
University of North Dakota University of North Dakota 

UND Scholarly Commons UND Scholarly Commons 

Undergraduate Theses and Senior Projects Theses, Dissertations, and Senior Projects 

1978 

Autecology, Development and Diagenesis of a Phylloid Autecology, Development and Diagenesis of a Phylloid 

Stromatolitic Blue Green Algal bioherm, Laborcita formation, Stromatolitic Blue Green Algal bioherm, Laborcita formation, 

Sacramento Mountains, New Mexico Sacramento Mountains, New Mexico 

Mary J. Klosterman 

How does access to this work benefit you? Let us know! 

Follow this and additional works at: https://commons.und.edu/senior-projects 

Recommended Citation Recommended Citation 
Klosterman, Mary J., "Autecology, Development and Diagenesis of a Phylloid Stromatolitic Blue Green 
Algal bioherm, Laborcita formation, Sacramento Mountains, New Mexico" (1978). Undergraduate Theses 
and Senior Projects. 72. 
https://commons.und.edu/senior-projects/72 

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND 
Scholarly Commons. It has been accepted for inclusion in Undergraduate Theses and Senior Projects by an 
authorized administrator of UND Scholarly Commons. For more information, please contact 
und.commons@library.und.edu. 

https://commons.und.edu/
https://commons.und.edu/senior-projects
https://commons.und.edu/etds
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/senior-projects/72
https://commons.und.edu/senior-projects?utm_source=commons.und.edu%2Fsenior-projects%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/senior-projects/72?utm_source=commons.und.edu%2Fsenior-projects%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu


• 

• 

• 

• 

• 
• 

• 

• 

• 

• 

AUTECOLOGY, DEVELOPMENT AND DIAGENESIS 
OF A 

PHYLLOID AND STROMATOLITIC BLUE GREEN ALGAL BIOHERM, 
LABORCITA FORMATION, SACRAMENTO MOUNTAINS, NEW MEXICO 

by 

Mary Jo Klosterman 

Geology 490 
University of North Dakota 

May 1978 



• 

• 

• 

• 

• 

• 

• 

ABSTRACT 

A Lower Permian phylloid algal bioherm, developed in the mid­

dle of the Laborcita Formation near Tularosa, New Mexico, is com­

prised of blue green algal bound phylloid algal wackestones and pack­

stones. It contains a restricted fauna of erect, interlocking phyl­

loid algae encrusted by wavy, digitate, and botryoidal masses of blue 

green algae and other minor epibionts. Primary void space developed 

in the bioherm as shelter cavities beneath phylloid algal thalli. 

Fan arrays of slightly radial fibrous cement, which appear as dark 

patches in the core rocks, developed in the submarine environment on 

masses of blue green algae and on phylloid plates and grew into the 

shelter cavities. They exhibit three stages of inversion and recrys­

tallization which progressively obscure the original fibrous fabric • 

The intimate association between robust phylloid algae and encrusting 

blue green algae, penecontemporaneous marine cementation and infil­

tration of micrite and layered pelletal micrite between algal thalli 

controlled mound development. 

After deposition of the mound, subaerial diagenesis created an 

extensive network of interconnected solution voids which transect 

primary structures. Subsequently, the bioherm was saturated by fresh 

water below the water table where the solution voids were lined by 

a clear, equant to slightly bladed, isopachous cement. A second solu­

tion initiated neomorphism of micrite and allochems to microspar and 

precipitated a clear, coarsely crystalline, calcite mosaic in re­

maining void space . 
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INTRODUCTION 

Previous descriptions of Late Paleozoic phylloid algal bioherms 

have attributed the build-up of the mounds to parautochthonous accumu­

lations of fragmented algal blades and carbonate mud (Wray, 1962; Too­

mey and others, 1977) . New evidence from an Early Permian algal bio­

herm in south-central New Mexico reveals an unusual biotic relation~ 

ship between unbroken and erect interlocking plates of phylloid algae 

and encrusting and digitate blue green algae that appears to have con­

trolled mound development. 

The mounds were initially cemented in the submarine environment. 

Subsequent exposure to freshwater in the vadose zone created a network 

of interconnected solution vugs which indiscriminately transect primary 

fabrics. The solution vugs were then lined by an isopachous, slightly 

bladed cement and completely occluded by coarse sparry calcite. 

The purpose of this s t udy is to: 1) describe the intimate rela­

tionship between phylloid algae and blue green algae and demonstrate 

its role in the build-up of the mound, and 2) untangle the complex dia­

genetic history of the mound based on cement morphologies and rela­

tionships . 

GEOGRAPHICAL AND GEOLOGIC SETTING 

The Laborcita Formation was originally defined by Otte (1959) as 

the transitional strata overlying the marine Holder Formation (Vir­

gilian) and underlying the non-marine redbeds and sandstones of the 

Abo Formation (Wolfcampian). It crops out along a narrow, northwest 

trending strip north of Alamogordo, New Mexico, along the western 
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flank of the northern Sacramento Mountains and ranges in thickness from 

about500 feet in the southeast to about 1000 feet towards the north­

west . The Laborcita Formation is comprised primarily of interbedded 

shallow marine carbonates, fluvial sandstones and conglomerates, and 

calcareous mudstones and shales which reflec t the relative fluctuations 

of the slowly regressing sea that occupied the area during latest 

Pennsylvanian and earliett Permian times. 

Nor theast of Tularosa, New Mexico, a biohermal lithofacies occurs 

in the middle par t of the Laborcita Formation extending to the north a­

bout three miles and ranging in width from one-fourth to one-third mile 

(Fig. 1). This study is concerned with the two southernmost mounds in 

sec. 16, T. 14 S . , R.10 E. , Otero County, New Mexico. The eastern 

flank of the northern mound dips slightly to the east and exhibits a 

gently undulating character (Fig. 2) which grades into a knoll of 

massive limestone approximately 50 feet thick at its eastern end (Fig.3). 

The southern bioherm is exposed as a single knoll about 60 feet thick 

with a prominent northwest-facing limestone ridge (Fig. 4). Fluvial 

sandstones and conglomerates f ill in the topographic depressions be­

tween the mounds. The mounds are developed on a thin, continuous bed 

of shallow marine pelletal wackestone. 

METHODS 

Rock samples were collected from the biohermal core and from 

laterally equivalent units in the back bioherm by Dr . T. A. Cross 

during the summer of 1977 . Fabric studies were conducted on acetate 
peels and polished faces of large slabs. Staining techniques similar 

to those described by Friedman (1959) were employed for differentiating 

calcite and do lomite and for any possible ferroan calcites . Thin sec­

tions were also examined petrographically and with cathodoluminescence, 

SEM, and microprobe • 
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ROCK DESCRIPTIONS 

Back bioherm 

Strata in the back biohermal position are comprised mainly of 

bedded and bioclastic mudstones, wackestones and packstones which con­

tain a diverse biotic assemblage: whole gastropods with geopetal struc­

tures; broken, horizontally bedded phylloid algae; bryozoan fragments; 

fusilinids and other benthic foraminifers ; disarticulated bivalves; 

echinoderm plates and columnals; ostracodes; brachiopod fragments and 

spines; and rarely, trilobites (Fig. 5). Intraclasts of unfossili­

ferous micrite are connnonly found embedded in the wackestones. 

The back bioherm contains a patchy distribution of microenviron­

ments as evidenced by the wide range of rock types and the local 

accumulation of specific faunal assemblages. One such microenviron-

ment contains pelletal phylloid algal packstones which resemble bioher­

mal core facies of other Late Paleozoic mounds, but which are dissim­

ilar to the Laborcita core facies. Long, sinuous phylloid algal 

plates up to 4 cm in length wind through the rock with alternating 

dark and light colored bedded pelletal micrite , unbedded, unfossil­

iferous, buff-colored micrite, and unbedded greyish micrite with 

whole gastropods occurring between the algal plates. Unlike the 

Laborcita core facies, these rocks contain no encrusting stromatolitic 

algae and no solution vugs (Fig . 6). 

Biohermal Core 

In contrast to the bioclastic wackestones and packstones of the 

back-bioherm is the biohermal core with a more restricted biotic 

assemblage comprised of blue green algal bound phylloid algal wacke-
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stones and packstones (Fig. 7). Erect phylloid algae are in an inter­

locking network (Fig . 8) which is encrusted by pelletal blue green 

algae in three distinct shapes: wavy lamination, digitate knobs (Figs. 

9, 10, 11), and botryoidal masses (Fig. 12). Pelletal micrite and 

unfossiliferous micrite in laminae about 1 mm thick are supported by 

the erect phylloid algal thalli. Primary void space is developed 

beneath individual phylloid algal plates (Fig. 13) by a sheltering 

effect that excluded micrite (Wray, 1968). Fibrous calcite, arranged 

in radial fibrous fan arrays is developed on the blue green algae, 

oriented perpendicular to the underlying rounded surface, and growing 

up, down, and sideways into the shelter cavities. These fan arrays, 

which appear as dark crystalline masses in the rock, were described as 

stromatactis by Otte and Parks (1963) and ascribed a biologic origin . 

A fine mosaic of equidimensional calcite grains or crystals rests 

geopetally in topographic lows on the fan arrays (Fig. 19) and on phyl­

loid algal thalli and partially fills the bottom of shelter cavities 

(Fig. 15). 

An elaborate network of solution vugs, now lined by a slightly 

bladed isopachous cement and filled by a very coarse, white sparry 

calcite, cuts indiscriminately through the core rocks (Fig. 14). The 

network is visible on weathered surfaces and individual solution 

cavities can be traced in three dimensions in hand sample and on the 

outcrop. 
Bioclastic wackestones with a high faunal diversity dominate the 

back bioherm. Phylloid algae are broken and fragmented and often 

horizontally bedded, which gives them the appearance of having been 

nechanically transported from the mound. Intraclasts of buff-colored 
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non-fossiliferous micrite, very similar to the micrite in the bioherm 

core, also appear to have been transported and deposited in the quiet 

water of the back bioherm. 

By contrast with the back bioherm, the bioherm core has a low 

faunal diversity and preponderance of erect, interlocking plates of 

phylloid algae encrusted by successive layers of blue green algae. 

Although mounds comprised predominantly of phylloid algae appear 

commonly in Late Paleozoic shallow-shelf, marine banks (Wray, 1968; 

Toomey and others, 1977), the Laborcita bioherm differs from these 

mounds in that the phylloid algae are erect and unbroken and capable 

of supporting encrusting blue green algae. The intimate association 

between phylloid and blue green algae, as well as penecontemporaneous 

marine cementation and infiltration of micrite and layered pelletal 

micrite, created a biologically originated mound. 

~ALEOENVLRON}1ENT 

Toomey (1976) described a phylloid algal community from the Lower 

Permian of southern New Mexico. His synecological reconstructions 

pQXtray the alga as an upright, fragile plant a few inches high with 

broad, somewhat rigid leaves or fronds that thrived in waters below 

or beyond the zone of appreciable wave action. So rapid was it growth 

that in a relatively short time it dominated the available substrate . 

Organisms such as foraminifers, brachiopods and Tubiphytes, an en­

crusting blue green alga, which lived as epiphytes on the algae sur­

vived most successfully in this environment while the abundance of 

epifaunal organisms was restricted by the limited amount of available 

seabottom . 
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The Laborcita bioherm reflects an environment similar to the one 

described by Toomey in the sense that it was dominated by erect phyl­

loid algae and contained a limited fauna composed mainly of epiphytes. 

However, in this case, encrusting stromatolitic blue green algae with 

an occasi onal encrusting foraminifer is the most common epiphyte, 

while brachiopods are a very rare component. 

The phylloid algae probably thrived in shallow marine water in a 

zone of little wave action as evidenced by the large amount of mi~rite 

and the in situ development of interlocking algal fronds. Occasionally, 

slight fluctuations in sea level caused expansion of the algal meadow 

into the back biohermal environment where an interlocking network of 

algal thalli but no encrusting blue green algae developed. 

Figure 16 gives a reconstruction of the phylloid algal meadow 

during Early Permian times. The geometry of the thalli provided the 

plant with an efficient means of trapping and holding sediment. This 

baffling action caught suspended or current-washed sediment which was 

then deposited, often bedded, between individual thalli. 

That the erect phylloid algae, while in growth position, was capa­

ble of supporting encrusting blue green algae, forming large shelter 

cavities, and trapping large amounts of micrite suggests that the 

phylloid alga is sturdy and not fragile or delicate, as it has been 

suggested (Toomey, 1976) . In this sense, i t can be considered as 

the framework support of the mound • 

CEMENTS 

Four different types of cement are recognized in the Laborcita 
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bioherm core on the basis of their morphol ogies and their occurrence 

in primary or secondary voids. Primary cavitie s were developed during 

deposition and in situ construction of the mound. The most abundant 

primary cavities are the shelter cavities formed beneath erect phylloid 

algal thalli which were described previously. Fan arrays of radially 

oriented fibrous calcite in botyroidal masses, developed in the sub­

marine environment on blue green algal masses or on phylloid algal 

plates, growing up, down, or sideways into available space in the 

cavity. Inter-particle voids,~uch as those within whole gastropod 

shells, are less common and are filled by a f inely crystalline sparry 

mosaic. Secondary voids formed by a solution which appears to have 

occurred after partial submarine lithification while the bioherm wa s 

exposed to vadose weathering conditions. The solution formed an ela­

borate network of interconnected voids which runs through the core 

rocks either cutting indiscriminately across primary depositional 

structures (Figs. 17 and 18) or fo l lowing the general shape of some of 

the larger shelter ·cavities, slightly enlarging them through dissolution 

of older cements and allochems . Subsequent depression of the bioherm 

or a relative rise in groundwater level placed the bioherm in a fresh 

phreatic environment where available void space was lined by a slightly 

bladed, isopachous cement and later occluded by a solution which caused 

neomorphic alteration to microspar of some marine allochems and sub­

sequent precipitation of a clear subequant crystalline calcite mosaic . 

Fan arrays 

Radia l fibrous calcite is common on blue green algae and within 

primary void space in cavities beneath phylloid algal thalli and is 
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arranged in single fans (Fig. 19) or as composite arrays of two or more 

interpenetrating fans (Fig. 20). Individual fans are 3 - 5 nun wide 

and 2 - 5 mm high while the composite arrays are as much as 20 mm wide 

and 10 mm high. Under plane light, the original fibrous structure 

(aragonite or high-Mg calcite) can be discerned when not obscured by 

subsequent inversion, recrystallization, or dolomitization. Individual 

fibrous crystals, 6 - 8:1 length-width ratio, are sometimes arranged 

from a point source radiating upward, but more often, are found oriented 

perpendicular to the rounded perifery of the underlying blue green algae 

which gives the crystals a slightly radial appearance . 

Both single and composite fan arrays are developed on hummocky 

masses of blue green algae and extend up into the shelter cavities 

created by phylloid algal plates. They also are attached to phylloid 

algae and extend down and sideways into primary voids and interpene­

trate with upward-growing fan arrays (Fig.21 ). A fine equidimensional 

calcite mosaic with an average dimension of 10-15 microns, rests geo­

petally on the fans. It is usually clear and faintly bedded, occas i on­

ally grading into very dense micrite, which gives it the appearance 

of having been mechanically deposited. The fan arrays are similar to 

those described from the Laborcita Formation by Cys and Mazzulo (1977) 

and to submarine cements fnom other ancient and modern shallow marine 

environments (for example, Davies, 1977; Mazzulo and Cys , 1977; 

Ginsburg and James, 1976) . 

The association between blue green algae and encrusting fan arrays 

is previously unreported. Locally, a series of concentric bands or 

laminae about 0.1 mm wide, are superimposed on blue green algal masses 
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(Fig. 21). The bands have irregular layers of pellets with an internal 

fibrous habit oriented perpendicular to the boundary of each laminae . 

The fibrous hands are separated by a thin layer of dark, amorphous, pos­

sibly clay-rich or micritic material. A progressive decrease in fibrous 

habit occurs in each band towards the blue green algae. This gradation 

from encrusting fan array to blue green algae with no change in overall 

shape may suggest influence by the blue green algae on the growth of 

accretionary bands of fibrous cement or possibly, may be a neomorphic 

alteration of the blue green algae to slightly radial fibrous aragonite. 

The fan arrays exhibit three stages of inversion and recrystalliza­

tion that progressively obscure the original fibrous fabric. Fan arr ays 

exhibiting the first stage of recrystallization are developed directl y 

on phylloid algal thalli without intervening blue green algae (Fig. 22). 

They are composed of yellowish, equant to slightly elongate, calcite 

crystals with a hint of preferred orientation of crystallites: to that of 

the original fibrous habit. A thin yellowish margin, possibly a product 

of the recrystallization process, surrounds the outer edge of the fan . 

Asseretto and Folk (1976) described Triassic pisolites from Lombardy, 

Italy. The pisolites, originally fibrous aragonite, now consist of 

microsparite laminae with a brick-like fabric, or fine mosaic crystals 

with an external form of square-ended rays. The inferred diagenesis 

suggests that the original fibrous aragonite 1) formed large square­

ended rays during local aggrading recrystallization, and 2) inverted to 

mosaic or brick-like calcite on a piece-by-piece basis that preserved 

original textural details when the pH or Mg/Ca ratio dropped. 

The resulting calcite mosaic in the pisolites is very similar to 

the first stage of recrystallization found in the Laborcita fan arrays . 
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The slightly radial orientation of crystallites in the fan arrays sug­

gests that similar diagenetic processes may have affected the original 

fibrous cement . The yellowish margin along the edge of the fan may 

have been caused by the migration of Mg from the fan arrays and con­

centration along the fan periphery during recrystallization . Occasion­

ally, dolomite has formed along the edges of the fan near the yellow 

margin, which may indicate that the yellowish margin is the initial 

stage of dolomitization . 

In the second stage, continued recrystallization and crystal 

growth has oriented areas of individual crystallites in the calcite 

mosic in optical continuity, creating irregularly bounded calcite crys­

tals with a maximum dimension of 2 mm (Fig. 23, 24a,b). These neo­

morphic crystals, visible only in cross-polarized light, have a patchy 

extinction that cross- cuts the original fibrous fabric. The relict fi­

brous fabric is visible under plane light through the overprint of these 

irregularly bounded crystals. 

The fourth stage shows the limit of recrystallization within the 

fans. Fan arrays devoid of any relict fabric are now composed entirely 

of very coarse calcite crystal. The yellowish margin observed in the 

second and third stages is also well-developed around the fans in this 

stage and clearly outlines the outer extent of the fan arrays . In re­

flected light, these fans are indistinguishable from fan arrays with a 

well-preserved relict fabric and have the shape of the composite arrays . 

The fan arrays of this stage are found on phylloid algae, growing down­

ward and interpenetrating an upward-growing fan or occur as gradations 

from fans typical of the third stage. Recrystallization of the fans 

has caused continued growth of the coarse calcite mosaic until very 

coarse spar forms des troying the relict fibrous fabric. The complete 
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sequence of recrystallization and inversion is found ocassionally in 

one fan array (Fig. 25) . 

Cathodoluminescence reveals the fans as mottled deep blue, non­

luminescent patches (the same color as a blank epoxied thin section 

slide) with thin dull orange streamers. The yellowish margin and the 

pelletal micrite layers between fibrous bands luminesce more intensely 

to a brighter orange. The fine equidimensional calcite mosaic resting geo­

petally on the fans is mostly non-luminescent with finely verigated dull 

orange surrounding individual crystals. 

That the fan arrays developed in a submarine environment is attested 

to by several lines of evidence. The fans form directly on top of bl ue 

green algae or on phylloid algae and grow into primary cavities. The 

acicular character is a common cement type in submarine environments 

(Folk, 1974; Badiozamani, 1977). There is no evidence for subaerial 

weathering such as caliche crusts or for precipitation in the vadose 

zone, that is, there are no meniscus cements. Finally, the least al­

tered fibrous calcite in the first stage contains irregular rows of 

pellets which most likely are of submarine origin and which were in­

corporated during the growth of the fan arrays • 

Isopachous cement 

An equant to slightly bladed isopachous cement lines solution voids. 

It is developed on a thin layer (0 . 1 mm) of fine calcite crystals and is 

itself approximately 1 mm high (Fig . 26). The cement, oriented perpen­

dicular to surfaces, completely rims large solution voids . In the larger 

shelter cavities the isopachous rim is developed on previously existing 

fabrics such as first generation cements, internal gravitational sedi­

ment, and the fan arrays. Where solution voids cut across primary dep-
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ositional structures, the cement is oriented perpendicular to the cross­

cutting surface. 

The rim cement also serves as a boundary between primary and sec­

ondary voids in areas where first generation cements in shelter cavi ties 

come in contact with cements in secondary solution voids. Under cath­

odoluminescence the distinction between cement generations is clea rly 

seen because the isopachous cement is non-luminescent with the first 

generation cement below the isopachous rim a mottled blue with orange 

streamers and the coarse spar above the rim a brightly luminescing orange . 

Electron microprobe determinations indicate the concentration of FeO 

in the isopachous cement as approximately O - 0.8 weight percent and 

the concentration of MnO below detectabl e readings (less than 0.1 weight 

percent). 

The formation of isopachous cement requires water-filled voids 

which are usually found in either a submarine or a fresh phreatic environ­

ment. However, Harrison (1977) has described bladed isopachous cement 

from the vadose that has formed by the ponding of meteoric water in voids. 

The difference in luminescence between the rim cement and the coarse spar 

may suggest formation in the vadose zone during periods in which voids 

were filled by water. Alternatively, the different luminescence qual­

ities may indicate precipitation from different groundwaters . 

Equant calcite mosaic 

Coarse, clear, subequant spar with plane crystalline boundaries 

fills remaining void space, increasing from 0.02 mm along the periphery to 

a maximum crystal dimension of 8 mm in void centers. The spar appears to 

be the same as that found in primary shelter cavities, except the lar ger 

solution voids have allowed increased growth of the spar while the smal-
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ler cavities restricted crystal growth. In both primary and secondary 

voids the cement luminesces very bright orange which indicates rela tive­

ly high concentrations of Mn++ and low concentrations of Fe++ in the 

spar since the manganese ion is usually considered the cause of lumines­

cence in calcites while ferrous iron is the quencher (Sippel and Glover, 

1965). Estimates of the concentrations· of Mn++ in calcite needed to pro­

duce distinct luminescence average around 1000 ppm (Martin and Zeeger, 

1969; Freeman, 1971) . However, no manganese in either ox idation state 

was found using the electron microprobe and, more important, no detect­

able difference in composition could be found between the non-luminescing 

isopachous cement and the brightly luminescing coarse spar. Further 

investigation is imperative to pinpoint causes for the variation in 

luminescence of the two cements . 

Meteoric water-filled voids in a f resh phr eatic environment or in 

a deeply buried environment are most likely to precipitate a clear, spar­

r y calcite. Badiozamani and others(l977), s i mulating natural environ­

ments, described a clear, equant spar that f ormed in a low temperature, 

fresh phreatic zone and suggested that lack of Mg++ in the groundwa ter 

allowed the growth of the coarse equant spar. The fact that the tec­

tonic history of the bioherm includes no evidenc e f or deep subsurface 

burial and that the morphology of the cement i s ver y similar ·to to that 

described by Badiozamani suggests that occlusion of the voids probably 

occurred in a f resh phreatic environment. 

Neomorphic microspar 

Equidimensional calcite crystals with a crystal size ranging from 

0.03 - 0.05 mm is found in three occurrences: 1) in thin bands about 

1 mm away from the void edge, 2) linearly along one edge of a fragment 
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of a phylloid algal plate, and 3) around blebs of micrite in a somewhat 

stellate habit. In all three cases the microspar increases in size 

away from the nearest allochem or ·surface. 

In the first case, the microspar, which is coarser than the inter­

nal gravitational sediment on the fans, occurs in thin linear band, 

0.3 - 0.5 nnn thick between the isopachous cement in the large solution 

voids and about 1 mm away from the void boundary. The crystalline 

bands appear to have resulted from complete recrystallization of a 

phylloid algal plate because where the band of microspar stops, an exten­

sively recrystallized phylloid alga continues. In the second occurrence, 

the utricle layer on one side of a fragmented phylloid alga has been 

recrystallized to microspar which coarsens outward. Both phylloid alga 

and neomorphic microspar appear to float in the very coarse void-filling 

spar (Fig . 27). In the third case, blebs of micrite, floating in the 

coarse spar mosaic, have recrystallized to slightly bladed stellate 

microspar (Fig. 28). 

Under cathodoluminescence, the microspar is deep-brownish red to 

bright red and grades into either the non-luminescent isopachous cement 

in the first case or into very bright orange in the second and third 

case. The separation between neomorphic spar and void- filling calcite 

mosaic and between neomorphic spar and allochem is indistinct. Move­

ment of groundwater through the solution voids appears to have caused 

the recrystallization of the allochems simultaneously with precipitation 

of the coarse, void-filling spar mosaic. 

LATE STAGE CEMENTATION 

Vein calcite 

Thin veins of calcite, 0.5 - 1 mm in width, run through the rocks • 
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Individual crystals are equant and range in size from 0.3 to 1 mm in dia­

meter. Crystallization of veins occurred in optical continuity with sur­

rounding crystals and go to extinction with adjoining host crystals in 

large, irregular patches (Fig . 29). Under cathodoluminescence, the veins 

are a very bright orange, similar to that found in the coarse spar (see 

above). No analysis was made by electron microprobe to determine trace 

element content. Precipitation of the veins occurred after lithification 

of the bioherm rocks as witnessed by the indiscriminate cross-cutting 

character and are probably a late stage meteoric alteration. 

DIAGENESIS 

A sequence of diagenetic events can be determined through close 

examination of cement morphologies and by the g eometric relationships 

between different generations of cements. Figure 30 gives the diagenetic 

path taken by the bioherm, showing its initial deposition and subsequent 

cementation and lithification. Also included in the diagram are the 

proposed diagenetic environments for each step • 

During step 1, the initial growth and development of interlocking 

phylloid algal thalli generated shelter cavities beneath thalli by an 

"umbrella" effect which prevented significant accumulation of fine sedi­

ments or mud. Pelletal and non-pelletal micrite, mechanically trans­

ported by currents, was trapped by the thalli and deposited in laminae 

at the base of sheltered cavities. Stromatolitic blue green algae grew 

upon the phylloid algae in distinctive shapes and grew into available 

space, protected by the overlying phylloid algae. The stromatolitic 

algae formed the substrate for precipitation of fibrous cement, either 

aragonite or high - Mg calcite, in fan arrays. Internal gravitational 

sediment, similar to Dunham's (1969) "vadose silt", was deposited geo-
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petally in topographic lows on the fan arrays, along the bottom of 

small shelter cavities, and on margins of blue green algal stromatolites • 

Inversion of the unstable aragonitic or high - Mg calcite fans to 

the more stable, less dense mineral, calcite, left an excess of Caco
3 

which precipitated as syntaxial overgrowths on the fibrous cement, wi­

dening the primary fibrous needles into equidimensional crystals aligned 

along the primary fan array . Recrystallization and crystal growth in 

optical and crystallographic continuity of small calcite crystal grad­

ually created coarse, irregularly bounded, interlocking crystals which, 

under cross-polarized light, cut across the primary fibrous fabric. 

Continued recrystallization of the fans caused continued growth of the 

coarse interlocking crystals into very coarse, subequant spar and des­

truction of the relict f ibrous fabric . 

Lowering of the sea level or uplift of the bioherm brought the bio­

herm into a vadose environment where meteoric water, undersaturated with 

respect to Caco
3

, indiscriminately dissolved portions of the rock, form­

ing a network of interconnected cavities which cut non-preferentially 

across primary depositional structures and enlarged remaining void space, 

predominantly the shelter cavities. 

Subsequently, the biohermal facies were saturated by fresh water 

below the water table where a slightly bladed isopachous cement preci­

pitated from the solution in the fluid-saturated voids. The isopachous 

cement outlined the solution voids and marked the boundary between cements 

precipitated in a submarine environment and those precipitated in a 

fresh phreatic environment. 

A second generation of cement was precipitated as coarse, clear, 

subequant calcite in the fresh phreatic zone. This cement completely 
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occluded remaining void space and triggered neomorphic alteration of 

allochems along the edge of the voids. 

Late stage diagenetic events not included in the diagram include 

the precipitation of thin, crosscutting streamers of calcite, dolomiti­

zation of fan arrays , and stylolitization • 

SUMMARY 

The back-biohermal facies of the Laborcita Formation contains a 

diverse faunal assemblage of fragmented, horizontally-bedded phylloid 

algae and whole and unbroken allochems, many with geopetal structures. 

In contrast to the back-bioherm, the biohermal core facies contains a 

limited fauna consisting primarily of a previously unreported association 

of phylloid algae and stromatolitic blue green algae. The phylloid 

algae were erect, flexible plants which proliferated the substrate 

forming an interlocking system of thalli which created shelter cavities 

by an "umbrella" effect which excluded fine sediment. Blue green 

algae bound or encrusted the phylloid algae in wavy, digitate and botry­

oidal or mamillary masses. Carbonate mud and bedded pelletal carbonate 

mud was trapped and deposited in primary cavities, thus providing sub­

strate for successive generations of phylloid algal growth . 

Fibrous cement in fan-like arrays developed in the submarine en­

vironment on masses of blue green algae in single and composite arrays 

and filled in much of the primary void space. The fan arrays exhibit 

three gradational stages of inversion and recrystallization: 1) inver­

sionof the original fibrous cement, either aragonite or high-Mg calcite, 

to equant or slightly elongate calcite crystallites oriented in the 

direction of the primary fibrous habit, 2) recrystallization of indi­

vidual crystallites to optical continuity creating coarse, patchy 
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calcite crystals which cut across primary fabric, and 3) continued 

recrystallization and crystal growth to a very coarse calcite mosaic 

with no preservation of primary fabric. 

Mound development was controlled by growth of erect, sturdy 

phylloid algae in an interlocking pattern, binding by s tromatolitic 

blue green algae, trapping of carbonate mud and penecontemporaneous 

marine cementation. 

Subaerial weathering after deposition of the mound created an 

extensive network of interconnected solution voids which either cut 

across primary depositional structures or enlarged primary void space 

through dissolution of older cements and allochems. Flooding of the 

secondary void space in the fresh phreatic environment caused precipi­

Iation of an equant to slightly bladed isopachous cement which grew 

perpendicular to the margin of the voids. Continued precipitation in 

the phreatic environment filled remaining void space with a very 

coarse, subequant calcite mosaic . 

Examination of the cements under cathodoluminescence showed the 

isopachous cement as non-l uminescent and the coarse calcite mosaic as 

a very bright orange,although no detectable difference in trace element 

content between the two cements could be found using the microprobe. 

Further research is impera tive to determine what effect, if any, ce­

ment morphology, environment of formation, or diagenetic environment 

has on the luminescence of different minerals . 
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CAPTIONS FOR FIGURES 

Figure 1. Map showing locations of Wolfcamp bioherms of northern 
Sacramento Mountains, New Mexico. (From Otte and Parks, 
1963, Jour. Geol. p. 381). 

2. South face of the northern Laborcita bioherm exhibiting 
undulating core facies. Sacramento Mountains in the distance . 

3. Photograph to the east of Figure 2, showing knoll at the 
southern limit of the northern bioherm. 

4. Prominent ridge on the northwest face of the southern bioherm. 

5. A fusilinid in upper center; small trilobite floats in pel­
letal micrite. 

6. A broken phylloid algal thallus abuts against an unbroken thal­
lus, trapping fragmented skeletal material and craating small 
cavities. Back bioherm, t2X 

7. Typical blue green algal bound phylloid algal packstones found 
in the biohermal core. White areas are either micrite or 
calcite spar. Darker areas are phylloid algae encrusted by 
blue green algae and fibrous calcite f an arrays . 

8. Close-up of blue green algal bound phylloid algal packstone 
clearly showing the interlocking network of phylloid algae 
and encrusting stromatolitic algae. 

9. Distinctive digitate knob of stromatolitic blue green algae 
encrusting a phylloid algal plate. 

10. Thin section of digitate stromatolitic blue green algae. 20X 

11. Cross section of three digitate knobs encrusting phylloid 
algae. Note truncations of laminae. 12X 

12. Mammillary mass of blue green algae encrusting a phylloid 
algal plate. 

13. Primary void space developed beneath a phylloid alga thallus 
by the exclusion of fine-grained micrite. Shelter cavity 
has been partially filled by pelletal micrite and completely 
filled by a clear, equant crystalline calcite mosaic. 20X 

14. An elaborate network of interconnected solution voids (white 
areas) runs through the biohermal core that have since been 
lined by an equant to slightly bladed isopachous cement and 
occluded by very coarse spar. 
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Figure 30. Diagenetic history of the Laborcita bioherm. Fine dots repre­
sent the fine equidimensional calcite mosaic (internal gravi­
tational sediemtn); closely spaced wavy lines: blue green algae; 
nearly parallel, slightly parallel lines: fibrous fan array; 
long, finger-like elements: phylloid algae. 

See text for discussion • 
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