
abundant on bedding plane surfaces; 
highly fractured; some pyrite 
nodules. 

35 I. 98-2 .13 LIGNITE; Moderate to bright, 
massive, soft, attrital coal; thick 

' vitrain layers; fusain fragments 
abundant on bedding plane surfaces; 
highly fractured; some pyrite 
nodules. 

34 1.84-1.98 LIGNITE; Moderate to bright, hard, 
I vitreous coal; thick vitrain layers 

l 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces. 

33 I. 70-1.84 LIGNITE; Moderate to bright, ' 
massive, hard, vitreous coal; thick 
vitrain layers with some preserved 
plant structures; some fusain 
fragments on bedding plane surfaces; 
clay lenses; some pyrite nodules. 



32 1. 54-1. 70 

31 I. 38-1. 54 

30 1. 22-1.38 

29 1.07-1.22 

28 0.91-1.07 

27 0.76-0.91 

26 0.61-0.76 

j 
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LIGNITE; Dull, massive, hard, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces; highly 
fractured; some pyrite nodules; iron 
stained. 

LIGNITE; Dull, massive, hard, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces; highly 
fractured; some pyrite nodules; iron 
stained. 

LIGNITE; Dull, massive, hard, 
attrital coal; thick vitrain layers; 
some fusain fragments on bedding 
plane surfaces; highly fractured; 
some pyrite nodules; iron stained. 

LIGNITE; Bright, massive, vitreous 
coal; thick vitrain layers; some 
fusain fragments on bedding plane 
surfaces; clay lenses; some pyrite 
nodules. 

LIGNITE; Dull, attrital coal; thick 
vitrain layers with some preserved 
plant structures; some fusain 
fragments on bedding plane surfaces; 
highly fractured; clay lenses; some 
pyrite nodules. 

LIGNITE; Dull, massive, very hard, 
attrital coal; thick vitrain layers 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces; some pyrite 
nodules. 

LIGNITE; Moderate to bright, 
massive, very hard, vitreous coal; 
thick vitrain layers with some 
preserved plant structures; some 
fusain fragments on bedding plane 
surfaces. 

-.. , __ ,. .,., ... 
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25 0.46-0.61 LIGNITE; Bright, massive, very 
hard, vitreous coal; thick vitrain 
layers with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces; some pyrite 
nodules; iron stained. 

24 0.30-0.46 LIGNITE; Moderate to bright, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces; highly 
fractured; some pyrite nodules. 

23 0.15-0.30 LI.GNITE; Bright, massive, hard, 
attri.tal coal; vitrain lenses; some 
fusain fragments on bedding plane 
surfaces; finely laminated; some 
pyrite nodules. 

22 0. 00-0. 15 LIGNITE; Bright, massive, very 
hard, attrital coal; vitrain lenses; 
some fusain fragments on bedding 
plane surfaces; some pyrite nodules. 

20 -0.91-0.00 UNOERCLAY; Light-grey, finely 
laminated, clay with high silt 
content; numerous pyrite nodules. 
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Measured Section in Pit 12 

Measured section in the Indian Head mine, Pit 12, "Main Beulah" 
seam. Total thickness of the "Main Beulah" seam at this location was 
3.66 metres. Overburden and underclays were collected as part of the 
sample series. 

SAMPLE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

INTERVAL 
(HT. ABOVE BASE 

in METRES) 

4.67--15 

4.09-4.67 

3.87-4.09 

3.78-3.87 

3.66-3.78 

3.48-3.66 

3.30-3.48 

3.12-3.30 

2.95-3.12 

2.77-2.95 

DESCRIPTION 

OVERBURDEN; Reddish, silty clay 
grading, upwards into very fine sand. 
SoJlle cross-bedding of sand. 

OVERBURDEN; Brownish-grey, non­
laminated clayi soft. 

OVERBURDEN; Brownish-grey, finely 
laminated, soft, carbonaceous clay. 

OVERBURDEN; Dark-brownish-grey, 
finely laminated, carbonaceous clay; 
well consolidated. 

OVERBURDEN; Dark-brown to black, 
finely laminated, silty, 
carbonaceous clay; pyrite nodules. 

LIGNITE; Dull, medium to hard, 
attrital coal; some fusain fragments 
on bedding plane surfaces. 

LIGNITE; Dull, friable, attrital 
coal; thin vitrain layers; some 
fusain fragments on bedding plane 
surfaces; iron stained. 

LIGNITE; Dull, friable, attrital 
coal; thin vitrain layers. 

LIGNITE; Dull, massive, friable, 
attrita1 coal; some fusain fragments 
on bedding plane surfaces; large 
cherty concretion layer. 

LIGNITE; Moderate to bright, 
massive, friable, attrital coal; 
thick vitrain layers with well 
preserved plant structures; some 
fusain fragments on bedding plane 
surfaces; iron staining. 
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11 2.59-2.77 LIGNITE; Moderate to bright, 
massive, friable, attrita1 coa1; 
thin vitrain layers. 

12 2.39-2.59 LIGNITE; Moderate to bright, 
massive, hard, attrital coal; thin 
vitrain layers. 

13 2.18-2.39 LIGNITE; Dull, hard, attrital coal; 
thick vitrain layers with some 
preserved plant structures; some 
fusain fragments on bedding plane 
surfaces; finely laminated. 

14 1. 98-2 .18 lI,GNITE; Dull, hard, attrital coal; 
thick, vitrain layers with some 
preserved plant structures; finely 
laminated. 

15 1.80-1. 98 LIGNITE; Dull, hard, attrital coal; 
thick vitrain layers with some 
preserved plant structures; finely 
laminated. 

16 1.63-1.80 LIGNITE; Moderate to bright, 
massive, hard, vitreous coal; thick 
vitrain layers with some preserved 
plant structures. 

17 1.45-1.63 LIGNITE; Bright, massive, hard, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures. 

18 1.24-1.45 LIGNITE; Moderate to bright, 
massive, hard, vitreous coal; thick 
vitrain layers with some preserved 
plant structures. 

19 1. 09-1. 24 LIGNITE; Bright, massive, hard, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures; some fusain fragments on 
bedding plane surfaces • 

. I 
20 0.91-1.09 LIGNITE; Moderate to bright, 

I 
massive, hard, vitreous coal; thick 
vitrain layers with some preserved 
plant structures; some fusain 
fragments on bedding plane surfaces. 



21 0.74-0.91 

22 0.56-0.74 

23 0.38-0.56 

24 0.18-0.38 

25 0.00-0.18 

26 -? -0.00 
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LIGNITE; Moderate to bright, 
massive, hard, vitreous coal; thick 
vitrain layers with some preserved 
plant structures; some fusain 
fragments on bedding plane surfaces, 
small pyrite nodules. 

LIGNITE; Moderate to bright, hard, 
attrital coal; thick vitrain layers 
with some preserved plant 
structures. 

LIGNITE; Moderate to bright, 
attrita1 coal; thick vitrain layers 
with some preserved plant 
struc.tures; small pyrite nodules. 

LIGNITE; Bright, massive, hard, 
vitreous coal; thick vitrain layers 
with some preserved plant 
structures. 

LIGNITE; Moderate to bright, 
massive, hard, vitreous coal; thick 
vitrain layers; some fusain 
fragments on bedding plane surfaces; 
finely laminated; iron stained. 

UNDERCLAY; Medium to dark grey 
carbonaceous clay; finely laminated; 
well consolidated. 
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APPENDIX B 

MACERAL POINT COUNT DATA FOR MEASURED SECTIONS 
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MACERAL POINT COUNT PERCENTAGES FOR EACH OF THE MEASURED SECTIONS 

Macera1 point count data was obtained from petrographic 

examination of the samples. In addition c1ay, quartz, and pyrite 

percentages in the samples was determi.ned. 
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PIT 11 

SAMPLE Ht. above HUM LIP INER CLAY QTZ PVR 
NUMBER base-metres 

42 3.1 73.8 2.4 23.4 0.0 0.2 0.2 
41 2.9 73.8 0.6 25.0 0.6 0.0 o.o 
40 2.8 69.2 3.4 27.0 0.2 0.2 0.0 
39 2.6 66.0 0.6 32.0 1.0 0.2 0.2 
38 2.5 73.2 0.6 26.2 0.0 0.0 0.0 
37 2.4 46.4 o.o 53.6 0.0 0.0 o.o 
36 2.2 69.0 0.4 30.0 0.0 0.0 0.6 
35 2.1 80.0 1.2 17 :6 0.2 0.0 1.0 
34 1.9 74.0 O.& 25.2 o.o 0.0 0.0 
33 1.8 88.4 3.4 ,7 .8 0.2 0.0 0.2 
32 1.6 76.6 9.8 13.6 0.0 o.o 0.0 
31 1. 5 85.6 4.6 6.2 3.6 0.0 0.0 
30 1.3 90.4 3.0 6.6 0.0 0.0 a.a 
29 1.2 89.4 2.4 8.2 a.a 0.0 o.o 
28 1.0 92.0 4.4 3.6 0.0 o.o o.o 
27 0.8 89.6 1.6 5.6 0.0 0.4 2.8 
26 0.7 89.8 1.2 6.0 2.8 o.o 0.2 
25 0.5 95.6 0.6 0.8 I. 2 0.0 1.8 
24 0.4 94.4 4.2 0.8 0.4 0.0 0.2 
23 0.2 85.0 3.2 11.8 0.0 o.o o.o 
22 · 0. I 95.0 5.0 0.0 0.0 0.0 o.o 

PIT· 12 

6 3.6 46.8 0.4 6.8 45.4 0.2 0.4 
7 3.4 22.6 0.0 2.0 74.8 o.o 0.6 
8 3.2 48.8 1.4 3.0 46.8 0.0 0.0 
9 3.0 5.8 0.0 32.6 61.4 0.2 0.0 

10 2.9 58.8 5.2 23.2 12.2 0.4 0.2 
II 2.7 68.2 0.2 27.4 4.2 0.0 0.0 
12 2.5 60.6 4.0 34.6 0.6 0.0 0.2 
13 2.3 44.4 0.0 54.4 1.2 0.0 0.0 
14 2.1 58.4 0.0 40.8 0.6 0.0 0.2 
15 1.9 59.2 5.0 35.2 0.6 0.0 0.0 
16 1. 7 80.4 1.0 17.8 0.8 0.0 0.0 
17 1.5 87.0 0.0 11.6 1.0 0.0 0.4 
18 1.4 75.4 7.2 16.8 0.6 0.0 0.0 
19 1.2 86.0 1.0 12.6 0.2 0.0 0.2 
20 1.0 67 .4 3.0 28.4 1.0 0.0 0.2 
21 0.8 87.0 1.2 10.6 1.2 0.0 0.0 
22 0.7 78.8 3.0 16.0 2.2 0.0 o.o 
23 0.5 76.2 3.0 19.2 1.0 0.2 0.4 
24 0.3 92.6 4.0 1.8 0.6 0.0 1.0 
25 0.1 90.6 6.6 0.6 2.2 o.o o.o 
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CHEMICAL CHARACTERIZATION DATA FOR MEASURED SECTIONS 

The data reported here were determined by electron microprobe 

analysis as described in the Methods section of this report. 

Values are r~ported as weight percent of coal. 

.:.,,., 
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SAMPLE NA MG AL SI p s CL K CA TI MN FE 0 
PIT 11 

2 0.62 1.62 9.16 25.70 0.20 0.07 0.02 2.48 0.89 0.52 0.22 6.10 52. 41 
0.77 1. 70 9.19 25.80 0.13 0.09 0.00 2.42 0.80 0.53 0.17 6.27 52.17 

3 0.62 0.78 7.90 22.71 0.08 0.32 0.00 1. 67 0.60 0.52 0.04 1.39 63.36 
0.55 0.57 7.60 22.37 0.08 0 •. 32 0.02 1.59 0.54 0.42 0.03 1.39 54.38 

7 0.40 0.58 8.52 30.76 0.09 0.02 0.00 1.98 0.30 0.67 0.06 1.36 55.06 
0.35 0.68 8.47 30.31 0.11 0.03 0.00 2.06 •. 0.27 0.70 0.04 1.32 55.68 

8 0.34 0.59 7.50 27 .67 0.06 0.15 0.04 1.86 0.34 o. 71 0.06 0.96 59.73 
0.32 0.58 7.37 27.62 0.11 0.13 0.00 1.81 0.43 0.64 0.09 0.99 59.93 

11 _ 0.31 0.63 8.87 31.30 0.09 0.09 0.00 2.05 0.19 0.57 0.04 1.53 54.29 
12 0.62 0.69 7.68 24.43 0.06 0.15 0.00 l. 55 0.59 0.56 o.oo 1.62 62.12 

0.34 0.81 8.05 24.40 0.04 0.18 0.00 1.61 0.55 0.58 0.00 1.64 61.84 
13 0.24 0.15 7.02 31.08 0.65 0.81 0.00 0.49 0.54 1.27 0.00 1.23 56.45 

0.25 0.14 7.20 30.10 0.73 0.96 0.00 0.58 0.63 1.36 0.00 1.36 56.70 
42 0.73 0.39 1.27 1.96 0.11 0.32 0.00 0.09 1.28 0.06 0.03 0.18 93.53 

0.78 0.49 1.32 1.99 0.10 0.38 0.00 0.10 1.33 0.07 0.03 0.26 93 .16 f-' 
41 0.80 0.43 0.82 1.08 0.11 0.33 0.03 0.07 1.19 0.05 0.00 0.22 94.86 f-' 

w 
0. 72 0.39 0.76 1.04 0.08 0.25 o.oo 0.06 0.82 0.03 o.oo 0.15 95.71 

40 0.87 0.48 0.64 1.01 0.00 0.30 0.00 0.04 r.23 0.06 0.03 0.18 95.15 
1.38 0.42 0.50 0.86 0.00 0.27 0.43 0.06 1.00 . 0.04 0.07 0.15 94.82 

39 0.84 0.41 0.48 0.49 0.08 0.31 0.00 0.00 1.31 0.04 0.04 0.25 95.75 
0.69 0.45 0.48 0.33 0.05 0.31 0.02 0.06 1.35 0.05 0.03 0.23 95.94 

38 0.84 0.37 0.36 0.27 0.03 0.60 0.00 0.05 o. 74 0.02 o.oo 0.27 96.46 
0.70 0.33 0.29 0.27 0.05 0.90 o.oo 0.04 0.77 0.03 0.00 0.42 96.20 

37 0.84 0.41 0.48 0.49 0.08 0.31 o.oo 0.00 1.31 0.04 0.04 0.25 95.75 
0.69 0.45 0.48 0.33 0.05 0.31 0.02 0.06 1.35 0.05 0.03 0.23 95. 94 

36 0.91 0.42 0.41 0.38 0.00 0.37 0.03 0.00 2.27 0.00 0.06 0.18 94.97 
0.41 0.19 0.19 0.16 0.02 0.17 o.oo 0.01 1.05 0.01 0.00 0.15 97.63 

35 0,54 0.29 0.23 0.15 0.00 0 .18 0.00 0.02 0.54 0.00 0.00 0.04 98.01 
0.67 0.27 0.19 0.16 0.01 0.13 0.01 0.00 0.34 0.00 0.00 0.04 98.18 

34 0.67 0.36 0.22 0.12 0.02 o .11 0.00 0.00 0.57 0.00 0.00 0.05 97.82 
0.74 0.38 0.26 0.13 0.04 0.20 0.02 0.00 0.74 0.02 0.03 0.09 97 .34 

33 0.64 0.28 0.25 0 .13 0.00 0.25 0.02 0.02 0.57 0.02 0.00 0.04 97.78 
& 0.80 0.31 0.25 0.08 0.04 0.30 0.00 0.00 0.79 0.02 0.00 0.10 97.31 



32 0.62 0.31 0.24 0.15 0.00 0.48 0.00 0.00 0.49 0.03 0.00 0.21 97.47 
0.65 0.34 0.25 0.12 0.00 0.53 0.00 0.00 0.58 0.00 o.oo 0.24 97.30 

31 0.03 0.05 0.04 0.03 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 o.oo 99.85 
0.16 0.08 0.11 o .12 0.00 0.06 0.01 0.00 0.02 o.oo 0.00 o.oo 99.43 

30 0. 71 0.34 0.34 0.22 0.03 1.19 0.00 0.03 1.90 0.00 0.00 0.66 94.58 
0.78 0.41 0.41 0.35 0.05 1.34 0.00 0.03 1.66 0.08 0.00 0.87 94.02 

29 0.69 0.39 0.61 1.03 0.00 0.44 0.00 0.04 1.30 0.04 0.00 0.27 95.18 
0.76 0.44 0.59 1.00 0.00 0.34 0.00 0.04 1.12 0.02 o.oo 0.20 95.50 

28 0.00 0.02 0.04 0.02 0.00 0.02 o.oo 0.00 0.01 0.00 0.00 0.01 99.88 
0.00 0.04 0.03 0.02 0.00 0.01 0.01 0.00 ·0.01 0.00 0.00 0.01 99.88 

27 0.90 0.43 0.60 0.56 0.00 l. 79 0.00 0.03 1.17 0.05 0.00 1.28 93.21 
0.76 0.45 0.57 0.66 0.00 l.68 0.00 0.03 1.20 0.06 0.00 1.08 93.52 

26 0.10 0.91 8.85 23.23 0.00 0, 13 0.00 2.35 0.56 0.40 0.04 2.31 61.10 o.oo 0.88 8.66 23.22 0.00 0.16 0.00 2.30 0.57 0.44 o.oo 2.26 61.47 
25 0.07 0.38 0.55 0.61 0.00 0.70 0.00 o.oo 1.59 0.00 0.00 0.48 95.62 

0.00 0.40 0.53 0.61 0.00 0.66 0.00 0.03 1. 61 0.04 0.00 0.41 95.51 
24 0.10 0.37 0.36 0.23 0.00 0.42 0.00 0.03 1.40 0.00 0.00 0.34 96.76 

0.68 0.42 0.44 0.46 . 0.00 0.68 0.00 0.00 1.04 0.05 0.00 0.35 95.87 ,-. 
0.72 0.37 0.51 0.43 0.00 0.67 0.00 0.07 ).Op 0.00 0.00 0.32 95.91 ,-. .. 0.00 0.30 0.29 0.20 0.00 0.42 0.00 0.05 1. 43 0.03 0.00 0.33 96.95 

23 0.00 0.36 0.35 0.24 0.01 0.16 0.00 0.02 0·.94 0.00 0.00 0 .13 97.78 
0.07 0.51 0.43 0.24 0.00 0.20 0.00 0.00 1.62 · 0.02 0.05 0.31 96.56 

22 0.00 0.63 0.74 0.68 0.00 0.29 0.00 0.02 2.62 0.03 0.16 0.95 93.67 o.oo 0.70 0.78 0.72 0.00 0.25 0.00 0.04 2.80 0.00 0.12 0.08 93.71 
20 0.05 0.57 0.57 0.68 0.00 0.43 0.00 0.06 2.94 0.06 0.03 0.95 93.64 

0.00 0.52 0.51 0.73 0.02 0.42 0.03 0.02 2.62 0.11 0.00 0.82 94.19 
21 0.00 0.46 0.46 0.36 0.00 0.23 0.00 0.00 1.19 0.03 0.00 0.27 97.01 

0.00 0.47 0.44 0.40 0.00 0.26 0.00 0.02 1.47 0.03 0.05 0.40 96.46 
;,. 
·!!'. 
;; 

SAMPLE NA MG Al SI p s CL K CA TI MN FE 0 ,r· 
Y. 

' PIT 12 
.~ 

8.35 27.16 0.04 0.00 l.89 2.42 0,49 0.09 5.10 51.76 1 0.34 2.19 0.15 
f 0.41 2.07 8.08 26.24 0.15 0.06 o.oo 1.91 2.38 0.46 0.16 4.86 53.24 

2 0.51 2.08 0.89 27.00 0.17 0 .15 0.03 2.35 1.52 0.57 0.15 5.25 51.33 

~\ 
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0.61 2.13 9.04 26.68 0.17 0.21 o.oo 2.37 1.43 0.51 0.14 5.21 51.58 
3 0.49 l.85 9.58 26.51 0.18 0.10 0.03 2.40 0.72 0.46 0.14 5.14 52.45 

0.38 1.76 9.40 26.33 0.23 0.15 0.00 2 .41 0.81 0.47 0.09 5 .14 52.76 
4 0.30 1.83 10.03 27.59 0.18 0.19 0.00 2.59 0.56 0.55 0.00 3.75 52.42 

0.32 l. 73 9. 78 26.99 0.18 0.20 o.oo 2.56 0.58 0.54 O.OQ 3.51 53.55 
5 0.36 0.74 6.86 25.52 0.10 0.47 0.00 1.40 0.87 0.39 0.05 2.33 60.92 

0.41 0.87 6.88 24.60 0.10 0.56 0.00 1.42 1.00 0.43 0.11 2.49 61.26 
6 0.00 0.71 5.97 15.93 o.oo 0.83 0.00 0.87 1.06 0.37 0.00 1.36 72.82 o.oo 0.70 6.02 16.47 0.00 0.56 o.oo 0.93 

•. 
0.96 0.33 0.00 1.05 72.95 

7 0.08 0. 71 7.34 19.23 0.00 0.28 0.00 1.12 1.06 0.42 0.08 0.94 68.75 
0.00 0.59 7.52 20.24 0.00 0.23 0.04 l.17 1.12 0.42 0.08 1.08 67.31 

8 0.09 o. 72 5.84 12 .. 86 0.00 0.48 0.00 0.78 1.53 0.37 o.oo 0.98 76.34 
0.00 0.74 5.56 12.39 0.00 0.49 0.00 0.78 l.65 0.33 0.00 0.94 77 .15 

9 0.00 0.63 6.78 21. 76 0.00 0.22 0.00 0.66 1.34 0.59 0.09 1.61 66.18 
0.00 0.53 5.89 21.46 0.00 0.24 0.00 0.64 1.20 o. 58 0.00 1.43 68.02 

10 0.00 0.68 2.47 4. 71 0.00 0.52 0.02 0.04 2.43 0.13 0.00 0.97 88.02 
0.00 0.73 2.31 4.62 0.00 0.47 0.00 0.08 2.33 0.06 0.08 1.23 88.10 

11 0.00 0.69 0.83 0.84 0.00 0.48 0.00 0.03 2.24 0.00 0.00 1.63 93.35 ,_, 
0.00 0.54 0.81 0.87 o.oo 0.53 0.00 0.06 .2.28 0.00 0.03 1.63 93.15 

,_, 
u, 

12 0.00 0.81 0.97 1.76 0.00 0.48 0.00 0.07 2.72 0.10 0.09 0.76 92.22 
0.00 0.77 1.09 1. 76 0.00 0.39 0.00 0.11 2'.63 0.10 0.04 0. 78 92.32 

13 0.00 0.51 0.32 0.26 0.04 1.20 0.04 0.02 2.21 · 0.04 0.07 0.20 95.09 
0.00 0.50 0.33 0.19 o. 03. 1.05 0.03 0.02 2.06 o.oo 0.03 0.21 95.54 
0.00 0.45 0.34 0.25 0.04 1.20 0.05 0.02 2.05 0.03 0.10 0.20 95.28 
0.00 0.44 0.35 0.18 0.04 1.04 0.03 0.02 1. 91 o.oo 0.05 0.21 95.73 

t 14 0.10 0.55 0.38 0 .18 0.00 1.68 0.00 0.04 3.12 0.05 o. 03 0.59 93.26 o.oo 0.58 0. 35 0.17 0.06 1.93 0.00 0.04 3.46 0.07 0.03 0.70 92.61 
15 o.oo 0.52 0.27 0.37 0.00 o. 53 o.oo 0.02 2.24 0,04 0.00 2.29 93.72 

0.00 0.63 0.28 0.29 0.00 0.57 0.03 0.04 2.37 0.03 0.00 2.32 93.44 
15 0.05 0.68 0.36 0.24 0.00 0.34 0.03 0.02 2.36 0.03 0.00 0.75 95.15 

0.08 0.77 0.39 0.26 0.03 0.42 0.02 0.03 2.83 0.05 0.00 0.84 94.29 
17 o.oo 0.39 0.21 0.13 . 0.00 0.58 0.02 0.04 l. 31 0.00 0.00 0.30 97.04 

0.00 0.50 0.24 0.15 0.00 0.70 0.00 0.02 1.37 0.03 0.04 0.33 96.61 
18 0.00 0.73 0.65 0.46 0.00 0.49 0.03 0.04 3.72 0.11 0.05 3.60 90.ll 

0.06 0.87 0.67. 0.48 0.00 0.51 0.00 0,00 3.75 0.07 0.03 3.68 89.88 
0.00 0.65 0.70 0.43 0.00 0.49 0.04 0.03 3.45 0.09 0.07 3.66 90.39 
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0.12 0.77 o. 71 0.46 o.oo 0.51 0.00 0.00 3.47 0.06 0.04 3.75 90. l l 
19 0.00 o. 75 0.51 0.63 0.00 0.43 0.00 0.00 · 3.03 0.14 0.03 0.88 93.59 

0.04 0.76 0,52 0.62 0.00 0.43 0.00 0.04 3.16 0.10 0.00 0.93 93.41 
0.00 0.67 0.55 0.60 0.00 0.42 0.00 0.00 2.81 0.11 0.04 0.89 93.90 
0.10 0.67 0.55 0.59 0.00 0.42 0.00 0.03 2.92 0.08 0.00 0.94 93.68 

20 0.07 0.73 0.70 1.04 0.00 0.38 o.oo 0.05 2.97 0.11 0.03 0.97 92.95 
0.00 0.66 0.67 1.10 0.00 0 •. 40 0.00 0.00 2.95 0.05 0.00 1.00 93. 17 
0.15 0.65 0.75 0.99 0.00 0.37 0.00 0.04 2.75 0.09 0.05 0.98 93.17 
0.00 0.58 0.71 1.05 0.00 0.40 0.00 0.00 2.74 0.04 0.00 1.02 93.46 

21 0.03 0.82 0.81 0.64 0.00 0.44 0.00 0.03 ·3,77 0.06 0.00 1.63 91. 77 
0.03 0.84 0.81 0.62 0.00 0.46 0.00 0.03 3.62 0.03 0.08 1.58 91.89 
0.07 0.72 0.87 0.61 0.00 0.44 0.00 0.03 3.50 0.05 0.00 1.66 92.07 
0.07 0.74 0.86 o. 59 0.00 0.46 0.00 0.02 3.35 0.03 0.11 1.61 92.15 

22 0.04 0.82 0,96 0.92 0.00 0.30 0.03 0.04 3.78 0.05 0.10 1.28 91.66 
0.00 0.82 1.01 1.03 0.00 0.32 0.00 0.03 3.67 0.05 0.09 1.30 91.68 
0.08 0.73 1.03 0.88 0.00 0.30 0.04 0.04 3.51 0.04 0.14 1.31 91. 93 
0.00 0.72 J.0] 0.98 o.oo 0.32 0.00 0.03 3.40 0.04 0.12 1.32 91.99 

23 0.00 · 0. 74 0.68 0.46 0.00 0.35 0.00 0.00 3.26 0.05 0.06 0.95 93.46 .... 
0.08 0.75 0.58 0.46 o.oo 0.31 0.00 0.00 .2. 77 0.00 0.00 0.76 94.29 

.... 
"' 0.00 0.66 0.72 0.44 0.00 0.35 0.00 0.00 3.02 0.04 0.08 0.96 93. 74 

0.18 0.66 0.62 0.44 0.00 0.31 o.oo 0.00 2·,57 0.00 0.00 0.78 94.45 
24 0.00 0.42 0.39 0.32 0.00 0.44 0.00 0.04 1.41 · 0.00 0.00 0.27 96.72 

0.00 0.40 0.36 0.24 o. 00 .. 0.38 0.00 0.00 1.47 0.07 0.02 0.28 96. 78 
0.00 0.37 0.41 0.30 0.00 0.44 0.00 0.04 1.30 0.00 0.00 0.28 96.86 
0.00 0.35 0.39 0.23 o.oo 0 .38 0.00 0.00 1.36 0.05 0.03 0.29 96.92 

25 0.07 0.52 0.68 0.74 o.oo 0.63 0.04 0.07 1.76 0.06 0.00 0.57 94.86 
0.00 0.44 0.61 0.63 0.00 . 0.67 0.00 0.05 1.69 0.03 0.00 0.46 95.41. 
0.16 0.46 0.73 0. 71 0.00 0.63 0.04 0.06 1.63 0.05 0.00 0.58 94.96 
0.00 0.39 0.65 0.60 0.00 0.67 0.00 0.05 1.56 0.02 0.00 0.47 95.59 

26 0.05 1.13 10.03 26.52 0.00 0.13 0.00 2.62 0.52 0.47 0.00 2.55 55.96 
0.00 1.06 10.19 26.73 0.00 0.16 0.00 2.81 0.50 0.50 0.08 2.67 55.30 
0.11 1.00 10.17 25.41 0.00 0.13 o.oo 2. 25 0.48 0.39 0.00 2.60 56.91 
0.00 0.94 10.87 25. 61 0.00 0.16 o.oo 2.41 0.46 0.41 0.12 2.72 56.30 
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CHEMICAL CHARACTERIZATION DATA FROM FLY-ASH SAMPLES 

The data reported here were determined by electron microprobe 

analysis as described in the Methods section of this report. 

Values are reported as weight percent of coal. 

.. 



Analysis 
Point 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

• •••••d-•-••·- --- ----- - -· ·---· --------- -~· -·--- --- -

ANALYSIS OF FLY-ASH DERIVED FROM COMBUSTION OF PIT 11 COMPOSITE LIGNITE AT A FLUE GAS 
TEMPERATURE OF 1300°c 

Na Mg Al Si p s Cl K Ca Ti Fe 0 
1.1 0.9 4 .1 14.3 0.1 1. 2 o.o 0.1 14.1 0.4 1.4 62.3 
0.9 0.6 5.7 19.6 0.0 0.4 0.1 0.0 15.0 0.4 0.8 56.7 
1.0 0.8 5.2 18.1 0.1 0.5 0.1 o.o 15 .1 0.5 1.8 56.9 
3.2 2.8 8.4 21.1 0.2 1. 7 0. I 0.0 16.7 0.5 2. 1 43.2 
0.3 3.5 3.9 5.4 0.2 0.7 0.0 0.0 13.7 0,3 40.8 31.2 
6.0 7.7 7.7 7.5 0.0 6.0 0.2 0.0 26.7 0.6 3.8 33.9 
3.9 4.0 6.3 8.1 0.2 5.3 0.0 0.1 25.9 0.3 2.8 43.2 
3.5 5.3 7.0 7.3 0.2 4.4 0 .1 o.o 25.5 0.3 3.7 42.7 
3.3 3.0 5.7 8.0 0. I 2.4 0.2 0.0 19.7 0.5 4.2 52.9 
3.5 3.6 5.8 7. l 0.1 2.4 0.1 0.0 22.5 0.5 5.4 49.l 
1.2 1.8 3.6 6.0 0.8 2.4 0.2 0. I 21.8 0.6 3.3 58.3 
1.0 1.0 l. 5 2.7 0.0 6.3 0.1 0.0 19.8 0.2 2.6 64.9 
3.4 3.2 9.0 11.6 0.2 1.5 0.0 0.0 15.S 0.5 7.6 47.5 
2.2 5.7 8.4 8.4 0.0 1.8 0.2 0.0 ·24.3 0.4 3.4 45.3 
2.8 5.8 6.0 5.8 0.2 3.4 0.1 0 .1 26.l 0.5 8;9 40.4 
6.6 3.1 8.3 17.5 0 .1 1.7 0. l 0.1 12.9 0.4 4.0 45.3 
1.0 3.1 6.0 6.4 0.2 1.1 0.1 o.o 22.6 0.7 4.2 54.6 
2.8 6.3 5.5 5.6 0.0 4.0 0.0 o.o 24.5 0.7 5.5 45.3 
7.6 5.4 7.5 6.9 0.1 8.0 0. I 0.0 23.8 0.4 3.3 36.9 
2.3 5.6 4.9 5.5 0.1 4.5 o.o 0.0 29.4 0.6 5.1 42.0 
2.7 3.5 8.8 8.3 0.6 2.1 0.2 0.0 19.6 0.5 6.5 47.2 
3.9 7.5 9.8 6.6 0 .1 4.6 0.2 0.0 26.6 0.7 7,4 32.6 
2.4 1.3 5.5 11. l 0.0 0.9 0.1 0.1 11. 9 0.4 3.1 63.2 
2.5 2.7 3.9 6. l 0.2 3.0 0.2 0.1 17.6 0.2 9.3 54.4 
1.9 3.2 5.1 6.0 0.1 1. 7 0.0 0.0 24. l 0.4 5.3 52.3 
3.7 5.9 7. l 5.4 0.1 2.7 0.2 0.0 25.3 0.4 18.5 30.9 
1.8 1.2 3.6 5.3 0.6 1.5 0.1 0.0 17 .1 0.5 3.6 64.8 
2.1 5.2 7.4 6.0 0 .1 2.4 0.1 0.0 23.5 0.4 5.9 46.9 
1.8 1.9 5.9 8.0 0.0 l. 5 0.0 0.1 15.0 0.4 5.1 60.3 
l.8 4.7 11. 2 4.7 1.2 2.6 0.1 0.0 25.2 0.6 3.4 44.5 
0.6 1.0 1.9 4.1 o.o 0.9 0.1 0. l 15.3 0.4 4.7 70.8 

-·""·I ··'4t•s; _ eii,·> 1~:~1, 
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32 5.6 7. 7 8.6 6.8 0.2 5.1 0.2 0 .1 23.5 0.6 5.7 36.1 
33 1. 7 2 .1 2.1 2.1 0.0 2.2 o.o 0.0 7.8 0.1 1.4 80.5 
34 3.2 3.2 5.5 7.5 0.2 2.7 0.3 0.0 21.4 0.4 5.3 50.3 
35 3.4 6.9 6.5 3.8 o.o 6.1 0.1 0 .1 23.1 0.4 3.3 46.5 
36 2.6 6 .1 7 .1 5.3 0.1 4.5 0 .1 0.0 26.3 0.6 4.9 42.4 
37 1.6 2.4 2.8 2.3 0.3 1.8 0.1 0.0 11. 5 0.3 3.9 73 .1 
38 5.0 5.3 7.2 7.0 0.1 3.8 0 .1 o.o 20.2 0.6 5.5 45.1 
39 0.6 1.3 5.1 7.0 0.1 1.2 0 .1 0.4 2.9 0.1 1.6 79.8 
40 2.5 2.3 4.8 18.4 0.1 1.5 0.0 0.1 ', 10.4 0.4 2.8 56.7 
41 2.0 5.2 6.2 5.7 0.2 2.2 0.2 0.0 25.9 0.5 6.4 45.5 
42 1.5 3.4 11.0 5.3 2.0 1.3 ' 0.0 0.0 . 24.3 1.0 3.2 47.2 
43 2.3 2.4 7.5 20.4 o.o 1.6 ' 0.1 0 .1 16.8 0.4 2.8 45.6 
44 1.5 9.4 10.5 6.2 0.1 1.8 0.1 0.0 27.8 0.7 4.7 37.2 
45 3.8 3.5 5.9 7.8 0.3 4.9 0 .1 0.0 17.6 0.4 5.0 50.8 
46 1.6 8.2 13.2 11.2 0.2 1.3 0.0 o.o 26.6 0.6 8.7 28.5 
47 1. 7 2.4 4.5 8.8 0.2 2.2 0.2 0.0 20.3 0.3 4.0 55.6 
48 2.8 8.3 9.6 6.0 0.1 4.3 o.o 0.0 26.6 0.5 4.9 36.9 
49 5.3 4.6 6.1 5.9 0.1 8.0 0 .1 0 .1 25.8 0.4 4.2 39.4 1--' ..., 
50 4.7 5.6 10.4 · 11.2 0.2 2.7 0.3 0.1 20,6 0.4 6.4 37.5 0 
51 1.9 3.4 6.7 10.7 0.1 l.9 0 .1 0.0 18.7 0.5 3.9 52.1 
52 2.8 3.3 6.3 5.5 0.4 2.2 0.0 o.o rs.s 0.8 15.5 44.7 
53 l.3 1.5 2.5 5.1 0.1 3.0 0 .1 0.0 17.5 0.6 3.4 64.9 
54 5.4 7.0 10.7 14.2 0.3 2.3 0.2 o.o 22.9 0.6 3.8 32.6 
55 1.4 2.4 4.4 6.1 0.4 1.3 0.0 0.0 23.2 0.5 5 .1 55.4 
56 3.4 1.4 2.4 3.9 0.2 8.5 0.2 0.0 19.5 0.1 2.3 58.3 
57 1.4 4.5 9.3 6.8 0.0 1.8 0 .1 0.0 29.8 0.6 4.8 40.9 
58 5.1 4.2 6.7 7.8 0.5 3.6 0.1 0.0 18.4 0.5 5.3 48.0 
59 2.8 6.8 8.8 7.9 0.1 1.9 0.2 0.0 25.7 1.2 5.9 38.7 
60 9.6 3.2 5.3 20.4 0.4 1.9 0.2 0.1 13.2 0.2 2.5 43.2 
61 0.4 0.7 1.0 2.5 o.o 0.8 0.1 0.0 10.9 0.7 3.0 79.9 
62 0.4 0.4 1.8 5.8 0.0 0.6 0.0 0.1 12.0 0.4 0.8 77.9 
63 2 .1 5.0 5.0 7.4 0.0 2. l 0.1 0.0 24.9 0.4 4.7 48.3 
64 1.2 0.8 3.6 12.1 o.o 0.5 0.1 0.1 12.8 0.3 1.2 67.4 
65 0.8 0.8 2 .1 2.5 0.1 1.6 o.o 0 .1 5.2 0.1 1.0 85.7 
66 3.4 7.5 8.8 6.1 1.4 2.9 0.2 0.0 26.0 0.8 5.2 37.6 
67 1.5 3.0 4.3 5.5 0.0 1. 7 o.o 0.0 21.8 0.7 6.7 54.8 

~ 
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68 2.2 2.8 3.5 4.5 0.3 3.4 0.1 0.0 25.4 0.4 3.5 53.9 
69 2.9 4.3 9.4 5.0 0.1 5.0 0.1 0 .1 25.2 0.4 3.2 44.4 
70 1.8 3.1 4.2 5.3 0.2 3.4 0.2 0.1 23.l 0.4 5.5 52.9 
71 2.3 3.2 4.9 6.4 0.9 2.3 0.2 0.0 19.3 O.B 6.7 53 .1 
72 9.6 1.2 2.5 23.6 0.0 2.2 0.2 0. l 6.8 0.2 0. 7 53 .1 
73 0.6 1.3 4.8 8.9 o.o 1.3 0.1 0.3 5.0 0.2 2.6 75.0 
74 2.7 4.0 5.0 5.1 0.4 3,9 0.2 0.0 24.1 0.6 4.7 49.4 
75 0.0 0.1 0.5 1.5 0.0 0.3 0.0 0.1 9.3 0.4 3.4 84.6 
76 2.0 5.4 4.5 5.8 0.2 2.4 0.1 0.0 .25.3 0.4 4.9 49.0 
77 0.7 7.6 7.9 4.8 0.1 3.6 0.0 0.0 31.4 1. 3 6.2 36.5 
78 3.0 2.1 5.2 7 .8 0.0 2.0 0.2 0.0 15.1 0.6 6.2 58.0 
79 1.4 2.6 5.. 0 3.7 0.0 2.1 o.o 0.0 30.3 0.5 5.0 49.4 
80 2.4 8.0 6.1 10.4 0.3 2.0 0.1 0.1 31.8 0.7 2.5 35.8 
81 3.1 5.0 7.1 6.3 0.3 2.6 0.2 0.0 22.7 0.4 6.4 45.9 
82 1.2 2.2 4.3 3.4 0.1 1.8 0.0 0.0 21.2 0.8 6.3 58.8 
83 2.9 3.7 5 .1 5.9 0.1 3.5 0 .1 0.0 20.9 0.5 7.5 49.9 
84 0.6 0.9 1.8 1.8 0.2 1.5 0.0 0.1 18.7 0.3 3.6 70.7 
85 1.5 3.2 4.4 3.5 0.1 2.3 0.1 0.0 23.8 0.6 4.4 56.1 .... 
86 3.2 3.6 5.2 7.2 0.2 3.4 0.1 0.0 24.6 0.5 4.6 47.6 '" .... 
87 1.1 2.0 2.8 3. 6 · 0.2 1. 7 0.0 0.0 · 22.2 0.1 4.1 62.2 
88 1.5 2.6 4.0 6.0 0.3 1.5 0.2 0.0 19.0 0.3 5.4 59.2 
89 10.5 3.3 5.3 14.0 0.2 2.6 0.1 o.o 14.0 0.2 5.5 44.4 
90 0. 7 1.0 1. 7 4.6 0.0 0.7 0.1 0.0 11. 9 0.2 3.1 76.0 
91 2.3 2.6 5.5 6.6 0.3 2.0 0.3 0.1 16.8 0.5 4.2 59.0 
92 1.6 2.0 3.4 5.0 0 .1 1.8 0.2 0.1 16.3 0.6 7.2 61.5 

[{; 93 1.9 1.6 6.6 20.5 0.0 1.2 0.3 0.1 15.9 0.4 l.5 49.9 
94 1.1 2.4 10.1 1.8 0.0 6.0 0.1 0.0 43 .1 1.0 3.3 31.2 
95 2.7 4.3 5.2 6.4 0.2 2.6 0.2 0.0 20.3 0.5 5.4 52.2 
96 2.1 5.7 12.9 6.0 0.1 l. 7 0.2 o.o 24.3 0.4 4.0 42.8 

if; 97 2.8 5.4 5.3 7.4 0.0 6.6 0.3 0.0 33.7 0.4 2.9 35.3 
98 2.0 2.9 5.7 2.5 0.0 8.2 0.1 0.0 41.4 0.1 2.6 34.5 }; 99 2.8 1.3 1.8 2.3 0.0 0.7 0.0 0.0 4.4 0.1 0.6 86.1 i' 

~· 100 0.5 1.0 1.9 3.8 0.1 l. l 0.1 0.0 16.2 0.3 5.0 70.2 I 101 2.1 6.3 8.1 9.0 0.2 2 .1 0.2 0.0 28.5 0.6 6.3 36.7 Cl: 

""' 
102 0.7 1.1 2.1 2.2 O. l 1.8 0.1 0.0 18.9 0.3 5.2 67,7 
103 2.8 8.9 4.8 4.6 0.0 5.5 0.2 o.o 25.4 0.5 4.8 42.6 

~·, 

'II 
~ a 

"1{i::-
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104 1.4 4.3 5.5 7.2 0.2 1.6 
105 1.9 5.5 7.6 13.8 0.3 1.0 
106 4.9 8.2 4.7 4.6 0.0 8.1 
107 l.6 4.7 8.2 7.8 0.2 2.7 
108 2.3 5.9 13.0 5.0 0.0 4.0 
109 1.3 l. l 2.2 4.2 0.1 1.2 
110 2.8 9.0 6.6 3.3 0.0 10.3 
Ill 2.7 10.7 5.3 3.6 0.0 8.2 
112 0.9 1.5 3.1 3.2 0.2 1.9 
113 14.3 2.2 19 .1 22.3 0.0 0.3 
114 4.6 5.8 9.0 8.4 0.6 4.8 
115 3.6 3.0 5.7 8.5 0.3 2.0 
116 1.9 2.1 3.2 3.8 0.0 2.9 
117 0.9 l. l I. 5 1.6 o.o 0.6 
118 2.6 1.6 3.4 2.8 0.0 10.2 
119 3.9 5.8 10.6 12. l 0.2 l. 5 
120 0.0 0.2 0.6 1.8 0.0 0.4 
121 1.5 5.7 12.8 9.2 0.2 0.4 
122 2.2 8.1 7.7 8 .1 0.0 2.1 
123 4.9 3.6 4.7 9.2 0.1 2.6 
124 3.0 3.9 7.7 7.4 0.4 2.6 
125 1.6 2.0 2.7 4.4 0.2 3.3 
126 6.6 0.8 22.0 25.9 0.0 0.8 
127 1.9 5.5 11.1 4.9 0.2 3.2 
128 1.0 1.3 3.1 3.4 0.2 0.6 
129 0.4 0.5 1.0 1.3 0.1 1.2 
130 2.3 24.4 7.0 6.9 0.0 2.2 
131 2. l 5.0 6.0 4.8 0.7 1.6 
132 1.9 4.9 6.2 4.5 0.4 3.7 
133 3.0 5.0 4.2 3.4 0.1 5.9 
134 1.6 3.7 5.0 4.4 0.5 2.7 
135 0.3 0.8 0.9 1.0 0.0 2.1 
136 0.9 1.7 2.1 2.6 0 .1 1.1 
137 0.6 1.1 1.9 1. 5 0.0 2.1 
138 2.6 9.9 9.8 5.6 0. I 2.8 
139 2.4 9.5 8.4 5.5 0.9 2.6 

; . ' . 
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0.0 0.0 21.6 
0.1 0.0 26.0 
0.2 0.0 27.1 
0.0 0.0 32 .1 
0.2 O. l 28.6 
0.3 o.o 11.3 
0.2 0.0 27.9 
0.4 0.0 29.4 
0.0 0.0 --18. 9 
0.0 0.2 8.8 
0.1 0.0 22.4 
0.1 0.0 20.0 
0. I 0.1 18.6 
0.0 0.0 19.6 
0.3 o.o 35. l 
0.0 0.0 23.3 
0. l 0.0 13.2 
0.1 0.0 33.9 
0 .1 0.0 ·35.2 
0.3 0.0 18.4 
0.1 0.0 22.3 
0.2 0.0 17.8 
0.0 0.3 4.8 
0.2 0.1 24.8 
0. l 0.0 14.4 
0.0 0.0 15.6 
0.1 0.0 24.4 
0.0 0.1 16.6 
0.0 0.0 24.9 
0 .1 0.0 37.7 
0.2 o.o 18.4 
0 .1 0.0 18.6 
o.o 0.0 21.3 
0.0 0.1 19 .1 
0.0 0.0 29.5 
0.0 0.1 17.1 

0.3 12.5 
0.6 4.9 
0.7 5.4 
1.1 3.9 
0.4 2.6 
0.3 2.4 
0.9 3.6 
0.1 4.4 
0.4 4.2 
0.2 l.6 
0.4 5.9 
0.4 5.9 
0.7 5.4 
0.2 6.1 
0.2 l.6 
0.5 4.5 
0.2 4.1 
0.8 5.4 
0.4 4.4 
0.4 5.5 
0.6 5.5 
0.4 6.4 
0.2 1.1 
0.4 5.6 
0.4 22 .3 
0.3 4.8 
0.4 4.9 
0.4 10.9 
1.3 5.5 
o.o 5.0 
0.6 6.2 
0.5 5.2 
0.6 4.1 
0.2 1.9 
0.6 5.5 
0.4 5.7 

45.4 
38.4 
36.2 
37. 7 
37.9 
75.7 
35.5 
35. l 
65.9 
31. l 
38.0 
50.4 
61.4 
68.5 
42.3 
37.5 
79.3 
30. l 
31.8 
50. l 
46.5 
61.1 
37.7 
42.2 
53.2 
74.8 
27.4 
51.8 
46.6 
35.6 
56.7 
70.5 
65.7 
71.6 
33.5 
47.6 

. . 

f..> 
N 
N 
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140 2.9 3.5 4.7 7.6 0.3 2.2 0.1 o.o 16.2 0.3 12. 7 49.5 
141 0.7 l. l 2.0 4.0 0. l 0.6 0.1 0.0 11.2 0.2 3.5 76.6 
142 2.8 6.0 7.1 13.3 0.1 1.8 0.0 0.0 23.8 0.5 4.2 40.4 
143 4.7 3 .1 5.9 12.3 0.2 2.0 0.1 0.1 16.5 0.2 3.2 51.6 
144 1. 5 1.4 1.5 1.8 0.0 3.5 o.o 0.0 60.2 0.2 0.9 29.2 
145 1.3 1.6 . 4.4 7.0 0.0 1. 7 0.0 o.o 12.5 0.4 4.2 67.1 
146 1.4 2. l 3.9 5.6 0.1 2.8 0.2 0.0 26.5 0.4 4.4 52.7 
147 2.3 2.5 4.9 7.7 0.2 2.0 0.1 0.0 · 19.5 0.4 4.6 55.7 
148 1. 7 3.8 5.5 4.0 0.0 2.6 0.0 0.0 24.0 0.7 5.4 52.3 
149 3.4 5.4 10.9 8.9 0.0 1.5 0.1 0.0 19.7 0.4 6.4 43.4 
150 3.8 5.0 7.1 9.7 0.5 3.2 0.3 0.0 21.6 0.6 5.5 42.9 
151 1.2 8. l 11. l 9.5 0 .1 0.7 0.0 0.0 34.3 0. 6 · 4.8 · 29.6 
152 16.8 0.8 1.3 40.2 0.0 0.8 0.0 0.0 3.9 0.1 0.8 35.3 
153 ,2,8 5.5 9.9 6.4 0 .1 2.9 0.1 0.0 25.1 0.4 3.8 43.1 
154 2.9 4.2 6.5 5.0 1.3 1.5 0.1 o.o 21.8 0.4 8.6 47,7 
155 0.9 1.4 3.7 9.3 o.o 0.7 o.o 0.1 14.0 0.4 2.4 67.4 
156 2.5 5.6 6.5 6.7 0.2 3.1 0.3 0.0 25. 5 0.7 5.9 43.0 I-' 157 1.3 l.6 2.5 3.0 0.0 2.6 0.0 0.0 22.5 0.4 3.8 62.5 "' w 158 8.2 5.2 14.3 23.3 o.o 0.7 0 .1 0.0 '16.'4 0.9 2.2 28.6 
159 2.1 1.1 1.6 42.4 0.0 LO 0.0 0.1 !5.7 0.1 l.8 44.2 
160 2.7 2.3 4.0 5.9 0.1 3.8 0.1 0 .1 20.3 0.4 3.3 57.0 
161 2.3 2.1 4.0 7.4 0.0 1.8 0.1 o.o 16.7 2 .1 3.2 60.2 
162 0.9 0.9 2.8 7.8 0.0 0.7 0.1 0.1 13.0 0.4 2 .1 71.4 
163 1.4 5.0 4.6 2.9 0.0 2.3 0.0 0.0 28.7 0.7 13.0 41.3 
164 2.5 3.2 4.8 4.2 0.2 3.8 0.1 0.1 22.6 0.4 5.0 53.2 
165 3.2 2.4 6.0 7.4 0.1 1. 5 0.1 0.2 10.7 0.3 3.4 64.8 
166 2.8 3.3 4.6 9.9 0.2 3.2 o.o 0.0 25.3 0.3 3.1 47.5 
167 0.3 0.5 0.8 l. l 0.0 1.1 0.1 0.0 13.2 0.7 6.5 75. 9 
168 0.2 0.2 0.5 0.7 0.0 1.3 0.0 0.0 13.8 0.2 3.6 79.5 
169 1.2 2.1 2.9 3.5 0.2 2.8 0.0 0.0 19. 7 0.4 6.0 61.3 
170 0.5 l. l 1. 5 3.4 0.0 0.5 0.1 0.0 25.2 1.2 2.8 63.8 
171 0.3 1.8 3.4 2.9 0.0 1.1 0.0 0.0 22.0 l.O 4.2 .63.3 ,,. 
172 7. l 2.6 4.1 21.3 0.0 1. 7 0.0 0.1 10. l 0.2 1.8 51.0 t-
173 0.6 0.6 l.5 1.8 0.0 0.4 0.0 0.0 12.9 0 .1 1.4 80.7 
174 0.5 0.7 1.4 2 .1 0.0 0.5 0.1 0.0 16.2 0.4 2.5 75.8 
175 3.4 5.6 5.6 5.2 0.1 3.7 0.1 o.o 28.8 0.5 5.0 42.0 
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176 3.3 5.1 8.9 3.7 0.0 5.2 0.2 0.0 29.5 0.5 4.8 38.8 
177 1.2 2.2 2.6 2.6 0.3 2.2 0.0 0.0 51.4 0.3 1.3 36.0 
178 1. 7 2.6 3.2 4.2 0 .1 2.0 0.2 0.1 15.6 0.3 8.1 62.1 
179 0.7 1.4 2.0 2. 8 o.o 2.0 0.2 0.0 17.8 1.2 . 3. 7 68.2 
180 3.4 5.6 . 3.8 5.0 0.2 7.0 0.2 o.o 24.5 0.5 4.3 45.7 
181 4.3 5.4 8.2 9,8 0.3 2.6 0.2 0.0 19.2 0.6 5.5 44.0 
182 1.3 1.1 3.2 4.6 0.1 1.4 0 .1 0.0 16.9 0.3 4.9 66.1 
183 · 0.8 2.3 4.0 7.0 0.0 r.1 0.0 o.o 24.3 0.4 4.0 56.2 
184 0.6 0.8 1.8 2.0 0 .1 2.3 0.2 0.0 16.3 0.4 5.6 70.0 
185 4.0 4.7 6.2 7.3 0.0 4.7 0 .1 0.0 · 19. 9 0.7 4.1 48.2 
186 0.3 0.3 1.0 1.5 0.0 l.O 0.1 0.0 10.2 0.3 3.2 82.1 
187 0.0 0.2 2.0 7.1 0.0 0.2 0.0 O. l 11.6 o.o 0.6 78.3 
188 5.3 4.0 8.7 10.5 0.3 2.6 0.2 O. l 16.1 0.4 4.7 47.3 
189 0.8 l.4 1.9 2.8 0.2 1.3 0.1 0.1 21.4 0.3 3.3 66.3 
190 4.1 6.2 6.1 6.2 0.3 6.5 0.1 0.0 25.6 0.4 4.4 40.3 
191 2.9 7.2 7.8 4.4 0.0 5.9 0.1 o.o 27.0 0.3 4.1 40.5 
192 6.1 2.4 4.7 16.8 0.2 2.5 0.2 0.2 13.6 0.3 3.0 50.l 
193 1.3 l.9 3.2 3.8 0.2 1.9 0 .1 0.0 21.0 0.7 10. l 55.9 
194 l. 7 1.6 2.5 2.6 0.2 5.6 0 .1 0.0 44.1 0 .1 1.5 40.0. '"' "' 195 2.7 9.2 12.5 11.1 0.2 l.6 0.0 o.o ·22.5 0.7 7.0 32.5 .... 
196 0.6 0.8 1.6 3.3 0 .1 1.1 0.0 0.0 1.9. 2 0.6 3.2 69.6 
197 2 .1 3.9 5.4 5.4 0.2 2.8 0 .1 o.o 27 .2 0.4 3.2 49.5 
198 0,5 0.6 1.3 3.7 0 .1 0.9 0.0 0.0 13.9 0.2 4.5 74.3 
199 1.2 1.6 3.5 3.8 . 0.2 1.7 0.1 0.0 19 .1 0.8 8.5 59.6 
200 4.3 5.5 5.7 6.0 0,3 4.8 0.2 0.0 22.3 l. 7 7.0 42.3 
201 2.2 1. 7 3.5 6.7 0.2 3.6 0.2 o.o 27.7 0.3 3.4 50.7 
202 1.5 5.6 8.2 3.6 0.9 3 .1 0.1 0.0 27 .4 0.9 6.7 42.1 
203 5.3 3.4 7.0 9.9 0.2 3.0 0.1 0.0 19.3 0.4 4.8 46.6 
204 0.9 0.9 1.5 2.3 0.2 1.5 0 .1 0.1 14.9 0.4 7.9 69.6 
205 2.3 5.8 4.2 3.2 0.1 9.8 0.2 0.0 17.5 7.6 2.9 46.5 
206 2.5 2.8 4.6 7.3 0.2 2.5 0.2 o.o 20.3 0.4 4.4 54.9 
207 3.8 8.7 5.5 7.2 0 .1 6.4 0.1 0. l 27. 7 0.5 3.6 36.4 
208 l.2 6.1 4.9 5.8 0.0 2.9 0. l 0.0 28.3 1.0 2.6 47.1 

·~- 209 1.0 1.3 1.9 5.2 0.0 1.1 0.3 0.1 13.5 0.4 3.6 71. 7 
{/;. 210 0.8 2.5 5.0 5.5 0 .1 l.O 0.0 0.0 27.7 0.6 3.7 53 .1 
lf 211 7.3 1.3 2.6 26 .1 o.o 0.7 0.0 0.0 27.0 l. l l.2 32.9 
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212 0.7 2.2 5.3 2.3 0.8 0.6 0.0 0.0 21.8 0.6 4.5 61.3 
213 2.7 3.4 5 .1 6.4 0.2 3. l 0.1 0.0 22.l 0.5 5.9 50.7 
214 0.6 0.5 1.6 3.2 0.1 0.7 0.0 0.1 11.6 0.3 3.2 78.3 
215 2.6 9.3 9.5 6.2 1.2 1.8 o.o 0.0 25.5 0.4 4.5 39.0 
216 4.8 6.7 7.0 13.l 0.2 2.5 0.1 o.o 24.6 0.5 3.9 36.8 
217 2.5 4.3 5.8 5.9 0.1 2.0 0.0 0.0 24.l 0.6 3.3 51.4 
218 0.7 2.7 4.5 2.5 0.3 2.3 0.1 0.0 23,8 0.7 6.1 56.1 
219 1.5 4.1 12.6 9.0 0.5 0.9 0 .1 o.o 38.1 o. 7 5.4 27 .1 
220 1.8 10.9 12.7 3.9 0.9 2.2 0.0 0.0 27.6 0.6 6.5 33.0 
221 3.9 3.0 4.3 4.9 0.3 4.4 0.0 'O .1 19.0 0.6 4.6 54.9 
222 5.0 6.8 9.6 9.8 0.3 3.8 0.1 0.0 22.0 1.8 4.4 36.6 
223 2.1 4.5 12.4 14.1 0.3 0.8 0.0 o.o · 22.0 0.4 3.7 39.7 
224 2.9 6.9 10.7 6.2 1.8 3.5 0,2 0.0 31.6 1.1 3.5 31.6 
225 1.4 3.1 6.0 6.9 0.3 2.0 0.0 0.0 25.5 0.5 2.7 51.6 
226 1.6 1.4 7.6 25;2 0.2 0.8 0.0 0.1 15.6 0.4 . 1.0 46.3 
227 2.8 4.6 5.2 6.7 0.1 4.0 0.1 0.1 21.1 0.5 5.3 49.7 
22!i 3.4 7 .8 13. 2 10.3 0.5 1.9 0.0 0.1 23.1 0.5 4.0 35.2 
229 0.5 1.0 2.1 3.0 0.3 1.9 0.1 o.o 19.6 0.4 3.9 67.4 .... 

"' 230 1.0 1.2 1.8 3.8 0 .1 0.6 0.1 0.0 -11.0 0.2 4.1 76.2 U1 
231 Ll 1.1 1.8 2.2 0.2 1.9 o.o '0.0 18.5 . 5.1 4.0 64 .1 
232 2.8 2.5 4.1 4.7 0 .1 3.9 0.0 o.o 28.5 0.3 2.6 50.6 
233 0.2 0.2 0.6 2.0 0.0 0.2 o.o 0.0 8.6 0.2 1.6 86.5 
234 1.1 1.1 1.7 1.8 0.1 3 .1 0.2 o.o 59.3 o.o 0.4 31.3 
235 3.2 2.7 4.8 5.7 0 .1 4.6 0.1 0.0 22.7 0.4 3.0 52.7 
236 0.0 0.3 1.1 2.6 0.0 0.3 0.0 0.0 11. 5 0.3 4.7 79.2 
237 1.9 2.5 4.3 4.2 o.o 2.6 0.0 0.0 17.l 1.0 14.6 . 51.8 
238 4.5 2.2 7.0 9 .1 0.3 1.1 0.0 0.1 13.7 0.3 14.5 47.2 
239 3.3 7.0 11. 2 11. 5 0.3 1.6 0 .1 0.0 25.6 0.4 3.2 36.0 
240 1.0 2.3 3.2 4.5 0.1 2.2 0.2 o.o 20.8 o. 7 3.8 61.2 
241 4.8 6.8 6.7 7.3 0 .1 5.3 0.2 0.0 22.0 0.5 4.5 41.9 
242 0.9 1.2 2.6 3.2 0 .1 2.3 0.1 0.0 25.1 0.2 2.3 62.0 

r. 
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ANALYSIS OF FLY-ASH DERIVED FROM COMBUSTION OF PIT 11 COMPOSITE LIGNITE AT A FLUE GAS 
TEMPERATURE OF 1soo0c 

Analysis 
Point Na Mg Al Si p s Cl K Ca Ti Fe 0 
1 0.0 0.4 1.9 4.9 0.1 0 .1 0.1 0.0 11.4 0.5 3.1 77 .6 
2 0.2 8.5 9.9 2.0 0.0 0.6 0.0 0.0 31.0 0.3 1.8 45.8 
3 0.7 2.7 7.5 18.5 0. I 0.3 0.1 0.1 16.4 0.4 1.8 51.4 
4 o.o 0.4 2.7 9.8 o.o 0.1 0.1 0.0 13.0 0.3 0.6 73 .1 
5 o.o 2.3 4.1 4.3 0.3 0.5 o.o o.o . 19. 2 0.4 4.4 64.7 
6 0.7 5.5 13.1 21.7 0.0 0.2 0.0 o.o 17 ,8 0.4 4.5 36.1 
7 0.0 6.5 11. 8 8.9 0.4 0.3 0.0 0.0 22.0 0.7 5.0 44.5 
8 0.0 I. I 2.1 2 .1 0.1 0.4 0.1 0.0 21.3 1.3 2.6 69.0 
9 o:s 0.7 4.8 16.7 0.0 0.1 0.0 0.1 13.5 0.2 0.6 62.9 
10 0.7 4.3 S.9 13.7 0.5 0.4 0.0 o.o 31. l 0.5 3.3 39.7 
11 0.7 4.3 5.6 7.6 0.0 0.7 0.2 0.0 36.5 0.6 3,2 40.7 
12 0.3 0.9 5. l 16.6 0 .1 0.1 0.0 0.0 13.5 0.4 1.2 61.9 
13 0.0 0.5 1. 5 4.0 0.0 0 .1 0.0 0.0 12.0 0.5 3.7 77 .8 I-' 
14 0.6 3,5 9.0 15.9 0.2 0.4 0.0 0.0 18._3 0.5 1.9 49.9 "' "' 15 0.1 0.5 1.3 3. l 0.1 0.4 0.0 o.o 14.5 0.2 1.7 78.1 
16 0.4 4.8 8.8 12.1 0.4 0.4 0.0 0.1 16. 9 0.3 5.2 50.7 
17 0.0 2.5 4.7 8.9 0.2 0.4 0 .1 0.0 18.2 0.3 3.7 61. l 
18 0.0 0.6 1.3 2.3 0.0 0.2 0.0 o.o 20.2 0.3 2 .1 73.0 
19 0.4 0.9 2.7 5.7 0.0 0.6 0.1 0.0 . 13.6 0.3 1.6 74.3 
20 0.3 6.2 7.7 4.9 0.4 2.7 0.1 0.0 37.6 0.3 3.6 36.2 
21 0.0 1.1 4.0 2.2 0.0 0.1 o.o o.o 10.7 0 .1 14.9 66.8 
22 0.4 2.6 5.2 10.0 0.2 0.5 0.0 0.0 21.8 0.6 3.6 55.l 
23 0.2 0.3 1.1 3.4 0.0 0.1 0.1 0.1 10.4 0.2 1.2 83.1 
24 0.0 0.4 1.8 4.9 0.0 0. l o.o o.o 12.9 0.5 1.6 77 .8 
25 0.7 9.6 19.3 11.4 0.0 0.5 0.1 0.0 14.3 0.6 9.2 34.4 
26 0.0 9.2 9.5 9.7 0.1 0,5 0.0 0.0 27.5 0.4 3.3 40.0 
27 0.5 21.8 9.7 3.5 0.4 0.6 0.1 a.a 21.9 0.8 5 .1 35.6 
28 o.o 4.5 5.7 5 .1 0.2 0.7 0.1 0.0 22.8 0.4 4.3 56.4 
29 0.7 3.8 10.7 9.9 3.5 0.2 0.0 o.o 21.1 0.8 3.3 46.0 
30 0.0 1.5 3.0 6.6 0.1 0.4 0.1 o.o 15. l 0.5 4.4 68.4 
31 0.4 1. 7 3.3 8.3 0.2 0.7 0.0 0.0 21.4 0.5 3.0 60.5 



JIii . 

- ---·· .- .. - --·-
. 

32 l.3 4.0 7.7 14.6 0.1 0.4 0 .1 0.0 16.8 0.3 4.8 50 .1 
33 0.4 5. l 7.0 6.2 0.2 0.5 0.1 0.0 27. l 0.5 3.8 49.1 
34 0.6 8.4 12.1 10.9 0.1 0.3 0.0 0.0 27. 8 0.8 5.9 33.1 
35 0.0 8.4 9.9 4.1 0.2 0.8 0.0 0.0 29.4 0.3 3.8 43.1 
36 o.o 4.1 7 .1 3.6 0.4 0.7 o. l 0.0 28.7 0.4 5.5 49.4 
37 0.3 1.0 2.7 3.1 0.0 0.4 0.0 0.0 17.1 0.3 5.9 69.3 
38 0.0 1.6 2.4 3 .1 0.2 0.2 0.0 0.0 16.8 0.4 4.9 70.4 
39 0.0 3 .1 4.6 7.5 0.3 0.4 0.0 0.0 21. l 0.5 4.7 57 .9 
40 0.0 5.9 8.8 13.7 O. l 0.5 0.0 0.0 . 24.3 0.6 4.0 42.2 
41 0.6 4.4 12.7 10.2 0.8 0.3 0 .1 o.o 27.5 0.6 8.4 34.6 
42 0.0 0.6 l. 7 1. 7 0.4 0.4 0. l o.o 26.5 0.4 5.7 62.7 
43 . 0.0 0.8 1.5 1. 7 0.2 0.2 0.0 0.0 21.3 0.4 3.3 70.8 
44 0.6 4.7 4.0 9.0 0.1 0.4 0.1 0.1 23.2 0.5 4.2 53.2 
45 0.0 2.4 4.5 5.0 0.0 0.8 o.o 0.0 18.7 0.3 7.8 60.5 
46 0.0 3.0 4.6 4.9 0.5 0.7 0,0 o.o 19.7 0.9 5.3 60.5 
47 0.0 0.5 l. 2 1.4 0 .1 0.6 0.0 0.0 28.0 0.2 2.5 65.5 
48 0.5 3.B 15.4 3.3 0.4 0.6 0.0 0.0 29.6 0.3 2.5 43.5 ..... 
49 0.3 2.2 4.7 5.7 0.1 0.3 0 .1 0.0 16 .. 9 1.0 3.2 65.5 "' 50 0.3 1.2 6.4 21.2 0.1 0.1 0.0 0.0 15.5 0.4 1.1 53.8 

-.J 

51 0,4 3.6 3.1 3.0 0.2 0.4 0.0 o.o 1'3. 2 0.2 4.1 72.0 
52 0.0 4.3 15.9 l l.4 0 .1 0.3 0.0 0.0 27.5 0.4 3.3 36.8 
53 0.0 3.0 10.5 7.9 0.2 0.3 0.0 o.o 26.1 0.4 7 .o 44.7 
54 0, 1 0.6 1.9 l.4 0.0 0.1 0.0 0.0 17.3 0.2 5.3 73.0 
55 0.7 3.2 2.3 3.6 0.3 0.8 0.1 0.0 54.7 0.0 0.1 33.7 
56 0.0 0.4 1.5 4.4 0.0 0.1 0 .1 0.0 11.4 0.3 2.5 79.4 
57 2.8 1.5 1.6 40.4 0.0 0.0 0.0 0.0 5.1 0.2 1.1 47.5 
58 0.1 0.1 1.4 1. 7 0.2 0.3 0 .1 0.0 18.2 0.3 4.3 72.8 
59 0.1 0.7 1.4 12.5 0 .1 0.2 0.1 0.0 4.6 O. l 1.1 79.3 
60 0.8 8.5 6.2 6.5 0.4 0.7 0.1 0.0 23.8 0.4 3.6 49.1 
61 0.3 3.2 8.2 21.1 0.2 0.1 0.0 o.o 24.7 0.5 2 .1 39.6 
62 0.0 0.4 1.0 2.5 0,0 0.1 0.0 0.1 10.2 0.4 1.0 84.2 
63 0. 7 3.8 7.9 4.5 0.2 1. l 0.0 0.0 31.2 1.0 3.1 46.5 
64 0.3 6.8 7.3 7. 0 o.o 0.8 0.1 0.0 24.2 0.5 5. l 47.9 
65 0.0 3.5 4.5 5.0 0.3 0. 7 0.0 o.o 25.4 0.4 5.5 54.7 
66 0.0 3.2 6.3 7.l 0.1 0.3 o.o 0.0 21.9 0.5 5.1 55.5 
67 0.0 0.5 1.4 3.2 0.1 0.2 0.0 0.0 13.4 0.2 2.3 78.6 



68 0.2 1.8 2.0 3.9 0.1 0.5 0.0 o.o 16.3 0.4 2.9 71.8 
59 1.0 5.9 7.3 7.3 0.5 0.6 o.o 0.0 23.3 0.6 3.8 48.8 
70 o.o 2.5 2.9 3.8 0.2 0.8 0.0 0.0 17. 7 0.4 3.6 68.2 
71 0.0 4.6 7.0 8.6 0.3 0.7 o.o 0.0 19.7 0.3 3.5 55.3 
72 0.4 7.8 11. 9 5.5 0.0 1.1 0.0 0.0 29.7 0.4 4.5 38.8 
73 o. 2 0.6 0.9 2.1 0.2 0.4 0.2 0.0 34.9 0.1 2.9 57.6 
74 o.o 0.5 1.6 5.6 0.0 0.2 0.0 0.1 12.0 0.2 1.5 78.3 
75 0.0 0.5 0.8 1.4 0.1 0.3 0.1 o.o 15.1 0.4 3.3 78.2 
75 0.3 1.9 2.2 3.4 0.0 0 .. 8 0.0 0.0 · 23. 2 0.4 10.6 57 .3 
77 o.o 6.0 13.4 13.0 0.2 0,5 0.0 0.0 29.4 0.4 3.2 33.9 
78 0.3 3.5 5.7 7.4 0. 4 0.6 0.1 0.0 25.1 0.5 3.5 53 .0 
79 0.5 5.4 7.1 12.1 0.2 0.3 0.0 o.o 27.2 0.5 3.5 ·42,3 
80 0.3 1.9 9 .1 5.4 0.3 0.7 0.0 0.0 39.4 0 .1 1.5 40.4 
81 0.6 3.0 6.7 5.6 0.1 0.4 o.o 0.0 15. 3 1.1 4.9 50.3 
82 0.6 4.2 10.2 4.5 0.4 1.0 0.1 0.0 24.4 0.3 5.2 49.2 
83 0. 4 3.5 5.2 4.8 0.2 0.6 0 .1 0.0 18.7 0.3 6.4 59.9 
84 0.3 0.7 0.9 10.5 0.1 0.1 0.0 o.o 9.0 0.3 2.1 76.0 
85 0.2 2.9 7.1 3 .8 0.0 2.1 0.0 o.o 37 .0 0.3 2.8 43.8 .... 

"' 86 0.0 0.6 3.7 12.7 0.1 0.2 0.0 0.0 '14.'2 0.4 1.6 66.6 co 
87 0.7 2.7 5.2 7.9 0.2 0.6 0 .1 o.o 2.0. 7 0.4 2.8 58.7 
88 0.0 2.8 5.3 7.4 0.2 0.5 0.0 o.o 27. 2 0.5 2.3 53.9 
89 0.0 2 .1 5.8 7. 9 0.2 0 .1 o.o 0.0 21.0 1.1 3.9 58.0 
90 0.0 0.8 l. 7 4.4 0.1 0,6 0.0 o.o 17.6 0.3 3.1 71.4 
91 0.2 2.2 5.5 5.6 0.1 2.4 0.1 0.0 23.4 0.6 2.3 57.8 
92 0.0 0.5 1.0 6.0 0.0 0.0 0.0 0.0 5.3 0.2 1.4 85.6 
93 0.5 2.2 12.5 13.5 0.1 0.3 0.0 0.0 11.9 0.3 4.1 54.7 
94 0.8 3.7 5.4 12.2 0.0 0.3 0.0 0.1 17.0 0.5 4.7 55.5 
95 0.7 3.6 5.9 7.1 0.2 0.5 0.0 0.0 18.0 0.7 4.0 59.5 
96 0.3 5.2 6.1 5.7 0.4 0.5 0.0 0.0 26.4 0,6 3.8 51.1 
97 0.0 0.6 1.6 4.1 0.1 0 .1 0 .1 0.0 14.2 0.4 2.3 76.4 
98 0.3 0.6 2.8 9.7 0.0 0.2 0.1 0.0 15.0 0.4 1.5 69.5 
99 o.o 3.1 3.7 9.1 0.1 0.2 0.0 o.o 22.8 0.8 3.6 56.8 
100 0.3 0.3 3.4 11.8 0.0 0.1 o.o 0.1 12.0 0.2 0.2 71.6 
101 0.4 5.0 8.6 8.5 0.4 0.7 0.2 0.0 30.6 0.8 4.8 40. l 
102 0.0 0.5 2.5 9.1 0.1 0.2 o.o 0.0 11. 7 0.3 0.9 74.8 
103 0.3 1.6 1.9 2. l 0.1 1. 7 0 .1 0.0 32.0 0.1 1.9 58.2 
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104 0.0 
105 0.0 
106 0.5 
107 0.4 
108 o.s 
109 0.3 
llO 0.2 

0.9 l. 7 2.4 0.1 
9.7 4.4 s. l 0.2 
5.5 3.7 6.7 0.0 
1.3 2 .1 17 .3 0.1 

16.2 6.0 5.0 0.4 
3.8 4.0 4.4 0.3 
1.9 3 .1 2.2 0.0 

LO 0.1 0.0 19.6 
0.7 0.0 0.0 21.8 
0.8 0.0 o.o 24.3 
0.3 0.0 0.0 13.5 
1.4 o.o o.o 21. 7 
0.6 0.0 0.0 20.7 
0.3 0.0 0.0 21.7 

0,2 4.0 
0.7 4.9 
0.3 3.3 
0.4 3.0 
0.1 8.7 
0.6 4.3 
0.8 3.2 

_.. . . 

' 

.-~ --.,-·--. 

70.2 
52.5 
55.0 
61.8 
40.1 
61.1 
66.7 

f..J 
N 
ID 
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ANALYSIS OF FLY-ASH DERIVED FROM COMBUSTION OF PIT 12 COMPOSITE LIGNITE AT A FLUE GAS 
TEMPERATURE OF 13oo0c 

Analysis 
Poini; Na Mg Al Si p s Cl K Ca Ti Fe 0 
l 0.8 0.8 6.8 24.1 0.0 0.2 0.0 0.9 3.4 0.2 1.4 61.4 
2 0.5 0.5 5.2 16.2 0.0 0.1 0.1 0.5 8.7 0.2 l. 2 66.9 
3 0.0 0.5 4.0 15.8 o.o 0.1 o.o 0.2 6.7 0.3 1.1 71. 5 
4 0.7 1. 7 7.7 17.2 0.0 0.2 0.1 a .1 10.5 0.4 l. l 60.4 
5 0.3 1.4 11. 5 25.9 0.0 0.2 0.0 1.2 3.9 0.3 2. l 53.l 
6 0.3 0.3 4.3 15.7 0.0 0.1 0.1 0.2 8.6 0.3 0.4 69.7 
7 0.4 0.3 4.7 15.7 0.0 0.1 o.o 0.1 10.1 0.3 0.4 68.1 
8 0.7 0.6 4.4 12.0 0.1 0.2 0.0 0.1 6.7 0.3 0.6 74.4 
9 0.3 0.4 5.1 17.1 0.0 0.1 o.o o.o 10.8 0.3 0.2 65.8 
10 0.2 0.2 3.4 10.5 0.0 0.2 o.o 0.1 9.6 0.3 0.3 75.3 

I-' 11 0.8 0.4 6.5 21.8 0.0 0.1 0.0 0.0 11.1 0.2 0.2 58.8 w 
12 0.4 0.2 4.0 13.8 0.0 0.0 0.0 0.1 10.'2 0.2 0.3 70.7 0 

13 0.5 1.2 8.2 17.7 0.0 0.0 0.0 0.6 .4.8 0.7 1.8 64.6 
14 0.4 0.2 4 .1 14.2 0.0 2.0 0.0 0.1 11. 5 0.2 o.o 67.3 
15 0.9 0.5 6.4 20.3 0.0 0.1 0.0 o.o 11.4 0,2 0.2 60.0 
16 0.6 0.4 6.8 21. 7 0.1 0.0 0.0 0.1 11.9 0.3 0.2 58.0 
17 1. 5 0.4 5.8 21. 7 0.0 0.1 0.0 0. l 10.9 0.3 0.0 59.3 t 18 0.4 0.2 6.1 20.2 0.0 0.1 o.o 0.0 11.5 0,3 0.3 60.9 
19 0.3 0.4 5.1 16.4 0.0 0.1 0.1 0.1 10.8 0.3 0.4 66.0 
20 0.2 0.3 4.3 14.4 0.0 0.0 0.0 o.o 10.3 0.3 0.4 69.8 
21 0.2 1.2 7.0 26.4 0.0 0.1 0.0 0.8 3.8 0.2 1.3 59. l 
22 0.6 0.5 6.9 22.5 o.o 0.1 o.o 0.1 11. 5 0.2 0.2 57.5 
23 0.3 0.2 4.5 15.0 0.0 0.0 0.0 o.o 10.7 0.3 0.2 68.8 
24 0.5 0.3 4.3 15.2 0.0 0.0 0.0 0.1 10.0 0.2 0.0 69.3 
25 0.4 0.2 4.5 16.l 0.0 0.1 0.0 0.0 1I.4 0.3 0.1 66.9 
26 o.o 0.2 3.4 12.3 0.0 0.2 0.0 0.0 10.0 0.3 0 .1 73.7 
27 0.6 0.3 5.9 19.8 o.o 0.1 o.o 0 .1 11. l 0.3 0.3 61.4 

~ 28 o.o 0.1 3.8 13.3 0.0 0.0 0.0 0.0 10.0 0.2 0.4 72. l 
29 0.4 0.4 5.0 16.6 0.0 0.1 0.1 0.1 10.4 0.3 0.3 66.3 r;f 

~' 
i!::: 
-1 
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30 0.9 1. 4 8.0 24.8 0.1 0.0 0. I 0.6 8.0 0.4 4.4 51.3 
31 0.5 0.2 5.2 17.6 0.0 0.1 0.0 o.o 10.7 0.3 0.0 65.4 
32 0.3 0.2 3.3 11.8 0.0 0.0 0.0 0.1 9.8 0.2 0.3 74.0 
33 0.5 0.4 5.0 17 .1 0.0 0.1 0.3 0.1 10.6 0.2 0. 3 65.6 
34 0.5 0.4 6.2 21. 7 0.0 0.1 o.o 0.0 12.1 0.3 0 .1 58.8 
35 0.5 0.3 5.6 19.6 0.0 0.1 0.0 0.0 11. 2 0.3 0.3 62.2 
36 0.2 0.6 3.9 31.0 0.0 0 .1 0.0 0.6 2.0 0.1 1.4 60.2 
37 0.0 0.2 3.4 12.1 0.0 0.0 0.0 0.0 10.0 0.3 0.3 73.8 
38 0.2 0.2 3.6 13.2 0.0 0.0 0.1 0.1 · 10.3 0.2 0.0 72 .1 
39 0.2 0.3 5.1 17.6 0.0 0.1 0.0 0 .1 10.8 0.3 0. 2 65.3 
40 0.4 0.5 5.0 14.9 0.1 0.2 0.1 0.1 8.4 0.2 0.5 69.8 
41 0.4 1. 9 12.1 24.8 0.2 0.3 0.0 0.9 6.0 0.4 2.8 50.2 
42 0.0 1. 9 6.0 15.6 0.0 0.2 0.1 0.4 5.3 0.7 2.1 67.8 
43 0.3 0.3 3.3 12.0 0.0 0.1 0.1 0.1 10.3 0.3 0.7 72.8 
44 1.0 1. 7 8.9 19.8 0.2 0.3 0.1 0.6 6.3 0.3 6.9 53.9 
45 o.s 0.8 6.3 18.5 0.0 0.6 0.1 0.8 6.0 0.4 2.0 64.2 
46 0.4 0.3 3.9 12.9 0.0 2.6 0.0 0.1 12.2 0.2 0.5 66.9 
47 0.3 0.3 4.4 15.5 0.0 0.0 0.0 o.o 10.6 0.3 0.2 68.5 f-' 

w 
48 0.6 3.7 7.3 17.5 0.2 0.1 0.0 0.1 16.'6 0.5 1.3 52.2 f-' 

49 0.4 0.2 4.3 13.9 0.0 0.2 0.0 0.0 ,.9. 5 0.3 0.3 70.9 
50 0.5 1.1 8.3 18.6 0.0 0.1 0.0 0 .1 9.6 0.5 7.6 53.6 
51 0.2 0.2 4.2 15.1 0.0 0.0 0.0 0.0 10.8 0.3 0.2 69. l 
52 0.4 0.3 6 .1 20.1 0.0 0.1 0.1 0.1 11.4 0.3 0.3 61.0 
53 0.5 0.7 3 .1 30.8 0.0 0.3 0.0 0.2 4.0 0.2 1.0 59.2 
54 0.7 0.3 5.9 20.3 0.0 0.0 o.o 0.0 11.3 0.2 0.1 61.2 
55 0.5 0.2 4.8 16.5 0 .1 0 .1 o.o 0 .1 10.4 0.4 0.0 66.9 
56 0.4 0.3 5.0 17.4 o.o 0 .1 0.0 0.1 10.7 0.3 0.4 65.6 
57 0.6 0.3 5.5 19.3 0.0 0 .1 0.0 0.0 11. 2 0.3 0.3 62.3 
58 0.0 0.2 4.2 14.9 0.0 o.o o.o 0.1 10.4 0 .1 0.0 70.l 

' 59 0.4 0.4 5.4 18.5 o.o 0.0 0.1 0.0 10.8 0.3 0.3 63.9 
f* 

60 0.4 0.4 5.2 18.1 0.0 0.1 o.o 0.0 11. l 0.3 0.3 64 .1 
61 0.2 0.2 4.3 15.7 0.0 0.1 0.1 0.1 10.7 0.2 0.3 68.2 
62 0.4 0.2 5.4 19 .1 0.0 o.o 0.0 0.0 11. 7 0.4 0.2 62.5 'r 63 0.6 0.4 5.9 19.5 0.0 0.1 0.0 0.1 11.3 0.3 0 .1 61.8 .,; 

64 0.3 0.5 5.0 16.4 0.0 0 .1 o.o 0.1 10.3 0.3 0.4 66.7 
{' 65 0.7 0.4 6.3 21.2 0 .1 0.1 0.0 0.1 11. 4 0.3 0.4 59. I 
~ 
J:; 
'le 
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66 0.5 0.4 6.8 22.6 0.0 0.1 0 .1 0.1 11.4 0.4 0.5 57.0 
67 0.4 0.3 4 .1 14.1 0.0 0.0 0.0 0.0 9.9 0.3 0.4 70.4 
68 0.3 1.3 9.6 26.6 0.1 0.1 0.0 1.0 4.4 0.2 1.5 54.9 
69 0.6 0.3 5.1 17.4 0.1 0.0 0.1 0.0 10.8 0.2 0.4 65.1 
70 0.3 0.4 5.2 16.6 o.o 0 .1 0.0 0.0 10.6 0.3 0.4 66.2 
71 0.7 0.3 7.1 23 .9 0.0 0.3 0.0 0.0 11.8 0.3 0.4 55.1 
72 0.5 1.3 7.3 13.0 o.o 0.2 0.1 0.6 6.5 0.4 5.7 64.4 
73 0.2 0.3 4.3 15.2 0.1 (i. 0 0.0 0 .1 10.4 0.3 0.2 69.0 
74 0.4 0.3 4.7 16.0 0.1 0.1 0.0 0 .1 10.3 0.3 0.4 67 .4 
75 0.0 0.3 6.2 20.4 0.0 0.0 0.0 0.0 , 11.3 0.3 0.2 61.3 
76 0.3 2.3 5.1 20.8 0.0 0.8 0.0 0.6 6.2 0.3 3.4 60.5 
77 0.8 0.8 8.8 20.3 o.o 0.1 0.1 0.4 8.7 0.3 0.9 59.0 
78 0.4 0.2 4.7 16.0 0.0 0.0 0.0 0.0 10.6 0.3 0.3 67.7 
79 0.4 0.2 3.7 13.1 0.0 0,0 0.0 0.1 10.1 0.3 0.0 72.2 
80 0.7 0.5 2.7 4.7 0.0 0.1 0 .1 0.0 4.5 0.3 33.8 52.8 
81 0.5 0.3 5.6 18 .8 0.0 0.0 0.0 0.0 11.0 0.4 0.4 63.1 
82 0.8 0.4 6.8 22.9 0.0 0.1 0.0 0.1 12.0 0.2 0.4 56.4 
83 0.5 1.1 8.7 22.5 0.2 0 .1 0.0 0.9 6.3 0.3 2.0 57.5 
84 0.9 2.6 11.5 18.8 0.1 0.5 o.o 0.4 7.) 1.3 7.7 49.0 I-" 

w 85 0.0 0.3 3.5 11.3 o.o 0.2 0.0 O. l 9.8 0.3 0.4 74.2 ..., 
86 0.4 0.2 4.8 16.2 0.0 0.4 0.0 0.1 10.9 0.3 0.4 66.3 
87 0.5 0.5 6.2 20.1 o.o 0.0 o.o 0.1 10.7 0.4 0.5 61.0 
88 0.4 0.4 5.6 18.4 0.1 0.1 0.0 0.1 10.8 0.4 0.4 63.4 
89 0.4 1.1 7.6 19.l 0.0 0.3 0.1 1.0 4.5 0.5 3.4 62.2 
90 o.o 0.3 6.0 20.0 0.0 0.2 o.o o.o 11.2 0.3 0.3 61.7 
91 0.2 0.2 3.4 12. 2 o.o 0.1 0.0 0.1 10.0 0.2 0.2 73.5 
92 0.3 0.2 3.5 12.4 0.0 0.0 0.1 0.0 9.8 0.2 0.2 73.4 
93 0.0 0.3 4.6 14.7 0.0 0.1 0.1 0 .1 IO.I 0.2 0.2 69.7 
94 0.4 0.4 5.0 16.7 o.o 0.2 0.0 o.o 10.6 0.3 0.5 66.l 
95 o.o 0.3 4.9 15.3 o.o 0.2 0.0 0 .1 9.8 0.2 0.7 68.7 
96 0.3 0.2 1.0 39. 9 o.o 0.0 0.1 0.2 0.5 0.0 0.2 57.7 
97 0.6 0.6 6.9 21.4 0.0 0.2 0.0 0.2 11.1 0.2 0.5 58.4 
98 0.4 0.4 3.8 12.3 0.0 0.1 0.0 0.2 9.5 0.2 0.5 72.8 
99 0.0 1.0 6.3 18.9 o.o 0.2 o.o 0.4 8.7 0.2 1.3 62.9 
100 0.7 0.6 6.8 18.5 o.o 0.0 0.0 0.3 9.5 0.3 1.1 62.0 
101 0.6 1.6 10.1 20.3 o.o 0.1 0.0 0.9 5.5 0.3 2.6 58.0 

' [i· 
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102 0.3 0.9 6.5 12.1 0.1 0.1 0.0 0.8 6.1 0.2 3.4 69.5 
103 0.4 0.8 6.2 10.5 0.0 0.1 0.0 0.4 6.5 0.3 3.3 71.6 
104 0.6 l. 7 7.8 23.3 0.0 0.2 0.0 0.5 5.4 0.4 2.8 57.3 
105 0.4 0.6 3.7 14.6 0.0 0.1 0.0 0.5 5.3 0.2 2.3 72.3 
106 0.8 l. 5 10.2 21.3 0.0 0.0 0.0 1.1 4.0 0.4 9 .1 51.6 
107 0.2 0.6 2 .3 20.3 0.0 0.2 0.2 0.3 2.0 0.2 1.3 72.5 
108 0.0 0.5 5.4 17.7 0.0 0 .. 1 0 .1 0.5 7.2 0.2 1.1 67 .4 
109 o. 5 1.3 13. 5 21. 7 0.1 0.1 o.o 0.5 4.6 0.4 1.8 55.5 
110 0.2 0.6 4.9 20.6 0.1 0.3 0.0 0.5 4.5 0.1 1.2 67.0 
111 0.5 4.5 7.5 9.9 0.1 1.2 0.0 0.4 16.0 0.6 2.8 56.5 
112 0.3 0.7 5.9 16.3 0.0 0.1 0.0 0.5 7.7 0.5 2.2 65.8 
113 0.0 0.7 3.6 9.7 0.0 1.2 0.0 0.1 8.0 2.1 1.9 72.6 
114 0.3 0.5 4.0 12.9 0.1 0.1 0.0 0. l 8.5 0.3 0.8 72.6 
115 0.5 0.3 4.9 16.4 o.o 0.1 o.o 0.1 10.9 0.3 0.4 66.2 
116 0.7 0.5 6.8 22.6 o.o 0.1 0.0 0.1 11. 7 0.4 0.5 56.6 
117 0.2 2.1 6 .1 14.8 0.0 0.0 o.o 0. l 12.3 0.4 2.7 61.3 
118 0.5 0.4 5.9 19.4 o.o 0.0 0.1 0.0 11.0 0. l 0. 2 62.4 
119 0.2 0.2 3.8 12.8 0.0 0.0 0.0 o .1 10.2 0.2 0.4 72.l I-" 
120 0.5 0.8 6.0 19.8 0.0 0.2 0.0 0.3 . 7.4 0.4 1. 5 63.2 w 

w r21 0.6 0.9 4.2 29.3 0.0 0.1 0.0 0.6 3.9 0.2 1. 7 58.6 
122 1.3 0.3 4.2 16.6 0.0 0.1 0.1 0.1 10.1 0.1 0.3 67.0 
123 0.8 0.3 5.7 19.4 0.0 0.0 0.1 0.1 11.4 0.3 0.1 61.8 
124 0.3 0.4 4.7 16.5 0.0 0.0 0.0 0.0 11.6 0.1 0.2 66.3 
125 0.4 0.3 4.7 16.0 0.0 0.1 0.1 0.0 10.7 0.3 0.2 67.3 
126 0.0 0.3 5.0 18.1 0.0 0.0 0.0 0. l 11. 5 0.2 0.2 64.r 
127 0.4 0.3 4.3 15.3 0.0 0.2 0.0 0.1 10.7 0.3 0.3 68.1 
128 0.4 0.3 5.5 19.5 0.0 0.1 0.0 0.0 11.5 0.2 0.4 62.1 
129 0.7 0.4 5.4 17.9 0.0 0.1 0.0 0.0 11.0 0.3 0.3 64.0 
130 0.3 0.3 5.7 18.7 o.o 0.1 0.0 0.0 11.1 0.3 0.1 63.5 
131 0.5 0.4 4.9 16.4 0.0 0.1 0.1 0.0 10.8 0.2 0.4 66.3 

' ' '!'. 
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ANALYSIS OF FLY-ASH DERIVED FROM COMBUSTION OF PIT 12 COMPOSITE LIGNITE AT A FLUE GAS 
TEMPERATURE OF l5oo0c 

Analysis 
Point Na Mg Al Si p s Cl K Ca Ti Fe 0 
l 0.0 0.6 3.8 18.4 0.0 l'. 7 0.0 0.4 6.3 0.2 1.3 67 .3 
2 0.4 0.5 4.6 15.6 0.0 0.0 0.0 0.2 9.0 0.3 1.0 68.5 
3 0.4 2.2 8. 0 18.1 0. l 0.0 0.0 0.0 · 10. 2 0.5 1.5 59.0 
4 0.6 1.0 7 .o 19.8 0.1 0.2 0.0 0.3 8.4 0.3 !. 5 60.8 
5 0.4 1.1 7.2 18 .1 0.1 0.1 0.0 0.5 7.9 0.4 2.3 61.9 
6 0.8 0.9 5.5 10.0 0.0 0. l 0.1 0.6 7.7 0.5 3.9 69.9 
7 0; l 0.8 5.2 9.8 o.o 0.1 o.o 0.6 4.6 0.5 3.0 75. 2 
8 0.0 0.7 5.4 10.0 0.0 o.o 0.0 0.4 5.9 0.4 2.4 74.8 
9 0.2 0.4 4.3 14.2 0.1 0. l 0.0 0.1 9. l 0.2 0.8 70.6 
10 0.6 0.8 6.8 19.7 0.1 0.2 0.0 0.2 9.9 0.2 1.0 60.6 
11 0.5 0.4 4.4 14.5 0.0 0.2 0.0 0.1 9.7 0.2 0.4 69.8 
12 0.4 0.4 5.2 16.5 0.0 0.1 0.1 0.1 10.0 0.3 0.5 66.5 I-' 

w 
13 0.5 0.4 4.8 15.4 0.0 1.2 O. l O. l ·10:2 0.2 0.6 66.6 ... 
14 0.0 0.4 5.4 16.2 0.0 0 .1 0.0 0.3 .. 9.6 0.2 1.1 66.9 
15 0.5 1.0 8.4 18.8 0.0 0.1 0.1 0.4 7.8 0.2 1.7 61.2 
16 0.8 0.8 6.1 17.9 0.0 0.2 0.0 0.2 9.5 0. 2 0.8 63.7 
17 o.o 0.1 3.2 11.4 0.0 0.1 o.o 0.1 9.4 0.2 0.4 75.3 
18 0.0 0.3 3.7 12.7 0.0 0.2 0.0 o.o 9.4 0.3 0.3 73.2 
19 0.5 0.4 5.6 19.3 0.0 0.1 0.0 0.1 10.6 0.3 0.3 62.8 
20 0.0 0.2 3 .1 11.3 0.0 0 .1 o.o 0.1 9 .1 0.9 0.3 74.9 
21 0.5 0.3 4.0 13.8 0.0 0.1 0.0 0.0 9.8 0.3 0.3 71.0 
22 0.2 0.3 4.8 16.7 o.o 0.1 0.0 0.0 10. l 0.3 0.3 67.2 

w: 23 l.O 0.4 5.6 19.5 0.0 0.8 0.4 0.3 10.0 0.3 0.3 61.4 
".:>. 24 0.4 0.4 5.0 17.0 0.0 0.1 0.0 0.1 10.5 0.2 0.1 66.3 1 .. :. 

25 0.7 0.5 6.0 20.2 0.0 0.1 0.0 O. 1 11. l 0.2 0.5 60.7 
26 0.4 0.3 5.9 19.9 0.0 0.4 0.0 0.0 11.0 0.3 0.3 61.5 

I 27 0.4 0.4 5.8 19.6 0.1 0.1 0.1 0.0 11.1 0.4 0.3 61.8 
28 0.3 0.3 4.4 15.3 0.0 0 .1 0.1 o.o 10.3 0.3 0.3 68.6 
29 0.3 0.3 4.2 15.4 0.0 0.1 0.0 0.0 10.3 0.4 0.4 68.5 
30 0.4 0.2 4.0 13.6 o.o 0.1 0.0 0.1 10.0 0.2 0.3 71.1 



31 0.7 0.8 6.5 18.1 0.0 0.2 
32 0.3 0.3 5.2 17.9 0.1 0.2 
33 1.0 0.4 5.6 19.1 0.0 0.1 
34 0.3 0.4 5.5 17.5 0.0 0.2 
35 0.6 0.4 6.0 18.3 0.1 0.3 
36 0.8 0.5 6.3 19.8 0.1 0.1 
37 0.6 0.3 5.8 19.9 0.0 0.3 
38 0.6 0.4 4.7 16.6 o.o 0.0 
39 0.2 0.3 5.2 17.2 o.o 0.1 
40 0.3 0.6 5.0 15.5 0.0 0.2 
41 0,0 0.5 5.6 18.3 o.o 0.2 
42 0.2 0.2 3.5 12.0 0.0 0.1 
43 0.2 0.3 5 .1 17.2 0.0 0.1 
44 0.5 0.5 6.0 19.5 0.1 0.2 
45 0.4 0.5 4.5 16.3 0.0 2.2 
46 0.3 0.4 3.9 13.0 0.0 0.2 
48 0.3 1.3 6.6 14.4 0.1 0.1 
49 0.3 0.3 6.1 20.1 0.0 0.0 
50 0.2 3.2 8.0 17.9 0.0 0.3 
51 0.5 1.6 7.2 27.7 o.o 0.1 
52 0.5 2.0 9.6 20.5 0 .1 o.o 
53 0.3 0.4 6.4 21. 2 0.0 0.1 
54 0.4 0.3 3.9 13. 2 0.0 0.2 
55 0.5 0.7 5.6 17.6 0.1 0.2 
56 0.3 0.5 5.6 17.1 0.0 0.1 
57 0.7 1.1 7.0 19.6 0.1 0.2 
58 0,6 0.5 4.8 13.0 0.0 0.1 
59 0.5 1.5 9.4 22.2 0.0 0.2 
60 0.0 0 .1 3.3 13.8 0.0 o.o 
61 0.3 0.5 6.2 17.2 0.0 0.1 
62 0.3 0.4 5.1 16.9 0. l 0.2 
63 0.2 0.2 3.3 11. 7 0.0 0.1 
64 0.0 0.1 3.7 13.4 0.0 0.1 
65 0.0 0.3 4.9 17.3 0.1 0 • .1 
66 0.2 0.3 3.4 12. 2 0.0 0.0 
67 0.2 0.2 4.4 15.5 0.0 0.0 

0.1 0.1 9. I 
0.1 0.1 10.4 
0.4 0.1 10.2 
0.0 0.0 9.9 
0.1 0.1 9.6 
0.0 0.0 10.4 
0.0 0 .1 10.2 
o.o 0.0 10.l 
0.1 0.1 · 10. I 
0.0 0.1 9.6 
0.1 0.1 10.4 
0.0 0.1 8.4 
0.0 0.0 10.4 
0.0 0.0 9.9 
0.0 0.1 9.4 
0.1 0.1 8.9 
o.o 0.2 6.7 
0.0 0 .1 11.1 
0.0 0.0 ·12.0 
0.1 0.8 l;. 2 
0.0 0.5 5.8 
0.0 0.1 II. 0 
o.o 0.0 9.7 
0.0 0.2 9.7 
0.0 0.1 10.5 
0.0 0.3 8.0 
0.9 0.4 7.8 
0.0 0.9 4.7 
0.0 0.3 5.7 
0.1 0.1 9.2 
0.1 0.1 10.3 
0.0 0.0 9.3 
0.0 0. I 10. l 
0.1 0. I 10.6 
0.1 0.0 9.5 
0.1 0.1 9.9 

0.3 1.5 
0.3 0.3 
0.3 0. 2 
0.2 0.6 
0.4 0.7 
0.3 0.6 
0.2 0.2 
0.3 0.6 
0.2 0.6 
0.3 3. 7 
0.2 0.5 
0.2 1. 2 
0.3 0.3 
0.2 0.7 
0.2 0.6 
0.2 0.5 
0.3 15.6 
0.3 0.3 
0.4 2.6 
0.2 1.6 
0.3 2.7 
0.4 0.6 
0.2 0;3 
0.2 0.8 
0.4 0.5 
0.3 1.8 
0.1 1. 7 
0.3 2.4 
0.2 0.6 
0,4 0.6 
0.4 0.4 
0.3 0.2 
0.3 0.2 
0.4 0.7 
0.2 0.4 
0.3 0.5 

62.7 
64.8 
62.6 
65.5 
63.4 
61.1 
62.5 
66.5 
65.9 
64.8 
64.2 
74.1 
66.2 
62.4 
65.9 
72.4 
54.5 
61.4 
55.4 
56.2 
58.0 
59.4 
71. 7 
64.5 
65.0 
61.0 
69.9 
57.9 
75.9 
65.4 
65.9 
74.8 
72. 2 
65.4 
73.7 
68.9 
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68 0.4 0.4 5.9 20.1 0.0 0.3 0.1 
69 0.3 0.2 4. l 14.6 0.0 0 .1 0.1 
70 0.2 0. 2 3.4 11. 7 0.0 0.1 0.0 
71 0.6 0.3 4.6 15.8 o.o 0.2 0.0 
72 0.3 0.2 3.7 13.0 0.1 0.0 0.0 
73 0.5 0.6 5.7 18.5 0.1 0.5 0 .1 
74 0.7 0.6 6.3 20.0 o.o 0.2 0.0 
75 0.6 0.6 6.4 20.7 0.1 0.3 0.0 
76 0.3 0.3 4. 2 15.2 0.1 0.1 0.0 
77 0.5 0.5 5.3 17 .6 0.0 0.2 o.o 
78 0.5 0.4 5.4 18.3 o.o 0.1 0.0 
79 0.2 0.2 3.5 13.8 0.1 0.0 0.0 
80 0.0 0.5 4.3 12.5 0.0 1.8 0.0 
81 0.3 0.6 6.3 20.2 0.0 0.1 o.o 
82 0.5 0.4 6.6 20.5 0.1 0.1 0 .1 
83 0.6 0.6 5.7 18.4 0.1 0.2 0.0 
84 0.0 0.8 6.8 17.6 0.0 0.1 o.o 
85 0.6 0.9 5.0 22.7 o.o 0.3 0.0 
86 0.5 0.6 5.6 20.4 0.0 0.3 0.0 
87 0.4 1.0 7.0 17.5 0.1 0.2 0.0 
88 0.3 0.4 5.8 18.5 o.o 0.2 0.1 
89 0.2 0.9 7.3 16.3 0 .1 0.2 0 .1 
90 0.5 0.4 5.7 19.2 0.0 0.1 0.0 
91 0.8 0.4 7. I 23.0 o.o 0.1 0.0 
92 0.2 0.3 4.7 16.4 0 .1 0.2 0.0 
93 0.3 0.2 3.4 11. 7 0.0 0.0 0.0 
94 0.7 0.4 6.2 20.4 0.0 0.6 o.o 
95 0.4 0.4 5.1 17.7 o.o 0.2 0.0 
96 0.6 0,4 4.7 15.9 0.0 0.1 0.1 
97 0.6 0.4 4.9 16.5 o.o 0 .1 0.1 
98 0.6 0.5 6.7 22.3 0.0 0 .1 0 .1 
99 0.3 0.4 4.3 15.1 0.1 0.1 0.0 
100 0.4 0.4 4.4 15.8 0.0 0.1 0.0 
101 0.6 0.5 7.1 22.4 0.0 0.0 0.1 
102 0.5 0.7 5.0 16. l o.o 0.3 0.0 
103 0.7 0.5 7.4 24.3 0.0 0.2 0.0 

1i? 
t, 

",:;-

0 .1 10.2 0.2 
0.0 10.0 0.3 
0.1 9.9 0.3 
0.1 10.3 0.3 
0.0 9.1 0.1 
0.1 10.9 0.3 
o.o 10.5 0.3 
0.3 8.9 0.2 
0.0 10.5 0.1 
0.0 ·· 10.3 0.2 
0.0 10.6 0.3 
0.2 7.4 0 .1 
0 .1 10.2 0.3 
0.1 10.0 0.3 
0 .1 10.4 0.4 
0.1 10.7 0.3 
0.4 7.6 0.3 
0.4 4.5 1.4 
0.4 7.1 0.5 
0.4 · 7 ;5 0.4 
0.2 10.3 0.3 
0.1 8.5 0.5 
0 .1 10.9 0.4 
0.1 11.5 0.3 
0.1 10.9 0.3 
0.0 9.3 0.3 
0.2 10.4 0.3 
0.1 10.5 0.4 
0 .1 10.6 0.4 
0.1 10.4 0.3 
0.1 11. 5 0.3 
0 .1 10.4 0.3 
0.1 10.1 0.2 
0. l 11.4 0.3 
0.1 10.4 0.2 
0. I 11. 7 0.4 
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0.3 62.l 
0.2 70.3 
0.0 74.l 
0.3 67.6 
0.0 73.5 
0.5 62.5 
0.4 61.3 
1.5 60.5 
0.5 68.8 
0.5 65.0 
0.6 64.0 
0.5 73.8 
0.7 69.6 
0.8 61.3 
0.3 60.6 
0.7 62.7 
2.2 64.2 
1.2 63.l 
1. 7 62.9 I-' 

w 
2 .0 63.6 0\ 

0.6 63.2 
1.9 64.0 
0.6 62.l 
0.1 56.6 
0.2 66.7 
0.3 74.4 
0.6 60.3 
0.3 65.1 
0.2 67 .1 
0.4 66.5 
o. 2 57.6 
0.5 68.5 
0.3 68.2 
0 .1 57.4 
0.4 66.4 
0.3 54.5 



~ 

104 0.4 0.5 5.7 18.9 0.0 0.0 0 .1 0.1 10.8 0.3 0.5 62.8 
105 0.5 0.4 5.2 18. l 0.0 0.1 0.0 0.1 11.0 0.2 0.3 64.2 
106 0.4 0.4 5.3 17.7 0.1 0.2 0.1 0 .1 10.9 0.2 0.3 64.4 
107 0.0 0.4 4.0 13.6 0.0 0.1 0 .1 0.1 10.1 0.2 0.6 70.9 
108 0.7 0.3 5.8 19.4 0.0 0.2 0.1 0.1 10.9 0.2 0.3 62.0 
109 0.7 0.5 5.9 19.9 0.0 0.2 0.1 0.2 10 .1 0.3 0.6 61.7 
110 0.6 2.1 11.8 22.7 0.0 0.1 0.1 0.9 6.2 0.6 2.9 51.9 
111 0.2 0.4 3.9 13.2 0.0 0 .1 0 .1 0 .1 9.8 0.3 0.3 71. 7 
112 0.3 0.6 5,6 19.0 0 .1 0.1 0.0 0.1 10.9 0.4 0.5 62.6 
113 0.5 0.3 4.8 17.3 0.0 0.2 o.o 0.0 · 10.3 0.3 0.3 66.0 
114 0.7 0.4 6.8 23.5 0.1 0.1 0.0 0.0 11.8 0.4 0.3 56.0 
115 0.6 0.5 5.5 19.4 o.o 0.4 0.0 0.1 10.9 0.2 0.4 62.2 
116 0.0 0.3 4.4 15.5 o.o 0.5 0.0 0.0 10.6 0.2 0.2 68.3 
117 0;0 O.l 3.l ll. 4 0.0 0.1 0.1 0.0 9.5 0.3 0.5 74.9 
118 0.7 0.4 6.7 22.4 0.0 0.1 0.1 o.o 12.0 0.3 0.4 57.0 
119 0.4 0.5 5.5 18.5 0. 1 0 .1 0.0 0.1 10.6 0.3 0.6 63.3 
120 0.4 0.3 6.6 22.1 0.0 0.3 0.0 0.0 11.1 0.4 0.3 58.6 
121 0.9 0.4 5.9 19.7 o.o 0.1 0.0 0.0 10.6 0.3 0.6 61.5 1-4 122 0.5 0.5 4.7 16.4 0.1 0.3 0 .1 o.o 10.4 0.2 0.6 66.4 w 
123 0.5 0.5 5.5 18.5 0.0 0.2 0.0 0. I · 10:8 0 .1 0.3 63.5 

.._, 

124 0.4 0.4 4 .1 14.1 o.o 0.1 o.o 0.1 -9. 9 0.2 0.5 70.2 
125 0.5 0.4 6.4 21.0 o.o 0.1 0.0 0.0 11.2 0.3 0.2 59.9 
126 0.0 0.4 4.8 16.2 0 .1 0 .1 0.0 0.1 10.0 0.3 1.0 67.2 
127 0.7 0.5 6.1 18.7 0.0 0 .1 0.0 0.1 10.5 0.3 0.3 62.6 
128 0.0 0.2 3.9 12.5 0.0 0.1 0.0 0.1 8.9 0.3 0.5 73.4 
129 0.5 0.4 4.4 14.2 0.0 0.1 0.0 0.1 9.3 0.4 0.8 69.9 
130 0.2 0.5 5.8 17.6 0.0 0 .1 0.0 0 .1 9.9 0.8 1.3 63.8 
131 0.3 0.4 4.7 16.2 0.0 0.1 o.o o.o 10.6 0.3 o. 3 67.2 
132 0.5 0.8 6.3 17.8 0.1 0.2 0.1 0.2 7.8 0.6 2.6 63.2 
133 0.3 0.6 5.6 14.l 0.1 0.1 0.0 0.2 7.3 0.3 2.4 68.9 
134 0.4 0.7 6.1 19.3 0.1 0.3 0.0 0.2 10.0 0.5 1.1 61.3 
135 0.4 0.7 6.6 19.1 0.1 0.3 0.1 0.1 9.3 0.3 11.4 51. 7 
136 o.o 0.3 3.9 12.8 0.0 0.0 0.0 o.o 10.1 0.3 0.4 72.2 
137 0.0 0.7 5.1 15.2 0.0 0.2 0.0 0.2 8.8 0.2 1.2 68.5 

,P 138 0.5 1.4 7.3 17.4 0.1 0.3 0.0 0.3 7 .1 1.4 2.3 62. l ~ 
~- 139 0.4 0.5 6.2 20.7 0.1 0.1 O. l 0.0 10.9 0.3 0.6 60.2 
• ,, 
~ 
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140 0.4 0.4 6.0 20.7 0.0 0.1 0.0 0.0 11.6 0.3 0.2 60.4 
141 0.5 0,3 5.3 19.0 0.0 0.2 0 .1 0. I 11.5 0.3 0.4 62.4 
142 0.5 0.4 5.7 18.4 0.0 0.0 0.0 0.1 10.8 0.4 0.4 63.5 
143 0.2 0.4 4.2 14.5 0.0 0.1 0.0 0.0 9.8 0.3 0.4 70.1 
144 0.4 0.3 4.4 14.9 o.o 0.1 0.0 0 .1 10.6 0.3 0.2 68.9 
145 0.5 0.4 5.2 18.3 0.0 0.1 0.1 0.0 10.9 0.2 0.5 63.9 
146 0.7 0.4 6.0 20.6 0.0 0.4 0.1 0.0 10.4 0.2 0.3 60.9 
147 0.2 0.3 4.2 14.2 0.0 0.1 0.1 0.0 10.7 0.2 0.3 69.8 
148 0.4 0.2 3.9 13.7 0.0 0.1 0.1 0.0 10.3 0.3 0.2 70.9 
149 0.4 5.6 10.8 20.8 0.0 o.o 0.0 0.0 .. 10.0 0.5 3.5 48.5 
150 0.7 0.4 6.0 19.4 0.0 0.5 0.0 0 .1 10.5 0.3 0.3 61.9 
151 0.3 0.5 5.7 19.7 0 .1 0.1 0.0 0.1 10.8 0.3 0.2 62.3 
152 0.4 0.3 4.1 14.4 0.0 0.2 0.0 0.2 IO.I 0.2 0.3 69.9 
153 0.2 0.2 3.8 12.3 0 .1 0.2 0.1 0.0 9 .1 0.2 0.5 73.4 
154 0.5 0.3 5.7 19.1 0.0 0.2 0.1 0 .1 10.6 0.2 0.6 62.6 
155 0.3 0.5 6.3 20.4 0.0 0.2 0.1 0 .1 11.1 0.3 0.4 60.5 
156 0.8 0.4 6.4 21.3 0.0 0.1 0.0 0.0 11.2 0.4 0.3 59.3 
157 0.7 0.6 7.2 23.0 0.0 0.1 0.0 0.1 11.8 0.3 0.2 56.l 
158 0.3 0.4 5.4 18.8 0.0 0.1 0.1 0.0 10.5 0.3 0.3 63.8 f-" 

w 
159 0.4 0.4 5.7 18.9 o.o 0.3 0.0 0.0 10:6 0.3 0.5 62.9 co 
160 0.4 0.3 4.1 14.7 0 .1 0.1 0.1 0.0 l0.4 0.3 0.4 69.2 
161 0.8 0.5 6.3 20.4 0.0 0.1 0.0 0.1 11.2 0.3 0.4 60.0 
162 0.0 0.3 5.8 19.6 0.0 0.0 o.o 0.1 11.6 0.2 0.3 62.l 
163 0.6 0.4 6 .1 20.4 o.o 0.2 0.1 0.1 10.8 0.3 0.4 60.8 
164 0.6 0.4 6.4 22.0 0.0 0.2 0.0 0.1 11. 5 0.4 0.0 58.5 
165 0.3 l. l 10.5 22.6 o.o 0.2 0.0 0.7 5.6 0.4 1.8 56.7 
166 0.3 0.4 5.4 18.5 0.0 0.1 0.1 0.1 10.3 0.4 0.4 64.1 
167 0.6 0.5 6.1 18.1 0.0 2.8 0.0 0.2 11.7 0.3 0.6 59.2 
168 0.2 0.4 4.3 13.5 0.0 0.0 0.0 0.1 8.8 0.3 1.0 71.4 
169 0.4 0.6 5.5 19.0 0.0 0.2 0.0 0.1 10.2 0.2 0.8 63.0 
170 0.3 0.8 6.4 14.8 0.0 0.2 0.1 0.7 6.0 0.3 1.5 69.0 
171 0.4 0.3 5 .1 16.7 0.0 0.2 0.0 0.1 9.6 0.3 0.2 67 .1 
172 0.3 0.3 4.9 16.3 0.0 0.1 0.0 0.0 9.7 0.2 0.3 67.9 

If 173 0.6 0.4 5.6 18.2 0.0 0.1 o.o 0.1 9.4 0.2 0.6 64.7 
174 0.7 0.4 4.9 16. 2 0.0 0.1 0.0 0.0 9.4 0.3 0.5 67.6 
175 0.2 0.3 3.7 12.1 o.o 0.1 0.1 0.1 8.7 0.3 0.3 74.2 
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176 0.3 0.3 4.5 15.0 0.0 0.1 0.0 0.0 9.2 0.7 0.4 69.6 
177 0.4 0.5 5.2 17 .1 0.0 0.1 o.o 0.1 9.7 0.4 0.4 66.2 
178 0.2 0.8 5.7 15.1 0.0 0.4 0.1 0.1 8.2 0.4 1.5 67.6 
179 0.2 0.4 4.9 13.6 0.1 0.1 0.1 0.1 10.0 0.2 0.5 69.8 
180 0.3 0.6 4.7 14.4 0.0 0.2 0.0 0.2 7.7 0.1 1.4 70.5 
181 0.3 0.6 5.1 14.7 0.1 0 .1 0.0 0.1 9.1 0.2 1.1 68.5 
182 0.2 0.8 5.6 17. 5 0.1 0.2 0.0 0.4 7.3 0.4 1. 7 65.9 
183 0.3 0.7 4.6 17.0 0.1 0.2 0.0 0.3 6.8 0.2 1.6 68.2 
184 0.2 1.0 5.0 l l.5 0.0 0.2 0.0 0.3 6.9 0.2 2.0 72.9 
185 0.2 0.5 4.8 14.6 0.0 0 .1 0.0 0.1 9 .1 0.3 1.2 69.3 
186 0.0 0.3 5.3 18.1 0.0 0.1 0.0 0.0 10.7 0.3 1.1 64.1 
187 0.7 0.5 6.4 19.9 0.0 0 .1 0.1 0.1 10. l 0.2 0.3 61. 7 
188 0.4 0.3 5.2 17.8 0.1 0.3 0 .1 0.1 11.0 0.3 0.3 64.1 
189 0.5 0.4 6.3 21.0 0.0 0.2 o.o 0.0 11.6 0.3 0.4 59.5 
190 0.5 0.4 6.7 22.8 0.0 0.1 o.o 0.1 11.5 0.4 0.1 57.5 
191 0.0 0.2 4.1 14.4 o.o 0.1 0.0 0.0 10.9 0.3 0.3 69.8 
192 l. l 0.6 5.1 16.7 0.0 0.8 0.0 0 .1 8.9 0.3 2.1 64.3 
193 0.7 0.4 7.4 24.0 0.1 0.1 0.1 0.0 12.3 0.3 0.3 54.5 
194 0.3 2.8 7.5 16.0 0.0 0.0 0.0 0.0 7.6 0.4 11.3 54.2 I-' 

w 195 0.5 0.3 6.7 22.3 0.0 0.2 0.1 0.1 · ll .4 0.3 0.5 57.7 \0 
196 0.4 0.4 6.2 21.2 0.0 0.0 0.0 0.0 U.9 0.2 0.4 59.5 
197 0.7 0.5 6.4 21.5 0.0 0.2 0.1 0.2 11.0 0.3 0.3 58.7 
198 0.4 0.4 5.5 18.7 0.0 0.2 0.0 0.1 11.6 0.3 0.5 62.2 
199 0.4 0.4 4.9 16.5 o.o 0.2 0.0 0.0 10.9 0.3 0.5 66.1 
200 0.4 0.3 5.4 18.6 0.0 0.8 0.0 0.0 11. 7 0.3 0.5 62. I 
201 0.7 0.6 6.1 20. l 0.0 0.2 0.0 0.0 11.1 0.2 0.5 60.7 
202 0.2 0.3 4.7 16.2 0.0 0.1 o.o 0.0 10.9 0.2 0.5 67 .1 
203 0.5 0.4 6.9 23.0 0.0 0. l 0.0 0. l 12.0 0.4 0.0 56.8 
204 0.3 0.4 5.9 19.3 0.0 0.2 0.0 0.1 11.5 0.3 0.5 61.6 
205 1.0 0.5 7.2 23 .5 0.1 1.0 0.0 0.1 12.5 0.4 0.3 53. 5 
206 0.6 0.4 5.1 16.8 0.0 0.2 0 .1 0.0 10.2 0.4 0.6 65.7 
207 0.8 0.7 8.0 24.0 0.0 0.2 0.2 0.1 11.1 0.2 0.7 54.0 
208 0.8 0.5 6.9 23.0 0.1 0.2 0.1 0.0 11. 7 0.2 0.4 56. I 
209 0.3 0.4 4.2 14.5 0.0 0.2 0.0 0.1 9.9 0.2 0.7 69.6 
210 0.2 0.3 3.6 12.3 0.1 0. I 0.0 0 .1 10.0 0.2 0.6 72.7 
211 0.3 0.3 3.8 13.8 0.0 0 .1 0.0 0 .1 10.7 0.3 0.3 70.4 
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212 o.o 0.3 4.7 17.1 0.0 1.0 0.0 0.1 10.9 0.3 o. 7 65.1 
213 0.4 4.4 9.5 17.2 0.0 0.4 0.0 0.0 15.0 0.8 4.1 48.3 
214 0.4 0.2 4.5 16.3 0.0 0 .1 o.o 0.0 10.9 0.3 o.o 67.3 
215 0.6 0.6 6.8 22.4 0.1 0.2 0 .1 0.2 11. 9 0.4 0.3 56.6 
216 0.2 0.8 4.8 12.3 o.o 0.1 0.1 0.1 8.7 0.2 2.8 69.8 
217 0.6 0.4 6.6 22.3 0 .1 0.3 0 .1 0.1 11.8 0.2 0.2 57.3 
218 0.3 0.4 5.5 19.2 0 .1 0.4 0.0 0.1 10.7 0.4 0.3 62.7 
219 0.9 0.6 5.8 21.9 0.0 0.4 0.0 0.1 10.9 0.4 0.7 57.4 
220 0.0 2.2 6.3 14.6 0.0 0.0 o.o 0.4 5.9 0.2 3.9 65. 7 
221 0.5 0.9 7.6 21.1 0.0 0.4 0.0 0.2 9.8 0.3 2.4 57.0 
222 0.5 0.5 5.9 19.6 0.0 0.1 0.0 0.1 11.4 0.2 0.5 61.2 
223 0.4 1.2 8.0 17.6 0.1 0.4 0 .1 0.3 8.2 0.3 3.9 59.5 
224 o .. 8 0.6 6.6 22.0 0.1 0.4 0.1 0.1 11. 9 0,3 0.6 56.6 
225 0.3 0.5 6.1 19.6 0.1 0.3 0.0 0.2 10.7 0.4 0.9 61.0 
226 0.0 0.6 5.3 16 .1 0.1 0.3 0.0 0.1 9.4 0.3 1.8 66.0 
227 0.0 0.6 5.9 18.8 o.o 0.3 0.0 0.2 10.2 0.4 1.2 62.5 
228 0.2 1.2 7.5 18. l 0.1 0.2 0.0 0.3 9.3 0.5 2.6 60.1 
229 0.6 0.4 4.9 16.2 0.0 0.2 o.o 0.0 10.7 0.3 0.3 66. 5 t-J 
230 0.5 0.7 6.8 22.0 0.0 0.3 0.1 0.1 .11..1 0.3 1.4 56.7 ;,. 

0 231 0.2 0.8 6.2 17 .4 o.o 0.2 0. l 0.2 9.2 0.9 1.9 63.0 
232 0.6 0.5 5.4 18.9 0.0 1.1 0,1 0.1 I2 .1 0.2 0.3 60.7 
233 O.B 0.4 6.3 20.7 0.0 0.5 0.2 0.1 11. 4 0.2 0.2 59.2 
234 0.5 0.2 5.9 20.4 0.0 o.o 0.0 0.1 12.3 0.3 0.5 59.8 
235 0.0 0.2 4.2 14.3 0.0 0. 1 0.0 0.0 10.1 0.2 0.4 70.6 
236 0.2 6.3 7.6 11. 9 0.0 0.2 0.0 o.o 21.8 0.4 3.6 48.0 
237 0.8 0.4 4.0 13.8 0.0 9.3 0 .1 o.o 18.1 0 .1 0.2 53.2 
238 0.6 0.4 6.3 22.8 0.0 0.2 0.1 0.0 11. 9 0.3 0.0 57.6 
239 0.7 0.4 6.5 22.4 0 .1 0 .1 0.0 0 .1 11.8 0.2 0.2 57.6 
240 0.7 0.6 7.6 24.8 0.0 0 .1 0.1 0.1 12.7 0.3 0.3 52.9 
241 0.6 0.6 6.2 21.6 0.0 0.3 0.1 0.1 11.0 0.4 0.3 59.0 
242 0.0 0.2 4.3 15.4 0.0 0.1 0 .1 0.0 11.0 0.3 0.7 68.0 
.L. 
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