1976

Foraminiferids of the Cannonball Formation (Paleocene, Danian) in western North Dakota

William E. Fenner

University of North Dakota

Follow this and additional works at: https://commons.und.edu/theses

Part of the Geology Commons

Recommended Citation

https://commons.und.edu/theses/93

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.
FORAMINIFERIDS OF THE CANNONBALL FORMATION
(PALEOCENE, DANIAN) IN WESTERN NORTH DAKOTA

by

William E. Fenner

Bachelor of Science, University of Wisconsin, 1968
Master of Science, University of North Dakota, 1974

A Dissertation
Submitted to the Graduate Faculty
of the
University of North Dakota
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Grand Forks, North Dakota
August 1976
This dissertation submitted by William E. Fenner in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.

Alan M. Grancara
(Chairman)

Maryjane H. Behringer

Alice L. Moore

Frank Kramer

Alice J. Clark
Dean of the Graduate School
Permission

FORAMINIFERIDS OF THE CANNONBALL FORMATION (PALEOCENE, DANIAN) IN WESTERN NORTH DAKOTA

Title

Department

Degree

Geology

Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

Signature

Date 7/20/76

William E. Tanner
ACKNOWLEDGMENTS

I am grateful to Dr. Alan M. Cvancara, chairman of my advisory committee, for his helpful suggestions and careful supervision. I am also indebted to Drs. Walter L. Moore, Frank R. Karner, and Marjorie P. Behringer for critically reviewing the manuscript. I am especially thankful to Dr. Frank N. Low for critically reviewing the manuscript and for supervising my photography on the scanning electron microscope purchased with National Institute of Health Grant NS09363 from the Institute of Neorological Diseases and Stroke.

Several other persons were helpful in this project. They include Dr. Richard K. Olsson, Department of Geoscience, Rutgers University, who confirmed my foraminiferid identifications; Dr. William J. Wrenn, Department of Biology, University of North Dakota, who acquainted me with the operation of the NT-SYS computer system; Mr. Clarence Carlson, North Dakota Geological Survey, who provided me with much stratigraphic information; and Mr. Robert Rossow, who helped me to obtain the necessary samples.

I am grateful to the North Dakota Geological Survey for funding part of this project and the Department of Geology, University of North Dakota, for making laboratory supplies and facilities available to me.

I am especially indebted to my wife, Sandy, for her help in preparing the manuscript and plates.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LITHOSTRATIGRAPHY</td>
<td>20</td>
</tr>
<tr>
<td>MICROFAUNAL ANALYSIS</td>
<td>26</td>
</tr>
<tr>
<td>FORAMINIFERAL BIOSTRATIGRAPHY</td>
<td>39</td>
</tr>
<tr>
<td>AGE OF CANNONBALL FORMATION</td>
<td>61</td>
</tr>
<tr>
<td>DEPOSITIONAL ENVIRONMENTS</td>
<td>73</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>79</td>
</tr>
<tr>
<td>SYSTEMATIC PALEONTOLOGY</td>
<td>81</td>
</tr>
<tr>
<td>APPENDIX A. Q-Mode Dendrograms of Foraminiferid-Bearing Samples</td>
<td>165</td>
</tr>
<tr>
<td>APPENDIX B. R-Mode Dendrograms of Foraminiferid Species</td>
<td>175</td>
</tr>
<tr>
<td>APPENDIX C. Well Information for the Cannonball Formation</td>
<td>184</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>191</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary of Lithologies and Depositional Environments for the Cannonball and Adjacent Stratigraphic Units</td>
<td>15</td>
</tr>
<tr>
<td>2. Depth and Salinity Ranges of Selected Cannonball Genera</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Detailed Map of Western North Dakota Showing the Locations of Wells</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Geologic Map of North Dakota Showing Cannonball Formation and Adjacent Rock Units</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Generalized Stratigraphic Column for the Upper Cretaceous and Paleocene in North Dakota</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>East-west Cross Section Across Northern Bowman and Adams Counties with Wells Arranged According to Elevation</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>East-west Cross Section Across Southern Bowman and Adams Counties with Wells Arranged According to Elevation</td>
<td>44</td>
</tr>
<tr>
<td>6.</td>
<td>Southwest-northeast Cross Section Across Grant and Morton Counties with Wells Arranged According to Elevation</td>
<td>46</td>
</tr>
<tr>
<td>7.</td>
<td>Northwest-southeast Cross Section Across Grant County with Wells Arranged According to Elevation</td>
<td>48</td>
</tr>
<tr>
<td>8.</td>
<td>East-west Cross Section Across Grant and Morton Counties with Wells Arranged According to Elevation</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>Northwest-southeast Cross Section Across Dunn, Mercer and Oliver Counties with Wells Arranged According to Elevation</td>
<td>52</td>
</tr>
<tr>
<td>10.</td>
<td>Northwest-southeast Cross Section Across Mercer, Oliver and Morton Counties with Wells Arranged According to Elevation</td>
<td>54</td>
</tr>
<tr>
<td>11.</td>
<td>Northwest-southeast Cross Section Across Oliver and Burleigh Counties with Wells Arranged According to Elevation</td>
<td>56</td>
</tr>
<tr>
<td>12.</td>
<td>East-west Cross Section Across Oliver and Burleigh Counties with Wells Arranged According to Elevation</td>
<td>58</td>
</tr>
</tbody>
</table>

vii
13. Hypothetical Model of General Environments for the Cannonball Formation 77
ABSTRACT

In 1974 and 1975 about 2800 samples (of which 265 contained foraminiferids) of the Cannonball Formation were collected from 60 water test wells and two oil wells in Adams, Bowman, Burleigh, Divide, Dunn, Grant, Mercer, Morton, Oliver, Sioux, and Ward Counties in western North Dakota. Fifty species of benthonic foraminiferids and four species of planktonic foraminiferids were identified including eight textulariines, two milolines and 44 rotaliines. Taxa reported for the first time from the Cannonball include: Reophax sp. (2 species), Ammobaculites expansus Plummer, Spiroplectammina wilcoxensis Cushman and Ponton, Quinqueloculina plummerae Cushman and Todd, Dentalina cocenica Cushman, Lenticulina alabamensis (Cushman), L. arkansasana (Cushman and Todd), L. turbinata (Plummer), Lingulina sp., Spirobolivina emmendorferi (Jennings), Rosalina sp., Pararotalia perclara (Loeblich and Tappan), Fursenkoina sp., Caucasina marylandica (Nogan), Nonion graniferum (Terquem), Pullenia quinqueloba (Reuss), and Anomalinoides umboniferus Schwager. A total of 93 species, including those I collected, has been reported from the Cannonball. The foraminiferid fauna occurs commonly in the mudstone lithofacies and rarely in the sandstone lithofacies in the lower to lower upper Cannonball.

Two foraminiferid assemblages are recognized from R-mode cluster analysis, the Caucasina–Bulimina and Cibicidoides–Ceratobulimina assemblages. Little lateral and vertical continuity in the assemblages suggests strong environmental control and mixing during well drilling.
The presence of *Globorotalia pseudobulloides* and *Globoconusa duabjergensis* in my samples suggests that the Cannonball is Danian (earliest Paleocene).

The shallow-water affinities of the foraminiferid assemblages and small size and scarcity of planktonic foraminiferids suggest deposition in water depths of 100 m or less. The dominance of textulariines, including *Ammobaculites*, in western Adams and eastern Bowman Counties, indicates brackish-water environments in that area. A large, shallow, protected lagoon west of a north-trending barrier island chain is envisioned as a possible complex of depositional environments for the Cannonball. Brackish-water environments are thought to have occurred on the landward side of the lagoon with normal marine environments near the seaward side of the lagoon.
INTRODUCTION

General

Purposes.—The primary purpose of this study is to describe and illustrate a major part of the foraminiferid fauna of the Cannonball Formation. Secondary purposes include the determination of the foraminiferal biostratigraphy and paleoecology, and the determination of the sedimentary environments and age of the Cannonball.

Study area.—Cuttings from 60 water test wells drilled by the North Dakota State Water Commission and two oil wells were used in this study (fig. 1). The wells are mainly southwest of the Missouri River in Adams, Bowman, Dunn, Grant, Mercer, Morton, Oliver and Sioux Counties. Additional wells are in Burleigh, Divide and Ward Counties.

Previous Work

Stratigraphy.—Lloyd named the Cannonball in 1914. His designation was the Cannonball marine member (upper 250-300 ft) of the Lance Formation. The name was derived from the Cannonball River where many of the exposures occur as cutbanks in the type area of the Cannonball Formation (Ts. 132 and 133 N., Rs. 87 and 88 W.).

Prior to the work of Lloyd, most workers, including Meek and Hayden (1856) and Hayden (1857), confused the Cannonball Formation with the Late Cretaceous Fox Hills Formation, which was then known as "Formation No. 5." Ludlow (1875) also erroneously considered a
Fig. 1. Detailed map of western North Dakota showing the locations of wells. Well numbers correspond to those used in figs. 4-12 and Appendix C. Detailed locations for all wells are given in Appendix C.
measured section in the Cannonball as part of the Cretaceous "Fox Hills Group."

Leonard (1908) included what is now known to be the Cannonball in the Fort Union Formation. He placed all rocks that occurred above the Cretaceous Pierre and Fox Hills Formations in the Fort Union Formation, but did not distinguish any members. Calvert and others (1914) further restricted the occurrence of the Fort Union by stating that it was underlain by the fresh-water sediments of the Lance Formation, which, in turn, was underlain by the Montana Group.

Lloyd and Hares (1915) first designated the lignitic, nonmarine beds below the Cannonball the "Ludlow lignitic member of the Lance Formation" and suggested that the Ludlow was the nonmarine, stratigraphic equivalent of the Cannonball. They also suggested that the Cannonball occurred as far west as the western part of Slope County, along the Little Missouri River near the town of Yule (no longer extant). The Hell Creek, which at that time was included in the Lance Formation, remained an unnamed member.

Winchester and others (1916) indicated that the Cannonball extended into northwestern South Dakota where they recognized interfingering of the Ludlow and the Cannonball.

Campbell (1916) and Leonard (1919) independently suggested that the Cannonball occurred east of the Missouri River. Campbell indicated that Cannonball was present north of and including part of Bismarck, and southeast of Bismarck in the vicinity of the town of Apple Creek (no longer extant). Leonard (1919, p. 14) suggested that the Cannonball was possibly present below the glacial drift east of the Missouri
River; however, no Cannonball was indicated there on his geologic map (fig. 2). The Hell Creek, as yet, remained unnamed and Leonard referred to it as the "lower member" of the Lance Formation.

Thom and Dobbin (1924a, b) placed the Cannonball in the Fort Union and said the Upper Cannonball and Ludlow were equivalent to the Lebo Member of the Fort Union of eastern Montana. They also indicated that the lower, previously unnamed member of the Lance was equivalent to the Hell Creek of eastern Montana.

Fox and Ross (1942) thought that the Cannonball was probably Paleocene because of the Midway affinities of the Cannonball foraminiferid fauna. They also suggested the elevation of the Cannonball to formational status. The formational status of the Cannonball was first adopted by the North Dakota Geological Survey in 1942 (Laird and Mitchell, 1942). (For a more complete discussion of the history of the stratigraphic study of the Cannonball see Cvancara, 1965, 1976).

Paleontology.--Meek and Hayden (1857, 1858 and 1860) did the first paleontological work in the Cannonball from which they described five new species of mollusks. The Cannonball, at that time, was confused with "Formation No. 5" (Fox Hills Formation).

Leonard (1908) identified two species of oysters from the yet-to-be-named Cannonball in northwestern Slope county along the Little Missouri River.

Stanton, in Lloyd and Hares (1915, p. 537) identified 41 species of fossils including one species of foraminiferid (Nodosaria sp.). The remainder of the forms were mainly mollusks. Stanton indicated that the fauna was a "modified Fox Hills fauna." He, in Winchester and others (1916, p. 25), identified 16 species of mollusks and a fragment
of a crustacean claw.

Stanton (1920) did the first comprehensive study of the Cannonball invertebrate fauna. He listed 2 species of foraminiferids, 63 species of mollusks and 2 species of sharks. Vaughan (1920), in an accompanying paper, listed 6 species of corals. Stanton also amplified his idea that the Cannonball was Cretaceous.

Fox and Ross (1942) identified 64 species of foraminiferids from the Cannonball and, because of the close microfaunal affinities with the Paleocene Midway of the Gulf Coast, they concluded that the Cannonball was Paleocene. Unfortunately, they listed only the 43 species of Cannonball foraminiferids that occurred in the Gulf Coast. None of the foraminiferids they collected was illustrated or described.

Leriche (1942) described three species of sharks from the Cannonball, two of which were Midway (Paleocene) age.

Brown (1948) noted the occurrence of two species of brackish-water bivalves along the Little Missouri River in northwestern Slope County. He suggested that these bivalves indicated a second brackish-water tongue in this area. The first and higher brackish-water tongue was that which was indicated by the oyster bed discovered by Leonard (1908).

Brown and Lemke (1948) reported 4 species of foraminiferids (identified by J. A. Cushman), 10 species of mollusks, 1 species of worm and 5 species of ostracodes (identified by Swain) from the Cannonball exposed along the Souris River. This report extended the distribution of the Cannonball much farther north than was known previously.

Swain (1949) described the five species of ostracodes he previously identified for Brown and Lemke (1948). He concluded that the
ostracodes were restricted to the Midway or Midway-aged rocks and agreed with the conclusions of others who suggested a Paleocene age for the Cannonball.

Holland and Cvancara (1958) reported two species of crabs from the Cannonball and Wilson (1957) identified six species of corals from the Cannonball including one new species. They also reported the first occurrence of one Cannonball coral genus in North Dakota.

Lemke (1960) reported 30 species of foraminiferids (identified by S. K. Fox, Jr.), eight of which were new. He also reported 10 species of worm and 1 species of shark. He suggested (p. 31) that the Cannonball may extend into Canada north of Burke County on the northern flank of the Turtle Mountains.

Cvancara (1965, 1966) identified 30 species of bivalves from the Cannonball. Four species were new and eight of Stanton’s (1920) species were placed into synonymy (Cvancara, 1965, p. 87). He also reported a bryozoan; Halymenites (=Ophiomorpha), the burrow of a presumed decapod crustacean; sharks, skates, rays, turtles and crocodiles or alligators. Among the bivalves was one species of boring bivalve discussed by him in later papers (1970a, 1970b).

Stanley (1965) reported dinoflagellates, hystrichosphaerids, spores and pollen and Cvancara (1970b) reported two or three species of driftwood.

Fox and Olsson (1969) identified seven species of planktonic foraminiferids from the Cannonball at Garrison Dam, North Dakota. They concluded that the Cannonball was Danian because it could be assigned to either the Globigerina edita zone of Hillebrandt or the Globorotalia pseudobulloides zone of Bolli, both of which are indicators of the
Danian. They suggested also that because planktonic foraminiferids were relatively scarce and were associated with a shallow-water benthonic foraminiferid assemblage, the Cannonball represented "shallow neritic depths." The small size of the planktonic foraminiferids were also thought to indicate deposition in shallow water.

Feldman and Holland (1971) identified a new species of macrurous decapod from the Cannonball in southern Morton County. Their study represented the first report of Paleocene macrurans from the midcontinent.

Feldman (1972) collected one species of cephalopod from the Cannonball. This represented the first reported occurrence of a cephalopod from the Cannonball.

Holzman (1973) indicated that rhizocorallid burrows were present in the Cannonball.

Fenner (1974) reported 26 species of foraminiferids from the Cannonball in outcrops from Grant, Morton and Oliver Counties. Van Alstine (1974) identified two species of foraminiferids, three species of bivalves and Ophiomorpha, the presumed burrow of a decapod crustacean.

Robertson (1975) reported hystrichosphaerids, spores and pollen from the Cannonball.

Geologic Setting

Regional stratigraphy.—Cretaceous and Tertiary rocks underlie most of the state of North Dakota with the main outcrop areas in the southwestern part of the state. Late Cretaceous and Tertiary rocks also crop out along the Souris River and in the Turtle Mountain area in north-central North Dakota (fig. 2).
Fig. 2. Geologic map of North Dakota showing Cannonball Formation and adjacent rock units (modified from Carlson 1973a).
The Cannonball Formation intertongues with and overlies the non-marine Ludlow Formation (fig. 3) (Brown, 1948, p. 1271). The Ludlow is composed of interbedded siltstone and claystone, sandstone, lignitic shale and lignite (Moore, 1976). Overlying the Cannonball is the largely fluvial Tongue River Formation, which consists of calcareous sandstone, siltstone, shale and lignite. The Cannonball-Tongue River contact is both conformable and disconformable (Cvancara, 1976, p. 10). Above the Tongue River Formation is the Sentinel Butte Formation, also mainly fluvial, consisting mostly of calcareous sandstone, siltstone, shale and lignite. The Sentinel Butte is distinguished from the Tongue River by its more irregular and steeper slopes, its friable sandstones, its common tabular sand bodies, and its grayish, somber color; the Tongue River most commonly has trough-shaped sand bodies and a yellowish brown color (Jacob, 1975, p. 2). The Ludlow-Sentinel Butte interval is known as the Fort Union Group and comprises the bulk of the Paleocene in North Dakota. The stratigraphic terminology used here is that which has been adopted by the North Dakota Geological Survey. It differs from terminology used by the United States Geological Survey, which recognizes the Ludlow-Sentinel Butte interval as the Fort Union Formation rather than the Fort Union Group. Below the Fort Union lies the Late Cretaceous Hell Creek Formation. The Hell Creek is predominantly nonmarine with possibly two marine tongues, the lower near Bismarck along the Missouri River valley and the upper along the Little Missouri River valley in Slope and Bowman Counties (Frye, 1964). The Hell Creek is composed of sandstone, siltstone, shale, lignite and bentonitic claystone. The Hell Creek is underlain, in descending order, by the marine Fox Hills and Pierre Formations, both of which are late Cretaceous. The Fox
Fig. 3. Generalized stratigraphic column for the Upper Cretaceous and Paleocene in North Dakota (modified from Clayton, 1972, p. 4).
<table>
<thead>
<tr>
<th>Upper Cretaceous</th>
<th>Hell Creek Fm.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fox Hills Fm.</td>
</tr>
<tr>
<td></td>
<td>Pierre Fm.</td>
</tr>
<tr>
<td>Paleocene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tongue River Fm.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hills is predominantly sandstone with smaller amounts of shale and the Pierre is predominantly shale. Overlying the Fort Union Group is the Golden Valley Formation which extends from the uppermost Paleocene into the lower Eocene. It consists of claystone, mudstone, lignite and micaceous sandstone (Hickey, 1972, p. 106-107). Table 1 summarizes the lithologies and depositional environments for the Cannonball and adjacent stratigraphic units.

Structural setting.--The major structural feature that affects the Cretaceous and Tertiary rocks in North Dakota is the Williston Basin. According to Ballard's structure contour map (1942, fig. 2), utilizing the top of the Lower Cretaceous "Dakota Sandstone" as a datum, the center of the basin is about 60 miles southeast of Williston, North Dakota. Benson (1952, p. 228) using the top of the Tertiary as a datum, proposed a basin center east of the one indicated by Ballard. Geophysical well log information from the Cretaceous and Tertiary (Carlson, 1973b) more closely agrees with Benson's suggestion. The regional dip is toward the center of the basin and generally less than 1°, and may vary considerably locally (Cvancara, 1976, p. 12).

Superimposed on the basin are other structures that account, in part, for the local variations in dip value and direction. The northwest-trending Cedar Creek anticline in the southwest corner of the state and the north-trending Nessen anticline just east of Williston, North Dakota are the two most prominent structural features superimposed on the Williston basin. Dips on the flanks of these two structures generally exceed the average dip for the basin (Cvancara, 1976, p. 12). Dip values may also vary depending upon where stratigraphically and
<table>
<thead>
<tr>
<th>Formation</th>
<th>Dominant Lithologies</th>
<th>Depositional Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel Butte</td>
<td>Calcareous sandstone, siltstone, shale, lignite</td>
<td>Mainly fluvial</td>
</tr>
<tr>
<td>Tongue River</td>
<td>Calcareous sandstone, siltstone, shale, lignite</td>
<td>Mainly fluvial, possibly deltaic in part</td>
</tr>
<tr>
<td>Cannonball</td>
<td>Mudstone, sandstone</td>
<td>Marine, brackish-water</td>
</tr>
<tr>
<td>Ludlow</td>
<td>Siltstone, claystone, sandstone, lignitic shale, lignite</td>
<td>Fluvial</td>
</tr>
<tr>
<td>Hell Creek</td>
<td>Sandstone, siltstone, shale, lignite, bentonitic claystone</td>
<td>Fluvial, brackish-water, minor marine</td>
</tr>
<tr>
<td>Fox Hills</td>
<td>Sandstone, siltstone, shale</td>
<td>Marine</td>
</tr>
<tr>
<td>Pierre</td>
<td>Shale</td>
<td>Marine</td>
</tr>
</tbody>
</table>
geographically the dip is being measured. Cvancara (1976, p. 12-13) summarized the known values of regional dip in the Williston Basin.

Material and Methods

The material used in this study was from cuttings from 60 water test wells drilled by the North Dakota State Water Commission and two oil wells. The Cannonball-Ludlow interval, as picked by the well site geologist plus an additional 20 m of samples above and below the interval contacts was used in the initial selection of samples. Commonly this chosen interval did not include the entire Cannonball-Ludlow interval and it became necessary to prepare another 20 m of samples from either above or below the chosen interval. This process was repeated until I was certain I had samples for the entire Cannonball-Ludlow interval. Samples at the well site were generally taken at 1.52-m (5.0 ft) intervals. Since the samples were taken at such wide spacings, every sample in the interval was used. Subsamples of 4.0 cc were prepared for the study of microfossils. All samples were obtained from the North Dakota Geological Survey Core and Sample Library in Grand Forks, North Dakota.

Sample preparation for microfossils.--Each 4.0-cc subsample for microfaunal analysis was placed into a small baby food jar to which was added a 5% Calgon (sodium hexa-meta-phosphate) solution. The jars were sealed to prevent contamination. The original covers were used for this purpose because they provided an excellent, water-tight seal. Generally, a few hours were sufficient to disaggregate the clays in most samples. Additional time, up to about 24 hours, was required for a few samples. Samples requiring agitation were agitated gently to avoid breaking.
delicate microfossils. After soaking, the samples were wet sieved through a 62µ sieve. Care was taken not to run a large volume of water through the sieve in order to avoid breaking microfossils. The residue from the sieve was washed into a 100 mm watch glass and dried in an oven at 70° to 80° C.

The dried samples were not dry sieved because the small size of the prepared samples made further handling unnecessary. Also, additional sieving would have increased the probability of microfossil breakage.

The prepared samples were picked under an American Optical series 25 microscope at 36 and 72 power and all microfossils were removed and placed onto storage slides that had been previously coated with gum tragacanth. The entire sample was picked.

Statistical methods.--Computerized Q- and R-mode cluster analyses were performed on the Cannonball microfauna using the Dice correlation coefficient. There are a large number of binary (presence-absence) correlation coefficients available (Cheatham and Hazel, 1969). Simpson's index, according to Hazel (1970, p. 3239-3240), emphasizes similarities and in some cases is not suitable for biostratigraphic work. Mello and Buzas (1968, p. 749) indicated that Simpson's index was too insensitive to sample diversity. Hazel (1970, p. 3240) stated that the simple matching coefficient gave erratic results and Mello and Buzas (1968, p. 749) felt that the simple matching coefficient was too insensitive to inadequate sampling. Hall (1969) disliked the Jaccard's coefficient because the mismatches were given equal weight with the matches. He preferred the Dice coefficient because the mismatches were given about half the weight of the matches (Hall, 1969, p. 320, 322). According to Hazel (1970, p. 3239), the Otsuka and Dice coefficients give very similar
results. The Dice coefficient was chosen for both Q- and R-mode for this study because it places more emphasis on similarities rather than differences and is "intermediate in characteristics" (Hazel, 1970, p. 3240). The simple presence-absence method was chosen because it is less sensitive to environmental control than the other coefficients (Hazel, 1970, p. 3240). The Dice coefficient is:

\[\frac{2C}{N_1 + N_2} \]

where, in Q-mode, C is the number of species in common between the two samples being compared, \(N_1 \) is the total number of species in sample 1 and \(N_2 \) is the total number of species in sample 2. In R-mode, C is the total number of mutual occurrences of the two species being compared, \(N_1 \) is the total number of occurrences of species 1 and \(N_2 \) is the total number of occurrences of species 2.

Clustering of correlation coefficients can be accomplished by two methods, the weighted pair group method (WPGM) or the unweighted pair group method (UPGM). Hazel (1970, p. 3239) found the UPGM to be more faithful to the original matrix of coefficients and Sokal and Rohlf (1962) found less distortion in the UPGM. Therefore, the UPGM was used in this study.

The correlation coefficients were computed and dendrograms were constructed using the Simqual and Taxon programs of the NTSYS computer system of multivariate statistical programs.

Photographic methods.—Photographs of the foraminiferids (Plates 1–5) are scanning electron photomicrographs made on Kodak commercial film 4127 (Estar thick-base) using a Cambridge Stereoscan S–4 scanning
electron microscope at magnifications of 50X, 100X, 200X or 500X. The specimens were coated in an omnidirectional shadower with an undercoating of carbon and an overcoating of gold-palladium. The specimens were mounted on the SEM stubs using double stick tape.
LITHOSTRATIGRAPHY

General

Thickness.--The thickest reported Cannonball is 120 m in the subsurface at Garrison Dam, North Dakota (Fox and Olsson, 1969). Cvancara (1976, p. 12), however, questioned this value and suggested that the thickest Cannonball occurs in northeastern Adams, southeastern Hettinger and western Grant Counties; he recognized a maximum of 385 ft (about 117 m) in NDSWC well 3527 (134-91-32 CCC) in southeastern Hettinger County. I have interpreted a slightly thicker sequence of 118 m (388 ft) of Cannonball in NDSWC well 4312 (131-94-20 CBC) in north-central Adams County. From this thick area, the Cannonball generally thins to the south, west, and north with a slight thickening in Dunn County (Cvancara, 1976, p. 12). In the westernmost outcrop area of the Cannonball along the Little Missouri River in northwestern Slope County, the Cannonball is represented by two, brackish-water tongues. Van Alstine (1974) reported a combined thickness of the tongues as about 9 m.

The thickest reported, noncomposite outcrop section (Cvancara, 1965, p. 34; Fenner, 1974, p. 16) is on the Heart River west of Mandan, North Dakota. At this locality Cvancara measured 88 m of Cannonball and Fenner measured 98 m of Cannonball; however, Cvancara (1976, p. 12) reported that the lower 76.2 ft (23.2 m) may be Ludlow. Laird and Mitchell (1942, p. 36-37) measured a composite section of Cannonball
with an aggregate thickness of 307 ft (93.3 m), but Cvancara (1976, p. 12) considered the lowest 25 ft (7.6 m) to be in the Ludlow.

Lithology.—The Cannonball Formation is composed primarily of alternating sandstones and mudstones. Minor lithologic types include claystone and shale. The term "shale" has been used by certain workers in reference to Cannonball mudstone; however, since it generally lacks fissility, I have chosen the term mudstone. According to Spock (1962, p. 209), shale is fissile and mudstone is massive, thick-bedded and non-fissile. The term "blocky" has been used to describe the mudstone structure (e.g. Cvancara, 1976, p. 8). Both the sandstone and mudstone are poorly indurated with the exception of mainly carbonate-cemented concretionary zones of varying composition, morphology and size.

The Cannonball sandstones are fine- to very fine-grained with angular to subangular particles. The color of the sandstones varies from yellowish gray to light greenish gray where fresh and both appear brownish yellow where weathered. The composition varies but constituents common to all Cannonball sandstones are quartz, mica (biotite, chlorite, and muscovite) and appreciable to negligible clay. Both Cvancara (1965, p. 25) and Fenner (1974, p. 16) reported clay from all Cannonball sandstones at surface exposures. Small lignitic particles have been observed from most surface and subsurface samples and glauconite is rare to common. Secondary components of the Cannonball sandstones include rare gypsum aggregates and crystals and rare to common marcasite nodules. In subsurface samples, the marcasite nodules occur as commonly as they do in surface samples, but gypsum occurs much more rarely. Marcasite or pyrite also commonly occur as foraminiferid or ostracode infillings.
The clay fraction of five Cannonball mudstone samples (Fenner, 1974, p. 17) is predominantly montmorillonite and illite with traces of kaolinite and possibly chlorite. The mudstones are silty and often sandy, and the coarser grained material consists mainly of abundant quartz, common mica (biotite, chlorite and muscovite) and common lignitic particles. Fenner (1974, p. 17) reported common to rare gypsum aggregates and crystals from the Cannonball outcrops, but in the subsurface, gypsum is rarely, if ever, present. Marcasite nodules and either marcasite or pyrite foraminiferid and ostracode infillings are common. Glauconite pellets are present in most and abundant in few Cannonball mudstones.

Lindberg (1944) indicated that green amphibole was the dominant heavy mineral in 16 samples from Cannonball mudstones and sandstones. Later, Lindberg (in Lemke, 1960, p. 32) identified 13 nonopaque heavy minerals. The nonopaque heavy minerals, in decreasing order of abundance, were garnet, zircon, epidote, sphene, tourmaline, zoisite, rutile, chloritoid, and kyanite with traces of hornblende, biotite, staurolite and glaucophane. Although they comprised over half of the heavy minerals, the opaque heavy minerals were not identified. It seems likely that the opaque heavy minerals were mainly pyrite or marcasite because one or possibly both of these minerals is present and commonly abundant in most Cannonball samples.

Sedimentary structures.—Concretions in the Cannonball are known mainly from the surface. I have not seen any cuttings that could be interpreted as being derived from concretions; however, rarely, sample logs include thin (about 30 cm) limestone or indurated sandstone beds. It is probable that these limestone and indurated sandstone beds
reported from the subsurface are actually concretionary zones. Since the concretions are not as common in the subsurface as they are in exposures, it is possible that the occurrence of concretions is mainly a near-surface phenomenon. Groenewold (1976) largely discounted this possibility because concretions occur at depth in strip mines. He indicated that a more probable explanation for the limited occurrence of concretions in drill holes is that the concretionary zones are discontinuous and the boreholes, therefore, rarely penetrate any actual concretions. If the drill bit were to strike a concretion, it could easily be deflected into the poorly consolidated surrounding rock.

Cannonball concretions are of three types, mudstone, sandstone and limestone (Cvancara, 1965, p. 36-37). The mudstone concretions occur only in the mudstone lithofacies, are well indurated with calcareous cement, are lenticular to subspherical, and are usually elongate parallel to the bedding. They are light to medium gray to bluish gray on fresh surfaces and light gray to brownish yellow on weathered surfaces.

Limestone concretions occur exclusively in the mudstone lithofacies. They are 15-70 cm thick and are dark bluish gray to black on fresh surfaces and light or medium brownish yellow on weathered surfaces.

The concretions in the sandstones are of two types. The smaller type (mean diameter 6-7 cm) is subspherical to elongate and phosphatic; they are light yellowish gray on fresh surfaces and light grayish brownish yellow on weathered surfaces. The larger type (mean diameter 70 cm) is medium gray to medium blue-greenish gray on fresh surfaces and light grayish, brownish yellow on weathered surfaces. The larger concretions
occur as linear zones that are parallel to the bedding and occasionally grade into more massive, continuous, lenticular, sandstone beds.

In addition to concretions, Cvancara (1965, p. 35) reported cross stratification, ripple marks, cone-in-cone structure and questionable clastic dikes and sills. Cross stratification is common in the Cannonball (Cvancara, 1965, figs. 2 and 5 and pl. 1, fig. 1; Fenner, 1974, figs. 3, 4 and 8). Cvancara (1972b) also observed large-scale cross-stratification on the Heart River west of Mandan, North Dakota (NW 1/4 sec. 13, T. 138 N., R. 83 W.). According to Cvancara (1965, p. 39), cross stratification "is almost entirely restricted to poorly consolidated sandstone with minor amounts of clay."

Ripple marks occur less commonly than cross stratification. Cvancara (1965, p. 39-40) reported ripple marks from three Cannonball localities. At two localities, oscillation ripples were observed and at the third locality, interference current ripples were observed. The orientations of the ripple marks were generally north with the exception of a second subdued cross set at the third locality; its orientation was approximately east-southeast. Ripple marks were also observed by Cvancara (1972b) in the lower-middle Cannonball along the Heart River, west of Mandan, North Dakota (on the line common to secs. 19 and 24, T. 139 N., Rs. 81 and 82 W.).

Cvancara (1965, p. 40) reported cone-in-cone structure at one Cannonball locality. The cone-in-cone structure was noted as a one inch-thick, peripheral layer, surrounding a few sandstone concretions.

Cvancara (1965, p. 40-41) also noted questionable clastic dikes and sills at one locality. The dikes and sills were composed of
sandstone and were located in a silty mudstone. The presumed clastic dikes and sills were similar in composition to the beds overlying the silty mudstone.

Grain-Size Distributions

Because well cuttings are subject to contamination, no grain-size analyses were performed for this study. Fenner (1974, fig. 9) performed grain-size analyses on thirty-three Cannonball outcrop samples distributed among both sandstones and mudstones. The mean grain sizes of sandstone and mudstone samples ranged from 2.4 ϕ to 8.4 ϕ. The mean grain sizes of the sandstone samples ranged from 2.4 ϕ to 3.0 ϕ and those for the mudstone samples ranged from 5.8 ϕ to 8.4 ϕ. The greater grain-size variation was attributed to highly variable amounts of silt (Fenner, 1974, p. 18).

Foraminiferids are concentrated mainly in the mudstone lithofacies. They are most abundant in samples in which less than 5% of the total volume is larger than 4 ϕ.
MICROFAUNAL ANALYSIS

The well cuttings utilized in this study yielded 50 species of benthonic and 4 species of planktonic foraminiferids. The benthonic foraminiferids represent 32 genera in 19 families. The planktonic fauna represents 4 genera in 3 families. By suborder, the fauna consists of 8 textulariines, 2 miliolines and 44 rotaliines. The textulariines account for 15.1% of the species and 17.5% of the individuals, the miliolines comprise 5.7% of the species and 0.1% of the individuals, and the rotaliines represent 81.1% of the species and 82.4% of the individuals.

The rotaliines dominate in terms of numbers of individuals in all wells except NDSWC wells 4453 and 4456 in western Adams and east-central Bowman Counties where the textulariines predominate. The miliolines are represented by only three individuals that occurred in NDSWC well 3647 in eastern Oliver County.

Fox and Ross (1942) indicated that they collected 64 species of foraminiferids from the Cannonball. They, however listed only the 43 species that occurred in the Gulf Coast. Since they did not list all of the species they collected, valid comparisons cannot be made. Of the species they reported, eight were definitely found in this study:

- **Ammodiscus incertus**
- **Cyclogyra involvens** (=**Cornuspira involvens**)
- **Nodosaria affinis**
- **Globulina gibba**
Globorotalia pseudobulloides
Cibicidoides alleni (=Cibicides alleni)
Gyroidinoidea aequilateralis (=Gyroidina aequilateralis)
Ceratobulimina perplexa.

Eight of Fox and Ross' species are similar in appearance to forms collected in this study. Since their specimens were not illustrated, it is not possible to determine whether the species from the two studies that are morphologically similar are the same. The species that are morphologically similar with the names assigned in this study given first are:

Dentalina colei = D. gardnerae
Chrysalagonium sp. = C. granti
Lenticulina midwayensis = L. degolyeri
L. turbinata = L. pseudomammillegera
Bulimina rosenkrantzi = B. quadrata
Allmorphina paleocenica = A. n. sp.
Anomalinoidea umboniferus = Valvulineria midwayensis
Alabamina midwayensis = A. exigua

Of the planktonic foraminiferids, one, Globorotalia pseudobulloides was found during both studies.

Twenty-six species reported by Fox and Ross (1942) that I did not collect are:

Spiroplectammina laevis
Eggerella? sp.
Nodosaria longiscata
N. radicula
Dentalina communis
D. mucronata
D. pauperata
D. plummerae
Lagena apiculata
L. substriata
Lenticulina orbicularis
L. rotulata
Marginulina tumida
Palmula budensis
Vaginulina midwayana
V. plumoides
Globulina communis
G. lactea
G. ovata
Gutulina cf. G. wilcoxensis
Stilostomella plummerae (=Nodogenerina plummerae)
Epistominella elegans
Valvulineria allomorphinoides
Siphonina prima
Subbotina triloculinoides (=Globigerina triloculinoides)

The following 33 species that I collected were not listed by Fox and Ross (1942):

Reophax sp. (2 species)
Haplophragmoides sp. (2 species
Ammobaculites expansus
Spiroplectammina wilcoxensis
Trochammina sp.
Quinqueloculina plummerae
Dentalina eocenica
D. pseudo-oblique striata
D. sp.
Lenticulina alabamensis
L. arkansasana
Lingulina sp.
Globulina sp. (2 species)
Pyrulina cylindroides
Spirobolivina emmendorferi
Bulimina sp.
Epistominella minuta
Rosalina sp.
Pararotalia perclara
Chiloguembelina midwayensis
Globoconusa daubjergensis
Cibicides (2 species)
Fursenkoina sp.
Caucasina marylandica
Nonion graniferum
Pullenia quinqueloba
Gyroidinoides sp.
Anomalinoides midwayensis
A. sp.
Cibicidoides vulgaris
Lemke (1960, p. 30-31) reported 30 species of foraminiferids from the Cannonball of which 10 are in common with this study:

- *Ammodiscus incertus*
- *Nodosaria affinis*
- *Lenticulina midwayensis* (=*Robulus midwayensis*)
- *Pyrulina cylindroides*
- *Bulimina rosenkrantzii*
- *Globorotalia pseudobulloides* (=*Globigerina pseudobulloides*)
- *Cibicidoides alleni* (=*Cibicides alleni*)
- *Ceratobulimina perplexa."

Lemke (1960) reported both *Anomalina midwayensis* and *Anomalinoideas midwayensis*. Berggren and Aubert (1975, p. 149-150), in their synonymy for *Anomalinoideas midwayensis*, indicated that *Anomalina midwayensis* is a synonym of *Anomalinoideas midwayensis.*

Lemke did not illustrate any of his specimens, but seven are similar in appearance or were not identified to species and might be in common. The names used in this report are given first:

- *Dentalina colei* = *D. gardnerae*
- *Dentalina sp.* = *Dentalina sp.*
- *Lenticulina midwayensis* = *L. degolyeri*
- *Bulimina sp.* = *B. sp.*
- *Haplophragmoides* sp. A or B = *H. sp.* (2 n. sp.)
- *Lenticulina midwayensis* = *L. wilcoxensis."

Nogan (1964) noted that *Lenticulina wilcoxensis* and *L. degolyeri* are uncoiled varieties of *L. midwayensis.*
Lemke (1960, p. 30-31) reported 30 species of foraminiferids from the Cannonball of which 10 are in common with this study:

- **Ammodiscus incertus**
- **Nodosaria affinis**
- **Lenticulina midwayensis** (=Robulus midwayensis)
- **Pyrulina cylindroides**
- **Bulimina rosenkrantzi**
- **Globorotalia pseudobulloides** (=Globigerina pseudobulloides)
- **Cibicidoides allenii** (=Cibicides allenii)
- **Ceratobulimina perplexa.**

Lemke (1960) reported both Anomalina midwayensis and Anomalinoide midwayensis. Berggren and Aubert (1975, p. 149-150), in their synonymy for Anomalinoide midwayensis, indicated that Anomalina midwayensis is a synonym of Anomalinoide midwayensis.

Lemke did not illustrate any of his specimens, but seven are similar in appearance or were not identified to species and might be in common. The names used in this report are given first:

- **Dentalina colei** = D. gardnerae
- **Dentalina sp.** = **Dentalina sp.**
- **Lenticulina midwayensis** = **L. degolyeri**
- **Bulimina sp.** = **B. sp.**
- **Haplophragmoides sp.** A or B = **H. sp.** (2 n. sp.)
- **Lenticulina midwayensis** = **L. wilcoxensis.**

Nogan (1964) noted that **Lenticulina wilcoxensis** and **L. degolyeri** are uncoiled varieties of **L. midwayensis.**
Seven species listed by Lemke (1960) that were not collected in this study include:

- *Epistominella n. sp.* (Pulvinulinella n. sp.)
- *Lenticulina inornata* (=*Robulus inornatus*)
- *Lagena substriata*
- *Discorbis n. sp.*
- *Epistominella elegans*
- *Loxostoma* sp.
- *Eggerina n. sp.*

Fox and Olsson (1969) reported seven species of planktonic foraminiferids from the Cannonball. Three species in common between their study and this report are:

- *Globorotalia pseudobulloides*
- *Globoconusa daubjergensis*
- *Chiloguembelina midwayensis.*

Species that Fox and Olsson (1969) reported that were not collected in this report include:

- *Globigerina edita*
- *Subbotina triloculinoides*
- *S. varianta*
- *Chiloguembelina morsei.*

The one planktonic species from this report that was not identified by Fox and Olsson (1969) is *Pararotalia perclara*.

I (Fenner, 1974) reported 26 species of benthonic foraminiferids from the Cannonball in outcrop. The following 14 species are in common between my two studies. Where terminology has been changed, the terminology used in this report is given first.
Ammodiscus incertus

Haplophragmoides sp. A = H. excavata

Spiroplectammina wilcoxensis = ?S. sp.

Cyclogyra involvens

Nodosaria affinis

Dentalina colei

D. pseudo-obliquestriata = D. sp.

Lenticulina alabamensis = L. rotulata

L. midwayensis = L. sp. A

Globulina gibba

G. sp. A

Anomalinoidea umboniferus = Valvulineria wilcoxensis

Allomorphina paleocenica = A. sp.

Ceratobulimina perplexa.

Twelve species that I (Fenner, 1974) identified from outcrops were not collected for this report:

Bathysiphon eocenicus

Haplophragmoides glabra

Trochammina sp. (not the same as T. sp. in this report)

Peneroplis sp.

Nodosaria latejugata

?Chrysalogonionium sp. (not the same as C. sp. in this report)

Dentalina mucronata
?Lagena sp.
Globulina sp. B
Lenticulina sp. B
Marginulina sp.
Cibicides sp. (not the same as any of this genus in this report)

Thirty-nine species identified in this report that I did not identify from outcrops include:

Reophax (2 species)
Haplophragmoides sp. B
Ammobaculites expansus
Trochammina sp.
Quinqueloculina plummerae
Nodosariidae
?Chrysalogonium sp.
Nodosaria sp.
Dentalina eocenica
?D. sp.
Lenticulina arkansasana
L. turbinata
?Lingulina sp.
Globulina sp. B
Pyrulina cylindroides
Spirobolivina emmendorferi
Bulimina rosenkrantzi
B. sp.
Discorbacea
Epistominella minuta
Rosalina sp.
Pararotalia perclara
Chiloguembelina midwayensis
Globoconusa daubjergensis
Cibicides sp.
?Cibicides sp.
Fursenkoina sp.
Caucasina marylandica
Nonion graniferum
Nonionella robusta
Pullenia quinqueloba
Alabamina midwayensis
Gyroidinoides aequilateralis
G. sp.
Anomalinoïdes midwayensis
A. sp.
Cibicidoides alleni
C. vulgaris.

From all studies of the Cannonball, accounting for all possible synonymies, I believe there are at least 93 known species in the Cannonball. The fauna includes eight textulariines, three miliolines and 82 rotaliines. The following faunal list is derived from Fenner (1974), Fox and Ross (1942), Fox and Olsson (1969) and Lemke (1960) in addition to new species from this report:

Bathysiphon eocenicus
Ammodiscus incertus
?Reophax sp. (2 species)
Haplophragmoides glabra
H. sp. (2 species)
Ammobaculites expansus
Spiroplectammina laevis
S. wilcoxensis
Trochammina sp. (2 species)
Eggerella sp.
Eggerina sp.
Cyclogyra involvens
Quinqueloculina plummerae
Peneroplis sp.
Chrysalogonium sp. (2 species)
Nodosaria affinis
N. latejugata
N. longiscata
N. radicula
N. sp.
Dentalina communis
D. eocenica
D. micronata
D. pauperata
D. plummerae
D. pseudo-obliquestriata
D. sp.
Lagena apiculata
L. substriata
L. sp.

Lenticulina alabamensis
L. arkansasana
Lenticulina inornata
L. midwayensis
L. orbicularis
L. rotulata
L. turbinata
Marginulina tumida
M. sp.
Palmula budensis
Vaginulina midwayana
V. plumoides
Lingulina sp.
Globulina communis
G. gibba
G. lactea
G. ovata
G. sp. (2 species)
Guttulina cf. G. wilcoxensis
Pyrulina cylindroides
Spirobolivina emmendorferi
Stilostominella plummerae
Bulimina rosenkrantzi
B. sp.
Discorbis n. sp.
Epistominella elegans
E. minuta
E. n. sp.
Rosalina sp.
Valvulineria allomorphinoides
Siphonina prima
Pararotalia perclara
Chiloguembelina midwayensis
C. morsei
Globigerina edita
Globorotalia pseudobulloides
Globoconusa daubjergensis
Subbotina triloculinoides
S. varienta
Cibicides sp. (3 species)
Fursenkoina sp.
Caucasina marylandica
Loxostomum sp.
Allomorphina paleocenica
Nonion graniferum
Nonionella robusta
Pullenia quinqueloba
Cibicidoides allenii
C. vulgaris
Alabamina midwayensis
Gyroidinoides aequilateralis
G. sp.
Anomalinoides midwayensis
A. umboniferus
A. sp.

Ceratobulimina perplexa

Samples of a uniform volume of 4 cc collected in this study that contained foraminiferids yielded from a minimum of one to a maximum of 234 individuals (58 individuals/cc). The most productive samples were from NDSWC wells 4388 and 8347. Well 4388 produced a sample which contained 234 individuals. One sample from well 8347 produced 82 individuals. All other samples contained considerably fewer individuals.

In all wells where appreciable foraminiferid-bearing samples are available, the most dense concentration of foraminiferids is in samples from the middle of the foraminiferid-bearing interval. Few foraminiferids are present near the top or bottom of the foraminiferid-bearing interval.
FORAMINIFERAL BIOSTRATIGRAPHY

Foraminiferal Assemblages

Two foraminiferal assemblages are recognized in the Cannonball. The R-mode dendrogram for all wells (Appendix B) shows at least six distinct major clusters; however, only two are probably valid. Four of the major clusters are not significant because the species represented in these clusters are represented by few individuals. The two valid assemblages correspond to the uppermost two major clusters on the dendrogram.

One of the Cannonball assemblages, uppermost on the dendrogram, is the Caucasina-Bulimina assemblage. It is named for Caucasina marylandica and Bulimina rosenkrantzi, which usually dominate samples in which this assemblage occurs. Either one or both of these two species is usually abundant in samples where members of this assemblage occur. Other species in the assemblage include: Haplophragmoides sp. A, Alabamina midwayensis, Gyroidinoides aequilateralis and, less commonly, Ammodiscus incertus and Trochammina sp. The Caucasina-Bulimina assemblage occurs in all wells where more than one species is present. It occurs throughout the study area and is the dominant assemblage in most wells in the western half of the area. In samples where individuals from more than one assemblage are present, the Caucasina-Bulimina assemblage is dominant in terms of number of species, generally in the western half of the study area. The Caucasina-Bulimina assemblage occurs throughout the foraminiferid-bearing interval in the Cannonball Formation.
A second foraminiferid assemblage, the Cibicidoides-Ceratobulimin assemblage is represented by the second major cluster on the R-mode dendrogram for all wells (Appendix B). It is dominated by Cibicidoides alleni and Ceratobulimina perplexa and additionally includes Spirobolivina emmendorferi, Anomalainoides umboniferus, A. midwayensis, and, less commonly, Nodosaria affinis and Lenticulina midwayensis. It may or may not be associated with the Caucasina-Bulimina assemblage. The Cibicidoides-Ceratobulimina assemblage is less clearly defined than the Caucasina-Bulimina assemblage because the species are represented by fewer individuals. Where a mixed fauna composed of elements of both major assemblages occurs, the Cibicidoides-Ceratobulimina assemblage dominates in terms of numbers of species in wells located in the eastern one-third of the study area. The Cibicidoides-Ceratobulimina assemblage occurs throughout the foraminiferid-bearing interval in the Cannonball.

Both assemblages are most commonly represented by four or less of their species. Although both assemblages occur predominantly in the mudstone lithofacies, grainsize may have a subtle effect on their distribution. From the amount of residue remaining after wet sieving, it appears that the Cibicidoides-Ceratobulimina assemblage occurs in slightly sandier lithologies.

Biostratigraphic Correlations

The foraminiferal assemblages were correlated; however, they are of questionable utility. In addition to the two dominant assemblages, the Caucasina-Bulimina and the Cibicidoides-Ceratobulimina assemblages, samples containing elements of both assemblages were plotted as a mixed assemblage (figs. 4-12). Other possible assemblages were not used
Fig. 4. East-west cross section across northern Bowman and Adams Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those on Appendix C. Detailed locations are given in Appendix C. Line patterns indicate foraminiferid assemblages as given in the explanation.
Fig. 5. East-west cross section across southern Bowman and Adams Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1 and those in Appendix C. Detailed locations are given in Appendix C. Explanation of the symbols is given on Fig. 4.
Fig. 6. Southwest-northeast cross section across Grant and Morton Counties with wells arranged according to elevation. Number of wells correspond to those on the index map, those on fig. 1 and those in Appendix C. Detailed locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
Fig. 7. Northwest-southeast cross section across Grant Cou with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
Fig. 8. East-west cross section across Grant and Morton Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
Fig. 9. Northwest-southeast cross section across Dunn, Mercer, and Oliver Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed well locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
Fig. 10. Northwest-southeast cross section across Mercer, Oliver and Morton Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed well locations are given in Appendix C. Explanation of the symbols is given on fig.
Fig. 11. Northwest-southeast cross section across Oliver and Burleigh Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed well locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
Fig. 12. East-west cross section across Oliver and Burleson Counties with wells arranged according to elevation. Numbers of wells correspond to those on the index map, those on fig. 1, and those in Appendix C. Detailed locations are given in Appendix C. Explanation of the symbols is given on fig. 4.
because their occurrences are rare and species within the R-mode clusters representing other assemblages usually occur as minor constituents in samples that are dominated by one or both of the two major assemblages.

Where enough information is available, the two assemblages and the mixed assemblage were correlated between wells. Commonly, assemblages were repeated in each well and the Q-mode dendrogram was used to determine which of the assemblages correlated.

The mixed assemblage occurs in more samples than either the Caucasina-Bulimina assemblage or the Cibicidoides-Ceratobulimina assemblage. The Caucasina-Bulimina and Cibicidoides-Ceratobulimina assemblages occur in about equal numbers.

The maximum lateral extent for either of the assemblages or the mixed fauna is four wells (about 32 km). The mixed assemblage is more continuous than either of the assemblages. The type of available information is, in part, the cause for the lack of continuity of the assemblages. Few of the available wells contained the entire Cannonball interval. Wells that were completed below or in the lower part of the Cannonball are usually adjacent to wells that were completed in the upper part of the Cannonball. The correlation of assemblages in the lower part of the formation, therefore, becomes uncertain because no information for that interval is available in adjacent wells. The repetition of the assemblages throughout the Cannonball also makes correlations uncertain.

The biostratigraphic correlations (figs. 4-12) are characterized by much interfingering and many of the assemblages pinch out between wells. This is probably due, in part, to the strong environmental control (salinity and substrate) over foraminiferid distribution.
It is also due, in part, to mixing of the samples as a well is being drilled.

The Caucasina-Bulimina assemblage or a mixed assemblage dominated by elements of the Caucasina-Bulimina assemblage are found stratigraphically lowest in most wells. The lowest stratigraphic occurrences of this assemblage is usually thicker than subsequent, higher occurrences. The mixed assemblage occurs most commonly in the middle part and less commonly in the upper part of the foraminiferid-bearing interval. The Cibicidoides-Ceratobulimina assemblage usually covers a larger stratigraphic interval in the lower part of the foraminiferid-bearing interval than it does in the middle or upper part of the interval. It is also somewhat more continuous in the lower part of the interval.

Biofacies

Q-mode analyses cluster fossil localities or samples into groups with similar faunas (biofacies) (Valentine, 1971, p. 89). Foraminiferal biofacies in the Cannonball are indicated by the major clusters on the Q-mode dendrograms (Appendix A). Since no continuous, long ranging biofacies are recognized, it appears that the foraminiferid distribution and the species within each sample are largely environmentally controlled. Although the exact controlling factors are uncertain, salinity and substrate are probably most important. Because of the lack of continuity in biofacies, no attempt was made to name or correlate them.
AGE OF CANNONBALL FORMATION

Lloyd (1914, p. 248), in naming the "Cannonball marine member of the Lance Formation," questionably assigned the Cannonball to the Tertiary.

Stanton (1920) indicated that the Cannonball molluscan fauna was a "modified Fox Hills fauna" and suggested that the Cannonball was late Cretaceous.

The findings of Thom and Dobbin (1924a, 1924b) suggested that the Cannonball was Paleocene. Their mammalian evidence was derived from the Lebo of eastern Montana, which they indicated was equivalent to the upper part of the Cannonball and Ludlow. They said that the mammal remains suggested a Torrejonian (middle Paleocene) mammalian age for the Lebo.

A Cretaceous age for the Cannonball was, however, widely accepted until Dorf (1940) offered substantial, indirect paleobotanical evidence for a Paleocene age for the Cannonball. He said that the plants of the Ludlow indicated a Paleocene age; therefore, since the Cannonball inter-fingers with and is underlain by the Ludlow, it, too, must be Paleocene.

Jepsen (1940, p. 242-248), using indirect mammalian evidence, suggested that the Cannonball was Paleocene.

Fox and Ross (1940, 1942) presented the first strong direct evidence for a Paleocene age for the Cannonball. Of the 64 species of foraminiferids they identified, 38 species also occurred in the Gulf Coast. Of the 38 Gulf Coast species, the majority occurred in the Paleocene Midway.
Swain (1949) identified five species of ostracodes from the Cannonball. He said that the strong affinities between his small Cannonball ostracode fauna and that of the Paleocene Midway suggested a Paleocene age for the Cannonball.

Brown (1962) presented indirect paleobotanical evidence for a Paleocene age for the Cannonball and he further stated (1962, p. 9) "as early as 1931, I had become convinced of the Paleocene age of the Cannonball member and its correlative nonmarine equivalent"

Jeletzky (1960) stated that the planktonic foraminiferids, specifically *Globorotalia pseudobulloides*, indicated a largely Danian (=Montian) or more likely earliest Landenian age. He (1962, p. 1006-1007) later revised his age determination to a general Danian age. He indicated that the occurrence of *Globigerina triloculinoides* and *Globorotalia pseudobulloides* and the absence of species of *Globorotalia* of the *Globorotalia angulata* zone is important in establishing a general Danian age for the Cannonball.

Stanley's (1965) study of the plant microfossils indicated that the Cannonball Formation was Paleocene.

Cvancara (1965, 1966), in revising the Cannonball bivalve fauna, said that through comparisons with the Tertiary faunas of Northern Europe, the closest similarities existed with the Thanetian forms in the London and Paris Basins.

Fox and Olsson (1969) identified seven species of planktonic foraminiferids from the Cannonball near Garrison Dam, North Dakota. They determined that the planktonic foraminiferid fauna of the Cannonball belongs to the *Globigerina edita* zone of Hillebrandt (1965), which is equivalent to the *Globorotalia pseudobulloides* zone of Bolli (1966).
The *Globigerina edita* zone is considered the lowest zone of the Tertiary. This would indicate that the Cannonball is, in part, early Danian.

Sloan (1970, p. 441), in examining mammalian remains from the overlying Tongue River Formation, suggested that the Cannonball Formation encompassed the Puercan and Torrejonian (early to middle Paleocene) mammalian ages. Holzman (1975) suggested that mammalian remains from the basal Tongue River suggested a middle-late Paleocene (middle Tiffanian) age. Fenner (1974), utilizing benthonic foraminiferids, was unable to make an age determination that was any more specific than early Tertiary for the Cannonball.

I have collected two index species of planktonic foraminiferids in this study, *Globoconusa daubjergensis* and *Globorotalia pseudobulloides*. Stainforth and others (1975) indicated that *Globoconusa daubjergensis* extends from the base of the middle early Paleocene to the base of the middle Paleocene, from about 64 m. yr. before present to about 61 m. yr. before present. *Globorotalia pseudobulloides* ranges from the base of the middle-early Paleocene to the top of the middle-middle Paleocene. The most common occurrences for these two species are from the base of the middle-early Paleocene to the base of the late-early Paleocene for *Globoconusa daubjergensis* and the base of the middle-early Paleocene to the base of the middle-middle Paleocene for *Globorotalia pseudobulloides*. The two species are contemporaneous from the base of the middle-early Paleocene to the base of the late-early Paleocene. These species would place the Cannonball into the *Globorotalia pseudobulloides* zone of Stainforth and others (1975, p. 15). This zone represents the middle-early Paleocene.
Applying my Cannonball data to the zonation of Berggren (1972, p. 202), the Cannonball planktonic foraminiferid fauna would indicate the *Globoconusa daubjergensis*–*Globorotalia pseudobulloides* zone of the Danian. This corresponds, in part, to the *Globorotalia pseudobulloides* zone of Stainforth and others (1975) except that Berggren's zone extends to the base of the Paleocene.

Berggren (1972, p. 202) illustrated the relationships between the ages that have been proposed for the Tertiary. The Puercan and Torrejonian mammalian ages that were proposed for the Cannonball by Sloan (1970, p. 441) are, for the most part, contemporaneous with the Danian age, and the contact between the Puercan and Torrejonian corresponds with about the middle of the *Globoconusa daubjergensis*–*Globorotalia pseudobulloides* zone of Stainforth and others (1975).

The planktonic foraminifera collected in this study suggest an age that agrees with the conclusions of Sloan (1970) indicating a Puercan–Torrejonian age and the conclusions of Fox and Olsson (1969) suggesting a Danian age for the Cannonball. My age determination does not agree with the conclusions of Cvancara (1965, 1966) indicating a Thanetian age; however, since my planktonic foraminifera were collected mainly from the middle part of the formation, the Danian, more specifically middle-early to early-middle Paleocene age, assignment does not preclude a Thanetian age assignment for the uppermost Cannonball. The uppermost Cannonball could also correspond to the Tiffanian (middle-late Paleocene) as Holzman (1975) suggested.
PALEOECOLOGY

The foraminiferid fauna of the Cannonball is generally dominated in terms of numbers of individuals by the rotaliines. Locally, however, the textulariines are dominant. The textulariine-dominant localities occur in the southwestern part of the Williston Basin in NDSWC wells 4453 and 4456 in western Adams and eastern Bowman Counties. NDSWC well 4388 has a mixed fauna with rotaliines dominating in the upper part of the Cannonball (well depth 35-74.7 m) and the textulariines dominating in the lower part of the Cannonball (well depth 74.7-129.5 m).

The textulariine-dominant fauna from the westernmost wells is thought to be indicative of brackish water. The macrofauna collected north of the textulariine-dominant localities in Slope County (Cvancara, 1965; Van Alstine, 1974) is also indicative of brackish water. Anisgard (1970, p. 211-212) indicated that when agglutinated foraminiferids account for greater than 50% of the individuals, the water is persistently shallow, usually turbid and poorly circulated, of below normal salinity and oxygen content, and of extremely high organic content. According to Greiner (1970, p. 83), agglutinated foraminiferids reach their peak in areas of low salinity and low temperatures. Since the foraminiferid fauna to the east is dominated by the rotaliines and the temperature probably did not vary significantly, salinity had to have been the main factor in causing the shift in dominance.

Table 2 summarizes depth and salinity data for Cannonball genera that Murray (1973, Appendix 2) treated in modern environments.
Table 2. Depth and salinity ranges of selected Cannonball foraminiferid genera (modified from Murray, 1973, Appendix 2).
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Salinity (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-500</td>
<td></td>
</tr>
<tr>
<td>0-1000</td>
<td></td>
</tr>
<tr>
<td>0-1500</td>
<td></td>
</tr>
<tr>
<td>0-2000</td>
<td><33</td>
</tr>
<tr>
<td>0-2500</td>
<td>33-37</td>
</tr>
<tr>
<td>0-3000</td>
<td>>37</td>
</tr>
</tbody>
</table>

- **Ammobaculites**
- **Bulimina**
- **Cibicidus**
- **Cycleyra**
- **Fursenkolina**
- **Globulina**
- **Lenticulina**
- **Nonion**
- **Nonionella**
- **Pullenia**
- **Quinqueloculina**
- **Reophax**
- **Rosalina**
- **Trochammina**
Ammobaculites, which occurs in the textulariine-dominant localities, is an important environmental indicator. It occurs in shallow water 100 m or less deep, and in water of lower-than-normal marine salinity. Nonion graniferum and Trochammina sp. also occur in the textulariine-dominant areas. Commonly, species within these two genera are tolerant of brackish-water conditions (Table 2). Of the two environmental ranges given for Trochammina, one is restricted to shallow water less than 100 m deep but occurs over a wide salinity range. The other is restricted to normal marine salinities and occurs at depths of less than 100 m to greater than 1500 m deep. The occurrence with Ammobaculites indicates that the Cannonball Trochammina is of the first type, which falls into the lower than normal salinity (brackish-water) range. Nonion, although it occurs in water of lower than normal to normal marine salinity, is thought to be representative of brackish water because of its occurrence with Ammobaculites.

Albritton and others (1954, p. 334-335) recognized two microfaunal "facies" in the Grayson Marl (Cretaceous). One facies was characterized by a predominance in numbers of agglutinated tests with Haplophragmoides and Ammobaculites the predominant genera. This facies was thought to represent a nearshore zone or possibly "weakly brackish waters inside the shoreline." In the textulariine-dominant localities in this study, both Haplophragmoides and Ammobaculites occur.

Lowman (1949, p. 1956) indicated that abundant Haplophragmoides and Trochammina occur in salt marshes along the Gulf Coast. Although these two genera are tolerant of more marine conditions, he suggested that they are most characteristic of a stagnant (quiet, poorly oxygenated) environment. In the westernmost wells of the study area,
Trochammina is abundant and Haplophragmoides is common.

The Fisher α index is a numerical measure of diversity derived from a plot of numbers of species against numbers of individuals (Murray, 1973, p. 8-10). An index of greater than 5 is thought to represent normal marine shelf conditions and an index of less than 5 is thought to represent marginal marine, brackish-water conditions. The Fisher indices for wells in the southwestern part of the study area where 50 or more individuals were present, indicate hyposaline and nearshore shelf seas. When applied to individual samples with 50 or more individuals, the Fisher indices more specifically indicate hyposaline marshes or lagoons in this area. The Fisher α index for NDSWC well 4388 is 4.3 and for NDSWC well 4453 it is 1.0 (there were not enough individuals in NDSWC well 4456 to determine the Fisher α index).

The dominance of agglutinated individuals in NDSWC wells 4453, 4456 and in the lower part of well 4388 (fig. 3) suggests lower than normal marine salinities. The presence of the brackish-water species Ammobaculites expansus and the brackish-water-tolerant genera Nonion, Trochammina and Haplophragmoides support the concept of a brackish-water environment in this area.

At every locality to the east of the brackish-water localities, the foraminiferid fauna is dominated by the rotaliines. The dominance of rotaliines in the eastern and central part of the study area is indicative of marine waters of more normal salinity. The small size and rare occurrence of planktonic foraminiferids suggest that the Cannonball was relatively shallow (Fox and Olsson, 1969, p. 1399-1400). The planktonic foraminiferids collected in this study agree with Fox and Olsson's conclusions regarding size in that they are generally about one-fourth
the size of their respective holotypes. Fox and Olsson (1969) suggested that deeper waters to the east of the present Cannonball outcrop area supported the main planktonic mass.

Lowman (1949, fig. 13) said that planktonic foraminiferids constitute about 20% of the foraminiferid fauna at a depth of 61 m (200 ft). The percentage generally increases into deeper water. The planktonic foraminiferid fauna in the Cannonball does not approach 20% which suggests depths of less than those (61 m or 200 ft) indicated by Lowman.

Ellison (1951) discussed the utility of benthonic foraminiferids in making paleoenvironmental interpretations. He indicated that numbers of calcareous, agglutinated, and planktonic individuals were important, but was uncertain as to how to apply the data. Ellison (1951, fig. 5) reproduced Bannahan's (1950) paleoecological analysis diagram that showed the paleoecological ranges of 17 benthonic foraminiferids and one genus of planktonic foraminiferid from the Marquez Shale (Eocene) of Texas. Of the benthonic genera, nine also occur in the Cannonball: Haplophragmoides, Ammobaculites, Trochammina, Anomalinooides (=Anomalina), Nonion, Quinqueloculina, Ceratobulimina, Lenticulina (=Robulus), and Globulina. Most of the genera occurred over a wide range of environments with Haplophragmoides, Ammobaculites and Trochammina occurring in presumably brackish-water sediments and in sediments transitional between brackish-water and normal marine environments. Anomalinooides and Nonion were reported from brackish-water transitional and normal, shallow, marine sediments. The remainder occurred in normal marine sediments from the "open sea inner neritic" (10-50 m) to "open sea neritic" (0-200 m) depths.
Gernat and Kesling (1966, p. 136-142) discussed several environments including brackish, inner shelf shallow, inner shelf deep, middle shelf, outer shelf, and saline bay. Unfortunately, they placed no depth ranges on the various environments; however, by applying Hedgpeth's (1957, fig. 1) classification of marine environments to Gernat and Kesling's environments, a generalized depth range can be obtained.

Gernat and Kesling's shallow inner shelf would correspond to the inner neritic of Hedgpeth and therefore represents a maximum depth of about 50 m. Their outer shelf would correspond to Hedgpeth's outer neritic and would attain a maximum depth of 150-200 m. The genera they collected that also occur in the Cannonball and the environments in which they occurred are Ammobaculites (brackish-water to deep inner shelf), Ammodiscus and Trochammina (brackish water (dominant) to outer shelf (subordinate part of fauna)); Quinqueloculina (saline bay to deep inner shelf), Nonionella, Fursenkoïna (shallow inner shelf to middle shelf); Bulimina (shallow inner shelf to middle shelf); Bulimina (shallow inner shelf to outer shelf); Lenticulina, Anomalainoides (=Anomalina), Cibicides, Globulina, Cyroidinoides, Nonion and Spiroplectammina (deep inner shelf to outer shelf). The maximum depth attained by any of these genera is 150-200 m, with most common depth ranges in the 50-200 m range (inner shelf-outer shelf).

The Cannonball calcareous bentonic genera that Murray (1973, Appendix 2) treated (Table 2) predominate in the eastern two-thirds of the study area. Their depth ranges are highly variable. Although most occur over a wide range of depths, five occur only in shallow water to a maximum depth of about 160 m. The wide ranging genera, except Pullenia (represented by one specimen), fall into this depth range.
Combining the depth ranges of the forms restricted to shallow water and the wide-ranging forms, the most likely depth range for the Cannonball calcareous assemblage is about 0-200 m with most forms probably occurring at depths of 100 m or less. Phleger (1960, figs. 14-28) gave the depth distributions of several species of benthonic foraminiferids from the Gulf of Mexico. Combining Phleger's data for each species with composite data for each of the Cannonball genera essentially reproduces Murray's (1973, Appendix 2) results.

Bandy and Arnal (1960) indicated that the diversity of foraminiferids increases offshore. The Fisher α index indicates higher diversity for all wells in the eastern two-thirds of the study area suggesting deeper water and more normal marine conditions in this area.

Combining species diversity and the ecological data for both planktonic and few of the ecologically important benthonic foraminiferids, the indication is that brackish-water conditions occurred west of central Adams County. To the east of central Adams County, more normal marine conditions or conditions transitional between brackish water and more normal marine conditions existed. Ecologically important benthonic genera and the scarcity and small size of planktonic forms indicates a shallow-water marine environment with a maximum water depth of less than 200 m. Most of the area probably represents a water depth of less than 100 m.
DEPOSITIONAL ENVIRONMENTS

The foraminiferids occur commonly in the mudstone lithofacies and rarely in the sandstone lithofacies. Associated with the foraminiferids are abundant lignitic plant remains and rare to common glauconite. The lignitic plant remains appear to be mostly minute woody particles suggesting either aquatic plants or land-derived, peaty material that was lignitized in place.

The presence of rare to abundant lignitic material in the Cannonball rocks is suggestive of shallow water environments. Detling (1946, p. 349) suggested that high carbon content was indicative of shallow water deposition in Lower Tertiary marine rocks in the Coos Bay area of Oregon. Lowman (1949, p. 1956) reported abundant carbonized plant remains associated with shallow-water foraminiferids. Fox and Olsson (1969, p. 1400) noted lignitized plant remains in the Cannonball and concluded that they indicated deposition in "shallow inner neritic depths."

Glauconite is common in most Cannonball samples. The conditions under which glauconite formed also affect the composition of the foraminiferid fauna. Cloud (1955, p. 484) said that glauconite forms in environments with normal marine salinity, slightly reduced conditions and slow sedimentation. He also indicated (p. 490) that glauconite is commonly found in water 5-1000 fathoms deep and suggested that it is most common in the upper part of the 10-400 fathom interval. Sulphide-
filled foraminiferids and sulphide nodules are common in the Cannonball. If the deposition of the sulphide were primary or if it occurred shortly after the deposition of the sediments, its presence suggests that reducing conditions existed in the Cannonball.

Although it cannot be identified from well cuttings, the trace fossil *Ophiomorpha* occurs in sandstones of Cannonball exposures (Cvancara 1965; Van Alstine, 1974). Howard (1971) noted that the present-day equivalent of *Ophiomorpha* is the "deep burrowing crustacean *Callianassa major,*" a shoreface inhabitant. The trace fossil *Ophiomorpha* was, therefore, assumed to be a shoreface inhabitant. Howard indicated that although *Ophiomorpha* was not the most abundant shoreface inhabitant, it was the main inhabitant that left a preservable trace. It seems likely, therefore, that many of the Cannonball sandstones represent shoreface environments. The sandstones, however, are usually devoid of foraminiferids (Fenner, 1974). Foraminiferids collected in this study rarely occurred in sandstones, although exact placement of occurrences is uncertain. Phleger (1960, p. 159) indicated that only the larger, more massive foraminiferids could live in the beach environment and the smaller species would probably be transported into deeper, quieter water. *Nodosaria affinis*, one of the larger, more massive Cannonball foraminiferids, occurs most commonly in the sandstone lithofacies. The occurrence of this species in the presumably shoreface sandstones therefore agrees with Phleger's suggestion. Lowman (1949, p. 1962-1963) indicated that an abundant indigenous foraminiferid fauna inhabits the shoreface and this was probably the case with the Cannonball foraminiferid fauna with the only remnant of the shoreface fauna being the more massive *Nodosaria affinis*. Cvancara (1965, p. 43) noted that most macrofossils occur in
clayey sandstones transitional between clean sandstones and mudstones. The clayey sandstone is probably transitional between clean sandstones and mudstones and it most likely represents an environment that was transitional between shoreface and deeper water environments (Cvancara, 1976, p. 16). The smaller foraminiferids that occurred with the macrofossils were probably either destroyed or transported to quieter environments. Cvancara (1976, p. 16) indicated that the Ophiomorpha-bearing sandstones were probably barrier island sandstones and that the presence of Ophiomorpha in well sorted sandstones indicated intertidal or shallow subtidal depths, and its presence in poorly sorted sandstone indicated somewhat greater depths. From the thicknesses of sandstones and mudstones in three measured sections, Cvancara (1976, p. 16) suggested that the sandstones, in part, represent depths of up to 40 ft (12.9 m) and the mudstones represent depths in part, of up to and perhaps more than 100 ft (30.5 m).

Cvancara (1972a, p. 73 suggested that the Cannonball represented an environment similar to that which presently occurs along the north coast of Holland and Germany where a barrier island chain (the Frisian Islands) separates a lagoon (the Wadden Sea) from the North Sea. The foraminiferids collected in this study support this analog. Possibly the Cannonball barrier island chain extended northward through central North Dakota, possibly just west of or along the present Missouri River (fig. 13). The deeper water, more open sea environments were to the south and east of the barrier islands, but sediments from these environments have either been destroyed by erosion or covered with glacial drift. Within the Cannonball outcrop area, there is a distinct break
Fig. 13. Hypothetical model of general environments for the Cannonball Formation.
in the foraminiferid fauna. To the west of central Adams County, the fauna is dominantly textulariine and it appears to be characteristic of brackish water. To the east of central Adams County, the foraminiferid fauna is dominantly calcareous and is characteristic of more normal marine salinities. These two faunas probably represent subenvironments within the lagoonal environment. The brackish-water fauna is that which would be expected on the landward side of the lagoon. To the north of the brackish-water microfaunal localities, in Slope County, macrofossils have been collected from two brackish-water tongues in the Cannonball (Cvancara, 1965; Van Alstine, 1974).

The more normal marine areas within the Cannonball Formation occur toward the seaward side of the lagoon (fig. 13). The localities that were closer to the barrier island chain, especially a relatively discontinuous one like the Frisian Islands, would be characteristic of more normal marine environments than those closer to the landward side of the lagoon. The small size and scarcity of the planktonic foraminiferids and the composition of the benthonic foraminiferid fauna indicate shallow (100 m or less deep) marine waters over most of the study area. The presence of common to abundant lignitized plant remains in all lithologies supports the idea that although the waters were of more normal marine salinity, they were shallow and possibly restricted.
CONCLUSIONS

Fifty species of benthonic foraminiferids and four species of planktonic foraminiferids were collected from 60 water test wells and two oil wells. The foraminiferid fauna represents 32 genera in 19 families and is dominated in terms of numbers of species and numbers of individuals by the rotaliines. The fauna commonly occurred in the mudstone lithofacies and rarely occurred in the sandstone lithofacies, and was concentrated in the middle part of the formation, with less common occurrences in the lower part of the formation. The densest accumulation of foraminiferids was in south-central Adams County (well 4388) where 58 individuals per cc of sample occur. Elsewhere, the concentration of foraminiferids is considerably less.

All studies of the Cannonball combined yield a total of at least 93 species of foraminiferids, including 8 textulariines, 3 miliolines and 82 rotaliines.

Two foraminiferid assemblages are recognized, the Caucasina-Bulimina and Cibicidoides-Ceratobulimina assemblages. The foraminiferid assemblages are laterally discontinuous and recur stratigraphically and sporadically throughout the foraminiferid-bearing interval of the Cannonball suggesting strong environmental control over the foraminiferid distribution. Correlations of assemblages show much interfingering and many pinch outs of assemblages which also indicate strong environmental control and mixing of the assemblages during the well drilling.
Because of little vertical and lateral continuity the biofacies, which are represented by the major clusters on the Q-mode dendrograms, were not utilized.

The shallow-water affinities of the foraminiferid assemblages and the small size and scarcity of the planktonic foraminiferids suggest deposition in shallow-water environments, 100 m or less. The dominance of textulariines, including Ammobaculites, in wells located in eastern Bowman and western Adams Counties suggests local, brackish-water environments. The occurrence of foraminiferids with minute, lignitic particles is indicative of nearshore, protected conditions. A large, shallow, protected lagoon behind a north-trending barrier island chain is envisioned as a possible complex of depositional environments for the Cannonball. Brackish-water environments are thought to have occurred near the landward side of the lagoon with more marine environments near the seaward side of the lagoon.

More detailed microfaunal data over relatively small areas is needed to more precisely determine the biostratigraphic relationships within the Cannonball. Sedimentologic work on surface exposures would be helpful in determining the local depositional environments of the Cannonball. The possibility of using the microflora, particularly the calcareous nannoplankton, should be investigated in order to more precisely determine the age of the Cannonball.
The classification for the foraminiferids is that of Loeblich and Tappan (1964). A few genera in their classification have not been generally accepted. In such cases, I have used the accepted genera and have included appropriate comments in a remarks section following the generic diagnosis.

The generic diagnoses are adapted from Loeblich and Tappan (1964) and are, in most cases, rearranged to maintain consistency of order of morphological characteristics. Most of the species diagnoses are adapted from the original diagnoses or descriptions of the species. Where the original diagnoses were unavailable or were written in a foreign language, subsequent adaptations are used.

Generic synonymies are not included. Only the original reference for that genus and the type species are included. Most species synonymies are abbreviated. Rather than giving every citation for a particular name, only the earliest citation is given. Where the earliest citation of a presently accepted name is relatively old, a more recent citation is included. A few of the species that are being reported from the Cannonball for the first time have relatively complete synonymies.

Occurrences are given according to NDSWC or NDGS well number and accession number (fig. 1, Appendix C). The lithologies within which the species occur as well as the general stratigraphic interval over which the species were found are also included.
The discussions include numbers of individuals, the state of preservation and any pertinent information regarding the taxonomy of the foraminiferids.

Phylum PROTOZOA

Subphylum SARCODINA

Order FORAMINIFERIDA

Suborder TEXTULARIINA

Family AMMODISCIDAE Reuss, 1862

Genus AMMODISCUS Reuss, 1862

Original reference.—Reuss, 1862, p. 365.

Type species.—Ammodiscus infimus Bornemann, 1874, p. 725 (by original designation).

Diagnosis.—Test free, discoidal, proloculus followed by undivided planispirally enrolled tubular chamber, which may show transverse growth constrictions but no internal partitions; aperture at open end of tubular chamber; wall agglutinated (adapted from Loeblich and Tappan, 1964, p. C210).

Ammodiscus incertus Brady, 1884

Plate 1, fig. 4

Operculina incertus d'Orbigny, 1839a, p. 71, pl. 6, figs. 16, 17.

Spirillina arenacea Williamson, 1858, p. 93, p. 7, fig. 203.

Trochammina incerta Brady, 1876, p. 71, pl. 2, figs. 10-14.

Ammodiscus incertus Brady, 1884, p. 330, pl. 38, figs. 1-3.

Plummer, 1926, p. 63-65, pl. 13, figs. 1a-d.

Diagnosis.—Test slightly biconcave, finely arenaceous (adapted from Plummer, 1926, p. 64).
Measurements.--Maximum diameter of hypotypes 0.2-0.7 mm; minimum diameter of hypotypes 0.7 mm; maximum thickness of hypotypes 0.1 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13812, 13813.

Occurrence.--This species was collected from NDSWC wells 3559 (A1103, A1108, A1110, A1111), 3433 (A1116, A1119), 3647 (A1141), 4486 (A1167), 4397 (A1169), 8102 (A1178, A1179, A1180), 4453 (A1263), 8347 (A1266), 4388 (A1277, A1279, A1282, A1285, A1288, A1289, A1290), 4384 (A1301, A1303, A1304), 4462 (A1308), 1984 (A1314), 4515 (A1361), 4516 (A1371), 4760 (A1381), 4764 (A1384), 4751 (A1387, A1381, A1392). It occurs throughout the stratigraphic section but is concentrated predominately in the middle Cannonball most often in the mudstone lithofacies and rarely in the sandstone lithofacies.

Discussion.--The 46 moderately well-preserved individuals that I collected are closely comparable to the individuals of *Ammodiscus incertus* described and illustrated by Plummer (1926, p. 63065, pl. 13, figs. 1a-d). This species is not abundant in any sample, the maximum number of individuals in any sample being four, but with one or two individuals per sample being most common. Fox and Ross (1942), Lemke (1960) and Fenner (1974) reported this species from the Cannonball.

Family HORMOSINIDAE Haeckel, 1894

Genus *REOPHAX* Montfort, 1808

Original reference.--Montfort, 1808, p. 331.

Type species.--Reophax scorpiger Montfort, 1808, p. 331 (by original designation).

Diagnosis.--Test free, elongate, nearly straight or arcuate; chambers few, increasing in size as added; sutures nearly normal to
long axis of test, obscure to moderately constricted; aperture terminal, rounded, at end of distinct tubular neck; wall agglutinated, with comparatively little cement, surface rough (adapted from Loeblich and Tappan, 1964, p. C216).

Reophax sp.

Description of material.—Test uniserial; chambers inflated; sutures depressed, wall coarsely arenaceous.

Measurements.—Length of hypotype, 0.6 mm; width of hypotype, 0.2 mm.

Hypotypes.—Univ. of N. Dak. Cat. Nos. 13814, 13815.

Occurrence.—This species was collected from NDSWC wells 8347 (A1272) and 4388 (A1295). It occurs in the middle and upper middle Cannonball in mudstone lithofacies.

Discussion.—This species is represented by two fragments, neither of which has the aboral or apertural extremities preserved. Without an aperture, it is not possible to make a definite generic assignment. This genus has not been reported previously from the Cannonball.

?Reophax sp.

Description of material.—Wall of very fine-grained sand; all specimens flattened; transverse depressions, presumably sutures, extend the width of test.

Measurements.—Length of hypotype, 0.3 mm; width of hypotype, 0.1 mm.
Hypotype.—Univ. of N. Dak. Cat. No. 13816.

Occurrence.—This species occurred in NDSWC wells 3558 (A1091), 3559 (A1106, A1110), 3647 (A1132), 8342 (A1272), 4388 (A1289, A1296, A1297, A1298) and 4384 (A1304). Stratigraphically, this species occurs mainly in the middle Cannonball in the sandstone and mudstone lithofacies.

Discussion.—All of the 26 specimens of this species are poorly preserved and flattened due to compaction. This species was initially assigned to Bathysiphon because of its tube-like test; however, Olsson (1976) indicated that these specimens would be more properly placed in the genus Reophax.

Family LITUOLIDAE de Blainville, 1825

Genus HAPLOPHRAGMOIDES Cushman, 1910

Type species.—Haplophragmoids canariense (d'Orbigny) = Nonionina canariense d'Orbigny, 1839b, p. 128 (by original designation).

Diagnosis.—Test planispirally coiled, involute; aperture an equatorial interiomarginal slit; wall agglutinated (adapted from Loeblich and Tappan, 1964, p. C225).

Haplophragmoids sp. A

Plate 1, fig. 8

Description of material.—Test involute, compressed, umbilicate, thickest part of test adjacent to umbilicus; periphery
subacute; sutures appear raised because of lateral compression; aperture an arched slit at base of last septal face; wall finely arenaceous.

Measurements.—Diameter of hypotype, 0.4 mm; thickness of hypotype, 0.1 mm.

Hypotypes.—Univ. of N. Dak. Cat. Nos. 13817, 13818.

Occurrence.—This species was collected from NDSWC wells 3560 (A1084), 3558 (A1090-A1094), 3559 (A1104, A1105, A1107-A1113), 3433 (A1114), 3647 (A1141, A1148), 4312 (A1189, A1190, A1194, A1195, A1254), 8347 (A1268, A1269), 4388 (A1277-A1281), 4384 (A1299-A1302, A1304), 4752 (A1376) and 4751 (A1388, A1391, A1394-A1396). It occurs throughout the stratigraphic section but is concentrated mainly in the middle Cannonball. This species occurs in both sandstone and mudstone lithofacies but the majority of occurrences is in the mudstone lithofacies.

Discussion.—The 107 moderately well preserved individuals of this species are somewhat similar in overall appearance to Haplophragmoides gigas var. minor described by Nauss (1947, p. 338-339). The Cannonball forms are more prominently umbilicate than H. gigas var. minor. In contrast to the other agglutinated species collected in this study, this species is invariable in color; all specimens of this species are white, regardless of the color or composition of the associated sediment. Lemke (1960) reported two new species of Haplophragmoides from the Cannonball, but in the absence of descriptions and illustrations it is not possible to
determine if this is one of them.

Haplophragmoides sp. B

Plate 1, fig. 3

Description of material.—Test broadly umbilicate, slightly evolute with inner portions of inner whorls showing; sutures distinct, depressed and limbate; aperture an interio-marginal slit; wall finely arenaceous.

Measurements.—Diameter of hypotype, 0.4 mm; thickness of hypotype, 0.08 mm.

Hypotype. Univ. of N. Dak. Cat. No. 13819.

Occurrence.—This species is represented by seven individuals collected from NDSWC wells 3559 (Al110), 3433 (Al118), 8102 (Al179), 4312 (Al251) and 4388 (Al287). It is found in the middle Cannonball and occurs most often in the mudstone lithofacies.

Discussion.—This species differs from Haplophragmoides sp. A in that it is less compressed and has a much broader umbilicus. It is also less involute and shows the inner parts of the previous whorl.

Genus AMMOCACULITES Cushman, 1910

Original reference.—Cushman, 1910, p. 114.

Type species.—Ammobaculites agglutinans (d'Orbigny) = Spirolina agglutinans d'Orbigny, 1846, p. 137 (by original designation).
Diagnosis.--Test free, early portion closely coiled, later portion uncoiled and rectilinear, rounded in section; interior simple; aperture terminal, rounded (adapted from Loeblich and Tappan, 1964, p. C239-C240).

Ammobaculites expansus Plummer, 1933

Plate 1, fig. 7

Ammobaculites expansus Plummer, 1933, p. 65.

Diagnosis.--Test coarsely arenaceous, about the first 12 chambers arranged in tight and very strongly compressed and slightly umbilicate coil of two convolutions, final two or three chambers strongly compressed and arranged in rectilinear succession; sutures obscure except last two or three chambers of fully mature test where they are somewhat depressed; aperture narrow, elongate opening at end of final chamber (adapted from Plummer, 1933, p. 65).

Measurements.--Width of type specimen, 0.2 mm; height of type specimen, 0.1 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13820.

Occurrence.--Four individuals of this species were collected from NDSWC well 4453 (Al264) from the siltstone lithofacies in the upper middle Cannonball.

Discussion.--The individuals of this species are comparable to those of **Ammobaculites expansus** illustrated by Plummer (1933, p. 65, pl. 5, figs. 4-6). She (1933, p. 65) noted that the Midway forms are, for the most part, dark except for the apertural rim.
The Cannonball forms show a similar characteristic except that the entire lectilinear series of chambers is of lighter color. The Cannonball individuals differ from those of Plummer in that the sutures on the planispiral part of the test are most distinct and this part of the test is less clearly umbilicate. The Cannonball forms are also more finely arenaceous than those illustrated by Plummer. The more finely arenaceous tests may account for the sutures being more distinct on the Cannonball forms. Neither this species nor genus has been previously reported from the Cannonball Formation.

Family TEXTULARIIDAE Ehenenberg, 1838

Genus SPIROLECTAMMINA Cushman, 1927

Original reference.--Cushman, 1927, p. 23.

Type species.--Spirolectammina biformis (Parker and Jones) = Textularia agglutinans d'Orbigny var. biformis Parker and Jones, 1865, p. 370 (by original designation).

Diagnosis.--Test free, elongate, early portion in planispiral coil of few chambers, later chambers biserially arranged; aperture low arch at inner margin of final chamber; wall agglutinated (adapted from Loeblich and Tappan, 1964, p. C251).

Spirolectammina wilcoxensis Cushman and Ponton, 1932

Plate 1, fig. 9

Spirolectammina wilcoxensis Cushman and Ponton, 1932, p. 51.

Diagnosis.--Test broad compressed, periphery subacute, early chambers coiled; chambers distinct, low and broad in the early portion, gradually and rather regularly increasing in height as added, slightly
overlapping, later ones slightly inflated; sutures distinct, slightly depressed especially in the later portion, gently curved making a very slight angle with the horizontal; aperture low curved opening at the base apertural face; wall arenaceous but rather smoothly finished (Cushman and Ponton, 1932, p. 51).

Measurements.--Maximum length of hypotype, 0.3 mm; maximum width of hypotype, 0.2 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13821, 13822, 13823.

Occurrence.--The ten specimens of this species were collected from NDSWC wells 3560 (A1085), 3559 (A1109, A1111), 8347 (A1268), 4388 (A1284, A1288, A1290) and 4515 (A1362). Stratigraphically, this species occurs in the upper and middle Cannonball, mainly in the mudstone lithofacies and rarely in the sandstone lithofacies.

Discussion.--The individuals of this species are comparable to those of *Spiroplectammina wilcoxensis* illustrated by Cushman and Ponton (1932, p. 51). This species has not previously been reported from the Cannonball, but *Spiroplectammina laevis* (Roemer) was reported by Fox and Ross (1942). The forms collected in this study lack the raised sutures and sharply angular periphery diagnostic of *S. laevis.*

Family TROCHAMMINIDAE Schwager, 1877

Genus TROCHAMMINA Parker and Jones, 1859

Original reference.--Parker and Jones, 1859, p. 347.

Type species.--*Trochammina inflata* (Montagu)=*Nautilus inflatus* Montagu, 1808, p. 81 (by original designation).

Diagnosis.--Test free, trochospiral; globular to ovate chambers increasing gradually in size; aperture low interiomarginal extrumbilical-
umbilical arch may have narrow bordering lip; wall agglutinated (adapted from Loeblich and Tappan, 1964, p. C259).

Trochammina sp.

Plate 1, figs. 5, 6

Description of material.—Test small, compressed, periphery angular to subacute and may be lobate in more flattened specimens; primary whorls obscure, later whorls distinct; spire low and slightly raised above dorsal surface of final whorl; ventral surface flat to slightly concave with small, deep umbilicus; chambers gradually increasing in size, seven to nine on final whorl, chambers appear to be scalloped on ventral side because of compression; sutures radial, appear to be raised because of compression of adjacent chamber walls, spiral suture distinct on some specimens; aperture indistinct but probably umbilical-extraumbilical; wall of fine-grained sand, most specimens stained brown with exception of last chamber that may be white or gray.

Measurements.—Maximum diameter of hypotype, 0.5 mm; maximum thickness of hypotype, 0.2 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13824.

Occurrence.—This species was collected from NDSWC wells 3558 (A1094), 3559 (A1111), 3557 (A1128), 8102 (A1178), 4312 (A1187, A1195, A1196, A1198, A1250, A1255), 4453 (A1260-A1264), 8347 (A1267, A1268, A1274), 4388 (A1276, A1278-A1280, A1282, A1284, A1289, A1290, A1294-A1297), 4384 (A1300, A1301, A1303, A1304), 4456 (A1306), 1984 (A1313, A1314), 2017 (A1319), 4511 (A1343-A1345), 4513 (A1359), 4515 (A1365, A1366, A1368), 4516 (A1371), 4752 (A1375), 4760 (A1379, A1380), 4764 (A1365), 4751 (A1391) and 3075 (A1402), in the upper-middle and middle
Cannonball, predominantly from the mudstone lithofacies and occasionally from the sandstone lithofacies.

Discussion.—Most of the 235 specimens of this species are compressed, giving the specimens a scalloped appearance. The apertures on all specimens are obscured due to compression. Most specimens are finely arenaceous except for the last whorl that is somewhat coarser. On some specimens, the last chamber is of a somewhat lighter color than the rest of the test. The color difference could be the result of lignite staining of the cement with the last-formed chamber being too recent to completely have taken up the stain. This genus was not reported by Fox and Ross (1942) or Lemke (1960). I (Fenner, 1974) reported a different species of *Trochammina* from the Cannonball.

Suborder MILIOLINA

Family FISCHERINIDAE Millet, 1898

Genus CYCLOGYRA Wood, 1842

Type species.—*Cyclogyra multiplex* Wood, 1842, p. 458 (by original designation).

Diagnosis.—Test free, discoidal, consisting of globular proloculus and long undivided planispirally wound second chamber, partly or wholly evolute; aperture at open end of the tube; wall calcareous, inperforate, porcellaneous (adapted from Loeblich and Tappan, 1964, p. C438).

Remarks.—According to Loeblich and Tappan (1964, p. C438), the genus *Cornuspira* should be combined with the genus *Cyclogyra*.
Cyclogyra involvens (Reuss), 1850
Plate 1, fig. 10

Operculina involvens Reuss, 1850, p. 370, fig. 30.

Cornuspira involvens (Reuss). Reuss, 1863, p. 39, pl. 1, fig. 2.

Diagnosis.—Test strongly concave of numerous (12–19), abruptly increasing, flattened volutions, each of which encloses part of previous volution; innermost volutions narrow, outermost volution wide, occupying 40–60% of diameter; wall smooth (translated and adapted from Reuss, 1850, p. 370).

Measurements.—Diameter of hypotype, 0.2 mm; thickness of hypotype, 0.05 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13825.

Occurrence.—This species was collected from NDSWC well 3647 (A1152) in the middle Cannonball from the mudstone lithofacies.

Discussion.—The one well-preserved specimen of this species is closely conformable to Reuss' (1850, p. 370, figs. 20a, 20b) description and figures of Cyclogyra involvens (=Operculina involvens) with the exception that the Cannonball form has a more rounded periphery. The Cannonball form is dark amber that is probably due to the infilling by sulphides. Fox and Ross (1942) and Fenner (1974) reported this species from the Cannonball.

Family MILIOLIDAE Ehrenberg, 1839

Genus QUINQUELOCULINA d'Orbigny, 1826

Original reference.—d'Orbigny, 1826, p. 301.

Type species.—Quinqueloculina seminulum (Linne)=Serpula seminulum Linne, 1758, p. 786 (by subsequent designation of Parker and Jones, 1859, pt. 1, p. 480).
Diagnosis.—Test coiled with chambers one-half coil in length and alternating regularly in five planes of coiling 72° apart, but with successive chambers in planes 144° apart, so that three chambers are visible from exterior on one side of test and four visible from opposite side; aperture terminal, rounded, with simple or bifid tooth; wall calcareous porcelaneous, imperforate, with inner pseudchitinous layer, rarely with some agglutinated grains added to exterior (Loeblich and Tappan, 1964, p. C458).

Quinqueloculina plummerae Cushman and Todd, 1942

Plate 1, fig. 13

Quinqueloculina ferussaci d'Orbigny, 1826, p. 301.

Miliola (*Quinqueloculina*) *ferussaci* Parker and Jones, 1865, p. 411.

Miliolina ferussacii Sherborn and Chapman, 1886, p. 742.

Quinqueloculina plummerae Cushman and Todd, 1942, p. 25.

Diagnosis.—Test small for genus, nearly as broad as long, in end view about twice as broad as thick, periphery truncate with rounded, carinate edges; chambers distinct, the sides flattened or slightly concave toward the periphery; sutures distinct but little if at all depressed; aperture terminal, without a neck, but with a slightly thickened lip and a short blunt tooth, wall smooth (adapted from Cushman and Todd, 1942, p. 25).

Measurements.—Maximum length of hypotype, 0.2 mm; maximum width of hypotype, 0.1 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13826.

Occurrence.—This species was collected from NDSWC well 3647 (A1150) from the mudstone lithofacies in the lower-middle Cannonball.
Discussion.—The two Cannonball specimens are slightly more pointed on the aboral extremity and are less distinctly carinate than the Cushman and Todd's (1942, figs. 2a, 2b) figures of the type specimens. This genus has not been previously reported from the Cannonball.

Suborder ROTALIINA
Family NODOSARIIDAE Eherenberg, 1838
Genus NODOSARIA Lamarck, 1812

Original reference.—Lamarck, 1812, p. 121.

Type species.—Nodosaria radicula (Linne)=Nautilus radicula Linné, 1758 (by subsequent designation of Children, 1823, p. 117).

Diagnosis.—Test free, multilocular, rectilinear, rounded in section; sutures distinct and commonly perpendicular to axis of test; surface smooth, costate, striate, hispid or tuberculate; aperture terminal, central, basically radiate, may be produced on neck (adapted from Loeblich and Tappan, 1964, p. C512).

Nodosaria affinis Reuss, 1845
Plate 2, fig. 5

Nodosaria affinis Reuss, 1845, p. 26, pl. 13, fig. 16. Plummer, 1926, p. 89-90, pl. XIV, figs. 2a-d.

Diagnosis.—Test straight, elongate, apiculate; chambers cylindrical or only slightly inflated in earliest portion of test to more strongly globular in later development; sutures transverse, generally slightly constricted in early part of test to deeply constricted above; test ornamented by 9-11 longitudinal costae; aperture protruding, round, mammillate (adapted from Plummer, 1926, p. 90).

Measurements.—Length of hypotype, 1.5 mm; maximum width of hypotype, 0.5 mm.
Hypotype.—Univ. of N. Dak. Cat. No. 13829.

Occurrence.—This species was collected from NDSWC wells 3650 (A1087), 3558 (A1095-A1098), 3559 (A1114), 3433 (A1172), 3557 (A1127, A1128), 3647 (A1134, A1142-A1145, A1152), 8103 (A1161, A1162), 4397 (A1171), 8102 (A1175, A1180, A1182), 4312 (A1195), 4388 (A1287, A1288, A1290, A1291), 4389 (A1301, A1304), 1984 (A1309), 4511 (A1326, A1330, A1331, A1336), 4513 (A1347, A1358), 4514 (A1365, A1367), 4516 (A1369), 4760 (A1381) and 4467 (A1398). It occurred in the middle and lower Cannonball in both the sandstone and mudstone lithofacies.

Discussion.—The 44 specimens of this species are all fragmental. Most individuals are preserved as individual chambers. In each sample, unless the fragments contained at least three chambers, all fragments were collectively called one individual. Of all the specimens, only one aperture was preserved; as a result, the individual apertures could not be counted to determine the numbers of individuals. Only one aboral extremity was found among the fragments and the largest fragment consisted of four chambers. Fox and Ross (1942), Lemke (1960) and Fenner (1974) reported this species from the Cannonball.

Nodosaria sp.

Plate 2, fig. 2

Description of material.—Chambers spherical, highly inflated; sutures highly constricted; surface with 12 longitudinal costae extending length of chambers but not across sutures.

Measurements.—Length of hypotype (1 chamber), 0.5 mm, width of hypotype, 0.5 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13830.
Occurrence.--This species was collected from NDSWC well 3647 (All49) in the lower-middle Cannonball from the mudstone lithofacies.

Discussion.--This species differs from Nodosaria affinis in that its sutures are more constricted, and it is much larger.

Genus CHRYSALOGONIUM Schubert, 1907

Type species.--Chrysalogonium polystoma (Schwager)=Nodosaria polystoma Schwager, 1866, p. 217 (by original designation).

Diagnosis.--"Test similar to Nodosaria but with a series of pores taking place of radial apertural slits of Nodosaria" Loeblich and Tappan, 1964, p. C514).

?Chrysalogonium sp.

Plate 2, fig. 1

Description of material.--Test uniserial; chambers elongate, about five times longer than wide; sutures slightly constricted; aperture not preserved; surface unornamented.

Measurements.--Length of hypotype, 0.5 mm; width of hypotype, 0.1 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13828.

Occurrence.--This species was collected from NDSWC wells 3647 (All52) and 8102 (All79) in the middle or lower middle Cannonball from the mudstone lithofacies.

Discussion.--The generic assignment of this form is uncertain because it is represented by only fragments consisting of five separate chambers on which no aperture is preserved. At one locality (All52), all the chambers appear to be derived from the same individual. When
reconstructing the chambers, they form an arcuate pattern which suggests either the genus Dentalina or the genus Chrysalogonium. This form was tentatively placed into the genus Chrysalogonium because the one species previously collected from the Cannonball that has a chamber shape that most closely conforms to this form is Chrysalogonium granti, reported by Fox and Ross (1942). Olsson (1976) suggested that this form could be placed equally well into either Dentalina or Chrysalogonium.

Genus DENTALINA Risso, 1826

Original reference.--Risso, 1826, p. 16.

Type species.--Dentalina cuvieri (d'Orbigny)=Nodosaria (Dentaline) cuvieri d'Orbigny, 1826, p. 255 (monotypic in Risso, 1826). Dentalina communis (d'Orbigny)=Nodosaria (Dentaline) communis d'Orbigny, 1826 (designated by Jones, 1883).

Dentalina obliqua (d'Orbigny)=Nodosaria (Dentaline) obliqua d'Orbigny, 1826 (designed by Galloway and Wissler, 1927).

Diagnosis.--"Test elongate, arcuate, uniserial; sutures commonly oblique; aperture radiate, terminal, may be eccentric or nearly central. (Differs from Nodosaria in being asymmetrical.)" (Loeblich and Tappan, 1964, p. C516).

Dentalina colei Cushman and Dusenbury, 1934
Plate 2, fig. 4

Vaginulina legumen (Linne) var. elegans Cole (not d'Orbigny), 1927, p. 21, pl. 3, figs. 10, 11.

Dentalina colei Cushman and Dusenbury, 1934, p. 54, pl. 7, figs. 10, 12.
Diagnosis.—Test elongate, tapering, with the greatest width near the apertural end, slightly curved; chambers distinct, earliest ones slightly compressed, later ones circular in transverse section, increasing very gradually in size and height as added, little if at all inflated; sutures flush with surface, slightly oblique; aperture radiate, toward the inner side of the apertural face; wall smooth (adapted from Cushman, 1951, p. 19).

Measurements.—Length of hypotype, 1.1 mm; maximum width of hypotype, 0.2 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13831.

Occurrence.—This species was collected from NDSWC wells 3559 (A1106), 3433 (A1122), 8102 (A1182), 2006 (A1318) and 4467 (A1397), in the mudstone lithofacies from the middle and upper-middle Cannonball.

Discussion.—The five fragmental individuals of this species closely resemble the figures of Cushman and Dusenbury (1934, p. 7, figs. 10-12) and the description and figures of Cushman (1951, p. 19, pl. 6, figs. 8-10). Neither Fox and Ross (1942) nor Lemke (1960) reported this species from the Cannonball, but they did report *Dentalina gardnerae* (Plummer) which is similar to *D. colei*. It seems unlikely that the present Cannonball forms are *D. gardnerae* because their boral extremity is too blunt. Cushman's figures (1951, pl. 6, figs. 4-10) clearly illustrate the differences between the two species. The lower one-third of *D. gardnerae* expands much more abruptly than the upper two-thirds. *D. colei* does not show such a change. It appears to be increasing gradually and consistently in size from the apex to the aperture.
Dentalina eocenica Cushman, 1944

Plate 2, fig. 6

Dentalina eocenica Cushman, 1944, p. 36, pl. 6, fig. 1.

Diagnosis.—Test small, slender, slightly curved, increasing very slightly in diameter; chambers distinct but only slightly inflated in the later portion, increasing gradually and rather regularly in size as added, the last-formed one in the adult nearly twice as high as broad; sutures distinct, depressed slightly in the later portion, earlier ones slightly oblique, later ones nearly at right angles to the long axis of the test; wall smooth, aperture radiate, terminal, nearly in the center of the terminal face (Cushman, 1944, p. 36).

Measurements.—Length of hypotype (13834), 0.7 mm; maximum width of hypotype, 0.1 mm.

Hypotypes.—University of N. Dak. Cat. Nos. 13832, 13833, 13834.

Occurrence.—This species was collected from NDSWC wells 3559 (A108), 3557 (A1128), 3647 (A1142) and 4384 (A1301) from the middle Cannonball in the mudstone lithofacies.

Discussion.—This species is represented by three small fragments and one relatively complete specimen (hypotype 13834). This material conforms favorably to *Dentalina eocenica* Cushman as illustrated by Cushman (1944, pl. 6, fig. 1; 1951, pl. 6, figs. 30-33). Cushman (1944, p. 36) noted that Plummer (1926, p. 79-80) misidentified this species as *Nodosaria pauperata* (d'Orbigny). Fox and Ross (1942) identified *Dentalina pauperata*, which may also have been a misidentification of *D. eocenica*.

Dentalina pseudo-obliquestriata (Plummer) Cushman, 1940

Plate 2, fig. 3

Nodosaria pseudo-obliquestriata Plummer, 1926, p. 87, pl. 4, fig. 18.
Dentalina pseudo-obliquestriata (Plummer) Cushman, 1940, p. 58, pl. 10, fig. 18.

Diagnosis.—Test long, slender, arcuate, tapering toward the aboral extremity; chambers numerous, strongly inflated; sutures strongly constricted; aperture protruding, round, somewhat eccentric; test ornamented by coarse costae that follow the length of test somewhat obliquely (adapted from Cushman, 1951, p. 19).

Measurements.—Maximum length of hypotype, 0.7 mm; maximum width of hypotype, 0.2 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13835.

Occurrence.—This species was collected from NDSWC wells 3559 (A1108), 3647 (A1138) and 4511 (A1327) in the middle and upper-middle Cannonball from the mudstone and sandstone lithofacies.

Discussion.—The three fragmental individuals that were collected are closely conformable to the description and figures of Cushman (1951, p. 19, pl. 6, figs. 1-3). Cushman (1951, p. 19) noted that this species occurs mostly commonly in the lower part of the Paleocene. This species was not reported by Fox and Ross (1942) or Lemke (1960), but Fenner (1974) reported a single specimen not assigned to a species but which appeared to be D. pseudo-obliquestriata.

?Dentalina sp. A

Plate 2, fig. 7

Description of material.—Test elongate; chambers about twice as long as wide, very slightly inflated; sutures slightly constricted; aperture absent; wall smooth.
Measurements.--Maximum length of hypotype, 0.5 mm; maximum width of hypotype, 0.1 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13836.

Occurrence.--This species was collected from NDSWC well 2006 (A1318) in the mudstone lithofacies. The location with the stratigraphic section is uncertain.

Discussion.--This species is represented by one fragment consisting of two chambers. Since the sutures appear to be oblique, this form has been questionably assigned to the genus Dentalina. The lack of a larger specimen and the absence of an aperture make a definite generic assignment impossible.

?Dentalina sp. B

Description of material.--Test uniserial; chambers inflated, one and one-half times longer than wide; sutures moderately constricted; aperture possibly radiate, produced on neck; wall smooth.

Measurements.--Length of hypotype, 0.4 mm; width of hypotype, 0.1 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13827.

Occurrence.--This species was collected from NDSWC well 8102 (A1179) in the middle Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by two badly broken fragments. This is not enough material to make a definite generic assignment. One of the fragments appears to have part of an apertural neck in place, and the aperture may be radiate; however, it is not well enough preserved to be certain. Because the test is arcuate and the chambers are assymetrical, this form has been tentatively assigned to the genus Dentalina.
Genus LENTICULINA Lamarck, 1804

Original reference.—Lamarck, 1804, p. 186.

Type species.—Lenticulina rotulata (Lamarck)=Lenticulites rotulata Lamarck, 1804, p. 187 (by subsequent designation of Children, 1823, p. 153).

Diagnosis.—Test free, planispiral or rarely slightly trochoid, lenticular, umbonate, periphery angled or keeled; chambers increasing gradually in size, in general or greater breadth than height; sutures radial, straight or curved and depressed, flush or elevated; aperture radial at peripheral angle; surface may be variously ornamented with thickened, elevated sutures, bosses or sutural nodes (adapted from Loeblich and Tappan, 1964, p. C520).

Remarks.—According to Loeblich and Tappan (1964, p. C520), the genus Lenticulina now also includes all species formerly included in the genera Cristellaria and Robulus.

Lenticulina alabamensis? (Cushman) Kellough, 1965

Plate 2, fig. 8

Robulus alabamensis Cushman, 1944, p. 33, pl. 5, fig. 13.

Lenticulina alabamensis (Cushman) Kellough, 1965, p. 105, pl. 4, fig. 11.

Diagnosis.—Test small for the genus, umbonate, closely coiled, periphery with the area of each adult chamber slightly flattened, sharply angled but not carinate; chambers numrous, 8 to 11 in final coil, distinct, of uniform shape, increasing gradually and regularly in size as added, the apertural angle translucent; sutures distinct, nearly tangential, very slightly curved, not depressed; aperture radiate, with
a slight opening at the upper end of the ventral face; wall smooth, polished (adapted from Cushman, 1944, p. 33).

Measurements.--Maximum diameter of hypotype (13841), 0.3 mm; maximum thickness of hypotype, 0.1 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13841, 13842, 13843.

Occurrence.--This species was collected from NDSWC wells 3559 (A1111), 3433 (A1116), 3467 (A1141, A1150), 8103 (A1161), 8102 (A1177), 4388 (A1290), 1984 (A1314) and 4751 (A1391) in the middle, upper middle and upper Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by 11 variously preserved specimens that closely resemble Lenticulina alabamensis. The absence of elevated sutures and the lack of distinct umbonal bosses precludes assignment to L. midwayensis, the most common species of Lenticulina in the Cannonball. Olsson (1976) was uncertain of the proper species assignment of this form.

Lenticulina arkansasana (Cushman and Todd) Kellough, 1965
Plate 1, fig. 12

Robulus arkansasanus Cushman and Todd, 1946, p. 48, pl. 7, fig. 14.

Lenticulina arkansasana (Cushman and Todd) Kellough, 1965, p. 105, pl. 4, fig. 12.

Diagnosis.--Test close coiled, strongly umbonate, periphery acute but not keeled, very slightly lobulate; chambers distinct, very slightly inflated, seven or eight in the adult coil, increasing very gradually and uniformly in size as added; sutures distinct, strongly limbate, curved, raised, broadest near umbo where they tend to fuse; aperture at the peripheral angle of the last-formed chamber, slightly
projecting, with distinct median slit extending slightly down the aperture face; wall smooth except for the raised sutures (adapted from Cushman and Todd, 1946, p. 48).

Measurements.—Maximum diameter of hypotype (13837), 1.0 mm; maximum thickness of hypotype, 0.3 mm.

Hypotypes.—Univ. of N. Dak. Cat. Nos. 13837, 13838.

Occurrences.—This species was collected from NDSWC wells 4384 (A1301) and 4513 (A1358) in the upper middle Cannonball from the mudstone lithofacies.

Discussion.—This species is represented by two specimens that compare favorably to the illustration of Kellough (1965, pl. 4, fig. 12). This species is somewhat larger than the other species of this genus. The Cannonball forms differ slightly from that illustrated by Kellough in that they have a small, irregularly developed umbonal boss; however, they are comparable in other characteristics. Olsson (1976) was uncertain as to the proper specific assignment of these forms and indicated a questionable assignment to this species.

Lenticulina midwayensis (Plummer) Plummer, 1933
Plate 1, fig. 11

Cristellaria midwayensis Plummer, 1926, p. 95, pl. 13, fig. 5.
Kellough, 1959, fig. 6.

Lenticulina midwayensis (Plummer) Plummer, 1933, p. 54, 61 and 64.

Robulus midwayensis (Plummer) Cushman, 1940, p. 54, pl. 9, fig. 12. Toulmin, 1941, p. 579, pl. 78, fig. 23, text fig. 29. Cushman and Todd, 1942, p. 26, pl. 5, figs. 4, 5. Kline, 1943, p. 17, pl. 1, fig. 3
Cushman, 1944, p. 33, pl. 5, fig. 15. Cooper, 1944, p. 351, pl. 5,

Robulus midwayensis (Plummer) var. *virginianus* Shifflett, 1948, pl. 1, figs. 15-16.

Lenticulina midwayensis (Plummer) Kellough, 1965, p. 106, pl. 3, fig. 8. Berggren, 1974, p. 453. Berggren and Aubert, 1975, p. 81-83, 116, Table VIII, Text fig. 4, pl. I, fig. 2, pl. XII, fig. 14, pl. XVI, fig. 7.

Diagnosis.—Test large, circular, very closely coiled, full bodied, though somewhat compressed; periphery distinctly angular but not flanged in its typical form; chambers 10-12 in adult form; septa elevated, smooth, narrow, gently curved, radiating from a conspicuous central boss and tapering somewhat toward the peripheral margin; aperture at apex of broad septal face (modified from Plummer, 1926, p. 95).

Measurements.—Maximum diameter of hypotype, 0.6 mm; maximum thickness of hypotype, 0.4 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13839.

Occurrence.—This species was collected from NDSWC wells 3560 (A1083-A1085), 3558 (A1089, A1099), 3559 (A1111, A1112), 3647 (A1144, A1145, A1152), 8102 (A1175, A1182), 4312 (A1184, A1186, A1193, A1197), 8347 (A1268, A1271), 4388 (A1279, A1286, A1288, A1292), 4384 (A1300, A1301, A1304, A1305), 1984 (A1309), 4511 (A1323, A1333, A1334), 4513 (A1347), 4515 (A1364, A1370), 4752 (A1374) and 4751 (A1386, A1389) in the middle Cannonball, predominantly from the mudstone lithofacies and rarely from the sandstone lithofacies.

Discussion.—The 44 specimens of this species closely resemble the illustrations of *Lenticulina midwayensis* (Plummer)(=Robulus...
midwayensis) of Nogan (1964, pl. 1, figs. 13-16) and Kellough (1965, pl. 3, fig. 8). Nogan (1964, p. 22) suggested that Lenticulina midwayensis and L. degolyeri were variants of the same species and included Lenticulina degolyeri in his synonymy. Olsson (1976) said that he treated the two species separately. I have chosen to treat the two species separately and have therefore omitted L. degolyeri from the synonymy.

Lenticulina midwayensis is one of the more cosmopolitan species in the Cannonball. Outside of the Cannonball, it has a worldwide distribution occurring in the Paleocene of the Gulf Coast and Atlantic Coastal Plain in the United States. Occurrences reported from other parts of the world include Nova Scotia, Tunisia, Morocco, Mozambique, South Africa, West Australia, Cameroon, Angola, Saudi Arabia, Libya, and Turkmenia (Berggren and Aubert, 1975; and Berggren, 1974).

This species was reported from the Cannonball by Lemke (1960).

Lenticulina turbinata (Plummer, 1962)?

Plate 2, fig. 10

Cristellaria turbinata Plummer, 1926, p. 93, pl. 7, fig. 4.

Robulus turbinatus (Plummer) Cushman, 1940, p. 55, pl. 9, fig. 17.

Diagnosis.—"Test circular, considerably compressed; peripheral margin sharp and extended into a fragile, white flange that is typically ragged; chambers 8 in final convolution, narrow, smooth; sutures strongly
elevated and of about equal width from large umbonal area to the periphery, very strongly curved; aperture at apex of narrow septal face (Plummer, 1926, p. 93)."

Measurements.—Maximum width of hypotype, 0.6 mm; maximum thickness of hypotype, 0.4 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13840.

Occurrence.—This species was collected from NDSWC well 3647 (All45) in the lower-middle Cannonball from the mudstone lithofacies.

Discussion.—The exact specific assignment of this form is uncertain because it is represented by only one fragmental individual. The lack of a distinct umbonal boss and strongly curved, elevated sutures suggests assignment to *Lenticulina turbinata* (Plummer). Although this species has not previously been reported from the Cannonball, *Lenticulina pseudo-mamilligera* (Plummer) was reported by Fox and Ross (1942). *Lenticulina pseudo-mamilligera* is similar to *L. turbinata*; however, *L. pseudo-mamilligera* lacks the almost circular shape of *L. turbinata*. This form has tentatively been placed into *Lenticulina turbinata* because the fragment appeared to have been nearly circular.

Genus LINGULINA d'Orbigny, 1826

Original reference.—d'Orbigny, 1826, p. 256.

Type species.—*Lingulina carinata* d'Orbigny, 1826, p. 256 (by subsequent designation of Cushman, 1913, p. 61).

Diagnosis.—"Test free, elongate, uniserial and compressed, with succeeding chambers strongly overlapping, as in *Pseudonodosaria*, aperture an elongate terminal slit in plane of compression" (Loeblich and Tappan, 1964, p. C528).
Lingulina sp.
Plate 2, fig. 15

Description of material.--Test conical chambers uninflated, straight sided; sutures slightly depressed, stand out as white lines against darker chambers; last chamber broadly rounded on oral surface; aperture not preserved; wall unornamented.

Measurements.--Maximum length of hypotype, 0.2 mm; maximum width of hypotype, 0.1 mm.

Occurrence.--This species was collected from NDSWC well 4513 (A1353) in the upper Cannonball from the mudstone lithofacies.

Discussion.--The one fragmental, sulphide-filled specimen of this species lacks an aperture but otherwise appears to belong to the genus Lingulina. A species determination was not possible with the material available. This genus has not previously been reported from the Cannonball.

Family POLYMORPHINIDAE d'Orbigny, 1839
Genus GLOBULINA d'Orbigny, 1839

Type species.--Globulina gibba (d'Orbigny) = Polymorphina (globuline) gibba d'Orbigny, 1826, p. 266 (by subsequent designation of Cushman, 1927b, p. 189).

Diagnosis.--"Test globular to ovate; chambers strongly overlapping, added in planes of approximately 144° apart; sutures flush, not depressed; aperture radiate but commonly obscured by fistulose growth" (Loeblich and Tappan, 1964, p. C531).
Globulina gibba (d'Orbigny) Cushman, 1927

Plate 2, fig. 13

Polymorphina (Globuline) gibba d'Orbigny, 1826, p. 266.

Polymorphina gibba d'Orbigny. Plummer, 1926, p. 122, pl. 6, fig. 8.

Globulina gibba (d'Orbigny) Cushman 1927b, p. 189.

Diagnosis.--Test broadly oval in lateral view, slightly com-
pressed; chambers few, uninflated; sutures marked by dark lines; aper-
ture produced; wall smooth (adapted from Plummer, 1926, p. 122).

Measurements.--Maximum length of hypotype (13845), 0.5 mm, (13846), 0.4 mm; maximum width of hypotype (13845), 0.4 mm, (13846), 0.2 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13845, 13846.

Occurrence.--This species was collected from NDSWC wells 3557 (A1127), 8102 (A1175) and 4760 (A1379), in the middle Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by two well-preserved specimens and one sulphide internal mold. It is closely conformable to the illustrations of Globulina gibba (d'Orbigny) of Cushman (1951, p. 9, figs. 26-28). Only the internal mold displays the fistulose apertural growth that frequently occurs in this genus and occasionally occurs in this species. Although the internal mold has a somewhat different shape than the other two specimens, Olsson (1976) placed it in this species. Fox and Ross (1942) and Fenner (1974) reported this species from the Cannonball.
Globulina sp. A
Plate 2, fig. 9

Description of material.—Test elongate, globular, with greatest diameter toward aboral end, tapers toward aperture; sutures indistinct; aperture produced; wall smooth.

Measurements.—Maximum width of hypotype, 0.2 mm; maximum length of hypotype, 0.5 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13848.

Occurrence.—This species was collected from NDSWC well 4312 (A1251) in the middle Cannonball from the mudstone lithofacies.

Discussion.—Because this form is represented by a single poorly preserved individual; no specific assignment was made.

Globulina sp. B
Plate 2, fig. 14

Description of material.—Test globular, somewhat compressed, aboral extremity formed into slight point; sutures indistinct, slightly depressed; aperture radial; wall smooth.

Measurements.—Length of hypotype, 0.3 mm; maximum width of hypotype, 0.2 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13847.

Occurrence.—This form was collected from NDSWC well 2051 (A1321) from the mudstone facies. The stratigraphic placement of this species is uncertain.

Discussion.—The slightly depressed sutures and the overall shape with the slight apical point tend to distinguish this form from *Globulina gibba* (d'Orbigny).
Genus *PYRULINA* d'Orbigny, 1839

Type species.--*Pyrrulina gutta* (d'Orbigny) = *Polymorphina* (Pyrruline) *gutta* d'Orbigny, 1826, p. 267 (by original designation (monotypic)).

Diagnosis.--"Test fusiform; early chambers arranged in spiral series approximately 120° apart, later chambers biserial; sutures flush; aperture radiate" (Loeblich and Tappan, 1964, p. C533).

Pyrrulina cylindroides (Roemer) Cushman and Ozawa, 1930

Plate 2, fig. 11

Pyrrulina cylindroides (Roemer) Cushman and Ozawa, 1930, p. 56, pl. 14, figs. 1-5.

Diagnosis.--Test elongate, subcylindrical, acuminate at both ends, almost circular in transverse section; chambers elongate, each succeeding chamber farther removed from the base; wall smooth, polished (adapted from Toulmin, 1941, p. 594).

Measurements.--Length of hypotype, 0.6 mm; maximum width of hypotype, 0.2 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13849.

Occurrence.--This species was collected from NDSWC wells 4384 (A1303) and 4515 (A1362) in the upper-middle Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by one well preserved and two poorly preserved specimens. It conforms favorably to the
description of Toulmin (1941, p. 594). Lemke (1960) previously reported this species from the Cannonball.

Family Turrilinidae Cushman, 1927

Genus SPIROBOLIVINA Hofker, 1956

Original reference.—Hofker, 1956, p. 915.

Type species.—Spirobolivina pulchella (Cushman and Stainforth) = Bolivinopsis pulchella Cushman and Stainforth, 1947, p. 78 (by original designation).

Diagnosis.—Test free, elongate with early planispiral stage of about 1.5 volutions, latter biserial, compressed; aperture a loop-shaped opening, with small internal tooth plate similar to Bolivina, tooth plates of successive chambers differing in orientation by 180°; wall thin, calcareous, finely perforate. (Spirobolivina was proposed for calcareous perforate species with internal tooth plate, previously placed erroneously in Bolivinopsis which is an agglutinated form.) (adapted from Loeblich and Tappan, 1964, p. C547).

Spirobolivina emmendorferi (Jennings), 1936

Plate 2, fig. 17

Spiroplectoides emmendorferi Jennings, 1936, p. 26, pl. 3, fig. 8.

Bolivinopsis emmendorferi (Jennings) Olsson, 1960, p. 27, pl. 4, fig. 7. Nogan, 1964, p. 30, pl. 2, fig. 8.

Diagnosis.—Test minute, compressed; early portion coiled, about nine chambers in the coiled portion; later portion biserial with from two to three sets of chambers; aperture terminal (adapted from Jennings, 1936, p. 26).
Measurements.--

<table>
<thead>
<tr>
<th>Hypotype</th>
<th>Maximum Length</th>
<th>Maximum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>13850</td>
<td>0.2 mm</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>"</td>
<td>0.1 mm</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>13851</td>
<td>0.15 mm</td>
<td>0.05 mm</td>
</tr>
</tbody>
</table>

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13850, 13851.

Occurrence.--This species was collected from NDSWC wells 3557 (A1124), 3647 (A1129, A1132-A1135, A1138, A1142, A1144), 2690 (A1157), 8102 (A1175, A1176, A1178-A1181) and 4312 (A1189). It occurred throughout the middle Cannonball in predominantly the mudstone lithofacies and rarely in the sandstone lithofacies.

Discussion.--The 27 individuals of this species that were collected from the Cannonball are, in part, closely conformable to Jennings' (1936, p. 26, pl. 3, fig. 8) description and illustration and Nogan's (1964, pl. 2, fig. 8) illustration. Few of the individuals, however, vary from the holotype in that the biserial part of the test is much longer (five or six sets of chambers). Also, these variants are smaller and relatively narrower than those that more closely resemble the holotype. Olsson (1976), however, indicated that all of the variants belong to Spirobolivina emmendorferi. Neither this genus nor this species has been previously reported from the Cannonball. This species does not occur in the Gulf Coast Paleocene, but it has been reported from the Paleocene of the Atlantic Coastal Plain (Olsson, 1960 and Nogan, 1964).
Family BULIMINIDAE Jones, 1875

Genus BULIMINA d'Orbigny, 1826

Original reference.--d'Orbigny, 1826, p. 269.

Type species.--Bulimina marginata d'Orbigny, 1826, p. 269 (by subsequent designation of Cushman, 1911, p. 76).

Diagnosis.--Test triserial in early stage, may tend to reduce to uniserial in later portion; aperture extending up from base of apertual face, with free border that may have elevated rim and fixed border attached to internal tooth plate, which, with fixed shank, is attached to internal chamber wall below aperture, with free shank that may be dentate or smooth, flaring or enrolled and tubular; wall calcareous, finely to coarsely perforate (adapted from Loeblich and Tappan, 1964, p. C559).

Bulimina rosenkrantzi Brotzen, 1948

Plate 2, fig. 12

Bulimina rosenkrantzi Brotzen, 1948, p. 61, pl. 9, fig. 1.

Diagnosis.--Test elongate, about 3 - 3.5 times as long as broad, rounded in transverse section, except a number of specimens which are triangular at the initial end; chambers numerous, 5-6 whorls, the last one forming nearly half the test, only the initial part increasing intensely in breadth, later the breadth is more or less uniform; chambers fairly inflated, sutures distinct, slightly depressed; wall smooth, finely perforated (Brotzen, 1948, p. 61).

Measurements.--

<table>
<thead>
<tr>
<th>Hypotype</th>
<th>Maximum Length</th>
<th>Maximum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>13852</td>
<td>0.3 mm</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>"</td>
<td>0.25 mm</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>13853</td>
<td>0.3 mm</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>"</td>
<td>0.2 mm</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>13854</td>
<td>0.3 mm</td>
<td>0.2 mm</td>
</tr>
</tbody>
</table>
Hypotypes.--Univ. of N. Dak. Cat. Nos. 13852, 13853, 13854.

Discussion.--The 506 well-preserved specimens of this species agree with the description and illustrations of Brotzen (1948, p. 61, pl. 9, fig. 1). In his discussion of this species, Brotzen noted that considerable variation in overall shape exists and similar variation is seen in the Cannonball specimens. Some of the variation is due to microspheric and megalospheric generations but much variation is due to a great variability within the species. In terms of numbers of individuals, this is one of the most abundant species in the Cannonball. Up to 120 individuals were collected in a single sample. This species occurs in 86 samples making it one of the more cosmopolitan species within the Cannonball. Lemke (1960) reported this species from the Cannonball and Fox and Ross (1942) reported the similar-appearing *Bulimina quadrata* Plummer from the Cannonball. It is likely that the species reported by Fox and Ross is *Bulimina rosenkrantzi* rather than *B. quadrata*.

Bulimina sp.
Plate 2, fig. 16

Description of material.—Test elongate, about four times as long as broad, rounded in transverse section, about 6.5 whorls; test very slender and uniformly, gently tapering; chambers slightly inflated; sutures distinct, slightly depressed; aperture, a high, loop-shaped opening; wall smooth, finely perforate.

Measurements.—Length of hypotype, 0.3 mm; maximum width of hypotype, 0.075 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13855.

Occurrence.—This species was collected from NDSWC wells 3433 (All9), 4312 (All94) and 4388 (A1278) in the middle and upper middle Cannonball from the mudstone lithofacies.

Discussion.—This species is represented by four well-preserved specimens. It is similar to Bulimina rosenkrantzi except that the test is narrower and it is tapered much more uniformly and gently toward the aboral extremity. The aboral extremity is gently rounded in this species as opposed to a pointed extremity in Bulimina rosenkrantzi. The aperture appears to be about the same shape and in about the same location as that of B. rosenkrantzi.

Superfamily DISCORBACEA
(no familial or generic designation made)

Plate 2, fig. 18

Description of material.—Test small, biconvex, trochospiral, periphery keeled; all chambers visible on dorsal side, only chambers
of last whorl visible on ventral side; sutures slightly depressed, radial on ventral side; apertures indistinct; wall hyaline, finely perforate.

Measurements.--Maximum width of hypotype, 0.2 mm; maximum thickness of hypotype, 0.05 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13856.

Occurrence.--This form was collected from NDSWC wells 4312 (A1176?, A1196), 4388 (A1290) and 1984 (A1313?) in the middle or upper-middle Cannonball from the mudstone lithofacies.

Discussion.--This form is represented by two specimens plus two questionable specimens. All specimens are fragmental and all lack an aperture. No identification could be made below the level of superfamily because of the poor preservation of the specimens.

Family DISCORBIDAE Ehrenberg, 1838

Genus EPISTOMINELLA Husezima and Maruhasi, 1944

Original reference.--Husezima and Maruhasi, 1944, p. 397.

Type species.--Epistominella pulchella Husezima and Maruhasi, 1944, p. 397 (by original designation).

Diagnosis.--Test trochospiral; all chambers visible on spiral side, only those of last whorl visible on umbilical side; sutures oblique on spiral side, nearly radial on umbilical side; aperture an elongate vertical slit in face, near and parallel to peripheral keel; wall calcareous, perforate, monolamellid (adapted from Loeblich and Tappan, 1964, p. C578).

Remarks.--This genus includes the genera Pulvinulinella Cushman, 1926, p. 62 (not Eimer and Fickert, 1899) and Pseudoparrella Cushman and Ten Dam, 1948, p. 49 (Loeblich and Tappan, 1964, p. C578).
Epistominella minuta (Olsson), 1960

Plate 3, figs. 2, 3

Pseudoparrella minuta Olsson, 1960, p. 40, pl. 6, figs. 7-9.

Epistominella minuta (Olsson) Nogan, 1964, p. 36, pl. 3, figs. 7, 8.

Diagnosis.—Test minute, biconvex, low trochospiral, compressed, equatorial periphery circular, axial periphery subacute; chambers, seven in final whorl, gradually increasing in size, not inflated; sutures non-limbate, flush with surface, last suture on umbilical side may be somewhat depressed, spiral side oblique, gently curved, umbilical side radial to very slightly curved; aperture interiomarginal-areal, a narrow, somewhat comma-shaped opening, parallel to plane of coiling; wall smooth, finely perforate (adapted from Olsson, 1960, p. 40).

Measurements.—Maximum width of hypotype (13857), 0.25 mm; maximum thickness of hypotype, 0.05 mm.

Hypotypes.—Univ. of N. Dak. Cat. Nos. 13857, 13858.

Occurrence.—This species was collected from NDSWC wells 3647 (A1148, A1154), 8102 (A1180, A1181), 4312 (A1183, A1200), 8347 (A1268), 4388 (A1277-A1280) and 4467 (A1397) in the middle and upper part of the lower Cannonball from the mudstone lithofacies.

Discussion.—This species is represented by 28 specimens that closely resemble the description and illustrations of Pseudoparrella minuta Olsson = Epistominella minuta (Olsson) by Olsson (1960, p. 40, pl. 6, figs. 7-9) and the illustrations of Epistominella minuta by Nogan (1964, pl. 3, figs. 7, 8). Epistominella minuta occurs in the Paleocene of the Atlantic Coastal Plain (Olsson, 1960; Nogan, 1964), but has not been reported from the Paleocene of the Gulf Coast. This species
has not previously been reported from the Cannonball, but Lemke (1960, p. 30-31) indicated that a new species of *Pulvinulinella* was present in the Cannonball. This may have been *Epistominella minuta*.

Genus *ROSALINA* d'Orbigny, 1826

Original reference.—d'Orbigny, 1826, p. 271.

Type species.—Rosalina globularis d'Orbigny, 1826, p. 271 (by subsequent designation of Loeblich and Tappan, 1964, p. C584).

Diagnosis.—Test plano-convex, free or attached by flattened umbilical surface, all chambers visible from convex spiral side, only those of final whorl visible around open umbilicus on umbilical side; aperture a low interiomarginal arch at base of final chamber near periphery on umbilical side, with broad chamber flap just beneath aperture extending into open umbilicus, secondary sutural opening opposite side of flap, those of previous chambers also remaining open (Loeblich and Tappan, 1964, p. C584).

Rosalina sp.

Plate 3, fig. 1

Description of material.—Test minute, trochospiral with low spire; periphery gently rounded; spiral side with most chambers visible, last volution overlapping outer part of previous volutions; umbilical side with small, deep umbilicus, adult chamber covers almost half the area of the test; sutures slightly depressed on spiral side, deeply depressed on umbilical side; aperture, umbilical with small aperture flap projecting toward umbilicus; wall finely perforate.

Measurements.—Maximum width of hypotype, 0.35 mm; maximum thickness of hypotype, 0.1 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13859.

Occurrence.—This species was collected from NDSWC well 4511 (A1339) in the lower middle Cannonball from the sandstone lithofacies.
Discussion.--This form appears similar to *Rosalina ystadiensis* Brotzen in the appearance of the umbilical side; however it differs in that the umbilicus is narrower and deeper and the periphery is not angular. This form is represented by one well-preserved individual.

Family ROTALIIDAE Ehrenberg, 1839

Genus PARAROTALIA LeCalvez, 1949

Original reference.--LeCalvez, 1949, p. 32.

Type species.--*Pararotalia inermis* (Terquem) = *Rotalia inermis* Terquem, 1882, p. 68 (by original designation).

Diagnosis.--Test free, trochospiral, plano-convex to biconvex, umbilicus filled by plug which may be broken out in preservation; chambers rounded to ovate in plan, may have smoothly rounded periphery or develop short, blunt peripheral spine on each chamber, umbilical region of each chamber partially covered by umbilical flap; apertures on umbilical side, interiomarginal and extraumbilical-umbilical with lip; internal "tooth plate" near umbilical and axial chamber wall, intercameral foramen narrow, elongate, comma-shaped or slit-like areal opening, consisting of portion of former aperture, roughly paralleling base of apertural face and restricted by tooth plate of following chamber; wall calcareous, perforate, rotaliid in structure, smooth or variously ornamented with large solid spines or fine scattered spines or nodes (adapted from Loeblich and Tappan, 1964, p. C612).

Remarks.--The genera *Neorotalia* Bermúdez (1952, p. 75) and *Woodella* Haque (1956, p. 194) are apparently synonymous with *Pararotalia* (Loeblich and Tappan, 1964, p. C612).
Pararotalia perclara (Loeblich and Tappan), 1957

Plate 2, figs. 4, 5

Globorotalia perclara Loeblich and Tappan, 1957, p. 191, pl. 40, figs. 7a-c; pl. 41, figs. 8a-c; pl. 42, figs. 4a-c; pl. 45, figs 11a-c; pl. 46, figs. 3a-c; pl. 47, figs. 6a-c; pl. 50, figs. 1a-c; pl. 54, figs. 6a-7c; pl. 57, figs. 3a-4c; pl. 60, figs. 5a-c.

Diagnosis.--Test with flattened sides, small umbilicus, peripheral margin broadly rounded, peripheral outline lobulate; 5 to 6 chambers in the final whorl, increasing gradually in size as added, rounded to ovate in shape, or may somewhat overhang the preceding suture, of somewhat greater breadth than height on the spiral side, and commonly somewhat excavated near the spiral suture, elevated near the periphery; sutures distinct, depressed, curved back at the periphery on the spiral side, radial on the umbilical side; smooth to finely hispid on spiral side (adapted from Loeblich and Tappan, 1957, p. 191).

Measurements.--Maximum width of hypotype, 0.15 mm; maximum thickness of hypotype, 0.05 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13860.

Occurrence.--This species was collected from NDSWC wells 4312 (A1194), 1988 (A1317), 2043 (A1320) and 3075 (A1403-A1405, A1407) in the middle Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by eight individuals of which seven are fragmental and highly questionable. The one almost complete individual from locality A1320 has been identified as Pararotalia perclara (Loeblich and Tappan) by Olsson (1976). This species has not previously been reported from the Cannonball.
Family HETEROHELICIDAE Cushman, 1927

Genus CHILOGUEMBELINA Loeblich and Tappan, 1956

Type species.—Chiloguembelina midwayensis (Cushman) = Gümbelina midwayensis Cushman, 1940, p. 65 (by original designation).

Diagnosis.—Test free, flaring, inflated chambers biserially arranged, with a tendency to become somewhat twisted; sutures distinct, depressed; aperture a broad low arch bordered by produced necklike extension of chamber, commonly forming more strongly developed flap at one side so that aperture appears to be directed toward one of flat sides of test; wall finely perforate, surface smooth to hispid (adapted from Loeblich and Tappan, 1964, p. C654).

Chiloguembelina midwayensis

subcylindrica Beckmann, 1957

Plate 3, fig. 7

Chiloguembelina midwayensis (Cushman) subsp. subcylindrica Beckmann, 1957, p. 90, pl. 21, figs. 2a-b, 3.

Diagnosis.—Test large for the genus, rapidly increasing in size in the early stages, only slightly increasing in the later portion which may become almost cylindrical; chambers biserially arranged moderately inflated; sutures depressed, slightly slanting; aperture fairly large, about as broad as high, oblique to greatest breadth of test, usually with a narrow transparent collar, sometimes covered by a small end chamber; wall very finely spinose (adopted from Beckmann, 1957, p. 90).

Measurements.—Maximum length of hypotypes (13887), 0.2 mm and (13888), 0.1 mm; maximum width of hypotypes (13887), 0.1 mm and (13888), 0.05 mm.
Hypotypes.--Univ. of N. Dak. Cat. Nos. 13861 (incomplete specimen), 13887, 13888.

Occurrence.--This species was collected from NDSWC wells 3557 (All27), 3647 (All51) and 8102 (All80) in the middle Cannonball from the mudstone lithofacies.

Discussion.--This species is comparable to the figures of Fox and Olsson (1969, p. 169, fig. 3) with the exception that the forms collected in this study have a smoother surface than those of Fox and Olsson. Although this subspecies has not previously been reported from the Cannonball, this species has been reported by Fox and Olsson (1969). This species also occurs in the Paleocene of the Gulf Coast (Cushman, 1951) and Atlantic Coastal Plain (Nogan, 1964). Beckmann (1957, p. 90) reported this subspecies from the lower Eocene of Trinidad.

Family GLOBIGERINIDAE
Carpenter, Parker and Jones, 1862

Genus GLOBOCONUSA Khalilov, 1956

Original reference.--Khalilov, 1956, p. 249.

Type species.--Globoconusa conusa Khalilov, 1956, p. 249, conspecific with Globoconusa daubjergensis (Brønnimann) = Globigerina daubjergensis Brønnimann, 1953, p. 340 (by original designation).

Diagnosis.--Test small, trochospiral, similar to Globigerina, but commonly with strongly convex spiral side; chambers inflated and globular, increasing rapidly in size; aperture a small rounded umbilical opening, with one or more tiny secondary sutural openings on spiral side against early whorl; wall characteristically spinose (adapted from Loebl ich and Tappan, 1964, p. C670).
Globoconusa daubjergensis (Bronnimann)

Plate 3, fig. 6

Globigerinoides daubjergensis (Brönnimann) Loeblich and Tappan, 1957, p. 184, pl. 40, figs. 1, 8; pl. 41, fig. 9; pl. 42, figs. 6, 7; pl. 43, fig. 1; pl. 44, figs. 7, 8.

Glogoconusa daubjergensis (Brönnimann) Loeblich and Tappan, 1964, p. C670, fig. 538 (1, 2). Fox and Olsson, 1969, p. 1398 (list), pl. 169, figs. 1, 2, 5.

Diagnosis.—Specimens are very small for the genus, outline of trochoid distinctly lobulate; spiral side pointed in initial portion; umbilicus small and shallow; final whorl, the dominant portion of the test, consists of four subglobular chambers, gradually increasing in size; sutures of final whorl strongly incised, those of early test not clearly visible; aperture extremely small, subcircular, opens into shallow umbilical depression; wall thin, finely perforate, covered by minute, irregularly distributed spines (adapted from Brönnimann, 1953, p. 340).

Measurements.—Maximum width of hypotype, 0.1 mm; maximum thickness of hypotype, 0.05 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13862.

Occurrence.—This species was collected from NDSWC wells 4388 (A1277) and 4384 (A1302) in the upper-middle Cannonball from the mudstone lithofacies.

Discussion.—The two specimens of this species are minute and difficult to work with. This species occurs in the Paleocene of the
Gulf Coast and the Atlantic Coastal Plain (Cushman, 1951; Nogan, 1964). It has been previously reported from the Cannonball by Fox and Olsson (1969).

Family GLOBOROTALIIDAE Cushman, 1927

Genus GLOBOROTALIA Cushman, 1927

Original reference.--Cushman, 1927a, p. 91.

Type species.--Globorotalia menardii (d'Orbigny) var. tumida Brady = Pulvinulina menardii d'Orbigny var. tumida Brady 1877, p. 535 (by original designation).

Diagnosis.--Test free, trochospiral, periphery carinate, chambers angular, rhomboid, or depressed to elevated; aperture interiomarginal an extraumbilical-umbilical arch bordered by lip, varying from narrow rim to broad spatulate or triangular flap; wall finely perforate, but with nonporous keel or peripheral band, surface smooth to cancellate or hispid (adapted from Loeblich and Tappan, 1964, p. C667-C668).

Remarks.--Loeblich and Tappan (1964, p. C668) indicated that the nonkeeled species that were formerly placed into the genus Globorotalia should be placed in the genus Turborotalia. However, when dealing with non-keeled forms, many workers, including Fox and Olsson (1969) and Stainforth and others (1975), have ignored this distinction and have placed nonkeeled forms into the genus Globorotalia. Recent work (Stainforth and others, 1975; Postuma, 1971) places the following species in the genus Globorotalia.

Globorotalia pseudobulloides (Plummer), 1926

Plate 3, figs. 10, 11, 12

Globigerina pseudobulloides Plummer, 1926, p. 33, pl. VIII, fig. 9.
Globorotalia pseudobulloides (Plummer) Bolli, 1957, p. 73, pl. 17, figs. 19-21.

Diagnosis.--Test low trochospiral, spiral side only slightly more compressed than umbilical side, last whorl with generally 5 spherical to ovate chambers which increase rapidly in size; periphery rounded, lobate; sutures depressed, radial on umbilical side, radial to slightly curved on spiral side; umbilicus moderately narrow but open; aperture a low arch, extraumbilical-umbilical with faint lip; wall finely perforate, in early part of test hispid to rugose, in later part almost smooth (adapted from Stainforth and others, 1975, p. 216-217).

Measurements.--Maximum diameter of hypotype (13886), 0.1 mm; maximum thickness of hypotype (13886), 0.05 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13885, 13886.

Occurrence.--This species was collected from NDSWC well 4388 (A1278, A1279) in the upper-middle Cannonball from the mudstone lithofacies.

Discussion.--This form is represented by two specimens that are comparable to the descriptions and figures of Plummer (1926, p. 33, pl. VIII, fig. 9) and Stainforth and others (1975, p. 216-217, fig. 76(1)). It has been previously reported from the Cannonball by Fox and Ross (1942), Lemke (1960) and Fox and Olsson (1969).

Family CIBICIDIDAE Cushman, 1927

Genus CIBICIDES DeMontfort, 1808

Original reference.--DeMontfort, 1808, p. 122.

Type species.--Cibicides refulgens DeMontfort, 1808, p. 122 (by original designation).
Diagnosis.—Test attached; plano-convex, trochospiral, spiral side flat to excavated, evolute, umbilical side strongly convex, involute, apertural face sharply angled, distinct from umbilical side, periphery angular, with nonporous keel; aperture a low interiomarginal opening with narrow lip, may extend along spiral suture on spiral side; wall calcareous, bilamellar, coarsely perforate on spiral side, large pores of earlier chambers may be closed by lamellar thickening of wall, finely perforate on umbilical side, apertural face nonporous (adapted from Loeblich and Tappan, 1964, p. C688).

Cibicides sp.

Plate 3, fig. 8

Description of material.—Test trochospiral, planoconvex, umbilical side with clear test material covering narrow umbilicus; periphery subacute, lobulate; chambers moderately inflated on umbilical side, uninflated on spiral side, adult chamber highly inflated on umbilical side; sutures moderately depressed, slightly curved; aperture an interiomargin arched slit, possibly extending along spiral suture; wall coarsely perforate.

Measurements.—Maximum diameter of hypotype, 0.25 mm; maximum thickness of hypotype, 0.15 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13863.
Occurrence.--This form was collected from NDSWC wells 8102 (Al180) and 4515 (Al362) in the mudstone lithofacies. The stratigraphic placement of this form is uncertain.

Discussion.--This species is represented by three individuals. I have been unable to find a similar form in Gulf Coast or Atlantic Coastal Plain literature. Olsson (1976) did not attempt a species assignment.

?Cibicides sp.

Description of material.--Test trochospiral, plano-convex; periphery smooth, subangular; chambers uninflated; sutures flush with chamber wall; aperture indistinct; wall finely perforate.

Measurements.--Maximum diameter of hypotype, 0.1 mm; maximum thickness of hypotype, 0.05 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13864.

Occurrence.--This form was collected from NDSWC wells 4312 (Al192) and 4515 (Al362) in the upper middle Cannonball from the mudstone lithofacies.

Discussion.--This form is represented by three fragmental specimens. The generic assignment is highly uncertain because all specimens lack apertures and are highly incomplete. The overall shape of the tests cannot be determined because of the incomplete preservation of the tests.

Family CAUCASINIDAE Bykova, 1959

Genus FURSENKOINA Loeblich and Tappan, 1961

Type species.—*Fursenkoina squammosa* (d'Orbigny) = *Virgulina squammosa* d'Orbigny, 1826, p. 267 (by original designation).

Diagnosis.—Test free, narrow, elongate, rounded to ovate in section; chambers inflated, greater in height than breadth, early portion in highly twisted biserial arrangement, later becoming less sigmoid and more typically biserial; sutures distinct, depressed-oblique; aperture narrow, elongate, extending up face of final chamber, lower part may be closed, leaving only suture toward base of chamber, upper part open, resulting in comma-shaped opening, tooth plate attached to closed suture of aperture, with free folded part extending through apertural opening as slight denticulated tooth, opposite end of tooth plate attached to previous apertural foramen; wall calcareous, very finely perforate (adapted from Loeblich and Tappan, 1964, p. C731).

Fursenkoina sp.

Plate 4, figs. 5, 6

Description of material.—Test biserial, plane of biserality twisted up to 90° from apex to adult chamber; chambers moderately inflated; sutures distinct, depressed; aperture a high, loop-shaped slit; wall finely perforate.

Measurements.—Length of hypotypes, 0.2 mm and 0.15 mm; maximum width of hypotypes, 0.05 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13865 (2 specimens).

Occurrence.—This species was collected from NDSWC well 8102 (A1180-A1182) in the mudstone lithofacies. The stratigraphic placement is uncertain.

Discussion.—This species is represented by four specimens all of which are well preserved. The shape and morphology of the
aperture tends to distinguish this from *Chiloguembelina*. This genus has not previously been reported from the Cannonball, but it does occur in the Paleocene of the Atlantic Coastal Plain (Nogan, 1964).

Genus CAUCASINA Khalilov, 1951

Original reference.--Khalilov, 1951, p. 58.

Type species.--*Caucasina oligocenica* Khalilov, 1951, p. 58 (by original designation).

Diagnosis.--Test free, elongate, base bluntly rounded, early portion in low discorbine coil with up to eight chambers per whorl, later whorls becoming high-spired and reduced in number of chambers to three per whorl, early chambers low, later about equal in breadth and height may be inflated, but not extremely high and elongate; sutures distinct, depressed; aperture an elongate loop at inner margin of final chamber, at right angles to sutures with narrow lip at forward margin; wall finely perforate (adapted from Loeblich and Tappan, 1964, p. C734).

Remarks.--According to Loeblich and Tappan (1961 and 1964, p. C735), the genus *Aeolostreptis* Loeblich and Tappan (1957, p. 227) is a junior synonym of Caucasina.

Caucasina marylandica (Nogan), 1964

Plate 3, fig. 9

Aeolostreptis marylandica Nogan, 1964, p. 31, pl. 2, figs. 16, 17.

Diagnosis.--Test minute, sides almost parallel, tapering gradually to a bluntly rounded initial end; chambers numerous in the early discorbine coil, later becoming triserial, inflated in triserial
portion; sutures depressed in triserial portion; aperture loop shaped, at base of the final chamber; wall smooth (adapted from Nogan, 1964, p. 31).

Measurements.—Length of hypotype, 0.15 mm; maximum width of hypotype, 0.07 mm.

Hypotype. Univ. of N. Dak. Cat. No. 13866.

Stratigraphically, it occurs in the upper part of the lower Cannonball to the lower part of the upper Cannonball in the mudstone and sandstone lithofacies.

Discussion.—This species is represented by 743 individuals, most of which are well preserved. It agrees favorably with the description and illustrations of *Caucasina marylandica* (=*Aeolostreptis marylandica*) of Nogan (1964, p. 31, pl. 2, figs. 16, 17). This species is the most abundant and most cosmopolitan (it occurs in 91 samples) species in the Cannonball. It has not been previously reported from the Cannonball. Elsewhere, it occurs in the Paleocene of the Atlantic Coastal Plain.
Family NONIONIDAE Schulze, 1854

Genus ALLOMORPHINA Reuss, 1849

Original reference.--Reuss in Czjzek, 1849, p. 50.

Type species.--Allomorphina trigona Reuss, 1850, p. 38 (subsequent designation of Reuss, 1850, p. 38, monotypic).

Diagnosis.--Test trochospiral, commonly three chambers to whorl, involute, only final whorl visible externally; aperture an elongate slit, paralleling suture and bordered with slight lip; wall perforate (adapted from Loeblich and Tappan, 1964, p. C743).

Allomorphina paleocenica Cushman, 1948

Plate 4, fig. 1

Allomorphina paleocenica Cushman, 1948, p. 45, pl. 8, fig. 10.

Diagnosis.--Test semi-elliptical in outline, trochoid, one side nearly straight, the other strongly curved, periphery broadly rounded; chambers distinct, slightly inflated, three in a whorl in the adult, increasing very rapidly in size as added; sutures distinct, slightly depressed; aperture an elongate opening on the ventral side at the base of the last-formed chamber with a distinct, overhanging lip; wall smooth (adapted from Cushman, 1948, p. 45).

Measurements.--Maximum diameter of hypotype, 0.4 mm; minimum diameter of hypotype, 0.3 mm; maximum thickness of hypotype, 0.2 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13874.

Occurrence.--This species was collected from NDSWC well 3558 (A1099) in the lower part of the Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by a single internal mold. It compares favorably with the descriptions of Cushman (1948)
and the figures of Cushman and Todd (1949, pl. 11, fig. 16). I (Fenner, 1974) reported Allomorphina sp. from the Cannonball. This form is probably A. paleocenica.

Genus NONION DeMontfort, 1808

Type species.—Nonion incrassatus (Fichtel and Moll) = Nautilus incrassatus Fichtel and Moll, 1798, p. 38 (by original designation).

Diagnosis.—Test free, planispiral and involute, slightly compressed, biumbonate, periphery rounded, peripheral outline lobulate; chambers numerous, increasing gradually in size as added; sutures distinct, depressed, radial, slightly curved; aperture an arched equatorial, interiomarginal slit; wall finely perforate, surface smooth, umbonal region filled with secondarily deposited calcite, either as granules or solid boss (adapted from Loeblich and Tappan, 1964, p. C746).

Nonion graniferum (Terquem), 1882

Plate 4, fig. 2

Nonionina granifera Terquem, 1882, p. 42, figs. 8a-b.

Nonion graniferum (Terquem) Cushman 1939, p. 4, pl. 1, figs. 9-11.

Nonion mauricensis Howe and Ellis in Howe, 1939, p. 57, pl. 8, figs. 1, 2. Olsson, 1960, p. 26, pl. 4, figs. 2, 3. Nogan, 1964, p. 29, pl. 2, figs. 4-5.

Nonion cf. graniferum (Terquem) Brotzen, 1948, p. 69, pl. 8, fig. 1.

Nonion graniferum (Terquem) Pozaryska, 1965, p. 93, pl. 21, figs. 5a-b. Posaryska and Szczechura, 1968, p. 81, pl. 9, figs. 10-12.
Diagnosis.--Test with umbilical region somewhat exposed in the last-formed coil and covered with fine papillae of uniform size; periphery occasionally spinose; chambers distinct, about eight in the final coil, inflated, of uniform shape; sutures deep; aperture a low opening at the base of the inner margin of the apertural face; wall smooth except for the papillate umbilical region (adapted from Cushman, 1939, p. 4).

Measurements.--Maximum diameter of hypotypes, 0.15-0.2 mm; maximum thickness of hypotypes, 0.05-0.07 mm.

Hypotypes.--Univ. of N. Dak. Cat. Nos. 13867-13869.

Occurrence.--This species was collected from NDSWC wells 3647 (A1154), 4486 (A1163-A1165), 4453 (A1258) and 4388 (A1293) in the middle, possibly extending from the upper lower Cannonball to the lower upper Cannonball in the mudstone lithofacies.

Discussion.--This form agrees favorably with the illustrations and description of Cushman (1939, p. 4, pl. 1, figs. 9-11). Neither this species nor this genus have previously been reported from the Cannonball. Elsewhere, this species occurs in the Paleocene of the Gulf Coast and Atlantic Coastal Plain as well as the Paleocene of Greenland, and western and eastern Europe. The Cannonball material consists of eight specimens, all generally well preserved.

Genus NONIONELLA Cushman, 1926

Original reference.--Cushman, 1926, p. 64.

Type species.--Nonionella miocenica Cushman, 1926, p. 64 (by original designation).
Diagnosis.—Test free, trochospiral, slightly compressed, periphery rounded, spiral side partially evolute with umbonal boss, opposite side involute with final chamber overhanging umbilical region and may appear to form distinct umbilical flap; chambers relatively numerous, broad, low; aperture interiomarginal, a low arch near periphery extending somewhat onto umbilical side; wall perforate (adapted from Loeblich and Tappan, 1964, p. C748).

Nonionella robusta Plummer, 1931

Plate 4, fig. 3

Nonionella robusta Plummer, 1931, p. 175, pl. 14, fig. 12.

Diagnosis.—Test very small for genus, about equally biconvex but unsymmetrical, periphery narrowly rounded and bluntly angular in maturity, only slightly lobate in later portion of some tests but an even curve on most tests; chambers about eight in final whorl, abruptly lengthening, gently inflated on most specimens; sutures slightly depressed or flush with the contour of the test, somewhat curved; umbilicus on dorsal side, small, narrow, depressed, shallow, showing minute chambers of inner whorl; on ventral side umbilical depression filled with the successive, short extensions of the chambers filling the depression irregularly; aperture a low slit on the periphery at base of final chamber; wall distinctly but not coarsely punctate (adapted from Plummer, 1931, p. 175).

Measurements.—Maximum diameter of hypotype, 0.25 mm, minimum diameter of hypotype, 0.15 mm; maximum thickness of hypotype, 0.05 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13870.

Occurrence.—This species was collected from NDSWC wells 3647 (A1145, A1152), 4486 (A1163, A1165), 4397 (A1168, A1169), 8102 (A1180),
4384 (A1303), 1984 (A1312), 4511 (A1356) and 4760 (A1379) in the middle Cannonball from the mudstone lithofacies.

Discussion.—All but one of the 14 specimens of this are badly crushed or incomplete. The Cannonball forms appear to be the same as those of Nonionella robusta described and illustrated by Plummer (1931, p. 175, pl. 14, fig. 12). Nonionella cf. robusta was reported from the Cannonball by Fox and Ross (1942).

Genus PULLENIA Parker and Jones, 1862

Original reference.—Parker and Jones in Carpenter, Parker and Jones, 1862, p. 184.

Type species.—Pullenia bulloides (d'Orbigny) = Nonionina bulloides d'Orbigny, 1826, p. 107 = Nonionina sphaeroides d'Orbigny, 1826, p. 293 (original designation (monotopic)).

Diagnosis.—Test free, spheroidal to compressed, planispiral and involute; chambers few, three to six in final whorl; sutures radial; aperture a narrow crescentic interiomarginal slit extending nearly from umbilicus to umbilicus, wall finely perforate (adapted from Loeblich and Tappan, 1964, p. C748).

Pullenia quinqueloba (Reuss), 1851

Plate 4, fig. 4

Nonionina quinqueloba Reuss, 1851, p. 47, pl. 5, fig. 31.

Pullenia quinqueloba (Reuss) Brady, 1884, p. 617, pl. 84, figs. 14, 15. Cushman, 1951, p. 59, pl. 17, fig. 6.

Diagnosis.—Test closely coiled, completely embracing, bilaterally symmetrical; peripheral margin broadly rounded; chambers five in last whorl; sutures faintly depressed between last two chambers (adapted from Plummer, 1926, p. 137).
Measurements.—Maximum diameter of hypotype, 0.27 mm; maximum width of hypotype, 0.15 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13871.

Occurrence.—This species was collected from NDSWC well 8102 (All75) in the mudstone lithofacies. The stratigraphic placement is uncertain.

Discussion.—This species is represented by a single, broken specimen. It agrees with Plummer’s description (1926, p. 136-137) and with the figures of Cushman (1951, pl. 17, fig. 6). This species has been reported from the Paleocene of the Gulf Coast (Cushman, 1951) and Atlantic Coastal Plain (Nogan, 1964), but has not been reported previously from the Cannonball.

Family ALABAMINIDAE Hofker, 1951

Genus ALABAMINA Toulmin, 1941

Original reference.—Toulmin, 1941, p. 602.

Type species.—Alabamina wilcoxensis Toulmin, 1941, p. 602 (by original designation).

Diagnosis.—Test free, lenticular, trochospiral, periphery subangular, with nonporous margin, all chambers visible on spiral side where curved sutures are strongly oblique, only final whorl visible on opposite side where sutures are nearly radial around umbilical depression, chambers somewhat prolonged into projection at periphery on spiral side, apertural face sharply infolded below this projection; aperture an interiomarginal slit extending from near periphery almost to umbilicus with narrow bordering lip; wall finely perforate with simple monolamellar septa (adapted from Loeblich and Tappan, 1964, p. C748-C750).
Alabamina midwayensis Brotzen, 1948
Plate 4, figs. 7, 8

Pulvinulina exigua Brady, 1884, p. 696, pl. 103, figs. 13, 14.
Plummer, 1926, p. 150-151, pl. XI, figs. 3a-c.

Pulvinulina exigua Brady var. obtusa Burrows and Holland, 1897, p. 49, pl. 2, fig. 25. Plummer, 1926, p. 151-152, pl. XI, figs. 2a-c.

Pulvinulinella exigua (Brady) var. obtusa (Burrows and Holland) Cushman and Ponton, 1933, p. 71, pl. 9, fig. 9.

Pulvinulinella obtusa (Burrows and Holland) Cushman and Garrett, 1939, p. 87, pl. 15, figs. 12, 13.

Alabamina midwayensis Brotzen, 1948, p. 99, pl. 16, figs. 1a-c, 2a-c; test figs. 25a-b, 26a-b. Berggren and Aubert, 1975, p. 147, pl. II, fig. 14; pl. X, fig. 2; pl. XII, fig. 2; text fig. 13.

Diagnosis.--Test more or less equally biconvex, peripheral margin bluntly acute, very faintly lobate, 5-6 chambers in the last whorl; sutures transparent, not depressed, almost straight and tangential to the spiral suture on the spiral side; small central filling may be present on the umbilical side; aperture narrow; wall smooth, mostly glossy (adapted from Brotzen, 1948, p. 99).

Measurements.--Maximum diameter of hypotypes, 0.4 and 0.25 mm; maximum thickness of hypotypes, 0.15 and 0.1 mm.

Hypotype.--Univ. of N. Dak. Cat. Nos. 13875 (2 specimens), 13885.

Occurrence.--This species was collected from NDSWC wells 3559 (A1108, A1109), 3433 (A1115, A1116, A1118-A1120), 4397 (A1174), 4312 (A1188-A1190, A1192-A1194, A1198, A1199, A1253, A1254, A1256), 8347 (A1269), 4388 (A1278-A1280, A1284, A1289), 4384 (A1300, A1303, A1304), 4511 (A1322, A1328) and 4513 (A1355-A1357) in the middle Cannonball
from the mudstone lithofacies.

Discussion.--This species appears almost identical to the illustrations of *Alabamina midwayensis* of Brotzen (1948), Kellough (1965), and Berggren and Aubert (1975). Fox and Ross (1942) reported *Alabamina exigua* from the Cannonball. It is likely that this form would now be recognized as *Alabamina midwayensis*. This species occurs in both the Gulf Coast Paleocene and the Atlantic Coastal Plain Paleocene. Elsewhere, it occurs in eastern and western Europe, North Africa, Turkmenia and southwest New Zealand (Berggren and Aubert, 1975).

Genus *GYROIDINOIDES* Brotzen, 1942

Type species.--*Gyroidinoides nitida* (Reuss) = *Rotalina nitida* Reuss, 1844, p. 214 (by original designation).

Diagnosis.--Test free, trochospiral, spiral side flattened, umbilical side elevated, periphery rounded; chambers rhomboidal in section; sutures radial to curved, flush to depressed; aperture a continuous, low, interiomarginal slit extending from periphery to umbilicus; umbilical portion partially obscured by umbilical flap from each chamber; wall perforate, bilamellar (adapted from Loeblich and Tappan, 1964, p. C753).

Gyroidinoides aequilateralis (Plummer), 1926

Plate 4, figs. 10, 11

Rotalia aequilateralis Plummer, 1926, p. 155, pl. XII, fig. 3.

Gyroidina aequilateralis (Plummer) Cushman, 1944, p. 45, pl. 7, fig. 24.
Gyroidinoides aequilateralis (Plummer) Kellough, 1965, p. 118, pl. 13, fig. 2.

Diagnosis. -- Test almost equally biconvex, composed of about two and one-half convolutions that increase very slowly in width; peripheral margin narrowly rounded, faintly lobate in the last-formed portion of the test; chambers compact, numerous, about 10 in final whorl; dorsal sutures distinct, narrow, tapering bands without elevation, strongly curved with a slight angulation, but not oblique, depressed gently between last two or three chambers only; ventral sutures elevated most markedly around the small umbilicus and tapering radially toward the margin; aperture a very narrow slit at base of septal face and bearing a very narrow extended lip; wall finely punctate (adapted from Plummer, 1926, p. 155-156).

Measurements. --

<table>
<thead>
<tr>
<th>Hypotype</th>
<th>Maximum Length</th>
<th>Maximum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>13876</td>
<td>0.2 mm</td>
<td>0.07 mm</td>
</tr>
<tr>
<td>13877</td>
<td>0.15 mm</td>
<td>0.05 mm</td>
</tr>
<tr>
<td>13878</td>
<td>0.3 mm</td>
<td>0.10 mm</td>
</tr>
</tbody>
</table>

Hypotypes. -- Univ. of N. Dak. Cat. Nos. 13876, 13877, 13878.

Occurrence. -- This species was collected from NDSWC wells 3433 (A117), 4397 (A1173), 8102 (A1177, A1182), 4312 (A1189, A1190, A1195, A1254, A1255), 8347 (A1268, A1269), 4388 (A1278, A1279, A1284), 4384 (A1301, A1392, A1304), 1984 (A1314, A1315), 4511 (A1322, A1328), 4513 (A1356), 4764 (A1382), and 4731 (A1391) in the middle Cannonball from predominantly the mudstone lithofacies.

Discussion. -- This species is the same as Gyroidinoides aequilateralis (Plummer) as illustrated by Kellough (1965).
Gyroidinoides aequilateralis was previously reported (as Gyroidina aequilateralis) from the Cannonball by Fox and Ross (1942) and Lemke (1960).

Gyroidinoides sp.
Plate 4, fig. 12

Description of material.—Text minute, trochospiral, planoconvex, periphery gently rounded, spiral side with low spire, umbilical side with narrow, shallow umbilicus; chambers uninflated; sutures indistinct on spiral side, radial on umbilical side, flush with surface; aperture indistinct.

Measurements.—Maximum diameter of hypotype, 0.2 mm; maximum width of hypotype, 0.5 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13879.

Occurrence.—This form was collected from NDSWC wells 3647 (A1155), 4486 (A1163), 4397 (A1173), 4312 (A1187, A1194), 4388 (A1278), and 1984 (A1311) in the middle and upper middle Cannonball from the mudstone lithofacies.

Discussion.—This form is represented by eight fragmental, poorly preserved specimens. It differs from Gyroidinoides aequilateralis in being more compressed and having a less highly inflated adult chamber. The spiral side has a lower spire and the spiral suture is much less distinct. Also, the final volution appears to have fewer chambers.

Family ANOMALINIDAE Cushman, 1927

Genus ANOMALINOIDES Brotzen, 1942

Original reference.—Brotzen, 1942, p. 23.
Type species.—Anomalinoides plummerae Brotzen, 1942, p. 23
(=Anomalina pinguis Jennings, 1936, p. 195) (by original designation).

Diagnosis.—Test free, nearly planispiral, but asymmetrical,
periphery broadly rounded, spiral side partially evolute with umbonal
boss, opposite side involute and umbilicate; aperture a low interio­
marginal equatorial slit with narrow bordering lip, extending along
spiral suture on evolute side under umbilical margin of later cham­
bbers; wall coarsely perforate (adapted from Loeblich and Tappan, 1964,
p. C775).

Anomalinoides midwayensis (Plummer), 1926
Plate 4, fig. 9

Truncatulina midwayensis Plummer, 1926, p. 141, pl. IX, fig. 7;
pl. XV, fig. 3.

Anomalina midwayensis (Plummer) Cushman, 1940, p. 73, pl. 12,
fig. 18. Vasilenko and Myatliuk, 1947, p. 211-212, pl. 3, fig. 7.
Cushman, 1951, p. 62, pl. 17, figs. 17-19. Harris and Jobe, 1951,
p. 52, pl. 10, figs. 4-5. Kellough, 1959, fig. 6.

?Anomalina (pseudo-valvulineria) midwayensis (Plummer) Vasilenko,
1954, p. 100, pl. 13, fig. 4.

Anomalinoides midwayensis (Plummer) Brotzen, 1948, p. 88, pl. 14,
fig. 3. Kellough, 1965, p. 117, pl. 15, fig. 7. Berggren and Aubert,
1975, p. 149-150, pl. VI, figs. 1a-f; pl. IX, fig. 3; pl. X, fig. 8,
pl. XI, fig. 3; pl. XII, fig. 3; pl. XVI, fig. 2.

Diagnosis.—Test almost equally biconvex, moderately compressed;
whorls about two the final one being strongly embracing; chambers usually
nine in final whorl, gradually increasing, moderately curving; sutures
broadly elevated on both sides, tapering toward the margin and curved; aperture a slit at base of septal face under a narrow lip that extends to the umbilicus (adapted from Plummer, 1926, p. 141).

Measurements.—Maximum diameter of hypotype (13880), 0.3 mm and (13881) 0.1 mm; maximum thickness of hypotype (13880), 0.15 mm and (13881) 0.05 mm.

Hypotypes.—Univ. of N. Dak. Cat. Nos. 13880, 13881.

Occurrence.—This species was collected from NDSWC wells 3560 (A1083), 3558 (A1094, A1095), 3559 (A1106, A1110), 3433 (A1115), 3557 (A1126-A1128), 3647 (A1133, A1135, A1137-A1139, A1144, A1146, A1148), 2690 (A1157), 8103 (A1159), 4486 (A1163), 4397 (A1172), 4312 (A1193, A1194, A1198, A1199, A1253, A1254, A1256), 8347 (A1271), 4388 (A1287, A1288, A1290), 1984 (A1313, A1314), 2006 (A1318), 4511 (A1324, A1327), 4513 (A1357, A1359), 4515 (A1361), 4516 (A1370), and 4751 (A1390, A1391) in the lower middle to upper middle Cannonball from the mudstone and sandstone lithofacies.

Discussion.—This species agrees with the illustrations of *Anomalinoides midwayensis* (Plummer) of Berggren and Aubert (1975). Seventy-three generally well-preserved individuals were collected in this study. Lemke (1960) reported both *Anomalina midwayensis* and *Anomalinoides midwayensis* from the Cannonball. The synonymy indicates that these are the same species. The reason for his distinction is uncertain. According to Berggren and Aubert (1975, p. 150), this is a common species in the Paleocene of the Gulf Coast and the Paleocene of northern Europe. It also has been reported from the Paleocene of Libya and Mozambique.
Anomalioinoides umboniferus (Schwager) 1883

Plate 5, figs. 1, 2

Discorbis umbonifera Schwager, 1883, p. 126, pl. 27, fig. 14.

Anomalina umbonifera (Schwager) Cushman and Potton, 1932, p. 72, pl. 9, fig. 9. Cushman, 1951, p. 72, pl. 17, fig. 16.

Diagnosis.—Test strongly compressed, ventral side completely involute, dorsal side slightly evolute, periphery slightly rounded; chambers distinct, slightly inflated, 7 or 8 chambers making up the adult whorl, increasing gradually and rather uniformly in size as added; sutures distinct, slightly limbate, gently curved; aperture at the base of the last-formed chamber, near the periphery; wall smooth, finely perforate (adapted from Cushman, 1951, p. 62).

Measurements.—Maximum diameter of hypotypes, 0.3 mm, 0.15 mm, 0.2 mm; maximum thickness of hypotypes, 0.2 mm; 0.05 mm, 0.1 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13882.

Occurrence.—This species was collected from NDSWC wells 3558 (A1083, A1100, A1119), 3433 (A1120, A1123), 3557 (A1125, A1127), 3647 (aa33-A2236, A1142, A1143, A1146, A1147), 8103 (A1161), 4486 (A1164), 4397 (A1172), 8102 (A1175-A1181), 4312 (A1192), 4388 (A1281, A1290), 1984 (A1313, A1314), 4511 (A1325-A1327, A1333, A1338, A1341), 4513 (A1347-A1349, A1352-A1354, A1357, A1358, A1360), 4515 (A1361-A1363), 4516 (A1370, A1372), 4764 (A1383, A1384), and 4751 (A1390, A1391) and NDGS well no. 16 (A1399, A1400) in the lower-middle to the upper-Cannonball predominantly from the mudstone lithofacies.
Discussion.--This species is represented by 170 mostly well-preserved specimens that show the range of morphologic variation of *Anomalinoides umboniferous* discussed and illustrated by Nogan (1964, p. 42, pl. 6, figs. 16-21; pl. 7, figs. 1-3). This species has not been previously reported from the Cannonball; however, in view of the biometric study of *Anomalinoides umboniferus* conducted on specimens from the Aquia Formation by Nogan (1964, p. 42-46), it appears that those specimens identified as *Valvulineria wilcoxensis* by Fenner (1974) are *Anomalinoides umboniferus*. Nogan indicated that variants of this species from the Aquia were previously misidentified as *Valvulineria wilcoxensis*. With the number of specimens available in this study it is possible to see the range of variation, including intermediate types, that characterizes this species in the Aquia Formation.

Anomalinoides sp.

Plate 5, fig. 3

Description of material.--Test planoconvex, trochospiral, dorsal side convex with no umbilicus, ventral side planar; periphery lobate, gently rounded; chambers inflated with adult chamber comprising about one-fourth of the test; sutures distinct, depressed; aperture interiomarginal, extending along the spiral suture at base of adult chamber, flaps extend over chamber from base of each chamber; wall finely perforate.

Measurements.--Maximum diameter of hypotype, 0.3 mm; maximum thickness of hypotype, 0.15 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13883.
Discussion.--This form is represented by two well-preserved specimens that look very similar to what Cushman and Renz (1942, p. 13, pl. 3, fig. 8) called Anomalina sp. According to them, this form is rather variable but is not the same as species already described from the Midway. The Cannonball form has triangular flaps extending from the bases of the chambers along the spiral suture. Cushman and Renz's illustration does not show this feature distinctly; however, in other respects, these forms appear very similar.

Genus CIBICIDOIDES Thalmann, 1939

Original reference.--Thalmann, 1939, p. 448.

Type species.--Cibicidoides muddula (Brady, Parker and Jones) = Truncatulina mundula Brady, Parker and Jones, 1888, p. 228 (by original designation).

Diagnosis.--Test free, trochospiral, biconvex and biumbonate, all chambers visible on spiral side, only those of final whorl visible on umbilical side; aperture a low interiomarginal equatorial arch with slight projecting lip; wall hyaline with series of coarse perforations on spiral side, appearing only near previous spiral suture in early portion of test but covering large portion of spiral side of later chambers (adapted from Loeblich and Tappan, 1964, p. C757).

Cibicidoides alleni (Plummer), 1926
Plate 5, figs. 4, 5, 6

Truncatulina alleni Plummer, 1926, p. 144-145, pl. X, figs. 4a-c.

Cibicides alleni (Plummer) Plummer, 1933, p. 54, 61 (lists).

Cushman, 1940, p. 73, pl. 12, fig. 19. Fox and Ross, 1942, p. 669, fig. 3 (list). Kline, 1943, p. 61, pl. 6, figs. 21-22. Cooper, 1944,

Cibicidoides alleni (Plummer) Berggren and Aubert, 1975, p. 151, pl. V, figs. 1a-d; pl. VII, figs. 1a-3d; pl. IX, fig. 5; pl. X, fig. 1; pl. XI, fig. 2; pl. XII, fig. 11; pl. XVIII, fig. 1; pl. XIX, fig. 5 (see for complete synonymy).

Diagnosis.—Test almost equally biconvex, ventral side of most specimens being more rounded; periphery subacute and bordered by band of clear shell material, faintly lobate in latest development; chambers 10-11 in last whorl, previous whorls concealed by strong elevations of shell matter that follow base of chambers on dorsal face; sutures limbate, on dorsal side marked by conspicuous elevations of transparent shell matter that taper and curve gently toward periphery; sutures on ventral face slightly elevated and curving outward from large, smooth umbilical boss; aperture large arched opening over periphery and extending farther downward on ventral side; wall coarsely punctate (adapted from Plummer, 1926, p. 144-145).

Measurements.—Maximum diameter of hypotype, 0.25 mm; maximum width of hypotype, 0.05 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13872.

Occurrence.—This species was collected from NDSWC wells 3557 (A1128), 3647 (A1143-A1145), 8102 (A1175-A1181), 8347 (A1271), 4388 (A1285, A1289, A1291), 4384 (A1301, A1304), 4511 (A1339), 4513 (A1349, A1350, A1357), 4515 (A1361-A1363), 4760 (A1380), and 4751 (A1388-A1391).
in the middle Cannonball predominantly from the mudstone lithofacies.

Discussion.--This species is represented by 68 well-preserved specimens. They are the same as the specimens of *Cibicides alleni* illustrated by Cushman (1951, p. 66, pl. 18, figs. 16, 17) and the specimens of *Cibicidoides alleni* illustrated by Berggren and Aubert (1975). This species has been previously reported from the Cannonball by Fox and Ross (1942) and Lemke (1960). Several other species of *Cibicides* and *Cibicidoides* have been combined into *Cibicidoides alleni* by Berggren and Aubert (1975, p. 151-153) (not included in my synonymy). They include: *Cibicides mortoni* (Reuss), *Cibicides praecursorius* Schwager, *Cibicides hilgardi* Garrett, *Cibicides proprius* Brotzen, *Cibicides cedarstromi* McLean, ?*Cibicides breslesensis* Rouvillois, ?*Cibicidoides hilgardi* (Garrett), ?*Cibicidoides proprius* (Brotzen). They indicated that all of these species recorded from different areas are probably one species (*C. alleni*) with a relatively high degree of variability.

?*Cibicidoides vulgaris* (Plummer), 1926

Plate 5, fig. 7

Truncatulina vulgaris Plummer, 1926, p. 145, pl. 10, fig. 3.

Cibicides vulgaris (Plummer) Cushman, 1940, p. 12, fig. 21.

Cibicidoides vulgaris (Plummer) Berggren and Aubert, 1975, p. 154-155, pl. IV, figs. a-k; pl. IX, fig. 6; pl. XI, fig. 6; pl. XII, fig. 1.

Diagnosis.--Test almost equally biconvex, ventral face slightly more elevated; peripheral margin broadly rounded, commonly somewhat lobate; chambers 7-9 in last whorl, last two or three distinctly turgid;
sutures marked by strong elevations of clear shell material curving
gently toward periphery from very high ridge of irregular shell matter
that follows inner edge of whorl and produces well-developed spiral on
both faces; aperture a long, arched slit extending from periphery
toward umbilicus under a narrow lip; wall coarsely punctate (adapted
from Plummer, 1926, p. 145).

Measurements.--Maximum diameter of hypotype, 0.4 mm; maximum
width of hypotype, 0.25 mm.

Hypotype.--Univ. of N. Dak. Cat. No. 13873.

Occurrence.--This species was collected from NDSWC wells 3647
(A1141-A1143), 4388 (A1287), and 4511 (A1328) in the middle or upper-
middle Cannonball from the mudstone lithofacies.

Discussion.--This species is represented by six fragments.
Olsson (1976) thought the most complete fragment could possibly be a
fragment of Cibicidoides vulgaris. The coarsely punctate wall and
overall massiveness of the test is reminiscent of Cibicidoides vul-

garis. It has, therefore, been questionably placed into this species.

Family CERATOBULIMINIDAE Cushman, 1927

Genus CERATOBULIMINA Toula, 1915

Type species.--Ceratobulimina contraria (Reuss) = Rotalina
contraria Reuss, 1851, p. 76 (by original designation (monotypic)).

Diagnosis.--Test trochospiral, deeply umbilicate, chambers
enlarging abruptly, whorls few, coiling dextral; aperture umbilical,
consisting of elongate slit extending in groove up face of final cham-
ber on umbilical side; internally incomplete, marginally serrate
partition attached to posterior side of vertical apertural slit at interior of umbilical side, bends around aperture and extends across and is attached to spiral wall for short distance; wall laminated, polished (adapted from Loeblich and Tappan, 1964, p. C766).

Ceratobulimina perplexa (Plummer), 1926

Plate 5, figs. 8, 9

Rotalia perplexa Plummer, 1926, p. 156, pl. 12, fig. 2.

Diagnosis.—Test oval, about equally biconvex, considerably compressed; peripheral margin broadly rounded, somewhat lobate; chambers gently curving, 6 to the final whorl; dorsal sutures marked by thick, smooth or very slightly elevated, tapering bands that become distinctly angular at their broadest points; ventral sutures depressed radiate from a sunken umbilicus; aperture a conspicuous round opening at the base of the septal face and protected by an arched flap that is directed into the umbilicus; wall smooth, glistening, finely punctate (adapted from Plummer, 1926, p. 156-157).

Measurements.—Maximum diameter of hypotype, 0.35 mm; maximum width of hypotype, 0.15 mm.

Hypotype.—Univ. of N. Dak. Cat. No. 13884.

Occurrence.—This species was collected from NDSWC wells 3558 (A1090), 3557 (A1128), 3647 (A1132, A1133, A1135, A1140, A1142), 8103 (A1160), 8102 (A1175-A1179, A1181), 4388 (A1289), 4513 (A1347, A1349, A1357), 4515 (A1362), and 4751 (A1388, A1389, A1391) in the middle Cannonball predominantly from the mudstone lithofacies.
Discussion.--This species is represented by 45 well-preserved specimens that are identical with Plummer's (1926, pl. 12, fig. 2) and Nogan's (1964, pl. 3, figs. 12, 13) figures. Within the Cannonball, this species shows little morphologic variation. Since figures of other workers are identical with the Cannonball material, it seems that the variation within the species is slight. This species was previously reported from the Cannonball by Fox and Ross (1942), Lemke (1960), and Fenner (1974).
PLATES

Accession numbers correspond to those in Appendix C.
Explanation of Plate 1

Figure

5. Trochammina sp., X150, ventral view. Accession number A1261, Univ. of N. Dak. Cat. No. 13824.

10. Cyclogyra involvens (Reuss), X250, side view. Accession number All52, Univ. of N. Dak. Cat. No. 13825.

11. Lenticulina midwayensis (Plummer), X90, side view. Accession number A1193, Univ. of N. Dak. Cat. No. 13839.

12. Lenticulina arkansasana (Cushman and Todd), X60, side view. Accession number A1358, Univ. of N. Dak. Cat. No. 13838.

13. **Globulina gibba** (d'Orbigny), X150, side view. Accession number A1175, Univ. of N. Dak. Cat. No. 13845.

15. **Lingulina sp.**, X230, side view. Accession number A1353, Univ. of N. Dak. Cat. No. 13844.

17. **Spirobolivina emmendorferi** (Jennings), X190, side view. Accession number A1175, Univ. of N. Dak. Cat. No. 13850.

Explanation of Plate 2

Figure

3. Dentalina pseudo-obliquestriata (Plummer), X100, side view. Accession number A1138, Univ. of N. Dak. Cat. No. 13835.

8. Lenticulina alabamensis (Cushman and Todd), X120, side view. Accession number A1111, Univ. of N. Dak. Cat. No. 13841.

10. Lenticulina turbinata (Plummer)?, X70, side view. Accession number A1145, Univ. of N. Dak. Cat. No. 13840.

11. Pyrulina cylindroides (Roemer), X80, side view. Accession number A1362, Univ. of N. Dak. Cat. No. 13849.

Explanation of Plate 3

Figure

1. Rosalina sp., X170, ventral view. Accession number A1339, Univ. of N. Dak. Cat. No. 13859.

2. Epistominella minuta (Olsson), X350, ventral view. Accession number A1278, Univ. of N. Dak. Cat. No. 13857.

3. Epistominella minuta (Olsson), X320, dorsal view. Accession number A1278, Univ. of N. Dak. Cat. No. 13857.

5. Pararotalia perclara (Loeblich and Tappan), X220, oblique apertural view. Accession number A1194, Univ. of N. Dak. Cat. No. 13860.

Explanation of Plate 4

Figure

1. *Allomorphina paleocenica* Cushman, X120, dorsal view. Accession number A1099, Univ. of N. Dak. Cat. No. 13874.

Explanation of Plate 5

Figure

1. Anomalinoïdes umboniferus (Schwager), X200, dorsal view. Accession number Al175, Univ. of N. Dak. Cat. No. 13882.

2. Anomalinoïdes umboniferus (Schwager), X160, ventral view. Accession number Al175, Univ. of N. Dak. Cat. No. 13882.

5. Cibicidoides alleni (Plummer), X200, apertural view. Accession number Al181, Univ. of N. Dak. Cat. No. 13872.

APPENDIX A

Q-Mode dendrograms of foraminiferid-bearing samples.

Numbers preceded by an A are accession numbers of the department of Geology, University of North Dakota. Numbers heading dendrograms are NDSWC well numbers. Scales across bottoms of dendrograms show levels of association.
APPENDIX B

R-Mode dendrograms of foraminiferid species.

Scale along bottom shows levels of association, and numbers at the top of each diagram are NDSWC well numbers.
Lenticulina midwayensis
Allomorphina paleocenica
Haplophragmoides sp. A
Bulimina rosenkrantzi
Trochammina sp.
Caucasina marylandica
Anomalinoedes midwayensis
Reophax sp.
Nodosaria affinis
Anomalinoedes umboniferus
Ceratobulimina perplexa

Bulimina rosenkrantzi
Alabama midwayensis
Gyroidinoideaaequilateralis
cibicidoides vulgaris
Caucasina marylandica
Lenticulina midwayensis
Anomalinoedes midwayensis
Dentalina pseudo-obliquestriata
Anomalinoedes umboniferus
Nodosaria affinis
Cibicidoides alleni
Rosalina sp.
Trochammina sp.
Nodosaria affinis
Lenticulina midwayensis
Dentalina eocenica
Lenticulina alabamensis
Gyroidinoides aequilateralis
Globulina gibba
Pullenia quinquelandia
Spirobulivina emmendorferi
Cibicidoides alleni
Anomalinoidea umboniferus
Ceratobulimina perplexa
Caucasina marylandica
Ammoliscus incertus
Bulimina rosenkrantzi
Epistominella minuta
Fursenkoina sp.
Chiloguembelina midwayensis
Nonionella robusta
Trochammina sp.
Haplophragmoides sp. B
Dentalina sp.
Ammodiscus incertus
Caucasina marylandica
Bulimina rosenkrantzi
Spiroplectammina wilcoxensis
Trochammina sp.
Lenticulina alabamensis
Lenticulina midwayensis
Haplophragmoides sp. A
Dentalina eocenica
Alabamina midwayensis
Reophax sp.
Anomalinoidea midwayensis
Dentalina colei
Haplophragmoides sp. B
Nodosaria affinis
APPENDIX C

Well Information for the Cannonball Formation

Elevations, depth to the top of the Cannonball, thickness of the Cannonball, and foraminiferid intervals are given in meters.
<table>
<thead>
<tr>
<th>Location</th>
<th>County</th>
<th>NDSWC Well No.</th>
<th>Elev.</th>
<th>Depth to Top Tc</th>
<th>Thickness TC</th>
<th>Foraminiferid Intervals</th>
<th>UND Accession Nos.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>129-93-08 CBB</td>
<td>Adams</td>
<td>8347</td>
<td>749.8</td>
<td>0</td>
<td>76.2</td>
<td>3.0-4.6, 6.0-7.6, 9.1-12.2, 18.3-19.8, 21.3-22.9, 27.4-29.0, 30.5-32.0, 50.3-53.3</td>
<td>A1266-A1275</td>
<td>Croft, 1974, p. 56-57</td>
</tr>
<tr>
<td>129-94-28 DA</td>
<td>Adams</td>
<td>4384</td>
<td>771.0</td>
<td>0</td>
<td>25.9</td>
<td>1.5-3.0, 4.6-12.2, 15.2-16.8</td>
<td>A1299-A1305</td>
<td>Croft, 1974, p. 64</td>
</tr>
<tr>
<td>129-96-13 AAD</td>
<td>Adams</td>
<td>4388</td>
<td>830.3</td>
<td>30.5</td>
<td>107.9</td>
<td>35.1-51.8, 56.4-57.9, 59.4-64.0, 65.5-67.1, 73.2-79.2, 91.4-98.0, 120.4-121.9, 128-129.5</td>
<td>A1276-A1298</td>
<td>Croft, 1974, p. 86</td>
</tr>
<tr>
<td>129-98-32 ABD</td>
<td>Adams</td>
<td>4453</td>
<td>804.7</td>
<td>2.4</td>
<td>21.9</td>
<td>7.6-9.1, 13.7-15.2, 22.9-25.9, 47.2-48.8, 50.3-51.8, 52.0-54.9, 64.0-65.5</td>
<td>A1258-A1265</td>
<td>Croft, 1974, p. 109</td>
</tr>
<tr>
<td>129-100-25 DAA</td>
<td>Bowman</td>
<td>4390</td>
<td>819.3</td>
<td>?</td>
<td>?</td>
<td>None</td>
<td>None</td>
<td>Croft, 1974, p. 118</td>
</tr>
<tr>
<td>129-100-19 AAA</td>
<td>Bowman</td>
<td>4456</td>
<td>847.3</td>
<td>9.1</td>
<td>3.0</td>
<td>64.0-65.5</td>
<td>A1306</td>
<td>Croft, 1974, p. 115-116</td>
</tr>
<tr>
<td>129-102-27 AAA</td>
<td>Bowman</td>
<td>4457</td>
<td>867.2</td>
<td>No TC</td>
<td>0</td>
<td>None</td>
<td>None</td>
<td>Croft, 1974, p. 125-126</td>
</tr>
<tr>
<td>Code</td>
<td>Species</td>
<td>No.</td>
<td>CM</td>
<td>Tc</td>
<td>As 1</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-82-36 BBC Sioux 8083 669.6 No Tc 0 None ------ Randich, 1975, p. 86-87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-84-36 ABA Sioux 4489 654.7 No Tc 0 None ------ Randich, 1975, p. 92-93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131-94-20 CBC Adams 4312 762.0 12.2 115.8 35.1-32.0, 54.9-59.4, 61.0-62.5, 70.1-71.6, 73.2-80.8, 82.3-83.8, 85.3-86.9, 111.3-114.3 A1183- A1257 Croft, 1974, p. 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131-102-07 DDD Bowman 4462 897.6 0 88.4 1.5 1.5-3.0, 85.3-86.9 A1307- A1308 Croft, 1974, p. 232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132-84-06 CCC Grant 4398 624.6 3.0 3.0 3.6 None ------ Randich, 1975, p. 146-147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132-99-32 DDC Bowman 4391 883.9 86.9 32.0 None ------ Croft, 1974, p. 261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-84-30 AAA Grant 4397 702.6 9.1 57.9 16.8-21.3, 32.0-35.1, 36.6-38.1 A1169- A1174 Randich, 1975, p. 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-85-12 ADD Grant 4487 618.4 4.6 5.2 None ------ Randich, 1975, p. 181-182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-86-06 BBB Grant 8103 730.6 19.8 59.4 45.7-47.2, 51.8-56.4 A1159- A1162 Randich, 1975, p. 184-185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-86-15 DDD Grant 4515 680.0 30.5 91.4 42.7-50.3, 65.5-67.0, 71.6-73.1, 103.6-105.1 A1361- A1368 Randich, 1975, p. 214-215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-86-07 DDD Grant 8102 659.9 13.8 71.6 25.9-36.6 A1175- A1181 Randich, 1975, p. 212-213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>First Name</td>
<td>Last Name</td>
<td>Code</td>
<td>Name</td>
<td>DOB</td>
<td>Temperature</td>
<td>DOB</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>136-87-36</td>
<td>ABD</td>
<td>Grant</td>
<td></td>
<td>4486</td>
<td></td>
<td>579.1</td>
<td>5.8</td>
<td>32.6</td>
</tr>
<tr>
<td>136-88-13</td>
<td>AAA</td>
<td>Grant</td>
<td></td>
<td>4513</td>
<td></td>
<td>667.8</td>
<td>48.8</td>
<td>96.0</td>
</tr>
<tr>
<td>137-83-06</td>
<td>CDD</td>
<td>Morton</td>
<td></td>
<td>4763</td>
<td></td>
<td>548.6</td>
<td>4.6</td>
<td>32.0</td>
</tr>
<tr>
<td>137-86-03</td>
<td>AAD</td>
<td>Morton</td>
<td></td>
<td>4752</td>
<td></td>
<td>600.5</td>
<td>49.3</td>
<td>82.3</td>
</tr>
<tr>
<td>137-87-12</td>
<td>CDA</td>
<td>Morton</td>
<td></td>
<td>4757</td>
<td></td>
<td>731.5</td>
<td>93.0</td>
<td>5.2</td>
</tr>
<tr>
<td>137-89-09</td>
<td>ABA</td>
<td>Grant</td>
<td></td>
<td>4511</td>
<td></td>
<td>702.6</td>
<td>144.8</td>
<td>93.0</td>
</tr>
<tr>
<td>138-85-26</td>
<td>CDD</td>
<td>Morton</td>
<td></td>
<td>4762</td>
<td></td>
<td>670.6</td>
<td>39.6</td>
<td>9.1</td>
</tr>
<tr>
<td>139-76-20</td>
<td>ABB</td>
<td>Burleigh</td>
<td></td>
<td>2017</td>
<td></td>
<td>597.7</td>
<td>12.2</td>
<td>3.0</td>
</tr>
<tr>
<td>139-77-15</td>
<td>CCC</td>
<td>Burleigh</td>
<td></td>
<td>2016</td>
<td></td>
<td>534.3</td>
<td>9.3</td>
<td>4.4</td>
</tr>
<tr>
<td>139-83-12</td>
<td>DBA</td>
<td>Morton</td>
<td></td>
<td>4751</td>
<td></td>
<td>597.4</td>
<td>35.0</td>
<td>68.6</td>
</tr>
<tr>
<td>ID</td>
<td>Date</td>
<td>Name</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth</td>
<td>Temperature</td>
<td>Depth</td>
<td>Temperature</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>139-83-28</td>
<td>DAD</td>
<td>Morton</td>
<td>4764</td>
<td>548.6</td>
<td>4.6</td>
<td>38.1</td>
<td>None</td>
<td>NDSWC Unpublished Data</td>
</tr>
<tr>
<td>139-84-27</td>
<td>BBC</td>
<td>Morton</td>
<td>4760</td>
<td>597.4</td>
<td>29.9</td>
<td>26.5</td>
<td>47.2-48.8, 51.8-56.4, 68.6-70.1</td>
<td>NDSWC Unpublished Data</td>
</tr>
<tr>
<td>139-87-23</td>
<td>BBB</td>
<td>Morton</td>
<td>4756</td>
<td>638.6</td>
<td>106.7</td>
<td>3.0</td>
<td>None</td>
<td>NDSWC Unpublished Data</td>
</tr>
<tr>
<td>140-78-14</td>
<td>AAA</td>
<td>Burleigh</td>
<td>2008</td>
<td>539.8</td>
<td>5.9</td>
<td>3.2</td>
<td>None</td>
<td>Randich, 1975, p. 213</td>
</tr>
<tr>
<td>141-78-35</td>
<td>BBB</td>
<td>Burleigh</td>
<td>2007</td>
<td>562.7</td>
<td>3.7</td>
<td>.9</td>
<td>None</td>
<td>Randich, 1975, p. 221</td>
</tr>
<tr>
<td>141-78-05</td>
<td>DDD</td>
<td>Burleigh</td>
<td>2006</td>
<td>588.3</td>
<td>1.5</td>
<td>3.0</td>
<td>3.0-4.6</td>
<td>Randich, 1975, p. 221</td>
</tr>
<tr>
<td>141-82-22</td>
<td>CDA</td>
<td>Oliver</td>
<td>3725</td>
<td>532.2</td>
<td>11.6</td>
<td>6.7</td>
<td>None</td>
<td>Croft, 1970, p. 57</td>
</tr>
<tr>
<td>141-88-23</td>
<td>DDC</td>
<td>Mercer</td>
<td>3650</td>
<td>684.3</td>
<td>195.1</td>
<td>6.1</td>
<td>None</td>
<td>Croft, 1970, p. 66</td>
</tr>
<tr>
<td>141-90-19</td>
<td>CCD</td>
<td>Mercer</td>
<td>3433</td>
<td>634.0</td>
<td>158.5</td>
<td>82.3</td>
<td>218.5-230.7, 246.9-248.4</td>
<td>Croft, 1970, p. 75</td>
</tr>
<tr>
<td>142-79-26</td>
<td>DDD</td>
<td>Burleigh</td>
<td>2005</td>
<td>618.1</td>
<td>12.5</td>
<td>1.2</td>
<td>None</td>
<td>Randich, 1965, p. 227</td>
</tr>
<tr>
<td>142-81-04</td>
<td>ADC</td>
<td>Burleigh</td>
<td>1984</td>
<td>507.8</td>
<td>2.4</td>
<td>85.9</td>
<td>16.8-18.3, 29.0-30.5, 33.5-35.1, 39.6-41.1, 51.8-56.4</td>
<td>Randich, 1965, p. 230-232</td>
</tr>
<tr>
<td>142-82-05</td>
<td>DAA</td>
<td>Oliver</td>
<td>3647</td>
<td>595.9</td>
<td>62.8</td>
<td>96.0</td>
<td>93.0-94.5, 97.5-100.6, 103.6-109.7, 114.3-118.9, 120.4-129.5, 134.1-135.6, 138.7-150.9, 155.4-158.5</td>
<td>Croft, 1970, p. 78</td>
</tr>
<tr>
<td>Code</td>
<td>Identifier</td>
<td>Name</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>142-82-09</td>
<td>DDD</td>
<td>Oliver</td>
<td>3637</td>
<td>624.8</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Croft, 1970, p. 79</td>
</tr>
<tr>
<td>142-84-24</td>
<td>BBA</td>
<td>Oliver</td>
<td>3558</td>
<td>611.4</td>
<td>128.5</td>
<td>83.5</td>
<td>149.4-150.9, 153.9-155.4, 164.6-167.6, 169.2-175.3, 178.3-179.8, 196.6-198.1, 201.2-205.7, 208.8-211.8</td>
<td>A1088-A1102, Croft, 1970, p. 84-85</td>
</tr>
<tr>
<td>142-86-20</td>
<td>BBA</td>
<td>Oliver</td>
<td>3559</td>
<td>628.5</td>
<td>173.7</td>
<td>77.7</td>
<td>205.7-207.3, 213.4-214.5, 222.5-231.6, 234.7-236.2, 243.8-245.4</td>
<td>A1108-A1114, Croft, 1970, p. 89-90</td>
</tr>
<tr>
<td>142-92-09</td>
<td>DAB</td>
<td>Dunn</td>
<td>4467</td>
<td>606.6</td>
<td>213.4</td>
<td>100.6</td>
<td>280.4-283.5, 293.4-295.7</td>
<td>A1396-A1398, NDSWC Unpublished Data</td>
</tr>
<tr>
<td>143-85-03</td>
<td>DAD</td>
<td>Oliver</td>
<td>3557</td>
<td>605.9</td>
<td>134.1</td>
<td>61.0</td>
<td>170.7-172.2, 176.8-182.9</td>
<td>A1124-A1128, Croft, 1970, p. 106-107</td>
</tr>
<tr>
<td>143-93-09</td>
<td>BCB</td>
<td>Dunn</td>
<td>4600</td>
<td>650.1</td>
<td></td>
<td></td>
<td>None</td>
<td>NDSWC Unpublished Data</td>
</tr>
<tr>
<td>144-75-15</td>
<td>AAA</td>
<td>Burleigh</td>
<td>1993</td>
<td>614.5</td>
<td>33.5</td>
<td>.6</td>
<td>None</td>
<td>Randich, 1965, p. 241</td>
</tr>
<tr>
<td>144-76-12</td>
<td>BBB</td>
<td>Burleigh</td>
<td>2044</td>
<td>594.4</td>
<td>50.3</td>
<td>4.6</td>
<td>None</td>
<td>Randich, 1965, p. 242-243</td>
</tr>
<tr>
<td>144-76-07</td>
<td>DAD</td>
<td>Burleigh</td>
<td>2052</td>
<td>588.0</td>
<td>41.1</td>
<td>4.6</td>
<td>None</td>
<td>Randich, 1965, p. 242</td>
</tr>
<tr>
<td>144-77-23</td>
<td>CAC</td>
<td>Burleigh</td>
<td>2043</td>
<td>588.3</td>
<td>44.2</td>
<td>9.8</td>
<td>48.8-50.3</td>
<td>A1320, Randich, 1965, p. 245-246</td>
</tr>
<tr>
<td>144-77-18</td>
<td>DAA</td>
<td>Burleigh</td>
<td>1988</td>
<td>429.2</td>
<td>12.5</td>
<td>5.5</td>
<td>15.2-18.3</td>
<td>A1316-A1317, Randich, 1965, p. 245</td>
</tr>
</tbody>
</table>
| Code | Group | Person | Site | Lat | Long | Elevation | Temp | Precip | Start | Finish | Reference
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>144-79-01</td>
<td>CCB</td>
<td>Burleigh</td>
<td>2051</td>
<td>555.0</td>
<td>10.7</td>
<td>7.6</td>
<td>15.2-16.8</td>
<td>A1321</td>
<td>Randich, 1965, p. 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144-82-26</td>
<td>BBA</td>
<td>Oliver</td>
<td>2690</td>
<td>508.4</td>
<td>19.8</td>
<td>4.6</td>
<td>19.8-24.4</td>
<td>A1156-A1158</td>
<td>Croft, 1970, p. 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144-82-28</td>
<td>CBA</td>
<td>Oliver</td>
<td>3638</td>
<td>519.4</td>
<td>-----</td>
<td>-----</td>
<td>None</td>
<td>-----</td>
<td>Croft, 1970, p. 135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144-94-07</td>
<td>DAA</td>
<td>Dunn</td>
<td>4599</td>
<td>692.8</td>
<td></td>
<td></td>
<td>None</td>
<td>-----</td>
<td>NDSUC Unpublished Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145-84-28</td>
<td>DCC</td>
<td>Mercer</td>
<td>2686</td>
<td>517.5</td>
<td>34.1</td>
<td>8.5</td>
<td>None</td>
<td>-----</td>
<td>Croft, 1970, p. 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146-85-10</td>
<td>CBB</td>
<td>Mercer</td>
<td>3560</td>
<td>622.1</td>
<td>170.7</td>
<td>68.5</td>
<td>207.3-213.4, 248.4-249.9</td>
<td>A1083-A1087</td>
<td>Croft, 1970, p. 229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152-85-35</td>
<td>DDA</td>
<td>Ward</td>
<td>3201</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>-----</td>
<td>Pettyjohn, 1968, p. 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157-85-16</td>
<td>D</td>
<td>Ward</td>
<td>NDGS</td>
<td>511.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lemke, 1960, p. 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163-101-35</td>
<td>CBB</td>
<td>Divide</td>
<td>3075</td>
<td>690.4</td>
<td></td>
<td></td>
<td>152.4-158.5, 161.5-164.6, 173.7-176.8, 179.8-185.9</td>
<td>A1402-A1407</td>
<td>Armstrong, 1965, p. 98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-91-10</td>
<td>CC</td>
<td>Burke</td>
<td>NDGS</td>
<td>2892</td>
<td></td>
<td></td>
<td>None</td>
<td>-----</td>
<td>Armstrong, 1971, p. 21-22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES
REFERENCES

Cooper, C. L. 1944. Smaller foraminifera from the Porter's Creek Formation (Paleocene) of Illinois. J. Paleontol. 18:343-354.

197

