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Abstract

Lesser snow goose (Anser caerulescens caerulescens) populations have dramatically

altered vegetation communities through increased foraging pressure. In remote regions,

regular habitat assessments are logistically challenging and time consuming. Drones are

increasingly being used by ecologists to conduct habitat assessments, but reliance on

georeferenced data as ground truth may not always be feasible. We estimated goose habi-

tat degradation using photointerpretation of drone imagery and compared estimates to

those made with ground-based linear transects. In July 2016, we surveyed five study plots

in La Pérouse Bay, Manitoba, to evaluate the effectiveness of a fixed-wing drone with sim-

ple Red Green Blue (RGB) imagery for evaluating habitat degradation by snow geese.

Ground-based land cover data was collected and grouped into barren, shrub, or non-

shrub categories. We compared estimates between ground-based transects and those

made from unsupervised classification of drone imagery collected at altitudes of 75, 100,

and 120 m above ground level (ground sampling distances of 2.4, 3.2, and 3.8 cm respec-

tively). We found large time savings during the data collection step of drone surveys, but

these savings were ultimately lost during imagery processing. Based on photointerpreta-

tion, overall accuracy of drone imagery was generally high (88.8% to 92.0%) and Kappa

coefficients were similar to previously published habitat assessments from drone imagery.

Mixed model estimates indicated 75m drone imagery overestimated barren (F2,182 =

100.03, P < 0.0001) and shrub classes (F2,182 = 160.16, P < 0.0001) compared to

ground estimates. Inconspicuous graminoid and forb species (non-shrubs) were difficult

to detect from drone imagery and were underestimated compared to ground-based tran-

sects (F2,182 = 843.77, P < 0.0001). Our findings corroborate previous findings, and that

simple RGB imagery is useful for evaluating broad scale goose damage, and may play an
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important role in measuring habitat destruction by geese and other agents of environmen-

tal change.

Introduction

Light goose populations (lesser snow Anser caerulescens caerulescens, greater snow A. c. atlanti-
cus, and Ross’s geese A. rossii) have grown rapidly since the 1960’s, predominately as a result of

modernized agricultural practices in the southern extent of their ranges [1–3]. In their north-

ern staging and summer breeding areas, growing numbers of light geese have dramatically

altered vegetation communities through increased foraging pressure, resulting in a loss of

above ground primary productivity [4, 5]. These impacts are especially well documented in

colonies of lesser snow geese (hereafter snow geese), which have been formally designated as

an overabundant species in Canada [1]. While snow goose foraging has direct impacts on vege-

tation communities, the indirect effects of this biomass loss have resulted in apparent trophic

cascades in Canadian Arctic ecosystems with important consequences for sympatric species

[5, 6]. Previous studies have linked growing snow goose colonies with decreased song bird nest

occurrence [7, 8], reduced small mammal abundance [9] and reduced invertebrate community

species richness [10, 11].

Continued monitoring and assessments of snow goose habitat damage is critical to manage-

ment efforts to better predict the outcome of continued population growth, along with fore-

casting the effects of recently founded satellite colonies in new areas [12, 13]. Assessing plant-

goose interactions is typically done using ground-based sampling designs (linear transects,

quadrat sampling etc.), which offer high resolution data but are time consuming and logisti-

cally challenging in the remote regions where geese stage and breed [14, 15]. Further, in het-

erogeneous or highly degraded landscapes these logistically limited sampling methods may

not adequately capture spatial variation in vegetation communities. As a result, local ecosystem

processes may be poorly delineated, leading to weak inferences on regional patterns and

trends. Remote sensing technologies such as satellites can offer opportunities to create broad

regional indices such as the Normalized Difference Vegetation Index (NDVI) to quantify

vegetation cover and have been used to study the relationships between geese and their forage

plants [16–18]. These methods offer wide spatial coverage, but miss out on fine scale data that

can be collected on the ground such as species assemblages or plant demographic information.

Fortunately, satellite imagery resolution is continually improving. For example WorldView-03

(Satellite Imaging Corporation, Houston, Texas) offers panchromatic imagery at 0.31m/pixel

and has been used for ecological research [19], but this imagery can be expensive and prone to

interpretation errors [20]. More importantly, the quality of satellite imagery is dictated by pre-

vailing atmospheric conditions such as cloud cover surrounding study sites, potentially limit-

ing the repeatability of image acquisition and appropriate timing to address rapid landscape

changes [21].

One solution to the problem of sampling scale and repeatability is the advent of drone [22]

technology for ecological research [23, 24]. Drones are increasingly being used by ecologists to

address questions involving vegetation communities and habitat assessments [25–27]. These

platforms are able to rapidly collect high resolution imagery that can be easily archived for

future analyses, and flight paths are highly repeatable over areas of interest which allows users

to conduct repeated surveys with minimal variation. While recognizing that drone operations

are still limited by environmental conditions (precipitation, high winds), smaller models can
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be rapidly deployed in the field when conditions become suitable, dampening logistic difficul-

ties of organizing manned aircraft flights. This is especially relevant for research in polar

regions with more persistent cloud cover, as drones are able to operate at low altitudes during

cloudy conditions [28]. Clearly drones have great potential for monitoring the impact of snow

geese and other agents of environmental change, which will ultimately help alleviate the high

financial costs of research in the Arctic [29].

While studies in ecology featuring drones are on the rise, the many of these have been tested

with small aircraft at restricted spatial scales [30–33]. Studies in wildlife featuring drones are

currently restricted to flying within visual line-of-sight, but regulatory agencies are making

strides towards relaxing these restrictions [34]. Indeed there are several examples of large-scale

studies that have successfully used drones with beyond-visual-line-of-sight (BVLOS) flight

plans [35–38] However, any aircraft models capable of very long distance surveys are not likely

affordable to lone PIs or even collaborative research groups. For example, an increasingly pop-

ular long-range drone system, the ScanEagle (Insitu Inc., a subsidiary of The Boeing Com-

pany), costs an estimated $3.2 million US. Further, the operation of these aircraft requires a

high degree of technical training, which is unlikely to be feasible for the average ecologist.

Therefore, the future of large scale ecological research with drones is more likely to be out-

sourced to commercial operations, similar to satellite technology or even manned aircraft

flights.

Some ecological studies have tested the capacity of long-range aircraft to acquire imagery at

restricted spatial scales [39–41], setting the stage for routine acquisition and analysis of imag-

ery collected BVLOS. The analysis of drone-based imagery collected by commercial operators

may become analogous to methods used for satellite imagery, whereby the imagery is collected

and ecological experts later interpret the imagery. This is not an unrealistic option for the

future of assessing habitat degradation by snow geese at broad scales, given the high financial

cost of field studies in the Arctic [29]. However before drones can be readily integrated into

the toolkit of ecological researchers, validation studies are a necessary precursor to understand

how interpretation of drone imagery by ecological experts compares to estimates made by

field-based methods.

The objective of this study was to estimate the extent of habitat degradation in an area

historically damaged by lesser snow geese using drone imagery. Specifically, we examine the

composition of broad vegetation land cover classes using a standard field-based linear transect

approach, and compare estimates to those made from the analysis of drone imagery via meth-

ods analogous to interpretation of commercially acquired imagery. We suspect that high resolu-

tion drone imagery will result in similar estimates of land cover estimates when compared to

field-based sampling, which would therefore lead to similar inferences on biological processes.

Further, we hypothesize that lower altitude flights with better image resolution will result in

classifications of higher accuracy (based on photointerpretation) than flights at higher altitudes.

Materials and methods

Study area

This study was conducted at a long-term remote research camp within Wapusk National Park,

Manitoba, Canada (Fig 1). This area is a coastal supratidal salt marsh, southwest of La Pérouse

Bay along the western coast of Hudson Bay. The area is part of the Hudson Bay Lowlands

physiographic region [42] and is characterized by a vegetation community predominately

composed of dwarf shrub (Salix sp. Betula glandulosa, Myrica gale) and graminoid (e.g. Pucci-
nellia phryganodes, Festuca rubra, Triglochin sp.) species. For a more detailed account of the

region’s plant community and natural history see [5].

Using drone imagery to measure snow goose habitat destruction
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Field derived estimates of land cover

We conducted ground-based linear transects within five rectangular study plots of varying size

to evaluate vegetation. For further details on plot specifications see S1 Appendix. Each plot

consisted of a grid system of adjacent 50x50m cells (92 cells, 23 ha total). Following methods

established by previous habitat assessment studies in these plots, two linear transects were

Fig 1. Map of study location. (A) Extent indicator of study location in northern Manitoba, (B) supratidal salt marsh study location within Wapusk National Park,

(C) sample RGB photo of habitat surveyed by drone. Image acquired at 75 m above ground level.

https://doi.org/10.1371/journal.pone.0217049.g001
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walked in each cell diagonally from northwest to southeast, and northeast to southwest corners

[7, 43, 44]. Vegetation and landscape cover data along transects were collected following a

modified step-point method whereby dominant composition was recorded underfoot approxi-

mately every meter [45, 46]. Vegetation was recorded to the genus or species level for target

species of interest. For a complete list of classifications see S1 Appendix. Bare soils, waterways

or ponds lacking vegetation, dried waterways or ponds, and dead willows were classified as

barren. Dwarf shrub species in the genus Salix, Betula, and Myrica were classified as shrubs.

All other plant species (predominately graminoids) were classified as non-shrubs. A single

observer and a dedicated recorder conducted surveys from 12–19 July 2016.

Drone data collection

We conducted drone flights using a Trimble UX5 (color: black, wingspan: 100 cm, weight:

2.5kg, cruise speed: 80 km/h), a fixed-wing rear-propelled aircraft powered by removable lith-

ium polymer batteries (14.8V, 6000 mAh). The UX5 uses an elastic catapult launcher to initiate

flights and engage the motor. We programmed the UX5 to follow a pre-defined flight path

established by the operator based on the vegetation survey grids to be covered, the survey alti-

tude needed for a specific resolution, and wind conditions at the time of the flight using Trim-

ble Access Aerial Imaging V2.0.00.40 (Trimble, Sunnyvale, CA). Using the UX5’s built in GPS

system, a flightlog recorded georeferenced images with 80% forward and horizontal overlap.

Still images were collected in true color (3 visible bands: Red Blue Green) and were automati-

cally taken with a Sony NEX-5R 16.1 MP camera (Sony Corporation of America, New York,

NY) along flight paths. Relevant camera settings for all flights were as follows: no flash, expo-

sure time 1/4000, automatic white balance, and automatic ISO. Pictures were taken by auto-

matic trigger approximately once every second while on flight tracks and were saved in JPEG

format to an onboard 16GB SD card. Once the flight area had been covered, the UX5 returned

to a pre-defined landing zone and belly landed. Imagery and flight logs were downloaded fol-

lowing completion of individual flights. All flights were done on 14 July 2016 between the

hours of 0900 and 1200. Study plots were surveyed at 75, 100, and 120 m above ground level

(AGL), resulting in a ground sampling distance (linear distance between center points of adja-

cent pixels) of 2.4, 3.2 and 3.8 cm, respectively.

We were also interested in any differences in wind conditions during flight operations

which could affect aircraft stability and thus image quality. Therefore, we examined weather

data which was collected throughout the field season by a consumer-level AcuRite weather sta-

tion (Chaney Instrument Co, WI). Windspeed measurements were recorded every 12 minutes

(default settings), along with the peak windspeed during the 12 minute window.

Raw images were stitched together using Pix4Dmapper Pro (Pix4D, Switzerland, V3.3) to

create high resolution mosaics of study plots, which were loaded into ArcGIS 10.6 (ESRI, Red-

lands, CA) for image classification, and the areas of interest were clipped out. Mosaics were

separately classified into 30 class types using an unsupervised classification approach [47] and

classes were manually inspected and reclassified into barren, non-shrub, or shrub categories.

We selected to employ unsupervised classifications based on preliminary accuracy results

when compared to both supervised and random forest classifiers during data exploration. This

approach also allowed us to test a simple classification method that requires relatively little

technical training and is useful for ecologists with access to a widely used program. Study

plots were classified separately to account for any variation in light conditions between plots

or any natural variation in land cover type reflectance across the study area. High resolution

imagery is often associated with a “salt-and-pepper” effect, where individual pixels are incor-

rectly classified as different from their majority neighbors [48]. To account for this effect, post

Using drone imagery to measure snow goose habitat destruction
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processing was done using methods in Chabot and Bird (2013) [49]. This was done by apply-

ing a majority filter and boundary clean tools, followed by the removal of patches <0.25m2,

which were replaced based on the values of nearest neighbours.

We calculated proportion cover as the proportion area represented by each class in relation

to the total area surveyed across all plots from classified images for the three flight altitudes.

We assessed classification accuracy by generating 100 randomly stratified points within each

plot, where the number of points generated for each class is proportional to the relative area

occupied by each class. This was repeated for each survey altitude (100 points in each plot, 500

total for each altitude). Standard convention for accuracy assessments is to use georeferenced

ground-truth data as the comparative standard for site-specific accuracy assessments, but this

can present a problem for very high resolution imagery. Commonly used consumer grade GPS

units can vary by several meters in their horizontal accuracy [50, 51], which could result in

biased accuracy assessments in heterogeneous land cover habitats. Survey grade GPS units

would overcome this problem, but these are financially costly for researchers and were

unavailable for this project. Further, each point of ground data collected in this study was not

georeferenced and thus unable to be used for creation of an accuracy assessment confusion

matrix.

To assess our imagery accuracy in a manner similar to that of commercially purchased

imagery, the true classification for assessment points was assessed via visual inspection (man-

ual photointerpretation) of each altitude’s respective high resolution RGB mosaics, which

allows relatively clear identification of land cover type for each point. Similar practices with

high resolution drone imagery have previously been reported in the literature [49, 52, 53]. It

should be noted that visual inspection of imagery is not likely to be 100% accurate, but given

the high resolution nature of the imagery, we have a high degree of confidence in correct vege-

tation class identification. We calculated overall accuracy and kappa coefficients for each flight

altitude.

Statistical analysis

To compare estimates between ground-based linear transects and drone imagery, we exam-

ined proportional cover data within cells. Proportional data from ground-based linear tran-

sects within cells was obtained by taking the number of data points (steps) for each type

(barren, non-shrub, and shrub) and dividing by the total number of data points in each cell.

Drone proportional data was produced with two approaches. First, we extracted the propor-

tion of each land cover class within each cell as the number of pixels for each class type divided

by the total number of pixels for each respective cell. While this is a common approach to land

cover assessments from remotely sensed imagery, any differences between estimates from this

method and the field-based transects may simply reflect differences in sampling technique

(i.e. assessing the entire cell using the drone vs sampling a small proportion on the ground).

To address this discrepancy, we also replicated ground-based data collection by overlaying

approximately the same ground-based linear transects within cells in the classified drone imag-

ery. We extracted classification values every meter along the two drone transects within each

cell and calculated proportion land cover class for each cell using the number of data points

for each class type divided by the total number of data points within each cell.

We calculated Pearson’s correlation coefficients in R v3.4.3 [54] comparing the three meth-

ods of data acquisition (ground transects, drone transects, and drone pixel counts) for each

cover type. Each method has its own value for a cover type within an individual cell and data

are measured on the same scale; therefore deviation from a 1:1 relationship should represent a

difference in measurement between methods.

Using drone imagery to measure snow goose habitat destruction
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We then used a modified version of the generalized linear mixed model presented in Peter-

son at al. (2013) [44] to estimate the proportion of land cover type (barren, non-shrub, and

shrub) across our five study plots. Models were constructed using PROC GLIMMIX in SAS

Studio 3.7 (Cary, NC). We modeled proportional land cover assuming a beta distribution for

data constrained between 0 and 1 [55, 56]. To accommodate cells with values of 0 or 1, we

transformed data according to Smithson and Verkuilen (2006) [57],

y0 ¼
y� ðn � 1Þ þ 0:5

n

where n is equal to the number of data points collected for each method within each cell (i.e.

the number of transect points or pixels within a classified cell), y is the original proportion

cover estimate for each cell, and y0 is the adjusted value. By doing so 0’s or 1’s are respectively

modified by the gain or loss of one-half the detection limit for each cell. We used a logit link

function and a variance components covariance structure. Since we were first interested in the

estimates between different drone survey altitudes, we constructed separate models for each

drone method (drone pixel counts vs drone transects). These models were produced for each

cover type, and only examined the fixed effect of altitude (3 levels: 75 m, 100 m, and 120 m

AGL). We then constructed another set of models examining the difference between ground

estimates, and those from our highest accuracy drone survey altitude. These models included

only the single fixed effect of method (three levels: ground based transects, drone based tran-

sects, and drone pixels counts). For all models we included the random effect of cell_id
(n = 92). Model fit was assessed via Generalized Chi-Square/DF as a measure of dispersion,

and we generated Conditional Pearson’s and Studentized residual plots for each model.

Ethics statement

Data collection in the area was authorized by Wapusk National Park permit WAP-2015-18846

and WAP-2016-21419. Drone operations were permitted by Transport Canada Special Flight

Operations Certificate (File: 5802-11-302, ATS: 15-16-00058646, RDIMS: 11717338). Addi-

tionally, the UND Unmanned Aircraft System Research Compliance Committee reviewed and

approved project protocols for human privacy and data management (April 10, 2015).

Results

In July 2016 ground-based assessments were completed by surveying 184 transects in 92 cells,

taking approximately 72 researcher-hours. To survey the same plots, drone surveys took 61

min at 75 m AGL (2 flights), 28 min at 100 m AGL (1 flight), and 26 min at 120 m AGL (1

flight). While drone surveys were initially quicker than the ground based field work, post-flight

image processing (data management, mosaic creation, image classification, etc.) took approxi-

mately 50 hours. Wind conditions during drone flights were mostly similar. The 75 m flights

had a mean windspeed of 5.86 km h-1 (SD = 1.22, peak speed = 8.70), the 100 m flight had a

mean of 5.19 km h-1 (SD = 0.72, peak speed = 8.08), and the 120 m flight had a mean of 8.08

km h-1 (SD = 1.78, peak speed = 10.56).

Drone image classification

Unsupervised classifications in ArcGIS produced similar proportion cover results for each alti-

tude based on total enumeration of pixels across the study area, and there were minor differ-

ences in overall accuracy and kappa coefficients (Table 1). Notably, the mean accuracy and

kappa coefficients decreased with increasing drone survey altitude, but the range of values for

both measures overlapped between the three altitudes (Table 1). The lowest altitude surveys at
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75m AGL produced the highest mean ± SD overall accuracy of 92.0±0.019%, followed by 90.8

±0.036% at 100m AGL, and 88.8±0.024% at 120m AGL.

Visual inspection of the RGB mosaics and classified images revealed several consistent

errors remaining despite post processing efforts (Fig 2). Distinctions between relatively darker

mats of graminoid vegetation (non-shrubs such as Puccinelia sp., Rannunculus sp.) and darker

soils proved difficult for the pixel based classifiers as indicated by higher errors of omission

and commission at all altitudes (S1 Appendix). Further, larger shadows from rocks and vegeta-

tion were often classified as shrub patches (Fig 2), although smaller shadows were often suc-

cessfully eliminated via post-processing tools.

Ground vs drone cover estimates

We chose to examine correlations using drone estimates from the 75 m AGL flight, which

had the highest mean overall accuracy (Table 1). Generally barren and shrub cover types had

higher agreement among the three methods of measurement (Fig 3). Non-shrub cover was

poorly measured by both drone methods when compared to ground transects (Pearson’s r =

-0.036 for drone transects, and r = 0.028 for drone pixel counts), indicating the drone RGB

imagery is inadequate for detecting the inconspicuous graminoid and forb species that domi-

nate the non-shrub category. However, both drone methods had high agreement in measure-

ments for all three classes (Fig 3G and 3I).

Drone pixel count models indicated significant differences in measurements for barren

(F2,182 = 16.24, P<0.0001) and non-shrubs (F2,182 = 18.56, P<0.0001), but not for shrubs

(F2,182 = 3.02, P = 0.051) (Table 2). Similarly, drone transects also indicated significant differ-

ences in measurements for barren (F2,182 = 10.17, P<0.0001) and non-shrubs (F2,182 = 10.49,

P<0.0001), but not for shrubs (F2,182 = 1.30, P = 0.275) (Table 3). Our third set of models

examining differences between ground and drone methods indicated that drone methods

overestimated barren and shrub categories, but underestimated non-shrubs (Table 4). We

plotted model estimates of proportion land cover from only the 75m drone survey in compari-

son to ground estimates (Fig 4). Mixed model estimates from all three methods indicate higher

proportion cover of barren area when compared to shrubs and non-shrub cover (Fig 4). Mod-

els showed no evidence of over- or underdispersion. Inspection of residual plots revealed no

clear violation of model assumptions.

Discussion

Here we show that by using a fixed-wing drone we were able to survey our study area much

faster than ground-based methods, but these savings came at the cost of increased time spent

Table 1. Proportion land cover type classification of drone (Trimble UX5) imagery at three altitudes. Proportion

values are obtained from the enumeration of pixel types for each land cover class across all 5 plots. Accuracy and kappa

statistics presented as mean ± SD, along with the range of values.

Drone Survey Altitude

75m 100m 120m

Proportion Barren 0.755 0.761 0.741

Proportion Non-Shrubs 0.035 0.032 0.050

Proportion Shrubs 0.210 0.207 0.208

Overall Accuracy 92.0±0.019%

Range: 0.90–0.95%

90.8±0.036%

Range: 0.86–0.94%

88.8±0.024%

Range: 0.86–0.92%

Kappa Coefficient 0.81±0.088

Range: 0.66–0.90

0.79±0.075

Range: 0.70–0.88

0.73±0.113

Range: 0.54–0.83

https://doi.org/10.1371/journal.pone.0217049.t001
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Fig 2. Comparisons between RGB drone imagery and classified product. (A) Example RGB imagery at 120 m AGL (B) final

classified image. Post processing tools failed to eliminate the patch of darker barren surface and incorrectly classified the patch as non-

shrub vegetation (indicated by the red circle). Shadows along the edge of the vegetation patch were improperly classified as shrubs

(indicated by red arrows).

https://doi.org/10.1371/journal.pone.0217049.g002
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Fig 3. Plotted proportional values and Pearson’s correlation coefficients between three methods of data acquisition (ground

transects, drone transects and drone pixel counts). Data presented for each cover type (barren, non-shrubs, and shrubs). Each point

represents proportional cover data collected within the same cell (n = 92) for each method. Drone imagery collected at 75 m AGL. Red

dashed line represents 1:1 relationship.

https://doi.org/10.1371/journal.pone.0217049.g003
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during image processing and classification steps. Cruzan et al. (2016) had similar findings on

time management and importantly noted that increases in imagery resolution will require con-

cordant investment in computer processing time and power [25]. Indeed, Fraser et al. (2016)

reported drone imagery processing times of up to 10 days when producing ultradense point

clouds from highly overlapping imagery [58]. As such, longer flight durations to survey larger

areas and ultimately process larger amounts of data may present a limit on the scalability of

drone technology in ecological research. Fortunately, the efficiency and time savings gained

during the data collection step are likely more relevant to researchers in polar regions where

ecological field studies are often limited by shorter operational field seasons [28].

Our simple unsupervised classification approach with RGB imagery was moderately suc-

cessful when compared to ground-based methods. Overall accuracy assessment and kappa

coefficients of the RGB mosaics were relatively high with little difference between altitudes and

were quantitatively similar to previous vegetation assessments with fixed-wing drones [27, 59,

60]. We expected accuracy of classifications to increase with lower altitude surveys (higher

Table 2. Coefficient estimates from Beta GLMM for each cover type (barren, non-shrub, and shrub) as measured by drone pixel counts at altitudes of 75, 100 and

120m AGL. Estimates obtained from 92 observations (cells) across 5 different study plots.

Cover Type

Barren Non-Shrub Shrub

Coefficient Estimate ± SE
Intercept 1.274 ± 0.088 -3.418 ± 0.089 -1.590 ± 0.116

100 m AGL� 0.036 ± 0.020 -0.087 ± 0.095 -0.022 ± 0.010

120 m AGL� -0.075 ± 0.020 0.395 ± 0.086 -0.020 ± 0.010

Covariance Parameter Estimates ± SE
Cell 0.687 ± 0.105 0.320 ± 0.070 1.232 ± 0.191

Fixed Effect Tests
Altitude F2,182 = 16.24, P<0.0001 F2,182 = 18.56, P<0.0001 F2,182 = 3.02, P = 0.051

Fit Statistics
Generalized Chi-Square/DF 1.00 1.00 1.00

�Baseline comparisons are to measurements made from drone pixel counts at 75 m AGL

https://doi.org/10.1371/journal.pone.0217049.t002

Table 3. Coefficient estimates from Beta GLMM for each cover type (barren, non-shrub, and shrub) as measured by drone transects at altitudes of 75, 100 and

120m AGL. Estimates obtained from 92 observations (cells) across 5 different study plots.

Cover Type

Barren Non-Shrub Shrub

Coefficient Estimate ± SE
Intercept 1.295 ± 0.101 -3.337 ± 0.098 -1.635 ± 0.129

100 m AGL� 0.032 ± 0.033 -0.083 ± 0.113 -0.016 ± 0.025

120 m AGL� -0.109 ± 0.033 0.355 ± 0.103 0.024 ± 0.025

Covariance Parameter Estimates ± SE
Cell 0.873 ± 0.135 0.307 ± 0.074 1.484 ± 0.231

Fixed Effect Tests
Altitude F2,182 = 10.17, P<0.0001 F2,182 = 10.49, P<0.0001 F2,182 = 1.30, P = 0.275

Fit Statistics
Generalized Chi-Square/DF 1.00 1.00 1.00

�Baseline comparisons are to measurements made from drone transects at 75 m AGL

https://doi.org/10.1371/journal.pone.0217049.t003
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Table 4. Coefficient estimates from Beta GLMM for each cover type (barren, non-shrub, and shrub) as measured by ground based transects, drone based transects

and drone pixel counts at 75 m AGL. Estimates obtained from 92 observations (cells) across 5 different study plots.

Cover Type

Barren Non-Shrub Shrub

Coefficient Estimate ± SE
Intercept 0.371 ± 0.072 -0.910 ± 0.074 -2.3488 ± 0.111

Drone Pixel Counts� 0.802 ± 0.066 -2.549 ± 0.082 0.798 ± 0.051

Drone Based Transects� 0.787 ± 0.066 -2.483 ± 0.080 0.825 ± 0.050

Covariance Parameter Estimates ± SE
Cell 0.299 ± 0.056 0.406 ± 0.075 0.969 ± 0.161

Fixed Effect Tests
Method F2,182 = 100.03, P<0.0001 F2,182 = 843.77, P<0.0001 F2,182 = 160.16, P<0.0001

Fit Statistics
Generalized Chi-Square/DF 1.00 1.00 1.00

�Baseline comparisons are to measurements made from ground based transects

https://doi.org/10.1371/journal.pone.0217049.t004

Fig 4. Mixed model estimates of proportion land cover type from three different methods of data collection. Ground transects data collected as linear transects,

drone transects are the same transects overlaid on classified drone imagery (see Methods section) with land cover values were extracted every meter, and drone pixel

counts based on the enumeration of pixels for each land cover type as a proportion of all pixels in each cell. Drone estimates made from imagery collected at 75 m

AGL. Cover data obtained from 92 cells across 5 study plots.

https://doi.org/10.1371/journal.pone.0217049.g004
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image resolution), which was supported by our findings (see Table 1). Accuracy and kappa

coefficients appeared to increase with higher resolution imagery, but we considered these dif-

ferences between altitudes to be minimal as the difference between the highest and lowest reso-

lution’s mean overall accuracy was only 3.2%. This likely reflects the minimal difference in

ground sampling distances between each altitude, and we suspect that advantages gained by

higher resolution RGB imagery were simply not realized by our simple classification approach.

Consequently, if similar methods were to be used in the future, we encourage higher altitude

drone flights which are more efficient at surveying larger study areas [61]. It is worth noting

that our highest survey altitude was the highest allowed under our drone operation permit,

and higher altitude flights would require additional permitting.

It is important to consider that differences in environmental conditions between flights

could have played a role in image quality and subsequent classifications. Our measurements of

wind speed were examined post-hoc study design, and in the future, more fine scale environ-

mental measurements should be collected to formally account for differences among flight

operations (i.e. every minute). Although our coarse data indicated slightly higher wind speeds

during the 120 m flight, we considered these differences to be minimal and likely played little

role in differential image quality between flights. Time-of-day has been shown to be an impor-

tant consideration for drone image acquisition, due to the differential presence of shadows

throughout the day [35]. Although we did not measure cloud cover during this study, our period

of flight operations used for classifications all occurred within a three hour window, so changes

in light conditions likely did not play a large role in image quality differences between flights.

Considerations for light conditions will be important in future drone studies, and researchers

may benefit from obtaining images on overcast days to minimize the presence of shadows. This,

however, will require high quality sensors to compensate for reduced light conditions [35, 58].

We caution that although we were confident in our visual inspection of RGB imagery for

each land cover class, it is possible that accuracy was artificially inflated due to researcher

biases. As such, results should be interpreted with care. The lack of georeferenced ground-

truthed data in this study represents an obstacle for the future of long-range drone surveys in

ecology. If BVLOS surveys become routine in ecology, researchers will not always be present at

field sites to validate imagery collected by drones. Therefore, efforts should be made to test air-

craft capable of BVLOS flights on smaller scales where comparisons between traditional and

drone methods for ecological parameters of interest are conducted, as we did in this study.

Although our model results appeared to overestimate barren and shrub cover while under-

estimating non-shrubs, similar findings have been reported in the literature [60, 62]. Similar

spectral signatures of shrubs and non-shrub species likely played a large role in our misclassifi-

cations, which lends support to the apparent need for additional layers of input data (hyper-

spectral, textural, etc.) to achieve fine-scale classifications [63]. While we recognize that our

drone imagery was inadequate at capturing inconspicuous graminoid and forb species (see Fig

3), the use of bare ground coverage has been shown to be a reliable metric for measuring snow

goose habitat degradation [64]. As such, our simple drone imagery should be reliable at deter-

mining the impact of snow geese on Arctic vegetation communities at a coarse scale. Further,

our high altitude drone estimates corroborate the findings of Fraser et al. (2016), who found

drone imagery to be a useful method for measuring Arctic shrub communities by combining

spectral and structure-from-motion data inputs into their classifiers with an overall accuracy

of 82% [58]. These findings support the notion that simple RGB imagery from drones may be

more effective for identifying broad scale patterns of conspicuous features, but delineation

between more inconspicuous species remains a challenge. Despite post-processing efforts

undertaken in ArcGIS, Chabot et al. (2013) suggests that incorporating texture information

could help differentiate between classes of land cover with similar spectral properties [49].
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More sophisticated techniques such as object based image analysis or random forest classifiers

have been used for vegetation assessments from drone imagery and may yield more accurate

results, but will come at the cost of increased processing time and requires proficiency in more

advanced image analysis techniques [48, 59, 63].

Our estimates of land cover from all three methods generally agree with most recent habitat

assessments in the La Pérouse Bay region and that the majority of study plots remain domi-

nated by barren ground, likely as a result of hypersaline conditions [7, 44]. Experimental evi-

dence indicates that in the absence of goose foraging and presence of suitable soil conditions,

degraded habitats may recover their graminoid assemblages [65]. While there is some evidence

of re-vegetation in long term goose exclosures in supratidal marsh areas at La Pérouse Bay

(Rockwell unpublished data 2008–2018), widespread vegetation re-establishment is not yet

apparent when compared to historical assessments [43]. Our classifications were restricted to

three broad classes of land cover, keeping in-line with previous assessments in the region that

used a similar approach [7, 44]. It is possible that increasing the number of classes in our study

may produce different accuracy statistics, but consistency in classification types allows us to

attempt integration of novel drone technology into long-term ground based datasets. Further,

initial inspections of RGB mosaics revealed difficulties in differentiating between several dis-

tinct shrub species (e.g. B. glandulosa, S. planifolia, S. candida), indicating that coarse classifi-

cations may be more successful. While we did not attempt to distinguish between different

species of shrubs, graminoids or forbs in this study and were not the primary objective of this

study, the development of drone models and sensors may still play an important role in under-

standing the impacts of snow geese within their ecosystem, with respect to changing plant

communities. Logistic and financial constraints can often prevent repeat surveys by research-

ers on the ground, but drone flights are easily repeatable and may assist in future monitoring

protocols [66]. Ground based approaches may also have their own associated biases such as

researcher fatigue or experience level in identifying plants. Drones may help overcome the

fatigue bias due to the ability to archive data and spread data collection (image interpretation)

over several shorter sessions. In plant community studies where higher spatial coverage is

often required for landscape-level inferences, fixed-wing drones may be more advantageous

than quadcopter models [25, 27]. If one of the goals of snow goose monitoring involves repeat

surveys of vegetation communities, drones may prove a useful tool for quickly surveying larger

areas to collect coarse landscape level data. However, ground-based fieldwork will likely still be

required if fine-scale data is desired.

Here we have detailed the application of a fixed-wing drone using RGB imagery and a rela-

tively simple classification method for evaluation of snow goose habitat damage. Applications

of similar methods have played an important role in understanding polar vegetation [28, 58,

67] but may also be used to research other types of habitat degradation and landscape changes.

Potential applications might include changes in salinity, overgrazing, beetle infestations of for-

ests, land-use conversions, and changes in ephemeral wetland coverage. Although we used a

simple technique here, future studies could explore the use of more sophisticated multispectral

sensors in drones, which have previously been used in fine-scale plant ecology studies [68–70].

Multispectral sensors in drones have been heavily employed in precision agriculture for appli-

cations such as measuring the Leaf Area Index in vineyards [71] and estimating nitrogen status

in sunflowers (Helianthus annuus) [72], while miniaturized hyperspectral sensors have been

used for detecting water stress in plants [73] and estimating plant biomass [74]. These sensor

types offer unique insights into aspects of plant ecology beyond measuring abundance and dis-

tribution, potentially allowing researchers to address a wide variety of ecology phenomenon

using drones. The natural progression of these technologies from industry applications to aca-

demic research is assisted by decreasing costs and accessibility of miniaturized sensors [75].
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However such specialized sensors generally require field calibrations, which may necessitate

further expenditures and validation experiments in the field [76]. Any such experiments

should consider paired survey designs (see Ahmed et al. 2017) that explicitly compare perfor-

mance between competing sensors and aircraft design to better facilitate comparisons [70].

The implementation of drones for ecological research in polar regions will ultimately

depend on the specifics and scale of the scientific questions being asked. Current government

and technological limitations prevent drone use at broad spatial scales, and several studies

have noted limitations of current drone based research due to within line-of-sight flight regu-

lations [23, 30, 34, 40]. However if the operation of long-range drone models is eventually out-

sourced to commercial operations, these regulations may be more easily overcome by industry

partners with aircraft regulation expertise. To better facilitate the development of drones for

ecological research, we recommend researchers report specifics of their aircrafts as seen in

Zweig et al. [77] and Vermeulen et al. [78]. The benefit of this reporting will better inform

researchers considering drones as methods for research and monitoring projects in the future.
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aerial vehicles on Adélie penguins. Polar Biol. 2015; 39(7):1329–34.

33. Fortune SM, Koski WR, Higdon JW, Trites AW, Baumgartner MF, Ferguson SH. Evidence of

molting and the function of “rock-nosing” behavior in bowhead whales in the eastern Canadian

Arctic. PLoS ONE. 2017; 12(11):e0186156. https://doi.org/10.1371/journal.pone.0186156 PMID:

29166385

34. Christie KS, Gilbert SL, Brown CL, Hatfield M, Hanson L. Unmanned aircraft systems in wildlife

research: current and future applications of a transformative technology. Front Ecol Environ. 2016; 14

(5):241–51.

35. Patterson C, Koski W, Pace P, McLuckie B, Bird DM. Evaluation of an unmanned aircraft system for

detecting surrogate caribou targets in Labrador. J Unman Veh Syst. 2015; 4(1):53–69.

36. Zmarz A, Rodzewicz M, Dąbski M, Karsznia I, Korczak-Abshire M, Chwedorzewska KJ. Application of

UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sensing

of Environment. 2018; 217:375–88.

37. Sykora-Bodie ST, Bezy V, Johnston DW, Newton E, Lohmann KJ. Quantifying nearshore sea turtle

densities: applications of unmanned aerial systems for population assessments. Sci Rep. 2017; 7

(1):17690. https://doi.org/10.1038/s41598-017-17719-x PMID: 29255157

38. Ferguson M, Angliss R, Kennedy A, Lynch B, Willoughby A, Helker V, et al. Performance of manned

and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density

and associated uncertainty. J Unman Veh Syst. 2018; 6(3):128–54.

39. Moreland EE, Cameron MF, Angliss RP, Boveng PL. Evaluation of a ship-based unoccupied aircraft

system (UAS) for surveys of spotted and ribbon seals in the Bering Sea pack ice. J Unman Veh Syst.

2015; 3(3):114–22.

40. Hodgson A, Kelly N, Peel D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong

case study. PLoS ONE. 2013; 8(11):e79556. https://doi.org/10.1371/journal.pone.0079556 PMID:

24223967

Using drone imagery to measure snow goose habitat destruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0217049 August 9, 2019 17 / 19

https://doi.org/10.1016/j.tree.2007.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17996978
https://doi.org/10.1890/120150
https://doi.org/10.1007/s00300-018-2270-0
https://doi.org/10.1007/s00300-018-2270-0
https://doi.org/10.1371/journal.pone.0186156
http://www.ncbi.nlm.nih.gov/pubmed/29166385
https://doi.org/10.1038/s41598-017-17719-x
http://www.ncbi.nlm.nih.gov/pubmed/29255157
https://doi.org/10.1371/journal.pone.0079556
http://www.ncbi.nlm.nih.gov/pubmed/24223967
https://doi.org/10.1371/journal.pone.0217049


41. Koski WR, Gamage G, Davis AR, Mathews T, LeBlanc B, Ferguson SH. Evaluation of UAS for photo-

graphic re-identification of bowhead whales, Balaena mysticetus. J Unman Veh Syst. 2015; 3(1):22–9.

42. Shilts WW, Aylsworth JM, Kaszycki CA, Klassen RA. Canadian shield. Geomorphic Systems of North

America. 2: Geological Society of America Boulder, Colorado; 1987. p. 119–61.

43. Weatherhead PJ. Ecological correlates of monogamy in tundra-breeding savannah sparrows. Auk.

1979:391–401.

44. Peterson SL, Rockwell RF, Witte CR, Koons DN. The legacy of destructive Snow Goose foraging on

supratidal marsh habitat in the Hudson Bay lowlands. Arctic, Antarctic, and Alpine Research. 2013; 45

(4):575–83.

45. Evans RA, Love RM. The step-point method of sampling-a practical tool in range research. Rangeland

Ecology & Management/Journal of Range Management Archives. 1957; 10(5):208–12.

46. Owensby C. Modified step-point system for botanical conposition and basal cover estimates. Journal of

Range Management Archives. 1973; 26(4):302–3.

47. Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation: John Wiley & Sons;

2014.

48. Feng Q, Liu J, Gong J. UAV remote sensing for urban vegetation mapping using random forest and tex-

ture analysis. Remote Sens. 2015; 7(1):1074–94.

49. Chabot D, Bird DM. Small unmanned aircraft: precise and convenient new tools for surveying wetlands.

J Unman Veh Syst. 2013; 1(01):15–24.

50. Wing MG, Eklund A, Kellogg LD. Consumer-grade global positioning system (GPS) accuracy and reli-

ability. Journal of forestry. 2005; 103(4):169.

51. Arnold LL, Zandbergen PA. Positional accuracy of the wide area augmentation system in consumer-

grade GPS units. Computers & Geosciences. 2011; 37(7):883–92.

52. Su L, Gibeaut J. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South

Texas Coast. Remote Sens. 2017; 9(2):159.

53. Pande-Chhetri R, Abd-Elrahman A, Liu T, Morton J, Wilhelm VL. Object-based classification of wetland

vegetation using very high-resolution unmanned air system imagery. European Journal of Remote

Sensing. 2017; 50(1):564–76.

54. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for

Statistical Computing; https://wwwr-projectorg/. 2017.

55. Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. Journal of Applied Statis-

tics. 2004; 31(7):799–815.

56. Eskelson BN, Madsen L, Hagar JC, Temesgen H. Estimating riparian understory vegetation cover with

beta regression and copula models. Forest Science. 2011; 57(3):212–21.

57. Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distrib-

uted dependent variables. Psychological methods. 2006; 11(1):54. https://doi.org/10.1037/1082-989X.

11.1.54 PMID: 16594767

58. Fraser RH, Olthof I, Lantz TC, Schmitt C. UAV photogrammetry for mapping vegetation in the low-Arc-

tic. Arct Sci. 2016; 2(3):79–102.

59. Laliberte AS, Herrick JE, Rango A, Winters C. Acquisition, orthorectification, and object-based classifi-

cation of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineer-

ing & Remote Sensing. 2010; 76(6):661–72.

60. Mora C, Vieira G, Pina P, Lousada M, Christiansen HH. Land cover classification using high-resolution

aerial photography in adventdalen, svalbard. Geografiska Annaler: Series A, Physical Geography.

2015; 97(3):473–88.

61. Linchant J, Lisein J, Semeki J, Lejeune P, Vermeulen C. Are unmanned aircraft systems (UASs) the

future of wildlife monitoring? A review of accomplishments and challenges. Mamm Rev. 2015; 45

(4):239–52.

62. Breckenridge RP, Dakins M, Bunting S, Harbour JL, Lee RD. Using unmanned helicopters to assess

vegetation cover in sagebrush steppe ecosystems. Rangeland ecology & management. 2012; 65

(4):362–70.
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72. Agüera F, Carvajal F, Pérez M. Measuring sunflower nitrogen status from an unmanned aerial vehicle-

based system and an on the ground device. Int Arch Photogramm Remote Sens Spat Inf Sci. 2011;

38:33–7.
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