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Summary

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize 

AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in 

human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The 

altered proteins are validated in two independent cohorts, showing partial RNA dependency. 

Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. 

Combining with 5xFAD mouse analysis, we determine 15 Aβ-correlated proteins (e.g., MDK, 

NTN1, SMOC1, SLIT2 and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic 

AD but exhibits activation of autophagy and interferon response, and lacks human-specific 

deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-

omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, 

inflammation, complement, WNT signaling, TGFβ/BMP signaling, lipid metabolism, iron 

homeostasis, and membrane transport. Some Aβ-correlated proteins are colocalized with amyloid 

plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.

Graphical Abstract

Bai et al. Page 2

Neuron. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eTOC blurb

By mass spectrometry-based proteomics and integrated multi-omics, Bai et al. reveal novel 

proteins and molecular networks during Alzheimer’s disease progression and validate the proteins 

in the 5xFAD mice. Further comparisons of brain tissue and cerebrospinal fluid proteomes identify 

biomarker candidates.

Keywords

Alzheimer’s disease; TMT; mass spectrometry; proteomics; proteome; phosphoproteome; 
transcriptome; RNA-seq; genomics; genome; brain tissue; cerebrospinal fluid; biomarker; systems 
biology; multi-omics; disease network; mouse model; 5xFAD; Aβ; Tau; APOE; NTN1; Netrin; 
UNC5C; MDK; SMOC1; ICAM1; complement

Introduction

Alzheimer's disease (AD) is the most common type of dementia, imposing a substantial 

burden to patients and the healthcare (Alzheimer's, 2015). Genetic analysis of AD patients 

revealed three causative genes (APP, PSEN1 and PSEN2), several risk genes (APOE, 
TREM2, and UNC5C) (Colonna and Wang, 2016; Guerreiro et al., 2013; Wetzel-Smith et 

al., 2014), and more than 20 low-risk genetic loci (Kunkle et al., 2019; Lambert et al., 2013). 

Biochemical studies discovered pathological hallmarks of Aβ plaques and Tau 

neurofibrillary tangles in AD brain (Hyman et al., 2012). The resulting amyloid cascade and 
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Tau hypotheses (Ballatore et al., 2007; Hardy and Selkoe, 2002) become central to AD 

research. A large number of animal models have been developed to test these hypotheses, 

but cannot fully recapitulate AD symptoms (LaFerla and Green, 2012; Sasaguri et al., 2017). 

Current targeted therapeutic strategies have failed to slow down cognitive decline in AD 

(Graham et al., 2017; Huang and Mucke, 2012), raising concerns about these hypotheses and 

calling for a broad understanding of molecular and cellular components in AD brain, at both 

asymptomatic and symptomatic stages during the disease progression (De Strooper and 

Karran, 2016).

The advent of next-generation sequencing technologies for DNAs, RNAs and proteins 

(Aebersold and Mann, 2016; Altelaar et al., 2013; Metzker, 2010), provides an 

unprecedented opportunity to thoroughly characterize human specimens to elucidate disease 

networks and novel therapeutic targets. Large-scale genomic analysis of AD is in progress 

(https://www.niagads.org), and transcriptomic analysis constructed potential disease 

networks (e.g. microglia-specific module) (Miller et al., 2008; Zhang et al., 2013), and 

identified cell type specific alterations in AD (Mathys et al., 2019). The transcriptome, 

however, is often not an accurate indicator of protein abundance (Liu et al., 2016), especially 

in complex brain tissue (Sharma et al., 2015). For example, abnormal aggregation of APP-

cleaved Aβ peptide and phospho-Tau highlights substantial deregulation of posttranslational 

events in AD (Taylor et al., 2002). Analysis of proteome in AD and during aging has been 

attempted (Seyfried et al., 2017; Wingo et al., 2019). We performed a comprehensive 

analysis of the aggregated proteome, detecting the deposition of U1 small nuclear 

ribonucleoprotein (U1 snRNP) and a deficit of RNA splicing in AD brain (Bai et al., 2013; 

Lutz and Peng, 2018). The study of aggregated subproteome motivates us to revisit the 

whole proteome during the development of Alzheimer’s disease.

Here, we present a new paradigm of analyzing 14,513 proteins (12,018 genes) and 34,173 

phosphosites (46,612 phosphopeptides) in different disease stages of AD, using the latest 

multiplexed tandem-mass-tag (TMT) method and two-dimensional liquid chromatography-

tandem mass spectrometry (LC/LC-MS/MS) (Bai et al., 2017; Niu et al., 2017; Tan et al., 

2017; Wang et al., 2019). This ultra-deep analysis is further validated in two independent 

AD cohorts, and in the 5xFAD mouse model. Protein changes are only partially consistent 

with the corresponding RNA levels. Comparison of the human and mouse proteomes defines 

their resemblance and difference. Finally, we integrate multi-omics datasets to prioritize 

altered proteins/genes and pathways. A number of top-listed proteins emerge with the 

appearance of amyloid plaques. In summary, these results provide a rich resource of 

molecular alterations in AD and establish a crucial framework of disease networks/

pathways.

Results

Deep Proteomic and Phosphoproteomic Profiling of AD Progression

We developed a three-phase strategy to discover, validate and integrate multi-omics AD data 

(Figure 1A). As clinical proteomic studies are often affected by confounding factors, such as 

postmortem interval (PMI) (Beach et al., 2015), we performed a survey of mouse brain 

samples with PMI of 0, 3, and 12 hours. Only 364 (2.6%) out of 14,007 proteins were 
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changed among different PMIs, whereas 4,736 (16.5%) out of 28,699 phosphopeptides were 

altered in the comparisons (Data S1A and S1B). Thus we diminished the impact of 

confounding factors by removing PMI-affected proteins and phosphoproteins, selecting 

well-characterized specimens with very short PMI (3.0 ± 0.8 h) in the discovery study (Table 

1 and Data S2A) (Beach et al., 2015), implementing additional quality control metrics to 

discard samples compromised by protein degradation (Figure S1), and correcting for cell-

type composition bias during data analysis (see STAR method).

Using the multiplexed tandem-mass-tag (TMT) method and two-dimensional liquid 

chromatography-tandem mass spectrometry (LC/LC-MS/MS) (Bai et al., 2017; Pagala et al., 

2015), we started with frontal cortical samples of 100 human cases, and selected 90 samples 

of high quality for profiling whole proteome and phosphoproteome (Figure 1B and Figure 

S1, Table 1 and Data S2A) in 5 equal groups: (i) controls with low pathology of plaques and 

tangles (LPC), (ii) controls with high Aβ pathology but no detectable cognitive defects 

(HPC) (Nelson et al., 2012), (iii) mild cognitive impairment (MCI) with Aβ pathology and a 

slight but measurable defect in cognition (Hyman et al., 2012), (iv) late stage AD with high 

pathology scores of plaques and tangles, and (v) progressive supranuclear palsy (PSP), 

another neurodegenerative disorder of tauopathy (Williams and Lees, 2009). A pooling 

strategy with replicates (Bai et al., 2013) was designed to simplify the analysis, dividing the 

90 samples into 10 pools (Figures S1 and S2). Exhaustive LC/LC-MS/MS improved 

quantitative accuracy and proteome coverage (Niu et al., 2017), quantifying 14,513 proteins 

(12,018 genes, false discovery rate (FDR) < 1%, Data S2B), and 34,173 phosphosites 

(46,612 phosphopeptides, FDR < 1%, Data S2C) (Figure 1B and Figures S3A-S3C). The 

MS-measured Aβ peptide level is largely consistent with the results of plaque pathology in 

the 5 groups of samples (Figure 1C). The data quality is further supported by high 

reproducibility of replicates in clustering analysis (Figure 1D), principal component analysis 

(Figure S3D), and correlation analysis (Figure S3E, R2 > 0.97 between replicates).

To explore proteome dynamics during AD progression, we used a stepwise pipeline (Figure 

1E) to define 173 differentially expressed (DE) proteins (FDR < 20%) in 17 pathways, 

adapted the weighted gene correlation network analysis (WGCNA) (Langfelder and 

Horvath, 2008) to cluster these DE proteins, and interpreted the clusters with protein-protein 

interaction (PPI) network. Three whole proteome clusters (termed WPC) were identified 

from the analysis (Figure 1F), whereas a small number of proteins (n = 8) did not follow any 

of these clusters (Data S3A). WPC1 (n = 50) displays an early increase in HPC and MCI and 

a continuous accumulation in AD, including Aβ, TREM2 and CLU. These proteins are 

enriched in 12 pathways of amyloid cascade, WNT signaling, TGFβ/BMP signaling, G 

protein signaling, integrin pathway, innate immunity, adaptive immunity, cytoskeleton and 

extracellular matrix, membrane transport, lipid metabolism, protein folding and degradation, 

and synaptic function (Figure 1G). WPC2 proteins (n = 88) are relatively stable in the stages 

of HPC and MCI, but show a marked increase when progressing to AD, including MAPT 

(tau) and complement components. WPC2 recapitulates all enriched pathways in WPC1, and 

contains three additional pathways of cytokine signaling, complement and coagulation, and 

iron homeostasis (Figure 1G). In contrast, WPC3 (n = 27) shows no obvious change in the 

HPC and MCI, followed by a notable decrease in AD, identifying two more pathways of 

neurotrophic factor signaling and mitochondrial function (Figure 1G). Furthermore, we 
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integrated the DE proteins in each WPC pattern with the protein-protein interaction network 

to define 11 functional modules, providing the evidence of protein-protein interaction to 

support these enrichment pathways (Figure 1H and Data S3B). Importantly, among the 173 

DE proteins in AD, 163 (94%) proteins show no significant changes in the PSP brain 

displaying tauopathy but missing amyloid plaques, indicative of a high degree of AD 

specificity (Data S3A).

As the majority of these altered proteins are novel, we validated the changes of 11 proteins 

by western blotting in the pooled AD samples (Figure 1I), and performed two additional 

large-scale validation analyses by TMT-LC/LC-MS/MS. First, we profiled 49 individual 

human brain samples from the same Banner Sun cohort used for the pooled study (Data 

S2A, Figure 2A), identifying 12,650 proteins across all samples (FDR < 1%). Out of the 173 

DE proteins identified in the pooled analysis, 121 were re-detected in the individual samples 

and divided into the WPC1-3 clusters. Consistently, 117 (97%) proteins displayed similar 

patterns during AD progression (Figures S4A and S4B). Second, we profiled 80 brain 

cortical samples from an independent Mount Sinai cohort (PMI 7.5 ± 5.4 h) and accepted the 

proteomic results from 62 cases (23 normal control cases, and 39 AD cases, Data S4A, 

Figure 2B), identifying 12,147 proteins shared by all samples. Among the 117 DE proteins 

found in the Banner Sun cohort, 84 were reidentified in the Mount Sinai cohort, in which 58 

(69%) showed consistent changes in AD (Figures 2C and 2D, Data S4B). Thus, the two 

extensive TMT validation analyses strongly support reproducibility of our deep proteomics 

studies.

To investigate the mechanisms underlying the protein changes in AD, we compared our AD 

proteome datasets with a reported large-scale AD transcriptome dataset (Allen et al., 2016). 

Among the 58 altered proteins in AD, almost all decreased proteins (89%, 8 out of 9 

proteins) are associated with decreased RNA levels, but only 55% (27 out of 49 proteins) of 

increased proteins link to upregulated transcripts (Figure 2D, Data S4B), suggesting that the 

remaining 45% of increased proteins are regulated by posttranscriptional mechanisms.

To examine if these protein changes in the AD brain tissue are detectable as potential 

biomarkers in cerebrospinal fluid (CSF), we performed deep proteomics profiling of CSF 

samples (n = 13, 5 control and 8 AD cases, Figure 2E) and quantified 5,940 proteins (Data 

S4C). The analysis detected 49 proteins from the 58 proteins changed in AD brain tissue, in 

which a list of 8 proteins are consistently changed in the CSF samples (p < 0.05, Figure 2F, 

Data S4D). In the list, 4 proteins (GPNMB, SMOC1, NPTX2 and VGF) have previously 

been reported in AD CSF (Dayon et al., 2018; Huttenrauch et al., 2018; Llano et al., 2019; 

Xiao et al., 2017), and the other 4 proteins (SLC39A12, SLC5A3, SLIT2 and STEAP3) are 

novel biomarker candidates.

Phosphoproteome-derived Kinase Activities in AD

The phosphoproteome profiling identified 34,173 phosphosites (46,612 phosphopeptides) on 

7,083 phosphoproteins (Data S2C, Figure S5A), and as expected microtubule-associated Tau 

is the most elevated phosphoprotein in AD (Figure 3A). There are 25,698 (75%) pS, 7,216 

(21%) pT, and 1,259 (4%) pY sites (Figure 3B). Reproducibility of replicates is verified by 

clustering analysis (Figure 3C), principal component analysis (Figure S5B), and correlation 
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analysis (Figure S5C, R2 > 0.75 between replicates). In the clustering analysis, the AD 

group shows the largest distance from other groups, suggesting that AD harbors the most 

dramatic change in phosphoproteome.

Similar to the whole proteome analysis, the stepwise computational pipeline was used to 

identify 873 DE phosphopeptides (FDR < 20%, 398 proteins, Figure 3D) into four major 

phosphopeptide clusters (PPC1-4, Figure 3E), whereas a small subset of phosphopeptides (n 
= 22) did not fit into any of these clusters (Data S5A). PPC1 (n = 39) shows a steady 

increase during AD development. PPC2 (n = 372) is stable in the HPC and MCI samples, 

and dramatically increases in AD, reminiscent of the pathology of neurofibrillary tangles. 

Notably, PPC2 contains 89 phosphopeptides from Tau (56 phosphosites, Data S5B), and 67 

from osteopontin (SPP1), a glycoprotein regulating diverse biological processes (e.g. 

immune response) (Wang and Denhardt, 2008). PPC3 (n = 104) increases slightly in the 

HPC and MCI cases, and reduces in AD. PPC4 displays the downregulation of 

phosphorylation in the HPC and MCI, followed by restoration in AD. Together, the PPC1-4 

patterns demonstrate that protein phosphorylation is highly dynamic and actively remodeled 

at different stages of AD.

We next examined the phosphoprotein pathways enriched in each PPC pattern (Figure 3F), 

revealing two new pathways of splicing dysfunction and calcium hypotheses in AD. 

Strikingly, there are only 11 proteins overlapped between the altered phosphoproteome (n = 

398) and whole proteome (n = 173) (Figure 3G), indicating that the phosphoproteome 

analysis represents a new layer of molecular regulation, complementing the landscape of the 

whole proteome.

We then sought to derive kinase activities in the samples according to the levels of 

phosphorylated substrates. The IKAP machine learning algorithm (Mischnik et al., 2016) 

deduced the activities of 186 kinases, of which 28 are possibly changed, primarily in AD 

(Figure 3H). For example, the CDK kinase activity could be computed from its known 

substrates of MAPT, APP, LMNA, VIM, TLN1 and SQSTM1 (Figure 3I), and the GSK3 

kinase activity was similarly inferred (Figure 3J). In total, the ABL, CDK, CAMK, GSK, 

MAP3K, MAPK, PKC, and TTBK families, and 6 other kinases of PBK, FES, FYN, 

MARK2, PKA (PRKACA), and PRKDC were likely activated in AD. Remarkably, this list 

essentially covers all previously known Tau kinases (n = ~11) (Wang and Mandelkow, 

2016).

Finally, we examined the levels of the possibly activated 28 kinases and related family 

members in the whole proteome and phosphoproteome. Although the vast majority of 

kinases (except MAP3K6) do not change at the whole protein levels (Data S2B), some of the 

MAP kinase cascades exhibit a marked increase in phosphorylation, including four 

sequentially activated families: MAP4K (e.g. MAP4K4), MAP3K (e.g. ARAF and 

MAP3K12), MAP2K (e.g. MAP2K6), and MAPK (e.g. MAPK1/ERK2) (Figure 3K) 

(Keshet and Seger, 2010). Moreover, the dual specificity protein phosphatase 6 (DUSP6), a 

negative regulator of MAPK signaling, is significantly reduced in AD (Figure 3K). 

Collectively, these multilevel proteomic analyses suggest the activation of MAP kinase 

signaling that is implicated in AD pathogenesis (Kim and Choi, 2010).

Bai et al. Page 7

Neuron. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aβ-correlated Protein Alterations and Human-Mouse Comparisons

To explore molecular events induced by Aβ accumulation, we identified a list of 28 Aβ-

correlated DE proteins in the whole proteome datasets from both Banner Sun and Mount 

Sinai cohorts (FDR < 10%, Figures 4A-4C). The Aβ level is based on its fully tryptic 

peptide (LVFFAEDVGSNK, Figure 4A), increasing ~7-8-fold from low pathology control 

cases to AD, which correlates well with the plaque pathology in brain tissue. Since this 

peptide can be generated from either Aβ or the full length APP, we examined the absolute 

abundance of Aβ and APP by corresponding spectral counts. While this Aβ-derived peptide 

has 35 spectral counts, APP has more than 30 tryptic peptides outside the Aβ region, which 

have only 5 average spectral counts (Data S2B), indicating that Aβ is much more abundant 

than APP in the samples. Moreover, MS quantification of the non-Aβ APP peptides shows 

no significant change in AD. Thus, the selected peptide is a surrogate for Aβ, which was 

also previously used for Aβ quantification by mass spectrometry (Seyfried et al., 2017).

We then evaluated the cause and effect relationships of the Aβ-correlated proteins in the 

5xFAD model (Oakley et al., 2006) by analyzing a total of 16,128 proteins (11,573 proteins 

across all samples, FDR < 1%) in the cortex of 5xFAD and wild type (WT) mice (3, 6 and 

12 months of age, Figure 4D, Data S6A). In the 28 proteins, 23 were identified in all mice, 

and 15 (65%) are consistently increased in the animals (Figure 4E, Data S6B), including 

MDK, NTN1, CTHRC1, NTN3, SMOC1, SFRP1, OLFML3, SLIT2, HTRA1, FLT1, 

SLIT3, CLU, ICAM1, LSP1, and C4B. Among the 15 proteins, only 4 (27%, OLFML3, 

CLU, ICAM1 and C4B) proteins are linked to RNA upregulation (Figure 4E) based on 

RNA-seq analysis (Data S6C), indicating that most Aβ-correlated proteins in 5xFAD are 

regulated by posttranscriptional mechanisms.

Genetically modified mice cannot fully mimic AD and are often viewed as a model of AD 

asymptomatic stage (LaFerla and Green, 2012). To test this idea, we compared the mouse 

DE proteome (5xFAD/WT) with different human group DE proteome (HPC/LPC, MCI/

LPC, and AD/LPC, Figure 5A). Interestingly, 5xFAD (12 months of age) shares 97, 89, and 

169 protein alterations with HPC, MCI and AD, respectively, The results implicate that 

5xFAD has the most similar proteome to the late stage of AD, but not the early stage of AD 

as previously anticipated (Ashe and Zahs, 2010).

Further examination of the DE proteomes in AD cases and 5xFAD mice reveals 37 human-

specific, and 69 5xFAD-specific DE proteins (Data S6D and S6E). In the human-specific DE 

proteins, some synaptic proteins (e.g. CAMKK2 and NPTX2) and neuroprotective factors 

(e.g. VGF and BDNF) are significantly reduced in AD, but not in the mice (Figure 5B). 

Intriguingly, the 5xFAD-specific DE proteins might render different response to Aβ insult. 

For example, lysosome/autophagy pathway proteins (e.g. LAMP1 and HEXB) are highly 

enriched and increased (Figure 5C). Autophagy is essential to clear damaged organelles and 

aggregated proteins; and enhanced autophagy might reduce AD-related pathology and 

reverse memory deficit in mice (Nixon, 2013). Defective autophagy is usually accompanied 

by the accumulation of the SQSTM1/p62 protein (Moscat and Diaz-Meco, 2009). Indeed, 

p62 is accumulated in AD, but not in 5xFAD. Moreover, interferon response is markedly 

increased in 5xFAD but not in AD (Figure 5C). Interferons is a class of cytokines with 

profound neuroprotective or neurotoxic properties, which are dependent on relative 
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interferon levels and cellular context (Schwartz and Deczkowska, 2016). For example, lack 

of neuronal interferon-β signaling in mice was reported to block late-stage autophagy, 

resulting in sporadic Lewy body accumulation and dementia (Ejlerskov et al., 2015). Thus, 

the species-specific DE proteins may represent different magnitude of proteome remodeling 

under the pathological conditions in human and mice.

Pathway Ranking and Top-ranked Proteins in Amyloid Plaque Pathology

Integration of genomic data and gene expression information has proven powerful for 

determining potential causative pathways in Alzheimer’s disease (Zhang et al., 2013). We 

extended this concept by combining all major dimensional AD datasets to rank genes/

proteins and pathways, using order statistics (Aerts et al., 2006) and gene set enrichment 

analysis (GSEA) (Subramanian et al., 2005) (Figure 6A). We included 7 datasets: MCI 

whole proteome, AD whole proteome, phosphoproteome, and aggregated proteome (Bai et 

al., 2013; Lutz and Peng, 2018), genome-wide association analysis (Lambert et al., 2013), 

transcriptome (Allen et al., 2016), and protein-protein interactome (Huttlin et al., 2017). The 

integrative protein ranking is based on all 7 datasets (Figure 6B, Data S7A), with APP, 

APOE, and MAPT as the top 3 of the list, consistent with our current understanding of AD 

pathogenesis. We then prioritized signaling pathways by GSEA, identifying 16 pathways 

(FDR < 20%, Figure 6C), collectively classified into 4 major categories of amyloid and Tau 

pathways, inflammation, growth and development, as well as metabolism and membrane 

transport. Moreover, subcellular localization analysis indicates that the high-ranked proteins 

are exceedingly enriched in secreted subproteome (secretome) and cell surface subproteome 

(FDR < 10%, Figure 6D). For instance, in the top 200 proteins (Data S7B), 42% (n = 83) are 

secretory proteins; and 20% (n = 40) are cell surface proteins. Moreover, other secretory 

locations, such as vesicle lumen, secretory granule lumen, and Golgi lumen, are also 

enriched in this analysis. The results suggest that the secreted and cell surface subproteomes 

are particularly perturbed in AD, which might have a strong impact on cell communication.

We then examined if highly ranked, Aβ-correlated proteins are associated with amyloid 

plaque pathology. Indeed, immunohistochemistry experiments show that MDK, NTN1, 

SMOC1, and ICAM1 are obviously accumulated in some plaque structures of AD, 

compared to normal control cases (Figure 7A). When co-stained with Aβ in 

immunofluorescence analysis, MDK and NTN1 are highly colocalized with Aβ plaques, 

while SMOC1 and ICAM1 are partially colocalized in the plaque areas (Figure 7B). In 

addition, we also analyzed complement protein C4B in human cases and identified both 

amyloidopathy and angiopathy (Figure S6), supporting that the elevation of C4B is unlikely 

due to blood contamination in human postmortem brain samples. In the 5xFAD model, the 

plaque localization of MDK, NTN1, SMOC1 and ICAM1 is recapitulated in the brain 

(Figures 7C and 7D), and the accumulation of these proteins is validated by Western blotting 

(Figures 7E). Finally, we explored if these proteins physically interact with Aβ using an 

affinity binding assay. The four highly purified recombinant proteins, biotin-labeled Aβ40 

and a scrambled control peptide were obtained for the assay (Figure 7F). Clearly, MDK and 

NTN1 directly binds to the Aβ40 column, but not to the control column, while the other two 

proteins (SMOC1 and ICAM1) show no binding to Aβ40 in this assay (Figure 7G). 

Collectively, these results indicate these Aβ-correlated proteins are colocalized with Aβ in 
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the amyloid plaques, with MDK and NTN1 showing direct Aβ-binding, implicating that 

they may function together in the AD brain.

Discussion

Achievement of Genome-wide Brain Proteomics Data in AD

Our deep, multilayer proteomic analyses reveal highly confident lists of altered key proteins 

and phosphoproteins in both AD and the related 5xFAD model, and prioritize molecular 

alterations by multi-omics datasets with a comprehensive computational pipeline, providing 

novel insights into the proteins/pathways associated with AD. For example, when the 58 DE 

proteins were searched in PubMed database, only 13 (23%) proteins were reported in at least 

10 AD-related papers (Figure S7A). The acquisition of such rich proteomic information is 

largely attributed to the access to high quality AD brain tissue (Beach et al., 2015) and the 

strength of the optimized mass spectrometry-based proteomics platform, including multiplex 

TMT isobaric labeling (Niu et al., 2017), extensive long gradient LC/LC coupled with high 

resolution MS/MS analysis (Wang et al., 2015), a refined phosphopeptide enrichment 

method (Tan et al., 2015), and a newly developed tag-based database JUMP search program 

(Li et al., 2016; Wang et al., 2014). As regulatory proteins are central players in cells but 

often exist at low abundance, the high coverage of proteome has become extremely 

important to uncover those proteins. In addition, the collection of multilayer proteome 

datasets, such as whole proteome, phosphoproteome, and aggregated subproteome (Bai et 

al., 2013), moves toward a more complete view of proteotype (defined as the state of a 

proteome associated with a specific phenotype) (Aebersold and Mann, 2016) to interpret 

Alzheimer’s disease phenotypes.

The protein level in the AD brain tissue is controlled by the mechanisms of transcription, 

translation and protein degradation (Liu et al., 2016). Out of the 58 DE proteins detected in 

AD, 35 proteins are linked to corresponding RNA alterations, and 23 proteins appear to be 

independent of transcriptional regulation (Figure 2D), in which 9 proteins (MDK, NTN1, 

CTHRC1, SMOC1, SFRP1, SLIT2, HTRA1, SLIT3, and LSP1) are highly correlated with 

Aβ in AD cases (Figure 4). Consistently, these 9 proteins are also demonstrated to increase 

in the brain of 5xFAD mice by proteome profiling, and their related RNA levels do not 

display upregulation with statistical significance in the RNA-seq analysis. Further 

experiments show the plaque localization of MDK, NTN1 and SMOC1 in human and the 

mouse model, and direct Aβ-binding of MDK and NTN1 (Figure 7). Additional evidence 

comes from a recent proteomics study of amyloid plaques isolated by laser-capture 

microdissection (Xiong et al., 2019), confirming 5 proteins (MDK, NTN1, SMOC1, SLIT2, 

and HTRA1) in the plaque areas. Therefore, the protein level in AD brain is regulated by 

both transcriptional and posttranslational mechanisms, which are not mutually exclusive. It 

is possible that plaque association slows down the turnover of some proteins, which at least 

partially contributes to their accumulation in AD.

Compensatory Protective Feedback at the Asymptomatic Stage of AD

Clinically, there is a long, prodromal stage in AD prior to the irreversibly progressive decline 

of cognition (Hyman et al., 2012). A compelling concept is that initial Aβ accumulation may 
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induce a compensatory feedback that is protective to attenuate the toxic Aβ insult, whereas a 

vicious feedforward may require additional toxic factors to override the protection, leading 

to irreversible degeneration (De Strooper and Karran, 2016). In this conceptual frame, we 

discuss potential roles of the identified proteins in AD by our deep MS analysis (Figure 

S7B).

Our proteomic analyses identify multiple protein patterns (WPC1-3), dependent on different 

disease stages. Only WPC1 displays early upregulation in the prodromal AD (HPC and 

MCI). For example, NTN1/Netrin-1 and NTN3/Netrin-3 are highly correlated with Aβ in 

human, and are induced in the 5xFAD mice. It has been reported that Netrin-1 

overexpression reduces the Aβ level in an AD mouse model (PDAβPPSwe/Ind), and 

intracerebroventricular injection of Netrin-1 enhances working memory in the mice 

(Spilman et al., 2016). Interestingly, the Netrin-1 receptor UNC5C is an AD risk gene 

(Wetzel-Smith et al., 2014). Aberrant UNC5C has been reported to activate cell death 

signaling in cell culture, but netrin-1 may bind to UNC5C on the cell surface to suppress 

UNC5C-induced cell death (Hashimoto et al., 2016). Midkine is also highly correlated with 

Aβ in human cases and in the 5xFAD mice and it is proposed to antagonize Aβ cytotoxicity 

(Herradon and Perez-Garcia, 2014).

Surprisingly, we identified in WPC1 a large number of development pathway proteins, 

including WNT5A, WNT5B, RSPO2, GPC5, and SULF2 in WNT signaling, as well as 

BMP3 and SMOC1 in TGFβ/BMP signaling. Although the functions of these proteins are 

largely dependent on cellular context, WNT signaling is generally viewed as a protective 

mechanism for synaptic integrity and memory maintenance (Inestrosa and Varela-Nallar, 

2014). For example, WNT5A stimulates the formation of dendrite spines and enhances 

synaptic plasticity in mammalian brain (Varela-Nallar et al., 2010). Recent genetic studies 

support the notion that WNT signaling is critical for synaptic function and neuronal 

viability, and defective WNT signaling exacerbates plaque pathology in mice (Liu et al., 

2014). In microglia, WNT signaling may be activated by the AD risk gene TREM2 to 

enhance microglial viability (Zheng et al., 2017). Consistently, we observed the upregulation 

of OLFML3, a highly enriched marker for microglia (Crotti and Ransohoff, 2016). In 

contrast, BMP signaling activation appears to be detrimental by impairing neurogenesis in 

APP transgenic mice (Crews et al., 2010). Interestingly, both BMP3 and SMOC1 are 

negative regulators of BMP signaling (Bragdon et al., 2011), implying that repression of 

BMP signaling might play a positive role in maintaining neurogenesis in AD.

Increase of Detrimental Factors and Decrease of Protective Factors at the Symptomatic 
Stage of AD

During the transition from MCI to AD, our proteomic analysis uncovers an upregulated 

protein pattern (WPC2) and a downregulated pattern (WPC3), which may contain numerous 

dysfunctional pathways to promote cognitive impairment and cell death. WPC2 includes 

several complement proteins (e.g. C1R, C1S, C3, C4A and C4B). The complement system 

functions with microglia to trim excess synapses during neurodevelopment, but can be 

inappropriately activated to prune synapses in AD-related mouse models (Dejanovic et al., 

2018; Hong et al., 2016). C3 knockout mice exhibit less hippocampal synapse loss during 
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normal aging. Further genetic crossing analysis support that C3 deficiency protects the mice 

against synapse loss and memory decline in the APP/PS1 mice (Shi et al., 2017). Thus the 

increased activity of the complement system may accelerate the development of AD 

symptoms.

WPC2 also contains numerous cytoskeletal proteins, as exemplified by tau that is 

hyperphosphorylated and aggregated to contribute to neurodegeneration (Ballatore et al., 

2007). Aβ is proposed to initiate the conversion of tau from the normal to toxic form, which 

mediates the Aβ toxicity at the synapse (Bloom, 2014). Moreover, the toxic tau may cause 

defect in axonal transport along microtubules (Wang and Mandelkow, 2016), during which 

iron export can be damaged, resulting in iron accumulation (Lei et al., 2012). Indeed, 

clinical magnetic resonance imaging suggests that iron accumulates in AD brain (Raven et 

al., 2013). In WPC2, we found significant upregulation of five proteins in iron homeostasis: 

LTF (a major iron-binding transport protein), BDH2 (synthesizing siderophore that binds 

iron), STEAP3 (transferrin-dependent iron uptake), and TSPO (transporting porphyrins and 

heme) (Ganz, 2013). The excess iron metabolism may cause the accumulation of lipid 

peroxidation products and reactive oxygen species, eventually leading to cell death. This 

new form of programmed cell death has recently been termed ferroptosis, different from 

apoptosis, necrosis and necroptosis (Stockwell et al., 2017). It is possible that the iron-

mediated ferroptosis plays a negative role in cell survival, contributing to neurodegeneration 

in AD.

In contrast, WPC3 proteins decrease in the AD brain. WPC3 contains several positive 

neuroprotective factors, such as BDNF, VGF, NRN1, CRH and ADCYAP1. Interestingly, 

these neurotrophic factors are assembled together around the “hub” BDNF in the PPI 

network, indicating that they function in the same pathway. Multiple in vitro and in vivo 
studies uniformly suggest their roles in neuroprotection (Han et al., 2014; Lin et al., 2015; 

Lu et al., 2013; Pedersen et al., 2001). The decrease of these neuroprotective factors may 

also lead to disease progression.

In summary, our temporal proteomics data support the balance and antagonization of 

positive and negative activities at different stages of AD. This work also illustrates the ability 

of deep proteomics technologies to complement genomics and transcriptomics in AD 

research. The comprehensive multi-omics measurements reveal crucial molecular networks/

pathways in AD. The AD and mouse model comparison identifies molecular similarity and 

discrepancy in a global scale, providing evidence to explain the translational gap between 

the mouse models and clinical trials. The rich data are anticipated to stimulate subsequent 

hypothesis-driven research, provide potential CSF biomarkers, deepen our mechanistic 

understanding of AD pathogenesis, and promote novel strategies for diagnosing and treating 

this devastating disease.
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STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Junmin Peng (junmin.peng@stjude.org). This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Postmortem Brain Tissue and Cerebrospinal Fluid Samples—Human 

postmortem brain tissue samples (frontal gyrus) were provided by the Brain and Body 

Donation Program at Banner Sun Health Research Institute. Clinical and pathological 

diagnoses were based on the established criteria (Beach et al., 2015). A total of 100 tissue 

cases (Data S2A) were used for protein quality control analysis, 90 of which were finally 

selected for the pooled explorative proteomics study. In addition, 49 individual cases (Data 

S2A) were used for the validation proteomics study. Moreover, 20 CSF samples were used 

for the pilot biomarker study, in which 13 were used in the final dataset. In addition, the 

other independent cohort (80 cases, in which 62 cases were used in the final dataset; Data 

S4A) was provided by the Alzheimer's Disease Research Center at Icahn School of 

Medicine at Mount Sinai, with well characterized criteria for clinical and pathological 

diagnoses (Wang et al., 2018).

Mouse Brain Tissue—Heterozygous 5xFAD+/− transgenic mice that overexpress familial 

AD mutant forms of human APP (the Swedish mutation, K670N/M671L; the Florida 

mutation, I716V; and the London mutation, V717I) and PS1 (M146L, L286V) transgenes 

under the transcriptional control of the neuron-specific mouse Thy-1 promoter (JAX stock 

#006554), and littermate controls were used. Mice of 3, 6, and 12 months were used and 

were of both sexes. Cortical brain tissue samples were dissected rapidly, frozen in liquid 

nitrogen, and stored at −80° C. Mice were bred and maintained in a specific pathogen free 

facility in the Animal Resource Center at St. Jude Children’s Research Hospital. All animal 

protocols were approved by the Institutional Animal Care and Use Committee. Brain tissue 

samples were dissected rapidly, frozen in liquid nitrogen, and stored at −80° C before 

analysis.

METHOD DETAILS

Protein Extraction and Protein Quantification—Human or mouse brain samples 

were lysed and the protein concentrations were quantified as previously described (Bai et al., 

2017). The frozen samples were weighed and homogenized in the lysis buffer (50 mM 

HEPES, pH 8.5, 8 M urea, and 0.5% sodium deoxycholate, 100 μl buffer per 10 mg tissue) 

with 1x PhosSTOP phosphatase inhibitor cocktail (Sigma-Aldrich). The human CSF 

samples were extracted in the same buffer. Protein concentration was measured by the BCA 

assay (Thermo Fisher) and then confirmed by Coomassie-stained short SDS gels.

Sample Quality and Pooling—One major challenge in studying human postmortem 

brain tissue is that the specimens are usually associated with large biological variations (e.g. 

age and gender), which are further confounded by a wide range of uncontrollable factors 
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(Hynd et al., 2003), such as environmental elements (e.g. diet, lifestyle), antemortem and 

pharmacological treatments, end-of-life illnesses, postmortem interval (PMI), and tissue 

storage conditions. To reduce these biological variations, we followed a previously reported 

pooling strategy (Bai et al., 2013), in which we successfully identified AD-specific U1 

snRNP pathology in aggregated proteome. The pooling strategy averages biological 

variations, increases statistical power, and reduces workload (Allison et al., 2006). 

Simulation analysis indicates that 10 cases per pool can reach >90% statistical power 

(Figure S2). The main caveat of pooling is that samples of poor quality (e.g. degraded or 

contaminated) may affect the data of the entire pool. To address this problem, we 

implemented the following steps to improve quality of pooled samples: (i) to select well-

stored brain specimens diagnosed by consensus clinical and neuropathological criteria, 

without large bias in race, age and gender; (ii) to obtain brain tissue with very short PMI (3.0 

± 0.8 h) for the discovery study; and use mouse brain samples to test the effect of PMI on 

the stability of proteome and phosphoproteome; (iii) to examine lysed brain samples with 

SDS gels to confirm protein integrity prior to pooling (10 out of 100 samples excluded by 

this step; Figure S1); (iv) to facilitate data analysis by incorporating samples during disease 

progression (e.g. LPC, HPC, MCI and AD), as well as other neurodegenerative cases (e.g. 

PSP with tauopathy); (v) to correct individual protein abundance affected by the cell type 

composition change in different samples by a multivariate linear model; and (vi) to validate 

proteins of interest in individual cases, and in an independent cohort.

Protein Digestion and Tandem-Mass-Tag (TMT) Labeling—The analysis was 

performed with a previously optimized protocol (Bai et al., 2017; Pagala et al., 2015). For 

whole proteome and phosphoproteome profiling, quantified protein samples (~1 mg in the 

lysis buffer with 8 M urea) for each TMT channel were proteolyzed with Lys-C (Wako, 

1:100 w/w) at 21 °C for 2 h, diluted by 4-fold to reduce urea to 2 M for the addition of 

trypsin (Promega, 1:50 w/w) to continue the digestion at 21 °C overnight. The insoluble 

debris was kept in the lysates for the recovery of insoluble proteins. The digestion was 

terminated by the addition of 1% trifluoroacetic acid. After centrifugation, the supernatant 

was desalted with the Sep-Pak C18 cartridge (Waters), and then dried by Speedvac. Each 

sample was resuspended in 50 mM HEPES (pH 8.5) for TMT labeling, and then mixed 

equally, followed by desalting for the subsequent fractionation. For whole proteome analysis 

alone, 0.1 mg protein per sample was used.

Extensive Two Dimensional Liquid Chromatography-Tandem Mass 
Spectrometry (LC/LC-MS/MS)—The TMT labeled samples were fractionated by offline 

basic pH reverse phase LC, and each of these fractions was analyzed by the acidic pH 

reverse phase LC-MS/MS (Wang et al., 2015; Xu et al., 2009). Considering that unmodified 

peptides have different elution profiles from phosphopeptides, we performed two offline LC 

runs: 5% of the sample for whole proteome (2-3 hr gradient, 40-120 concatenated fractions) 

and 95% for phosphoproteome (~1 hr gradient, 40-60 fractions) on an XBridge C18 column 

(3.5 μm particle size, 4.6 mm x 25 cm, Waters; buffer A: 10 mM ammonium formate, pH 

8.0; buffer B: 95% acetonitrile, 10 mM ammonium formate, pH 8.0) (Bai et al., 2017).
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In the acidic pH LC-MS/MS analysis, each fraction was run sequentially on a column (75 

μm x 20-40 cm for the whole proteome, 50 μm x ~30 cm for phosphoproteome, 1.9 μm C18 

resin from Dr. Maisch GmbH, 65 °C to reduce backpressure) interfaced with an Q Exactive 

HF Orbitrap or Fusion MS (Thermo Fisher). Peptides were eluted by a 2-3 hr gradient 

(buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 65% acetonitrile). MS 

settings included the MS1 scan (410-1600 m/z, 60,000 or 120,000 resolution, 1 x 106 AGC 

and 50 ms maximal ion time) and 20 data-dependent MS2 scans (fixed first mass of 120 m/z, 

60,000 resolution, 1 x 105 AGC, 100-150 ms maximal ion time, HCD, 35-38% normalized 

collision energy, ~1.0 m/z isolation window with 0.3 m/z offset, and ~15 s dynamic 

exclusion). For the phosphoproteome analysis, ~1.5 m/z isolation window was used to 

improve sensitivity, with 31% stepped normalized collision energy.

Phosphopeptide Enrichment—The analysis was carried out by TiO2 beads (GL 

sciences) as previously reported (Tan et al., 2015). The offline LC fractionated peptides 

(~0.15 mg in each fraction) were dried and redissolved in the binding buffer (65% 

acetonitrile, 2% TFA, and 1 mM KH2PO4). TiO2 beads (0.6 mg) were washed twice with 

the washing buffer (65% acetonitrile, 0.1% TFA), incubated with the peptide fraction at 21 

°C for 20 min. The TiO2 beads were washed twice and packed into a C18 StageTip (Thermo 

Fisher), followed by the elution of phosphopeptide by the basic pH buffer (15% NH4OH, 

and 40% acetonitrile). The eluates were dried and dissolved in 5% formic acid for LC-

MS/MS analysis.

Identification of Proteins and Phosphopeptides by Database Search with 
JUMP Software—The computational processing of identification was performed with the 

JUMP search engine to improve the sensitivity and specificity (Wang et al., 2014). In 

general, commercially available software include two major categories of algorithms: 

pattern-based scoring (e.g. SEQUEST and MASCOT) and tag-based scoring (e.g. PEAKS). 

JUMP combines pattern scoring with de novo tag scoring, displaying significant 

improvement in peptide-spectrum match (PSM) scoring (Wang et al., 2014). In this study, 

JUMP was used to search MS/MS raw data against a composite target/decoy database (Peng 

et al., 2003) to evaluate FDR. All original target protein sequences were reversed to generate 

a decoy database that was concatenated to the target database. FDR in the target database 

was estimated by the number of decoy matches (nd) and the number of target matches (nt), 

according to the equation (FDR = nd/nt), assuming mismatches in the target database were 

the same as in the decoy database. The protein database was generated by combining 

downloaded Swiss-Prot, TrEMBL, and UCSC databases and removing redundancy (human: 

83,955 entries; mouse: 59,423 entries), followed by concatenation with a decoy database. 

Major parameters included precursor and product ion mass tolerance (± 15 ppm), full 

trypticity, static mass shift for the TMT tags (+229.16293) and carbamidomethyl 

modification of 57.02146 on cysteine, dynamic mass shift for Met oxidation (+15.99491) 

and Ser/Thr/Tyr phosphorylation (+79.96633), maximal missed cleavage (n = 2), and 

maximal modification sites (n = 3). Putative PSMs were filtered by mass accuracy and then 

grouped by precursor ion charge state and filtered by JUMP-based matching scores (Jscore 

and ΔJn) to reduce FDR below 1% for proteins during the whole proteome analysis or 1% 

for phosphopeptides during the phosphoproteome analysis. If one peptide could be 
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generated from multiple homologous proteins, based on the rule of parsimony, the peptide 

was assigned to the canonical protein form in the manually curated Swiss-Prot database. If 

no canonical form was defined, the peptide was assigned to the protein with the highest PSM 

number.

Phosphosite Localization by the JUMPl Program—To evaluate the confidence of 

assigned individual phosphosites in peptides, we generated the JUMPl program using the 

concept of the phosphoRS algorithm (Taus et al., 2011) to calculate phosphosite localization 

scores (Lscore, 0-100%) for each PSM. In addition to the PSM Lscores, all PSMs were 

aligned to protein sequences to generate protein Lscores for individual phosphosites. If 

multiple PSMs are identified for one specific phosphosite, the highest PSM Lscore is 

accepted as the protein Lscore. As random assignment in PSMs containing ambiguous 

phosphosites often leads to an excessively large number of protein phosphosites, we 

implemented numerous rules to alleviate this problem: (i) in one PSM, if phosphosites can 

be clearly distinguished by Lscores (e.g. the gap of the 1st and 2nd PSM Lscores > 10% for 

a singly phosphorylated peptide), the top site is selected. (ii) If not, we examined the 

phosphosites in the corresponding proteins to select the sites with the top protein Lscore. 

This allows the PSMs of low quality to borrow information derived from the PSMs of high 

quality. (iii) If neither PSM Lscores nor protein Lscores are distinguishable, a heuristic 

priority is given to phosphosites with the following order of occurrence: SP-motif, S, T and 

Y. If none of the rules above can sort putative phosphosites, we sort these PSMs by JUMP 

Jscores, and then preferentially select protein phosphosites that are previously matched by 

other PSMs of high Jscores.

Proteomics Coverage Analysis—To integrate proteomic and genomic data, we 

downloaded human brain transcriptome from The Human Protein Atlas (https://

www.proteinatlas.org/humanproteome/brain) (Uhlen et al., 2015), We extracted 14,548 

genes expressed in brain from all human protein-coding genes (n = 19,628 genes). To align 

human proteome with transcriptome, we used the UCSC annotation table (http://

hgdownload.cse.ucsc.edu/downloads.html#human) to align UniProt IDs to official gene 

symbols. If multiple UniProt IDs match to gene symbols, we choose the UniProt ID of the 

most abundant protein.

Mouse Brain RNA-seq Analysis—Total RNA was isolated from tissue with TRIzol 

(Invitrogen) and libraries were prepared using Stranded mRNA Library Prep Kit (Illumina): 

double stranded cDNA fragments were ligated with Illumina paired end adaptors, followed 

by size selection (~200 bp) and libraries were analyzed by Illumina HiSeq 2000 sequencing 

systems. Using BWA (0.5.10) aligner, reads were aligned to multiple databases, including 

the mouse reference genome (MGSCv37), transcriptome (RefSeq and AceView) and all 

possible combinations of RefSeq exons. Read count for each gene was obtained with HT-

seq, and the gene-level fragments per kilobase of transcript per million (FPKM) values were 

computed.

Immunostaining of Human and Mouse Brain Tissue—The staining was performed 

essentially as previously reported (Bai et al., 2013). Briefly, brain tissue samples were fixed 
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with 10% formalin, gradual dehydrated, and embedded in paraffin. 7 μm sections were 

deparaffinized with CitriSolv Hybrid (5 and 10 min) followed with rehydration with 

isopropanol (5 min x 3). Slides were then rinsed with running tap water (5 min) and distilled 

water (1 min). Antigen retrieval was performed with 10 mM citric buffer (pH 6.0) with 

boiled water bath (20 min) and cool down to 21°C. Slides were then rinsed with running tap 

water (5 min), and distilled water (1min), and were blocked the endogenous peroxidase 

activity by 1% H2O2 in PBS buffer (10 min). After rinsing by PBS, sections were then 

blocked with 10% donkey serum in PBS with 0.3% triton X-100 (PBST) for 30 min at 21 

°C. Primary antibodies were diluted with PBST plus 2% BSA and 0.2% skim milk (PBST-

B) as follow: MDK (1:100, R&D Systems, Cat# AF-258-PB), NTN1 (1:100, Abcam, 

ab126729), human SMOC1 (1:50, MilliporeSigma, Cat# SAB2701398), mouse SMOC1 

(1:50, Thermo Fisher Scientific, Cat#PA5-47754), human ICAM1(1:50, Sigma, Cat# 

HPA002126), mouse ICAM1(1:100, Abcam, Cat#ab179707), human C4B (1:50, Abcam, 

Cat# ab181241). Sections were then incubated with diluted primary antibody at 4 °C 

overnight followed with the biotinylated secondary antibody and ABC reaction according to 

the instruction of Vectastain ABC kit (Vector Laboratories). After washing with PBS, the 

staining was developed by 3,3-diaminobenzidine (DAB) solution (Vector Laboratories) or 

Cyanine 3 tyramide (PerkinElmer) for 2-10 min. For double-immunofluorescence staining 

with Aβ, sections were incubated with Aβ Ab (82E1,1:100, Immuno-Biological 

Laboratories Co., Cat# 10323) followed with secondary antibody conjugated with Alexa 

flour 647 (1:500, Jackson ImmunoResearch Laboratories) and DAPI (1 ng/ml, Thermo 

Fisher Scientific) for nuclei counter staining. For immunofluorescence staining in human 

brain sections, the endogenous fluorescence was eliminated by Sudan Black B staining 

(0.1% in 70% ethanol) for 2 min followed by PBS wash. The slides were mounted with 

Prolong gold antifade mountant. Fluorescence images were captured by Zeiss LSM 780 

confocal microscopy. For the bright field, slides were mounted by Cytoseal 60 (Electron 

Microscopy Science), and imaged by Zeiss Axioscan.Z1.

Aβ Affinity Binding Assay—Biotinylated Aβ40 peptide and scrambled control peptide 

(Anaspec), and recombinant proteins (R&D Systems, Novus Biologicals, and eBioscience) 

was purchased. Scrambled Aβ peptides were biotinylated using EZ-Link NHS-Biotin 

(Thermo Scientific) and tested by binding to streptavidin sepharose beads (GE Healthcare). 

The purity of these peptides and recombinant proteins were confirmed by silver-stained SDS 

gels. During the binding assay, streptavidin beads (1V = 1 μl bed volume) were used to bind 

Aβ and scrambled control (5 μg per peptide) followed by cleaning with 20V of wash buffer 

(0.3 x PBS and 0.01% triton X-100). Each peptide-coated column was loaded with one 

recombinant protein (0.1 μg/μl, ~1 μg protein), incubated on ice for 30 min, washed with 

20V wash buffer, then eluted with 30V of elution buffer (50 mM HEPES, 2% SDS, pH 8.5) 

at 95°C. The inputs (10-30 n g) and eluates (~20%) were analyzed by western blotting with 

the specific antibodies.

QUANTIFICATION AND STATISTICAL ANALYSIS

TMT-based Peptide/Protein Quantification by JUMP Software Suite—The 

analysis was performed in the following steps, as previously reported with modifications 

(Niu et al., 2017): (i) extracting TMT reporter ion intensities of each PSM; (ii) correcting the 
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raw intensities based on isotopic distribution of each labeling reagent (e.g. TMT126 

generates 91.8%, 7.9% and 0.3% of 126, 127, 128 m/z ions, respectively); (iii) excluding 

PSMs of very low intensities (e.g. minimum intensity of 1,000 and median intensity of 

5,000); (iv) removing sample loading bias by normalization with the trimmed median 

intensity of all PSMs; (v) calculating the mean-centered intensities across samples (e.g. 

relative intensities between each sample and the mean), (vi) summarizing protein or 

phosphopeptide relative intensities by averaging related PSMs; (vii) finally deriving protein 

or phosphopeptide absolute intensities by multiplying the relative intensities by the grand-

mean of three most highly abundant PSMs. In addition, we performed y1-ion based 

correction of TMT data.

Covariate Analysis for Correcting Cell Type Composition Bias—As the 

multivariate linear model is commonly used to correct for covariate effects of gene 

expression (Miller et al., 2013; Zhang et al., 2013), we used a similar method to correct 

individual protein abundance by the cell type composition, including neurons, astrocytes, 

microglia, and oligodendrocytes (Figure S8A). Cell type protein markers were selected 

based on published cell type resolved mouse proteome (Sharma et al., 2015) by the 

following criteria: i) considering mouse-human homologs; ii) selecting cell type enrichment 

> 5 fold (except 3 fold for oligodendrocytes due to limited markers) (Figure S8B). The 

change of each cell type was estimated as the median of protein abundance across the cell 

type markers (Figure S8C, left panel). Before cell type correction, the AD samples showed 

a slight increase of microglia and astrocyte, and a slight decrease of neuron and 

oligodendrocyte, consistent with the previous proteomics analysis (Seyfried et al., 2017). To 

correct for cell type effect, each protein (log-transformed TMT intensity) was fitted to a 

linear regression model (requiring ∣β∣ < 1) against the estimated cell type change, and then 

adjusted as the residuals plus the intercept (Figure S8C and D). The corrected proteomes 

were used for all downstream analyses (e.g., differential expression, network analysis etc.).

Estimation of Measurement Variations—The measurement variation was based on the 

replicated measurements of the samples. The relative expression (i.e. ratio) between 

replicates for each protein was calculated. The ratios of all proteins from the replicates were 

fitted with a Gaussian distribution to estimate expected mean and standard deviation.

Differential Expression Analysis of Proteins and Phosphopeptides and False 
Discovery Rate Evaluation—DE events were defined by identifying proteins/peptides 

with intergroup variance significantly larger than intragroup variance using ANOVA 

(analysis of variance) as described previously (Tan et al., 2017). Specifically, we applied a 

four-step procedure to define DE events as follows: (i) to calculate F statistic for each 

protein (defined as the ratio of intragroup variance relative to intergroup variance); (ii) to 

apply a threshold of p value (10%); (iii) to capture functionally meaningful changes, we 

further filtered the results by the magnitude of change (z score > 2) in one comparison 

between AD and other groups and manually examined all proteins, accepting the final list of 

DE proteins; (iv) to estimate the final FDR of the accepted DE proteins (p < 10% plus z 

score > 2), we performed permutation analysis (n = 1,000 permutations) following a 
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reported procedure (Xie et al., 2005) and found that the estimated FDR below 20%. In 

addition, DE phosphopeptides were identified by the same method.

Pathway Enrichment by Gene Ontology, KEGG and Hallmark Databases—
Pathway enrichment analysis was carried out to infer functional groups of proteins that were 

enriched in a given dataset. The analysis was performed using Fisher’s exact test (p value) 

with the BH correction for multiple testing (BH FDR). Enriched pathways with FDR < 20% 

or lower were considered statistically significant.

Principal Component Analysis—Principal component analysis (PCA) was used to 

visualize the differences among human disease groups, mouse models, and two 

corresponding wild-type controls, as well as human-mouse cross-species comparisons. 

Relative expression of all proteins was used as features of PCA. The pairwise Euclidean 

distance between features was calculated. PCA was performed using the package prcomp, an 

R statistical analysis package (version 3.4.0) (Ihaka and Gentleman, 1996).

Hierarchical Clustering—Hierarchical clustering of differentially expressed (DE) 

proteins and phosphopeptides was performed to determine the differences among disease 

groups. Hierarchical clustering was carried out using the heatmap.2 function in R statistical 

analysis package (version 3.4.0) (Ihaka and Gentleman, 1996). The clustering for heatmap.2 

was obtained with Ward's algorithm using Euclidean distance. Disease groups were clustered 

and visualized with heat-maps based on the relative expression profiles.

Weighted Gene Correlation Network Analysis (WGCNA)—The analysis was carried 

out with the WGCNA R package (Langfelder and Horvath, 2008). To define whole proteome 

clusters (i.e. WPCs), only the DE proteins were considered. Pearson correlation matrix (with 

direction, i.e. for building signed correlation network) was calculated using the disease 

samples (i.e. LPC, HPC, MCI, and AD), and an adjacency matrix was calculated by raising 

the correlation matrix to a power of 16 using the scale-free topology criterion (Zhang and 

Horvath, 2005) with modifications. Correlation clusters were defined by hybrid dynamic 

tree-cutting method (Langfelder and Horvath, 2008) with the minimum height for merging 

modules at 0.2 and manually merged if necessary. For each cluster, a consensus trend was 

calculated based on the first principal component (i.e. eigengene). Proteins were assigned to 

the most correlated cluster (i.e. WPC) with a cutoff of Pearson correlation coefficient (R) at 

least 0.7. Phosphoproteome clusters (PPCs) were also defined by the same procedure.

Protein-Protein Interaction (PPI) Network Analysis—Proteins in each WPC were 

superimposed onto a composite PPI database by combining STRING (v10) (Szklarczyk et 

al., 2015), BioPlex (Huttlin et al., 2017), and InWeb_IM (Li et al., 2017). The BioPlex 

database was developed by the method of affinity purification and mass spectrometry, 

whereas the STRING and InWeb contain information from various sources. Due to this 

heterogeneity of PPI interactions, the STRING and InWeb databases were further filtered by 

the edge score to ensure high quality, with the following rules: (i) only edges with evidence 

of physical interactions (e.g. through co-IP or yeast two-hybrid) were considered; (ii) edges 

of high confidence, as filtered by the edge score, with the cutoff determined by best fitting 

the log-log degree distribution using the scale free criteria (Barabasi and Oltvai, 2004). The 
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finally accepted STRING and InWeb databases were combined with BioPlex to construct a 

composite PPI database, which includes 18,515 proteins and 469,993 PPI connections. 

Modules in each protein cluster were defined by a two-step procedure: (i) only retaining PPI 

edges if both nodes (i.e. the two connected proteins) from proteins in the same cluster; (ii) 

calculating a topologically overlapping matrix (Ravasz et al., 2002) for the PPI network, and 

modularizing such a network into individual modules by the hybrid dynamic tree-cutting 

method (Langfelder and Horvath, 2008). Modules were annotated using three pathway 

databases, including Gene Ontology (GO), KEGG and Hallmark by Fisher’s exact test, and 

visualized by Cytoscape (Shannon et al., 2003).

Multi-omics-based Prioritization of Genes/Proteins and Pathways—To integrate 

multiple types of datasets for prioritizing genes/proteins in AD, we implemented a gene/

protein ranking framework based on order statistics (Aerts et al., 2006; Zhang et al., 2012), 

which combined N different sets of protein/gene rankings to output one protein/gene 

ranking. A total of 7 individual datasets of protein/gene ranking were considered for this 

analysis:

1. Protein dysregulation in MCI, ranked by the absolute value of log2(MCI/LPC)

2. Protein dysregulation in AD, ranked by the absolute value of log2(AD/LPC)

3. Phosphoprotein dysregulation in AD, ranked by the absolute value of log2(AD/

LPC)

4. Insoluble protein dysregulation in AD, ranked by p values of AD/control (Bai et 

al., 2013)

5. Risk loci identified by GWAS, based on a meta-analysis of 74,046 individuals 

provided by The International Genomics of Alzheimer's Project (Lambert et al., 

2013), and summarized into gene level using MAGMA (Katsouras et al., 2015). 

This GWAS data was directly obtained from a previous paper (Seyfried et al., 

2017), in which genes were sorted by p values.

6. Transcriptome data from a previously reported dataset from hundreds of human 

cases (Allen et al., 2016).

7. Interaction strength or closeness (defined by network distance in the PPI 

network) to known AD genes: 3 causal genes (APP, PSEN1/2) plus 3 risk genes 

(APOE, TREM2, UNC5C) (Scheltens et al., 2016): the shortest paths between 

each protein/gene and any AD proteins/genes were computed to obtain the 

minimum distance and the most strongly connected AD protein/gene.

The rank of protein/gene was normalized by the total number of genes/proteins in the 

dataset, and only protein/genes with at least four data sources were used. Then, the 

integrative protein ranking was generated by the framework of order statistics (Wilks, 1948). 

For each protein/gene, the Q statistic was theoretically based on

Q r1, r2, …, rN = N !∫
0

r1∫s1

r2
…∫sN − 1

rN
dsNdsN − 1…ds1 (1)
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Where ri is the rank of each data source i, N is the total number of data sources. In practice, 

the Q value was calculated using a more efficient algorithm (Aerts et al., 2006):

Q r1, r2, …, rN = N ! V N (2)

V k = ∑i = 1
k − 1

i − 1V k − i
i! rN − k + 1

i (3)

To estimate empirical p values, we used a permutation analysis (Aerts et al., 2006; Zhang et 

al., 2012), in which the ranks of each data source were randomly permutated (n = 1,000 

times of permutations) to derive null Q values. Empirical p values were derived from the 

estimated null distribution, followed by multiple testing correction using the BH method 

(Benjamini and Y., 1995).

To summarize the integrative protein/gene ranking into pathway ranking, we identified 

dysregulated pathways by GSEA (Subramanian et al., 2005). The p value and FDR were 

derived by permuting gene sets (n = 1,000 permutations) in three pathway databases: GO, 

KEGG, and Hallmark (all downloaded from the Molecular Signature Database) 

(Subramanian et al., 2005). Pathways enriched with FDR < 20% were shown.

DATA AND CODE AVAILABILITY

Human proteomics data used in this study are available via the AD Knowledge Portal 

(https://adknowledgeportal.synapse.org). Additional information can be found via the 

following links: the Mount Sinai Brain Bank study (https://adknowledgeportal.synapse.org/

Explore/Studies?Study=syn3159438) and the StJude_Banner study (https://

adknowledgeportal.synapse.org/Explore/Studies?Study=syn21592732). In addition, mouse 

and pooled AD proteomics data are available in the PRIDE database (http://

www.proteomexchange.org) with accession numbers of PXD007974 (mouse), PXD018590 

(mouse), and PXD007985 (human). An interactive website (https://penglab.shinyapps.io/

ADprofile) was generated to search for individual protein in the AD pooled dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The results published here are available via the AD Knowledge Portal (https://adknowledgeportal.synapse.org). The 
AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the Accelerating Medicines 
Partnership (AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported programs 
to enable open-science practices and accelerate translational learning. Data are available for general research use 
according to the following requirements for data access and data attribution (https://adknowledgeportal.synapse.org/
DataAccess/Instructions).

Transcriptome data were provided by the following source: the Mayo Clinic Alzheimer’s Disease Genetic Studies, 
led by Dr. Nilufer Taner and Dr. Steven G. Younkin, Mayo Clinic, Jacksonville, FL using samples from the Mayo 
Clinic Study of Aging, the Mayo Clinic Alzheimer’s Disease Research Center, and the Mayo Clinic Brain Bank. 
Data collection was supported through funding by NIA grants P50 AG016574, R01 AG032990, U01 AG046139, 
R01 AG018023, U01 AG006576, U01 AG006786, R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant 
R01 NS080820, CurePSP Foundation, and support from Mayo Foundation. Study data also includes samples 
collected through the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, 
Arizona, led by Dr. Thomas G. Beach with support shown above.

Abbreviations:

AD Alzheimer’s disease

MS mass spectrometry

TMT tandem mass tags
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Highlights

• Deep profiling of proteome and phosphoproteome in AD progression

• Validation of protein alterations in two independent AD cohorts

• Identification of Aβ-induced protein changes in AD and the 5xFAD mouse 

model

• Prioritization of proteins and pathways in AD by multi-omics integration
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Figure 1. Whole proteome profiling of AD progression reveals disease stage-dependent proteins/
pathways.
(A) Strategy for multilayer profiling of proteome and phosphoproteome in AD cases and the 

5xFAD mouse model, and multi-omics data integration. The y-axis shows the relative 

pathology scores for cognition, plaque, and tangle.

(B) Summary of temporal profiling of five groups of human brain tissue, with each group 

containing two independent pools. Each pool contained samples from 9 cases.

(C) MS data showing the Aβ level in each group. The relative TMT intensities of the Aβ 
peptide are shown.

(D) Clustering analysis of the proteomics dataset based on the changed proteins. The TMT 

intensities (log2 Z-score transformed) of each protein (rows) across five disease groups 

(columns) are indicated in a colored scale.

(E) Bioinformatics pipeline for identifying DE proteins followed by clustering and module 

analyses.
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(F) Three major clusters (WPC1-3) of DE proteins defined by the WGCNA program. Each 

line represent one protein. The intensity of each protein is log2 Z-score transformed (mean-

centered and scaled by standard deviation). The line color indicates the degree of pattern 

correlation between each protein and eigenvalue of the cluster. Proteins discussed in the text 

are shown.

(G) Enriched pathways in the WPC proteins by Fisher’s Exact Test. Significantly enriched 

pathways (FDR < 20%) are shown.

(H) Detected PPI modules in WPCs.

(I) Validation of selected DE proteins by western blotting with the loading control (tubulin).

See also Figure S1-S3 and Data S1-S3.
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Figure 2. Validation of AD-related proteins by profiling individual human samples in both 
Banner Sun and Mount Sinai cohorts
(A) Analysis of Banner Sun individual cohort. A total of 49 Banner Sun individual cases 

were measured with TMT-LC/LC-MS/MS in 5 batches.

(B) Analysis of 80 human cases from Mount Sinai cohort. After removing outliers, 62 cases 

(23 controls and 39 AD cases) were analyzed.

(C) Bioinformatics pipeline for validating DE proteins by individual cases from two cohorts.

(D) Validated DE proteins in three datasets (Banner Sun pooled samples, Banner Sun 

individual samples, and Mount Sinai individual samples). Each protein is represented by a 

colored box after log2 Z-score conversion. The heat map on the far right indicates consistent 

(up or down) or inconsistent changes between proteome and transcriptome.

(E) Analysis of CSF samples from Banner Sun cohort. After removing outliers, 5 controls 

and 8 AD cases were analyzed.

(F) Consistent protein changes of 8 proteins in AD brain tissue and CSF.

See also Figure S4 and Data S4.
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Figure 3. Profiling of protein phosphorylation events in AD.
(A) Measurements of Tau phosphorylation by MS. The relative TMT intensities of a 

phosphor-Tau peptide in five disease groups are shown.

(B) Distribution of phospho-Ser/Thr/Tyr in the identified phosphosites.

(C) Clustering analysis of the altered phosphopeptides in human samples. The TMT 

intensities (log2 Z-score transformed) of phosphopeptides (rows) across five disease groups 

(columns) are indicated in a colored scale.

(D) Bioinformatics pipeline for identifying DE phosphopeptides, clustering analysis, and 

kinase activity analysis.

(E) Four major phosphoproteome clusters (PPC1-4) of DE phosphopeptides by WGCNA. 

Each line represents one phosphopeptide. The line color indicates the degree of pattern 

correlation between each phosphopeptide and eigenvalue of the cluster. Phosphoproteins 

discussed in the text are shown.

(F) Enriched pathways among the PPC proteins by Fisher’s Exact Test. Significantly 

enriched pathways (FDR < 20%) are shown.
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(G) Overlap of DE proteome and phosphoproteome.

(H) Kinase activities computed from related substrates by the IKAP algorithm, with the 

absolute abundance of kinase family members shown in a black to white gradient.

(I-J) Substrate phosphorylation levels of specific kinases in four groups of AD samples. The 

levels of each phosphosite in the four disease groups (LPC, HPC, MCI and AD) are 

represented by boxes filled with red gradients. FC: fold change.

(K) Potential activation of the MAPK pathway based on MS measurements of the whole 

proteome and phosphoproteome. The levels of each protein and its phosphosites in the four 

groups of human samples (LPC, HPC, MCI and AD) are represented by boxes filled with 

red and blue gradients, respectively. The missing values are shown in white boxes.

See also Figure S5, Data S2 and Data S5.
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Figure 4. Aβ-correlated proteins in AD and the 5xFAD mouse model.
(A) Measurement of Aβ by MS based on its tryptic peptide (red).

(B) Correlation analysis of Aβ and DE proteins in 121 human cases. The degree of 

correlation was assessed by Pearson correlation coefficients and corresponding p values. 

Proteins were ranked by correlation coefficient values (p < 0.001).

(C) An example protein correlates well with Aβ. The MS measured intensities in samples 

were Z-transformed (i.e. mean-centered and scaled by standard deviation).

(D) Analysis of whole proteome in 5xFAD (3, 6, 12 months of age).

(E) human Aβ-correlated proteins validated in 5xFAD, represented by colored boxes after Z 

score conversion. The heat map on the far right indicates consistent and inconsistent changes 

between proteome and transcriptome in the mice.

See also Data S6.
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Figure 5. Human-mouse proteomic comparison.
(A) Whole proteome comparison between human cases and 5xFAD. The human HPC, MCI, 

and AD data were normalized by LPC, while the 5xFAD results were normalized by WT. 

Each dot represents one protein, and the color shows the dot density. Proteins with consistent 

changes are shown in the up-right and down-left corners separated by red cutoff lines.

(B) Examples of enriched pathways for human-specific DE proteins. The value of fold-

change is indicated by a colored scale.

(C) Examples of activated pathways for 5xFAD-specific DE proteins.

See also Data S6.
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Figure 6. Prioritization of proteins/genes in AD by multi-omics.
(A) Strategy for ranking proteins and pathways. The proteins were first sorted by integrated 

order statistics, and were then used for pathway ranking by gene set enrichment analysis.

(B) The ranking list by combining 7 datasets. In the interactome, each protein was scored by 

its distance to the proteins encoded by known AD genes (APP, PSEN1/2, APOE, TREM2, 

and UNC5C). The integrative ranks of top 40 proteins are shown by boxes of two color 

gradient, while missing values are indicated by white boxes.

(C) Pathway enrichment by GSEA, categorized into four groups. The bar-code plot indicates 

the position of the proteins on the sorted rank.

(D) Protein enrichment by subcellular localization.

See also Data S7.
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Figure 7. Characterization of selected protein targets in AD and 5xFAD.
(A) Immunohistochemistry in human brain sections of control and AD cases (frontal cortex). 

Immunoreactivity was developed with DAB chromogen (brown), with counterstaining of 

hematoxylin for nuclei (blue). Scale bar: 50 μm.

(B) Immunofluorescence labeling in AD brain sections of the selected proteins (red), Aβ 
(green) and nuclei (blue by DAPI). Scale bar: 50 μm.

(C) Immunohistochemistry of the selected proteins in WT and 5xFAD mice (12 month old). 

Scale bar = 50 μm.

(D) Immunofluorescence labeling of selected proteins (red), Aβ (green) and nuclei (blue by 

DAPI) in 5xFAD cortex (12 month old). Scale bar: 50 μm.

(E) Western blotting in WT and 5xFAD samples (12 month old, hippocampus).

(F) Silver staining of Aβ40 and scramble (Ctl) peptides and human recombinant proteins.

(G) Affinity binding assay between Aβ40 and the recombinant proteins. Aβ40 and scramble 

(Ctl) peptides were biotinylated and bound to streptavidin beads packed in mini-columns. 
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Individual recombinant proteins were loaded on the columns, followed by wash and elution. 

The input and eluate were analyzed by western blotting.

See also Figure S6.
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Table 1.

Characteristics of human subjects used in this study.

Banner Sun pooled samples (n = 90) Banner Sun individual samples (n = 49)
Mount Sinai 
individual

samples (n = 62)

Characteristic LPC
(n = 18)

HPC
(n = 18)

MCI
(n = 18)

AD
(n = 18)

PSP
(n = 18)

LPC
(n = 12)

HPC
(n = 6)

MCI
(n = 6)

AD
(n = 15)

PSP
(n = 10)

Control
(n = 23)

AD
(n = 39)

Age (yr)

 Mean ± SD 83.3±8.0 87.8±5.1 86.4±6.4 75.7±8.7 84.8±11.4 82.9±7.4 87.5±2.7 84.0±8.2 78.0±8.6 83.1±9.5 81±10.4 84±10.1

 Range 69–95 78–97 74–98 60–87 59–99 73–95 84–91 74–93 60–87 64–94 61-98 62-103

Gender

 Male 14 7 9 5 11 9 1 3 6 5 12 12

 Female 4 11 9 13 7 3 5 3 9 5 11 27

PMI (hr)

 Mean ± SD 2.8±0.6 2.9±0.8 3.1±0.9 3.3±1.0 2.9±0.6 2.6±0.5 3.0±1.1 3.4±1.0 3.1±0.9 2.6±0.2 9.5±6.3 6.4±4.4

 Range 1.5–4.1 1.5–4.3 2.0–5.0 2.0–5.3 2.3–4.3 1.5–3.3 1.5–4.3 2.5–5.0 2.0–5.3 2.3–2.8 1.4-20.3 2.0-20.7

Braak stage

 Mean ± SD 2.2±0.8 3.5±0.5 3.6±0.9 5.6±0.5 3.4±1.1 2.0±0.9 3.5±0.5 3.7±0.8 5.5±0.5 3.7±1.3 1.9±0.8 5.4±1.2

 Range 1–3 3–4 2–6 5–6 2–5 1–3 3–4 2–4 5–6 2–5 0-3 2-6

Neuron. Author manuscript; available in PMC 2021 March 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bai et al. Page 40

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Aβ (6E10) BioLegend Cat# 803001, RRID:AB_2564653

Anti-Aβ (82E1) Immuno-biological
laboratories Cat#010323, RRID:AB_1540460

Anti-C4B Abcam Cat# ab181241, RRID:AB_2814770

Anti-CEP63 Abcam Cat# ab175090

Anti-ICAM1 Cell Signaling Cat# 4915, RRID:AB_2280018

Anti-ICAM1 MilliporeSigma Cat#HPA002126, RRID:AB_1078470

Anti-ICAM1 Abcam Cat#Ab179707, RRID:AB_2814769

Anti-MDK Thermo Fisher Scientific Cat# PA5-28823, RRID:AB_2546299

Anti-MDK R&D Systems Cat# AF-258-PB, RRID:AB_2143400

Anti-MDK Abcam Cat# Ab45151, RRID:AB_2274158

Anti-NTN1 MilliporeSigma Cat# MABN1154

Anti-NTN1 Abcam Cat# ab126729, RRID:AB_11131145

Anti-NeuN MilliporeSigma Cat# MAB377, RRID:AB_2298772

Anti-OLFML3 Thermo Fisher Scientific Cat# PA5-49313, RRID:AB_2634767

Anti-PCSK1 MilliporeSigma Cat#WH0005122M2,
RRID:AB_1843131

Anti-phospho-Tau (AT8) Thermo Fisher Scientific Cat# MN1020B, RRID:AB_223648

Anti-RGS4 Abcam Cat# ab9964, RRID:AB_296731

Anti-SMOC1 MilliporeSigma Cat# SAB2701398, RRID:AB_2814768

Anti-SMOC1 Thermo Fisher Scientific Cat# PA5-47754, RRID:AB_2606919

Anti-SQSTM1 Cell Signaling Cat# 13121, RRID:AB_2750574

Anti-VGF Abcam Cat# ab69989, RRID:AB_1271455

Anti-β tubulin Developmental Studies Hybridoma 
Bank Cat# E7, RRID:AB_528499

 

Biological Samples

Human brain and CSF samples of 
postmortem Alzheimer’s disease and 
other controls (LPC, HPC, MCI, AD, 
and PSP)

Brain and Body
Donation Program at Banner Sun 
Health Research Institute

https://www.bannerhealth.com

Human brain samples of postmortem 
Alzheimer’s disease and controls

The Mount Sinai/JJ Peters VA 
Medical Center Brain Bank 
(MSBB–Mount Sinai
NIH Neurobiobank)

https://icahn.mssm.edu/research/nih-brain-tissue-repository

 

Chemicals, Peptides, and Recombinant Proteins

Aβ40 peptide Anaspec Cat# AS-23512

Scrambled peptides Anaspec Cat# AS-25383

MDK protein R&D Systems Cat# 258-MD-050
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REAGENT or RESOURCE SOURCE IDENTIFIER

NTN1 protein R&D Systems Cat# 6419N1025

SMOC1 protein Novus Biologicals, LLC Cat# 6074-SM-050

ICAM1 protein eBioscience Cat# BMS313

TO-PRO-3 Iodide (642/661) Thermo Fisher Scientific Cat# T3605

TMT reagents Thermo Fisher Scientific Cat# 90110

 

Deposited Data

Interactive proteome data This paper https://penglab.shinyapps.io/ADprofile/

Proteomics data of 5xFAD mice and 
AD pooled samples in the Banner Sun 
cohort

This paper
PPRIDE database (www.proteomexchange.org): with 
accession numbers of PXD007974 (mouse), PXD018590 
(mouse), and PXD007985 (human).

Proteomics data of AD individual cases 
in the Banner Sun and Mount Sinai 
cohorts

This paper

The AD Knowledge Portal (https://
adknowledgeportal.synapse.org):
https://doi.org/10.7303/syn21638690
https://doi.org/10.7303/syn21347564

Human brain transcriptome Allen et al., 2016 https://doi.org/10.7303/syn3163039

5xFAD mouse brain transcriptome This paper (https://www.ncbi.nlm.nih.gov/geo/)
GSE140286

 

Experimental Models: Organisms/Strains

Mouse: 5xFAD Tg6799 The Jackson Laboratory Cat# 34848-JAX

Mouse: C57BL/6J The Jackson Laboratory Cat# 000664

 

Software and Algorithms

JUMP Wang et al., 2014 http://www.stjuderesearch.org/site/lab/peng

WGCNA Langfelder et al., 2008 https://labs.genetics.ucla.edu/horvath/
CoexpressionNetwork/Rpackages/WGCNA/

R R Foundation for Statistical 
Computing https://www.r-project.org/

javaGSEA Subramanian et al., 2005 http://software.broadinstitute.org/gsea/index.jsp

IKAP Mischnik et al., 2016 https://github.com/marcel-mischnik/IKAP.git
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