FACT SHEET

Cofiring Biomass at the University of North Dakota

A project exploring the benefits of using biomass fuels with coal

Participants

Through a U.S. Department of Energy grant, the Energy & Environmental Research Center at the University of North Dakota (UND) teamed with the North Dakota Department of Commerce Division of Community Services.

Goal

The goal of this project was to demonstrate the feasibility of cofiring biomass with subbituminous coal at UND's steam facility.

Scope

The project, initiated in October 2000, examined the feasibility of using biomass in a UND boiler by:

- Assessing biomass availability within 100 miles.
- Designing a biomass-handling system.
- Test-firing up to 28% sunflower hulls with subbituminous coal.
- Evaluating the engineering and economic feasibility.

University of North Dakota steam facility.

Benefits

Increased Community Wealth

- Low-cost disposal of renewable residues for local businesses.
- Demonstration of how using biomass can enhance the use of local coal resources.
- Increased economic returns to both the facility and the surrounding area.
- Creation of jobs.
- Creation of new business opportunities for low-value biomass resources.

Positive Environmental Benefits

• Reduced emissions (SO_x, NO_x, air toxic metals, and zeronet gain of CO₂).

Wiversity of North Dakota

• Reduced landfill burden.

General Benefits

- Demonstration of the benefits and challenges of using biomass in district energy systems specific to universities.
- Creation of markets for residue fuels otherwise left unused.
- Increased fuel flexibility and energy independence.

Results

UND has the economic opportunity to use sunflower hulls at \$15/ton to offset some of its \$30/ton coal purchases. The hulls were determined to be the most promising biomass

Sunflower hulls, a potential biomass fuel source.

resource within the region. Firing of 28% sunflower hulls with coal yielded a 15% reduction in sulfur emissions and NO_x emissions, with no increase in stack opacity. Physical testing determined that no significant modifications would be required to the existing solid fuel-handling infrastructure, and sunflower hull storage and metering could be accommodated. An investment of \$400,000 would enable cofiring of sunflower hulls at a 5-year payback. UND is currently seeking support for long-term evaluation of firing sunflower hulls.

For More Information Contact:

Kyle E. Martin, Research Engineer (701) 777-5103, kmartin@undeerc.org

Darren D. Schmidt, Research Manager (701) 777-5120, dschmidt@undeerc.org

Thomas A. Erickson, Associate Director for Research, (701) 777-5153, terickson@undeerc.org

www.undeerc.org