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Diagnostic Utility of Cerebral White Matter Integrity in Early
Alzheimer's Disease

David K. Johnson1, Willis Barrow2, RaeAnn Anderson1, Amith Harsha2, Robyn Honea2,
William M. Brooks3, and Jeffrey M. Burns2

1Department of Psychology, University of Kansas, Lawrence, Kansas, USA
2Department of Neurology, University of Kansas, School of Medicine, Kansas City, Kansas, USA
3Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA

Abstract
We compared white matter integrity with brain atrophy in healthy controls and participants with
very mild dementia (Clinical Dementia Rating 0 vs. 0.5) from the Brain Aging Project, a
longitudinal study of aging and memory at the University of Kansas Medical Center. Structural
magnetic resonance imaging and diffusion tensor imaging (DTI) including fractional anisotropy
and mean diffusivity were performed on 27 patients with very mild dementia (Clinical Dementia
Rating = 0.5) of the Alzheimer's type (DAT), and 32 cognitively normal subjects. Patient groups
were compared across 6 volumetric measures and 14 DTI regions of interest. Very mildly
demented patients showed expected disease-related patterns of brain atrophy with reductions in
whole-brain and hippocampal volumes most prominent. DTI indices of white matter integrity were
mixed. Right parahippocampus showed significant but small disease-related reductions in
fractional anisotropy. Right parahippocampus and left internal capsule showed greater mean
diffusivity in early DAT compared with controls. A series of discriminant analyses demonstrated
that gray matter atrophy was a significantly better predictor of dementia status than were DTI
indices. Brain atrophy was most strongly related to very mild DAT. Modest disease-related white
matter anomalies were present in temporal cortex, and deep white matter had limited
discriminatory diagnostic power, probably because of the very mild stage of disease in these
participants.

Keywords
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INTRODUCTION
White matter disease (WMD) is seen in neuropathologic examination in over 50% of
confirmed cases of Alzheimer's disease (AD). In these moderate- to late-stage dementia of
the Alzheimer's type (DAT) individuals, WMD appears global in nature, showing a non-
specific pattern of distribution (Englund & Brun, 1990). In life, the prevalence of white
matter hyperintensities visible by neuroimaging are increased in AD (Scheltens et al., 1992)
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and contribute to clinical-cognitive features of the disease (Burns et al., 2005; Snowdon et
al., 1997). Theories of the underlying etiology of AD-related WMD include the following:
(1) Wallerian degeneration (Stricker et al., 2009) of white matter most proximal to cortical
regions with high-AD pathological burden; (2) a vascular disease process resulting in a non-
specific pattern of axonal damage and gliosis (Englund, 1998); and (3) a primary myelin
degeneration process resulting in a disconnection syndrome, where the first age-related
breakdowns affect either genu and anterior cingulate (Xie et al., 2006) or superior
longitudinal fasciculus (Medina et al., 2006; Takeshima et al., 2007).

Diffusion tensor imaging (DTI) measures water diffusion along or across white matter tracts,
using a multidirectional gradient (Basser & Pierpaoli, 1998; Le Bihan, Turner, Douek, &
Patronas, 1992). The resultant diffusion tensor provides information about the fractional
anisotropy (FA; the amount of water moving along the tract's principle gradient) and mean
diffusivity (MD; the distance of diffusion within a voxel during a set amount of time). DTI
studies that investigate FA and MD in later-stage DAT generally find white matter changes
in temporal cortex, corpus callosum, cingulate, and superior longitudinal fasciculus (for
complete review see Chua, Wen, Slavin, & Sachdev, 2008). Studies that examine early-stage
DAT (i.e., diagnoses consistent with mild cognitive impairment [MCI]) are more
ambiguous. When white matter decrements are found, they often parallel the changes in
later-stage DAT (Bozzali et al., 2002; Medina et al., 2006; Ray et al., 2006; Rose et al.,
2000; Takahashi et al., 2002; Xie et al., 2006); however, location and magnitude of these
decrements vary widely (Chua et al., 2008) probably in part because of the method of
analyses (region of interest vs. voxel-based morphometry), samples, and diagnostic criteria.

Using a well-characterized population of healthy aging and very mild-stage dementia
patients, we investigated early changes in DTI (FA and MD) across 14 white matter brain
structures and compared DTI values with normalized volumetric indices of brain atrophy.
We demonstrated that very mildly demented individuals (consistent with an MCI diagnosis)
have typical Alzheimer-type cortical atrophy but lack much of the expected white matter
changes seen in later-stage DAT. The most notable areas of disease-related white matter
decrement were right-sided parahippocampus and left internal capsule.

MATERIALS & METHODS
All procedures and data collection have been approved by our local institutional review
board according to ethical standards and practices.

Sample
Data from all available participants enrolled in the University of Kansas's Brain Aging
Project between May 2006 and January 2008 (Wave 1 of the longitudinal study) without a
Clinical Dementia Rating (CDR 0, n = 32; cf. Hughes, Berg, Danziger, Coben, & Martin,
1982; Morris, 1993) and participants with very mild DAT (CDR 0.5, n = 27) aged 60 and
above were used in the current report. These participants are a subset of the Brain Aging
Project cohort that has provided data published in previous reports (Burns et al., 2007,
2008a; Burns, Mayo, Anderson, Smith, & Donnelly, 2008b; Honea et al., 2009). Study
exclusions include neurologic disease other than AD, diabetes mellitus (defined as a clinical
diagnosis and use of an antidiabetic agent), history of ischemic heart disease (acute coronary
artery event, angina), schizophrenia, clinically significant depressive symptoms,
abnormalities in B12, rapid plasma reagin, or thyroid function, use of antipsychotic and
investigational medications, and significant visual or auditory impairment, systemic illness,
or orthopedic issues that could impair completion of the study (cf. Table 1). Because this
study focused on comparing health versus disease, two patients staged as CDR 0.5 but with
an “uncertain” diagnosis of dementia were also excluded.
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Clinical Assessment
The clinical assessment included a semistructured interview with the participant and with a
collateral source knowledgeable about the participant (CDR; Hughes et al., 1982; Morris,
1993). Diagnostic criteria for DAT require the gradual onset and progression of impairment
in memory and in at least one other cognitive and functional domain. The presence or
absence of dementia and its severity if present were determined using the CDR. These
methods have a diagnostic accuracy for DAT of 93% (Berg et al., 1998), are sensitive to
detection of the earliest stages of DAT by focusing on intraindividual change rather than
comparison with group norms (Storandt, Grant, Miller, & Morris, 2006), and are accurate in
identifying the subset of individuals meeting criteria for MCI who have early-stage DAT
(Morris, 2006). Only CDR 0 and 0.5 individuals were enrolled into the current study.
Medications, past medical history, education, and demographic information were collected
from the collateral source by the nurse clinician. A standard physical and neurologic
examination was performed to assess abnormalities in visual fields, cranial nerves, motor
strength, sensation, reflexes, plantar responses, coordination, praxis, and gait. Global
cognitive functioning was measured by the mini-mental state examination (MMSE; scores
vary from 0 to 30; Folstein, Folstein, & McHugh, 1975) and a standardized global composite
score derived from factor analysis of the National Alzheimer's Coordinating Center's
Uniform Data Set cognitive assessment battery (Logical Memory I & II, Digit Span
Forward, Digit Span Backward, Category Fluency–Animals & Vegetables, Trail Making A
& B, Boston Naming Test, and Digit Symbol; composite scores vary from 0 to 1). High
scores on both measures indicate better performance.

Magnetic Resonance Imaging Acquisition
Magnetic resonance imaging (MRI) scans were obtained on a Siemens 3.0-T Allegra MRI
scanner. High-resolution T1-weighted anatomical images were acquired (magnetization
prepared rapid gradient echo; 1 × 1 × 1 mm3 voxels, repetition time = 2,500 ms, echo time =
4.38 ms, inversion time = 1,100 ms, field of view = 256 × 256, flip angle = 8°). Single-shot
echo-planar imaging sequence was used to obtain diffusion images with the following
parameters: repetition time = 6,300 ms and echo time = 84 ms. Diffusion gradients were
applied in 12 noncollinear directions with two b-values (b = 0 and b = 1,000 s/mm2). Thirty-
four 3-mm sections were acquired at an in-plane resolution of 128 × 128.

Whole-Brain Volumetry
Whole-brain volume (gray plus white parenchyma within the entire intracranial volume
down to approximately the superior arch of C1) is computed for each image session, using a
validated comprehensive set of imaging tools from FMRIB Software Library
(http://www.fmrib.ox.ac.uk/fsl). The images were preprocessed and skull-stripped using
Brain Extraction Tool. The skull-stripped images were then segmented into white matter,
gray matter, and cerebrospinal fluid using FMRIB's Automated Segmentation Tool (FAST)
after registering them to a MNI 152 template. Image processing was conducted utilizing the
Laboratory of Neuroimaging Pipeline (http://www.pipeline.loni.ucla.edu). White matter,
gray matter, and whole-brain (sum of white and gray matters) volumes were normalized by
statistically controlling for total intracranial volume and gender. Normalized brain volumes
minimize gender differences and produce an estimate of brain atrophy. As expected,
normalized whole-brain volumes were not related to gender [77.1% (3.3) in women vs.
76.9% (3.4) in men; p = .76], lending validity to the normalization procedure.

Hippocampal Volumetry
Hippocampal volumes were determined using procedures adapted from Jack et al. (1997)
Preprocessing steps include reorienting the brain to the anterior commissure–posterior
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commissure plane to minimize head tilt and rotation, normalization of the image to a study-
specific atlas using statistical parametric mapping (SPM2), and reformatting the images
perpendicular to the principle axis of the hippocampal formation. Normalization to a study-
specific atlas occurs using an affine transformation (SPM2) and minimizes variations in
hippocampal volume related to head size. The normalization process has the expected effect
of inflating the normalized hippocampal volume so that the hippocampi of nonnormalized
scans are an average 33% smaller. After preprocessing, the hippocampus was traced by two
raters using Analyze software (AnalyzeDirect, Inc., Lenexa, KS) with a view of all three
planes available on a second monitor. Interrater reliability intraclass correlation coefficient
(ICC) was 0.974. Intrarater reliability ICC for rater 1 was 0.980 and 0.987 for rater 2.

DTI Postprocessing
The DTI data were processed using MedINRIA program
(http://www-sop.inria.fr/asclepios/software/MedINRIA). FA maps were generated for each
subject from the diffusion data. Regions of interest (ROIs) were hand drawn on color-coded
FA maps at specific locations. Six bilateral pairs of ROIs were drawn on axial slices at the
following locations: posterior limb of the internal capsule, posterior cingulate,
parahippocampal gyrus, superior longitudinal fasciculus, and frontal and temporal regions.
The genu and splenium ROIs were placed on the center of the anterior and the posterior
corpus callosum. The tracer was blinded to subject information and was trained to draw
ROIs at specified regions. The tracer had an intrarater reliability ICC of 0.965 for all DTI
measurements. Means and standard deviations (SD) for apparent diffusion coefficient and
FA were the recorded statistics at each ROI. To account for potential variation due to head
size, gender, and white matter fiber thickness, all DTI images were normalized by
statistically controlling for total intracranial volume and gender (analogous to volumetric
measures).

Statistical Analyses
Disease versus control group comparisons across quantitative measures were conducted
using the student's t-test with a one-tailed threshold for significance (α = .05). While two-
tailed tests look for any change (increase or decrease), we know from extensive prior
literature that AD results in brain atrophy (cf. Chua et al., 2008); thus we followed standard
analytic prescriptions of Cohen, Cohen, West, and Aiken (2002) and used the one-tailed test
to detect expected decreases in brain volumetry. Chi-square test of independence was used
for nominal variables. Pearson correlation coefficients assessed simple relationships
between variables. Discriminant analysis and receiver operator characteristic curves were
used to assess the power of brain indices to predict clinical status (CDR 0 vs. CDR 0.5).

RESULTS
Demographics

This cohort of older adults (N = 59) was well matched with regard to age (mean = 71.6
years, SD = 6.4), education (mean = 15.5 years, SD = 2.9), and gender (male-to-female ratio
= 34/25). Although there was a slightly higher ratio of men to women in the DAT group, no
differences between nondemented and very mildly demented groups on any of these
demographics were significant (Table 1). However, individuals with very mild DAT had
mild global cognitive dysfunction with a mean MMSE difference of 1.9 points and a two SD
difference score on the global composite score.
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Brain Volumetrics
Comparison of the healthy controls versus the very mildly demented groups revealed the
expected disease-related brain atrophy (Table 2). Normalized brain volumes of whole brain,
total white matter, total gray matter, and hippocampus showed significant brain atrophy that
was widely distributed and present in areas known to be affected by AD. Further, amount of
brain atrophy was highly correlated with diagnostic status. Discriminant analyses and
receiver operator characteristic curves across indices of brain atrophy showed good
sensitivity and specificity for most individual measures; however, the best discriminator
between early DAT and controls was right-sided hippocampal atrophy. No combination of
these measures improved fit above right-sided hippocampal atrophy alone. Notably, the
poorest measure of diagnostic status was total white matter volume.

Diffusion Tensor Imaging
The mean values of FA were mixed across the healthy controls and the very mildly
demented groups (Table 3). Lower-tailed t-tests of these normalized values revealed a
significant difference for right parahippocampal gyrus. The mean values of MD were also
mixed (Table 3). Upper-tailed t-tests revealed significant differences for right
parahippocampus and left internal capsule. All significant DTI indices remained after
controlling for age and education. Discriminant analyses using any of these three DTI
measures yielded poor results (accuracy ≤ 66%; Area Under the Curve (AUC) ≤ 63%).
When entered (stepwise) as additional variables in the previous discriminant analysis using
right-sided hippocampal volume, DTI indices failed to contribute to the discrimination over
and above the volumetric measures (F to include <3.84, p > .05). Intercorrelation between
our best diagnostic measure (right-sided hippocampal volume) and proximal white matter
projections [right-sided parahippocampal FA (r = .30, p = .01), right-sided parahippocampal
MD (r = –.16, p > .05)] revealed that gray matter volume and white matter FA were
positively associated in the right-sided hippocampal region.

DISCUSSION
In a well-characterized cohort of healthy aging controls and very mildly demented
individuals, we found significant disease-related global brain atrophy, with the right
hippocampus most severely affected. This is congruent with our previous studies(Bu, 2001;
Burns et al., 2007; Burns et al., 2008b). Although white matter integrity in the right
parahippocampus and the left internal capsule was reduced in the very mildly demented
group, the magnitude of decrement was small and gray matter atrophy was a significantly
better predictor of diagnostic status (85% diagnostic accuracy) than was FA or MD (both
≤63%). Thus, the clinical features of this very early-stage DAT group were related to both
global and region-specific (hippocampal) gray matter atrophy but only modestly associated
with white matter pathology.

Our DAT participants were in the mildest stages, comparable to MCI, and demonstrated
significant global and regional brain atrophy, consistent with a number of studies suggesting
that hippocampal atrophy is the most sensitive structural index of early DAT (Fotenos,
Snyder, Girton, Morris, & Buckner, 2005; Thompson et al., 2003). Age-matched healthy
controls were relatively spared from atrophic processes. In contrast, FA and MD white
matter values were similar between the controls and participants with DAT, and their
diagnostic power was poor. These FA and MD data add to the large variability in the
reported location and magnitude of white matter pathology reported in the early DAT
literature (Chua et al., 2008). For instance, two recent papers (Chua et al., 2008; Muller et
al., 2005) reported excellent discrimination between controls and amnestic MCI using FA;
however, the brain regions cited as different across AD and nondemented participants differ
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greatly (splenium vs. right hippocampus) across the studies. Disparate findings across
centers highlight the inconsistency of DTI indices and cast doubt on the utility of DTI to
detect early DAT disease processes because of a lack of consistent discriminatory power.

Overall, these data are consistent with the finding that gray matter is more vulnerable to AD
than white matter (Fotenos et al., 2005; Thompson et al., 2003). The very mildly demented
individuals reported here have clinical symptoms of early-stage AD and demonstrate
cognitive, functional, and neuroimaging (volumetric decrements in gray matter) consistent
with this diagnosis but failed to show widespread white matter change. While white matter
integrity was reduced most in the right parahippocampal region (consistent with Rose et al.,
2006), this area is strongly interconnected with and close in proximity to the right
hippocampus. Asymmetrical gray matter atrophy with a right-greater-than-left pattern has
been found consistently across volumetric studies of AD (cf. meta-analysis by Shi, Liu,
Zhou, Yu, & Jiang, 2009). In the present study, gray matter atrophy in right hippocampus
was a superior predictor of disease status than was FA or MD. Moreover, right
parahippocampal FA and MD correlated with right hippocampal atrophy measures,
suggesting that observed white matter changes in the later clinical stages of AD may be in
part due to Wallerian degeneration from primary neurodegeneration in cortical gray matter,
resulting in later white matter decrement. However, longitudinal follow-up of the current
individuals is needed to examine the cascade of disease-related process in gray matter
atrophy and white matter disintegration. Serial white matter volumetric analyses may
disambiguate the timing of gray versus white neuropathological events. The relatively high
level of white matter integrity observed in our participants with DAT is likely to be due to
their very mild stage. When these patients progress, we expect to see greater white matter
change. Although small white matter decrements could produce the large gray matter
atrophy witnessed in this region (Gouw et al., 2008; Muller et al., 2005), our data are more
consistent with the literature suggesting that AD predominantly affects gray matter early in
the disease course. This very early right-sided hippocampal gray matter degeneration may
later affect local white matter integrity, thus interfering with patients with very mild DAT to
represent information visually while encoding (Aguirre, Zarahn, & D'Esposito, 1998;
Cornwell et al., 2010). Finally, we did not find any support for regional-specific changes in
cingulate and splenium in this study. These areas have been implicated by recent reviews as
susceptible to early DAT-related changes and thus interpreted as an aid to early DAT
diagnosis (Fellgiebel et al., 2005; Fellgiebel et al., 2004; Medina et al., 2006; Zhang et al.,
2007); however, in this study, our very mildly demented participants actually had slightly
better DTI values in these regions than did our healthy controls, further limiting the
discriminative power of these indices in very early stage DAT.

This study has a number of strengths and weaknesses. We present neuroimaging data from a
moderate-sized sample (N = 59) of older adults who underwent thorough clinical assessment
of neurocognitive function and physical health. Although this sample is relatively large by
comparison with other neuroimaging studies, more participants are needed to determine the
objective utility of DTI in early DAT. The DTI data presented here were gathered using a
12-direction structural MRI scan sequence. Although it is doubtful that any additional
directionality would increase the magnitude of the effects witnessed here, it is possible that a
higher resolution gradient sequence may capture white matter change in additional regions.
These data are limited by the 3 × 3 mm voxel size; thus our resolution is somewhat
diminished and may affect our sensitivity to detect very small white matter decrement.
Finally we have not examined what role periventricular and deep-cortical white matter
hyperintensities play in these participants. Follow-up studies of these participants will
quantify how white matter anomalies interact with anisotropy and diffusivity over time.
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TABLE 1

Demographics

Nondemented DAT (CDR 0.5)

CDR 0 (n = 32) 0.5 (n = 27)

Age 70.3 (6.3) 73 (6.5)

Education 16.2 (3.0) 14.7 (2.9)

Gender (M/F) 16/16 18/9

MMSE 29.4 (0.84) 27.5 (2.25)**

Global cognitive composite 0.15 (0.80) −1.91 (0.19)**

Cholesterol 185.7 (30.1) 182.3 (44.9)

Treated for hypertension n = 5 (16%) 14 (50%)*

Depression diagnosis (remote history > 1 year) n = 3 (9%) n = 6 (21%)

Geriatric Depression Scale 0.88 (0.91) 2.0 (1.7)*

Note: Study exclusions included diabetes mellitus, history of ischemic heart disease, schizophrenia, clinically significant depressive symptoms,
abnormalities in B12, rapid plasma reagin, or thyroid function, use of antipsychotic medications, and significant visual or auditory impairment,
systemic illness, or orthopedic issues that could impair completion of the study.

*
p < .01.

**
p < .001.
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TABLE 3

Diffusion tensor indices

Fractional anisotropy Diffusivity

Healthy controls
Mean (SD)

DAT (CDR 0.5) Mean
(SD)

Healthy controls
Mean (SD)

DAT (CDR 0.5) Mean
(SD)

Genu 0.57 (.06) 0.58 (.09) 2.70 (.36) 2.70 (.78)

Splenium 0.59 (.07) 0.63 (.07) 2.61 (.35) 2.47 (.31)

Left internal capsule 0.64 (.05) 0.64 (.06) 2.18 (.09) 2.26 (.15)a,*

Right internal capsule 0.62 (.06) 0.64 (.06) 2.19 (.10) 2.21 (.14)

Left cingulate 0.49 (.07) 0.50 (.05) 2.27 (.16) 2.29 (.15)

Right cingulate 0.53 (.08) 0.53 (.06) 2.30 (.15) 2.24 (.16)

Left frontal 0.48 (.09) 0.44 (.07) 2.43 (.18) 2.48 (.17)

Right frontal 0.42 (.08) 0.41 (.08) 2.49 (.22) 2.50 (.21)

Left parietal 0.42 (.07) 0.43 (.09) 2.26 (.16) 2.30 (.17)

Right parietal 0.44 (.07) 0.48 (.08) 2.24 (.13) 2.26 (.13)

Left superior longitudinal fasciculus 0.59 (.08) 0.58 (.08) 2.28 (.18) 2.31 (.21)

Right superior longitudinal
fasciculus

0.59 (.09) 0.60 (.08) 2.38 (.19) 2.41 (.21)

Left parahippocampus 0.52 (.08) 0.51 (.08) 2.74 (.64) 2.62 (.59)

Right parahippocampus 0.53 (.09) 0.50 (.09)a 2.50 (.39) 2.78 (.80)a,*

a
One-tailed t > 2.01.

*
p < .05.
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