

University of North Dakota
UND Scholarly Commons

Physician Assistant Scholarly Project Posters

Department of Physician Studies

2019

Comparison of Pharmacologic Treatments for Postmenopausal Osteoporosis

Kaitlyn Wirtz University of North Dakota

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/pas-grad-posters

Part of the Endocrine System Diseases Commons

Recommended Citation

Wirtz, Kaitlyn, "Comparison of Pharmacologic Treatments for Postmenopausal Osteoporosis" (2019). *Physician Assistant Scholarly Project Posters*. 160. https://commons.und.edu/pas-grad-posters/160

This Poster is brought to you for free and open access by the Department of Physician Studies at UND Scholarly Commons. It has been accepted for inclusion in Physician Assistant Scholarly Project Posters by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

Comparison of Pharmacologic Treatments for Postmenopausal Osteoporosis

Author: Kaitlyn Wirtz, PA-S Co-author: Jeanie McHugo, PA-C, Chair of Department of Physician Assistant Studies Department of Physician Assistant Studies, University of North Dakota School of Medicine & Health Sciences Grand Forks, ND 58202-9037

Abstract

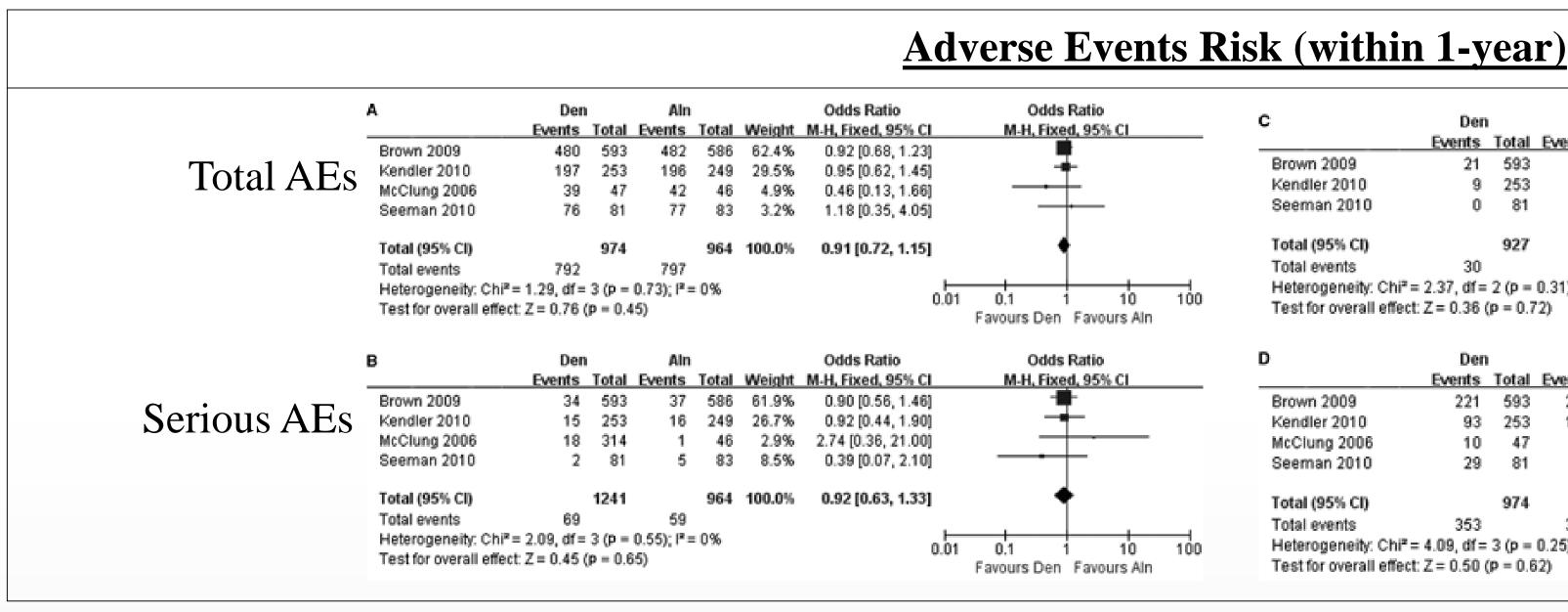
- The prevalence of osteoporosis in the United States in adults \geq 50 years of age is "more than 10 million people overall and 33 million have low bone mineral density (BMD) at the hip" (DynaMed Plus, 2018).
- To combat postmenopausal osteoporosis, two treatment options include bisphosphonates and the anti-receptor activator of nuclear factor kappa β ligand (RANKL) agent (denosumab).
- The purpose of this scholarly project is to determine if there is a statistical significance regarding safety, efficacy, and preference between bisphosphonates and denosumab.
- Three databases were searched: PubMed, CINAHL, and Cochrane Database of Systematic Reviews. Topics researched included: postmenopausal osteoporosis, bisphosphonates, anti-RANKL agent, treatment outcome, adverse effects, and efficacy. Research was conducted from September 12, 2018 to January 29, 2019. All works published within the last 10 years.
- The most effective treatment for postmenopausal osteoporosis is denosumab. It is just as safe, more efficacious, better adhered to, and more preferred than bisphosphonates.
- This scholarly project compares the treatment options available to providers and allows them to choose the best option based on the patient's needs, safety, efficacy, preference, and cost.

Introduction

- Osteoporosis is defined as a "generalized skeletal disorder and is characterized by compromised bone strength and deterioration of bone quality, often leading to fragility fracture" (DynaMed Plus, 2018).
- Most often affects: women ≥ 65 years of age, Asian and Caucasian descents, and those with a small body frame.
- Of these affected, one in two women will experience an osteoporotic fracture in their lifetime (International Osteoporosis Foundation, 2017).

Statement of the Problem

- United States Food and Drug Administration (U.S. FDA) approved the first bisphosphonate in 1995 and approved denosumab in 2010 (Food and Drug Administration, n.d.)
- This scholarly project will analyze both treatment options to uncover if there is a statistical significance regarding safety, efficacy, and preference due to different mechanism of actions (MOAs) for bisphosphonates and denosumab.


Research Question

• In the treatment of postmenopausal osteoporosis, is there a statistical difference in the safety, efficacy, and preference when using bisphosphonates versus denosumab?

Results/Discussion

Theme 1: Safety of Bisphosphonates

- Wang (2017) noted the safety of bisphosphonates versus placebo.
- Eriksen et al. (2014) focused on the long-term use of bisphosphonates which is crucial due to chronicity of disease.

Note. Adapted from "Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis: A meta-analysis," by Lin T. Wang, C., Cai, X.Z., Zhao, X., Shi, M.M., Ying, Z.M.... Yan, S.G., 2012, The International Journal of Clinical Practice, 66 (4), p. 406. Copyright 2012 by Blackwell Publishing.

Theme 3: Efficacy of Bisphosphonates

- Wang (2017) identified the reduced risk of fractures and increased BMD with bisphosphonates versus placebo.
- Eriksen et al. (2014) reported long-term use of bisphosphonates had persistent beneficial effects on fracture risk and BMD beyond three years of treatment.

Percent Change from	n Baseline in BMD and	d Bone Geometry Parame	eters at Month 24
Parameter	Placebo (n= 533)	Alendronate (n= 538)	Denosumab (n= 536)
Femoral Neck: DXA-BMD	1.40 (0.88)	2.99 (0.80)**	4.52 (0.85)**
Narrow Neck: HSA-BMD	2.11 (0.99)	2.53 (0.92)**	3.85 (0.89)**
Intertrochanter: HSA-BMD	1.16 (0.90)	4.43 (0.82)**	6.99 (0.82)**^
Shaft: HSA-BMD	0.27 (0.69)	1.59 (0.63)*	5.73 (0.63)**^^
Abbreviations: DXA (Dual-energy X-ray			nalysis)

||*p<0.05 vs. placebo; **p<0.01 vs. placebo; $^p<0.05$ vs. alendronate; $^p<0.001$ vs. alendronate Note. Adapted from "Effects of Denosumab on the Geometry of the Proximal Femur in Postmenopausal Women in Comparison with Alendronate," by Beck, T.J., Lewiecki, E.M., Miller, P.D., Felsenberg,

D., Liu, Y., Ding, B., & Libanati, C., 2008, Journal of Clinical Densitometry: Assessment of Skeletal Health, 11 (3), p. 354. Copyright 2008 by The International Society for Clinical Densitometry.

Theme 5: Preference, adherence, and satisfaction between bisphosphonates and the anti-RANKL agent

- Freemantle et al. (2012), Kendler et al. (2011), and Palacios et al. (2015) recognized the increased adherence and preference of denosumab versus alendronate.
- than present options.
- Therefore, from a clinical standpoint of adherence and preference, denosumab is clearly superior.

Conclusion

- Similar safety profiles exist between bisphosphonates and denosumab.
- Denosumab is more efficacious in increasing BMD; however, denosumab and bisphosphonates have similar fracture risk incidence.
- Denosumab has a much stronger adherence and preference profile than bisphosphonates.
- Therefore, the treatment of choice when managing the chronic condition of postmenopausal osteoporosis is denosumab.

Theme 2: Safety of the anti-RANKL agent

- Bone et al. (2008) and Keyserlingk et al. (2011) proved denosumab had a similar safety profile as placebo.
- Deeks (2018) and Lin et al. (2012) concluded no significant difference with denosumab versus bisphosphonates.

2	Den		Aln			Odds Ratio	Odds Ratio		
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI		
Brown 2009	21	593	15	586	54.4%	1.40 [0.71, 2.74]			Magalagrag
Kendler 2010	9	253	9	249	32.7%	0.98 [0.38, 2.52]			Neoplasms
Seeman 2010	0	81	3	83	12.9%	0.14 [0.01, 2.78] 🗕			I I
Total (95% CI)		927		918	100.0%	1.10 [0.65, 1.86]	+		
Total events	30		27						
Heterogeneity: Chi ²	- 2 27 df-	2(0 =	0.21\-E-	- 4.6.96					
a second a fill a second single second	- 2.37, oi -	- (P -	9791 <u>7</u> 11 -	10.20		0.04	0'1 i 10	4 6 6	
Test for overall effect				- 1570		0.01		100	
				- 15 70		0.01	0.1 1 10 Favours Den Favours Aln	100	
Test for overall effect		p = 0.7				0.01 Odds Ratio		100	
Test for overall effect	ct: Z = 0.36 ((p = 0.7	2)		Weight	Odds Ratio	Favours Den Favours Aln	100	
Test for overall effect	t: Z = 0.36 (Den	(p = 0.7	2) Aln			Odds Ratio	Favours Den Favours Aln Odds Ratio	100	т С /'
Test for overall effect	t Z = 0.36 (Den Events	p = 0.7	2) Aln Events	Total		Odds Ratio M-H, Fixed, 95% Cl	Favours Den Favours Aln Odds Ratio	100	Infections
Test for overall effect Brown 2009 Kendler 2010	t: Z = 0.36 (Den <u>Events</u> 221	p = 0.7 Total 593	2) Aln Events 207	<u>Total</u> 586	57.0%	Odds Ratio M-H, Fixed, 95% Cl 1.09 [0.86, 1.38]	Favours Den Favours Aln Odds Ratio	100	Infections
Test for overall effect Brown 2009 Kendler 2010 McClung 2006	t Z = 0.36 (Den <u>Events</u> 221 93	p = 0.7 Total 593 253	2) Aln Events 207 111	<u>Total</u> 586 249	57.0% 30.9%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 1.09 [0.86, 1.38] 0.72 [0.51, 1.03]	Favours Den Favours Aln Odds Ratio	100	Infections
Test for overall effect Brown 2009 Kendler 2010 McClung 2006 Seeman 2010	t: Z = 0.36 (Den <u>Events</u> 221 93 10	p = 0.7 <u>Total</u> 593 253 47 81	2) Aln Events 207 111 8	Total 586 249 46 83	57.0% 30.9% 2.8% 9.4%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.09 [0.86, 1.38] 0.72 [0.51, 1.03] 1.28 [0.46, 3.61] 0.80 [0.43, 1.51]	Favours Den Favours Aln Odds Ratio	100	Infections
Test for overall effect Brown 2009 Kendler 2010 McClung 2006	t: Z = 0.36 (Den <u>Events</u> 221 93 10	p = 0.7 Total 593 253 47	2) Aln Events 207 111 8	Total 586 249 46	57.0% 30.9% 2.8%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 1.09 [0.86, 1.38] 0.72 [0.51, 1.03] 1.28 [0.46, 3.61]	Favours Den Favours Aln Odds Ratio	100	Infections
Test for overall effect Brown 2009 Kendler 2010 McClung 2006 Seeman 2010	tt Z = 0.36 (<u>Events</u> 221 93 10 29 353	p = 0.7 <u>Total</u> 593 253 47 81 974	2) Aln Events 207 111 8 34 360	Total 586 249 46 83 964	57.0% 30.9% 2.8% 9.4%	Odds Ratio <u>M-H, Fixed, 95% CI</u> 1.09 [0.86, 1.38] 0.72 [0.51, 1.03] 1.28 [0.46, 3.61] 0.80 [0.43, 1.51]	Favours Den Favours Aln Odds Ratio	100	Infections

Theme 4: Efficacy of the anti-RANKL agent

- Keyserlingk et al. (2011) reported significant reductions in relative fracture risk with denosumab versus placebo.
- Beck et al. (2008) identified the superiority of denosumab versus alendronate or placebo in improving BMD.
- McClung et al. (2013) recorded the sustained effects of increased BMD with denosumab over eight years.
- Deeks (2018) confirmed the superiority of denosumab in improving BMD and believed it was possibly due to the differing MOAs.

• Keyserlingk et al. (2011) stated denosumab could present as an effective new treatment for osteoporosis with fewer adherence barriers

School of Medicine & Health Sciences UNIVERSITY OF NORTH DAKOTA

Applicability to Clinical Practice

- Due to increasing prevalence of postmenopausal osteoporosis, the need for a safe, effective, and adhered to treatment is more important than ever before.
- Providers are faced with the choice to select either the historic first line treatment, bisphosphonates, or use the newer, safer, more effective and better adhered to treatment, denosumab.
- The patient's needs must be taken into consideration and each decision must be on an individual basis. Therefore, clinicians should be well-versed on the treatment options for postmenopausal osteoporosis available and be able to educate patients on the different factors of each medication.

References

- Beck, T.J., Lewiecki, E.M., Miller, P.D., Felsenberg, D., Liu, Y., Ding, B., & Libanati, C. (2008). Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. The Journal of Clinical Densitometry, 11(3), 351-359. http://dx.doi.org/doi: 10.1016/j.jocd.2008.04.001
- Bone, H.G., Bolognese, M.A., Yuen, C.K., Kendler, D.L., Wang, H., Liu, Y., & San Martin, J. (2008). Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. The Journal of Clinical Endocrinology and Metabolism, 93(6), 2149-2157. http://dx.doi.org/10.1210/jc.2007-2814 Deeks, E.D. (2018). Denosumab: A review in postmenopausal osteoporosis. Drugs & Aging, 35(2), 163-173.
- http://dx.doi.org/10.1007/s40266-018-0525-7 DynaMed Plus [Internet]. (2018). Ipswich (MA): EBSCO Information Services. Record No. 113815, Osteoporosis;
- [updated 2018 Mar 28, cited 2018 Nov 03]; [about 69 screens]. Retrieved from http://www.dynamed.com/ezproxylr.med.und.edu/login.aspx?direct = true&site = DynaMed&id = 113815 Eriksen, E.F., Diez-Perez, A., & Boonen, S. (2014). Update on long-term treatment with bisphosphonates for
- postmenopausal osteoporosis: A systematic review. Bone, 58, 126-135. http://dx.doi.org/10.1016/j.bone.2013.09.023
- Food and Drug Administration [FDA] (n.d.) FDA approved drug products. Retrieved from
- https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event = BasicSearch.process Food and Drug Administration [FDA] (n.d.) FDA approved drug products. Retrieved from
- https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020560 Freemantle, N., Satram-Hoang, S., Tang, E.T., Kaur, P., Macarios, D., Siddhanti, S.,...DAPS Investigators. (2012). Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: A 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporosis International, 23(1), 317-326. http://dx.doi.org/10.1007/s00198-011-1780-1
- International Osteoporosis Foundation. (2017). Osteoporosis fast facts. Retrieved from https://cdn.nof.org/wpcontent/uploads/2015/12/Osteoporosis-Fast-Facts.pdf
- Kendler, D.L., McClung, M.R., Freemantle, N., Lillestol, M., Moffett, A.H., Borenstein, J.,...DAPS Investigators. (2011). Adherence, preference, and satisfaction of postmenopausal women taking denosumab or alendronate. Osteoporosis International, 22(6), 1725-1735. http://dx.doi.org/10.1007/s00198-010-1378-z
- Keyserlingk, C. V., Hopkins, R., Anastasilakis, A., Toulis, K., Goeree, R., Tarride, J.E., & Xie, F. (2011). Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: A meta-analysis. Seminars in Arthritis and Rheumatism, 41(2), 178-186. http://dx.doi.org/10.1016/j.semarthrit.2011.03.005
- Lin, T., Wang, C., Cai, X.Z., Zhao, X., Shi, M.M., Ying, Z.M.,...Yan, S.G. (2012). Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis: A metaanalysis. The International Journal of Clinical Practice, 66(4), 399-408.
- http://dx.doi.org/https://doi.org/10.1111/j.1742-1241.2011.02806.x McClung, M.R., Lewiecki, E.M., Geller. M.L., Bolognese, M.A., Peacock, M., Weinstein, R.L.,...Miller, P.D. (2013). Effect of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. Osteoporosis International, 24(1), 227-235. http://dx.doi.org/10.1007/s00198-012-2052-
- Palacios, S., Agodoa, I., Bonnick, S., Van den Bergh, J.P., Ferreira, I., Ho, P.R., & Brown, J.P. (2015). Treatment satisfaction in postmenopausal women suboptimally adherent to bisphosphonates who transitioned to denosumab compared with risedronate or ibandronate. The Journal of Clinical Endocrinology and Metabolism, 100(3), E487-492. http://dx.doi.org/10.1210/jc.2014-3594
- Wang, C. (2017). Efficacy and safety of zoledronic acid for treatment of postmenopausal osteoporosis: A metaanalysis of randomized controlled trials. American Journal of Therapeutics, 24(5), e544-e552. http://dx.doi.org/10.1097/MJT.00000000000415

Acknowledgements

- My advisor, Jeanie McHugo, Chair of the Physician Assistant Program and PA-C who always went above and beyond to enhance this project by answering questions, providing critique, and encouraging me through this journey.
- My scholarly project team: Stephanie Gagelin, Ashley Pommer, and Amy Quinn. Your insight and feedback has been gratefully appreciated through this process.
- To the patients who were diagnosed with postmenopausal osteoporosis, caring for you during this chronic disease inspired me to research and analyze the best line of treatment.