Pharmacogenetic Testing in the Treatment of Major Depressive Disorder

Brianna Strube
University of North Dakota

Follow this and additional works at: https://commons.und.edu/pas-grad-posters

Part of the Pharmaceutical Preparations Commons

Recommended Citation
https://commons.und.edu/pas-grad-posters/57

This Poster is brought to you for free and open access by the Department of Physician Studies at UND Scholarly Commons. It has been accepted for inclusion in Physician Assistant Scholarly Project Posters by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.
Abstract

- Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders in the United States and is a large cause of disability. Antidepressants take weeks/months to become effective which can lead to noncompliance. Treatment has a high failure rate which increases medical costs and leads to decreased patient outcomes.
- Pharmacogenetic testing is the practice of analyzing genetic differences to predict a patient’s response to medications to improve efficacy and decrease adverse side effects. The purpose of this study was to investigate if pharmacogenetic-guided treatment, specifically in the use of antidepressants in MDD, has resulted in improved patient outcomes. Additionally, the cost effectiveness was also analyzed.
- The review of literature was conducted by systematically searching the online databases PubMed and PsycINFO, and explored studies that compared the current standard of care to pharmacogenetic-guided treatment in adult patients with MDD aged 18-75.
- The results indicated improved compliance and prognosis for patients with MDD using pharmacogenetic-guided treatment versus the current standard of care. Studies also showed cost effectiveness of pharmacogenetic-guided treatment by decreasing medical costs by having fewer clinic visits, less changes in prescriptions, less sick leave taken, and decreased hospital costs.

Introduction

- There is variability in the pathophysiology of depression and not all details are known. Despite recent advances in the use of antidepressants, interindividual variability to treatment remains a serious problem. As patients continue to fail medication regimens, the likelihood of responding to subsequent treatment decreases to 18%. Furthermore, depression has one of the highest instances of mortality from suicide. Pharmacogenetic testing has developed to test a set of preselected psychiatric genes to provide a composite phenotype and accompanying interpretive report. By predicting the drug response of an individual, it may be possible to increase the success rate of antidepressant use and reduce the incidence of adverse side effects.

Statement of the Problem

Major depressive disorder is associated with a high prevalence of therapeutic failure, adverse side effects from medications, and a high recurrence rate. Response to antidepressants take an extended length of time which leads to noncompliance and increased medical costs due to additional follow-up visits and prescription costs.

Research Questions

- In adult patients with a diagnosis of major depressive disorder, does utilizing pharmacogenetic testing to determine antidepressant use result in improved patient outcomes?
- Is pharmacogenetic testing for the patient with major depressive disorder cost effective?

Discussion

In summary this research found

- Pharmacogenomic-guided treatment has shown effectiveness and improved patient outcomes when compared to the current standard of treatment.
- The utility of this genetic information as it pertains to clinical decision making, treatment effectiveness, and cost savings has shown benefit for patients with moderate to severe depression who have failed prior treatment.
- Pharmacogenetic testing provides significant cost savings, while simultaneously showing improved adherence in a difficult to treat psychiatric population. Patients who had pharmacogenetic-guided treatment had improved outcomes in addition to decreased cost to the patient by having fewer clinic visits, less changes in prescriptions, lessened and shorter sick leave taken, and decreased hospital costs.

Applicability to Clinical Practice

As a newer topic in the medical field, efforts are needed to improve clinicians’ knowledge of pharmacogenetic testing in order to facilitate its successful integration into clinical practice.
- Pharmacogenetic testing can aid in directing treatment towards a more effective approach.
- Medicare Part B and Veterans Affairs cover pharmacogenetic testing if deemed medically necessary.
- Pharmacogenetic testing is a relatively new concept, but has been proven to have advantages over the current treatment of MDD. It offers providers an effective resource to provide improved outcomes for patients with MDD requiring pharmacotherapy.

References


Acknowledgements

I would like to express gratitude to my husband, Gabe Strube, whose support was instrumental throughout this experience.