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Abstract

The evolving membrane technology integrated with machine learning (ML) algorithm can
significantly advance the novel membrane material design and fabrication. Although several
studies have reported ML-based assistance in membrane development, none of them have
offered a complete analysis of existing ML-assisted membrane fabrication methods from material
design perspective. A two-way information gateway is therefore necessary to achieve the desired
objective, whereby experienced researchers and data scientists from both sides need to provide
valuable insights into novel membrane development process. In this work, we offer a midway
platform by providing an overall view and scopes of ML use in membrane science. This is
accomplished by analyzing reported ML-assisted membrane fabrications via lensing through the
overall ML development. This work culminates in identifying four crucial factors affecting ML-
assisted membrane development: data mining, material functional description, selection of ML
models, and model interpretation. A future direction is proposed by making specific ML models
and descriptors suggestions, in addition to molecular similarity analysis technique and ML based
Image processing. We believe the proposed approaches and analysis through our identified lens

will prove crucial for the future of ML-assisted membrane material design and development.

ICorresponding author: ali.alshami@und.edu, Tel: +1 701 777 6838



1. Introduction

We cannot think of a sustainable world with our purification, treatment, and separation needs
are maintained by environmentally harmful and energy-intensive processes. Large distillation
columns, scrubbers, and chemical treatments still dictate the separation process industries.
Membrane-based technologies offer a simple and elegant solution; however, a relatively slow
transition is observed due primarily to a lack of broader applicability. This prospective technology
has significantly impacted separation industries, especially Reverse Osmosis (RO) membranes,
which are a mature technology and very attractive for water desalination and purification
industries (Figure 1) [1]-[3]. Additionally, commercial gas separating membranes were

developed over four decades ago.
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Figure 1: Global membrane separation market: by application (left); by technology (right) with
projected compound annual growth rate or CAGR [1][2][3]

However, a more comprehensive and reliable application of this sustainable technology has not
been achieved yet. It has been attributed mostly to a lack of significant advancements in
membrane material development [4]-[6]. Most membrane materials fail to adapt and perform
economically in diverse process conditions. Common failures occur due to long-term exposure to
high pressure and temperature. As a result, the demand is being met by using harmful

unsustainable technologies. For instance, there is an increased interest in post-combustion CO;
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capture, which uses harmful amine scrubbing. Membrane technology can offer a better,
sustainable solution, mitigating the adverse effects. However, implementation of membrane
technology in such fields requires discovery of novel materials capable of withstanding process
conditions while exhibiting the desired transport properties. An extensive study in materials
behavior and experimentation is necessary to meet these material innovation demands. It is
often argued that unprecedented approaches need to be taken in developing high-performance
membrane materials if we want to meet the increasing demands of separation industries[7]-

[9][10].

Membrane material development has largely been an “Edisonian” process, sometimes taking
decades to create a new efficient membrane material. Polymers are considered sustainable form
ofmembrane materials. Therefore, membranes have attracted increased attention since
inception. Polymeric membranes have been used in microfiltration (MF), ultrafiltration (UF), and
nanofiltration (NF) processes. Polymer membranes are easy to develop, fabricate, and control,
providing a sustainable and scalable platform for chemical separations. However, it remains
subject to permeability-selectivity trade-offs. In addition, most used polymer membranes seldom
show resistance to high temperature and pressure. Nonetheless, the polymer fabrication process
has various optimizable fabrication parameters which control the flow transport [11][12]. The
fabrication process is time-consuming with exhaustive trial and error-based progression. The
advent of mixed-matrix membranes also introduces crucial decision points on filler and matrix
material choice [13]. These parameters add variability to the membrane material selection and

fabrication process.

The existing polymer database constitutes an ample sample space varying in mechanical and
chemical resistance. The published literature on various membrane materials has also added
transport properties to the database. However, this inherent high dimensionality of the polymer
space makes discovery and fabrication a highly arduous task. The trial and error approach of
novel membrane fabrication has historically been guided by subjective experience and intuition;
henceforth, membrane technology for versatile separation operations has evolved comparatively
sluggishly [14]. These traditional techniques have become ineffective for rapid high-performance

membrane design, and there is an increasing drive for screening novel high-performance
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materials as well as discovering new ones. Current efforts can often be described as tuning
responsible chemical groups for efficiently transporting the desired chemical species instead of

incorporating broader perspectives when designing novel membrane materials.

The continual shift toward data-
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Figure 2: Advances of statistical techniques has led to the

modern data collection techniques introduction of new paradigm for novel material

generate a large amount of data, development.

making data-centric approaches a
new paradigm for the discovery, rational design, and synthesis guide for novel high-performance
materials (Figure 2) [17]. ML and DL models have been the flag-bearing methods to assist in the

synthesis of stable inorganic materials based on a theoretically generated database [18]. ML

4



models have also successfully predicted polymer properties, such as glass transition temperature
and dielectric constants [19]-[21]. Metal Organic Frameworks (MOF) with their vast array of
potential combinations between metal nodes and organic ligands presents a significant challenge
for predicting the structural properties and synthesizing novel MOFs. However, ML has
demonstrated its utility in identifying the relationship between material properties and their
structures. This has been exemplified in the study of metal-organic frameworks (MOFs) with
electrically conductive structures[23],[24]. By leveraging ML, large datasets can be analyzed more
efficiently, allowing researchers to uncover important patterns and features that may not be
immediately apparent using traditional approaches. Recently, ML based predictions are aided by
theoretical quantum chemical properties from Quantum MOF (QMOF) Database and resulted in
a more accurate structural property predictions[24], [25]. Deep learning (DL), a recently
popularized umbrella of algorithms is a subset of machine learning that uses artificial neural
networks with multiple layers to learn and make predictions from complex data. Combining DL
based Recurrent neural network (RNN) with Monte Carlo tree search, Zhang et al. introduced a
modified approach to design novel MOFs with high density of adsorption sites for methane-

storage and carbon-capture applications[26].

Dependence of large dataset for higher accuracy is often considered as a major limiting factor in
ML implementation. However, synthetic data generation or simulated dataset could be a viable
option for potential screening and property predictions as it is demonstrated by many
researchers in MOF design[27]. Li et al. investigated the combine approach with large-scale
computational screening and ML to accelerate MOF material screening[28]. Their study revealed
the potential for ML study in performance metrics and their characteristic descriptors. Such
explorations into the virtual MOF space ushers great potential in membrane applications such as
gas storage, separation, catalysis, and sensing. Furthermore, with porous material descriptor i.e.
a more detailed material description has led to the development of supervised ML algorithm.
Which has led to the identification of 481 never investigated porous MOF structures [29].
However, screening large databases of MOFs to find well-performing materials is very time-
consuming; hence ML techniques were used in recent years to predict novel MOFs design

through a process call inverse design[30][31].



ML models for membrane science have been historically regarded as scientifically futile since
they did not reveal much about the underlying physical phenomena [32]. A mathematical model's
primary purpose in membrane science is to offer a description to the separation process using
well-known analytical equations that represent and explain the physical process. In contrast, ML-
based models are not identical to statistical models, where the underlying algorithms and
governing equations do not directly reveal the physiochemical insights. However, ML models can
exploit inter-variable relationships and their weights for predictions, which can be interpreted as
a reliable prediction for material properties. Explored polymers as membrane materials create
significant transport data to train and validate ML algorithms for membrane research. The global
materials informatics initiative, including the “Materials Genome Initiative (USA)” [33], the
“Materials Research by Information Integration” (Japan) [34], and the “NOMAD Laboratory”
(EU)[35], have been assisting this data-centric research by providing a stable material database.
The new insights made possible by the reliable database and advancement of ML models that
can create the capability to achieve desired modeling goals. These tools are revolutionary in the
field of novel material design. Several ML models have successfully initiated the design assistance
of novel water and gas permeating membranes. In the breakthrough work, Barnett et al.
fabricated two gas separation membranes based on the results they obtained from the ML
algorithm [36]. For water purification, Gao et al. produced two polyimide nanofiltration
membranes based on their ML-assisted predictions [37]. In a theoretical study, Yang et al.
predicted more than 100 novel polymer constructs with superior performance for gas
separations[38]. These notable works along with others paved the way and warrant a formal
review of ML-assisted membrane design and fabrication methods. To the best of our knowledge,

no such effort has been made on this research topic.

Furthermore, integrated with ML, the evolving membrane field can significantly advance the
novel membrane material design process. ML models can be a crucial guiding tool for the next
generation of experimentalists. However, ML method development for membrane fabrication is
still currently in its infancy phase. A general guide on ML methods and development needs to be
introduced from membrane research’s perspective to accelerate this process. Moreover, a two-

way information gateway is necessary to achieve the desired objective. Experienced researchers



and data scientists from both sides need to provide valuable insights into novel membrane
development process, and for that a midway platform is necessary. Henceforth, this work aims
at creating a platform by providing a general picture and scopes of this field. As such, this paper
explores recent ML-assisted membrane fabrication activities by lensing through the overall ML
development process. In doing so, we also reviewed relevant works on ML assisted material
design and identified four crucial factors affecting ML-assisted membrane design and fabrication.
Additionally, we proposed a future research direction by making specific ML models and
descriptors suggestions. To further enrich the membrane database for ML exploration, molecular
similarity analysis technique and ML based Image processing is also offered. We believe the
proposed approaches along with the analysis on the recent progress of ML assisted membrane
design through our identified lens, could be crucial for designing and guiding the future of this

field.

2. Current progress in Machine Learning (ML)-assisted membrane
fabrication

ML-assisted membrane fabrication is a successor to the advances in polymer computational
chemistry and predictive ML algorithms. ML methods have been successfully used from predicted
glass transition temperatures [39][40][41] to photovoltaic properties [42][43] in polymer
materials. In membrane processing, ML based approaches have been successfully applied in
optimizing process parameters and performance evaluation [44][45][46][47][48][49] [50][51].
ML methods have been extensively utilized to decipher water quality[52], [53] and such attempts
could greatly benefit the water purification by membranes processes. Based on the water quality
data, Younes et al. employed two unsupervised ML model (Principal Component Analysis (PCA)
and Hierarchical Cluster Analysis (HCA) ) to optimize filter material selection[54]. With their
small dataset approach, their HCA analysis was limited to classification without revealing the
factors influencing this classification. However, their PCA provided a general view of correlation

and dissimilarity among the investigated seven membrane types and the six factors.
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Figure 3: Inverse Design can reduce novel membrane design time

design  new membrane with ML enabled approach.

materials. Proper screening
can accelerate the complex material discovery process by creating a faster feedback process that
allows for rapid material discovery cycle [55]. Conversely, ML-based novel material prediction
has also been accelerated significantly by inverse modeling techniques. Inverse prediction allows
the design of the desired material by identifying targeted functionalities [56], prompting
researchers to shift from screening to novel membrane material design (Figure 3). Inversely
membrane material design, which is free of the current trial-and-error approach, has been
initiated by employing various statistical optimization. This process of optimization for a target
performance can accelerate material design by reducing the number of experiments as
possible[47][48][59]. Robeson et al. were first to implement inverse design techniques for gas
membranes to establish a relationship between polymer chain units, subunits to gas permeation
[60]. However, their work could not take advantage of currently available statistical tools nor ML
algorithms and was limited to only identified relations. Decades later, Barnett et al. built on the
“group contribution approach” to devise the first ML algorithm for identifying conducive patterns
in gas separation membranes[36]. The authors screened and synthesized two novel polyamide
membranes that exceeded the so-called “upper bound” for CO,/CH4 separation performance. In
later works, Gao et al. utilized Bayesian Optimization(BO) driven inverse design frameworks [61]

to fabricate polyamide NF membranes for water filtration. Their tree based ML models deduce



relations with blocks of polymer structure (translated by functional description) known as
features, and membrane performance. To train their supervised ML models, they constructed
two datasets of total 567 polyamide based NF membranes from 218 published literatures. The
interpreted relations then used to construct a virtual reference which is then used to screen
potential monomers. They utilized Bayesian optimization (BO) for optimizing crucial fabrication
parameters, such as casting temperature, thickness, and density to optimize fabrication
conditions for the screened monomers as well as to produce membranes exceeding the upper
bounds. The optimization process of BO enables the efficient design and optimization of
membranes by exploring the parameter space to identify the optimal set of parameters that
maximize or minimize the desired properties. This approach can ultimately result in the
development of more efficient and cost-effective membranes suitable for diverse applications
through inverse designing approach. Their work resulted in eight polyamide membranes
exceeding the current performance limits in terms of higher water permeability and salt rejection
[37]. Their Optimization allowed them to surpass conventional screening and build novel designs

by optimizing precursor fabrication.

Mixed Matrix Membrane (MMM) development has yet to utilize the full ML capabilities, despite
its scopes and potential. Fabrication hurdles with dispersion as well as agglomeration tendencies
makes MMM development primarily an optimization process [62]. It can greatly benefit from the
existing optimization process algorithms from ML. In literature, Fetanat et al. used Artificial
Neural Networks (ANN) to predict and obtain insights into polymeric nanocomposite
ultrafiltration membrane performance [63]. The authors’ works included several fabrication
conditions as independent variables [64]. Yeo et al. employed gradient boosting tree (GBT) model
to gain insight of RO-MMM fabrication process[65]. Their result evaluated nanoparticles
performance in terms of loading rate, pore size and hydrophilicity. However, their work was
limited to performance insights rather than actual membrane design. In more recent work, Yang
et al. focused on gas membrane design, using two major ML algorithms (random forest (RF)
regression and deep neural networks (DNN)) and studying the two prominent descriptors of

choice: Chemical Descriptor and Morgan Fingerprint with Frequency (MFF)[38]. Gao et al. and



Yang et al.’s work used SHapley Additive exPlanations, or SHAP analysis, to integrate their ML

predictions into membrane design [38].

In the following sections, we delineate into four

identified crucial factors (Figure 4) in ML assisted novel 1. Data mining

membrane material design and fabrication. These l

factors are identified in coherence with ML assisted 2. Functional Description
of Membrane Material

general material design process as reported in published

literature. Under these factors, recent progress of l
. L. 3. Selection of Machine
membrane material design is also captured. Moreover, learning model
these factors outline the general development process l
of ML-based models.
4. Model interpretation

Figure 4: Four crucial factors
identified in this work for ML-based
novel material development.

2.1 Data mining
ML is a data-centric approach. Extensive data relating existing material properties to a particular

objective are analyzed to obtain a numerical prediction on novel designs. Therefore, data
selection in relation to the objective definition is crucial. The general argument is that quantity
will precede quality in all successful predictions. However, an effective model is generally built
using data representing the overall modeling goal with the best strategy for stratifying
information related to species transport. Moreover, a homogenous and consistent dataset with
no abrupt missing data is a major priority when designing novel high-performance membrane
materials. The literature has already identified that mining a consistent database often creates

the greatest hurdle, not a lack of ML algorithms [66]-[68].

Data variables for membrane material creation can take many forms. Therefore, mining a robust
and diverse data set is a significant challenge. In addition, a large data set must be

homogeneously distributed amongst the transport-defining parameters. Specific membrane
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properties mined from the literature have primarily focused on parameters such as permeability,
selectivity (gas separation), or salt rejection (Water purification)[36][37][38][69]. Adding to this,

Table 1 lists descriptions of the most commonly explored membrane fabrication databases.

Table 1: Major databases related to material properties and crucial species transport

Name Description Ref.
Membrane Society of Australasia Reported data on explored membrane [70]
materials
Polyinfo Database for polymer material design [71]
Materials Project Theoretically generated polymer [72]
properties
NIST Interatomic Potential Database for interatomic force fields or [73], [74]
Repository potentials
NIST Material Data Repository Data reported on experimental materials [75]
NIST Standard Reference Data General material property data [76]
PubChem Chemical entity database [77]
MatWeb Database for material properties [78]
NIMS Materials Database Database dedicated to the development of [79]
new materials and the selection of materials
Nanomaterial Registry Nanomaterial database [80]
Nanoporous Material Explorer A database of porous material properties [81]
CoRE MOF A database of metal-organic frameworks [82]

The first constructed membrane database included gas permeability for 149 polymer
membranes. Hasnaoui et al. created a database with N3, CO,, CH4 and O permeability to predict
permeability in gas membranes [69]. However, this small amount of data made it unreliable for
reverse predictions such as obtaining novel polymer backbone designs with superior gas
transport properties. Most work on ML-based membrane performance predictions uses
synthetic data since these data sets are large and easy to acquire. In their pioneering work,
Barnett et al. departed from the trend of focusing only on the theoretically generated data by
including experimental data sets [36]. The authors used a novel approach to mine data from the
literature. They mined the permeation data for 500 to 1,000 polymers from literature and

categorized them as CHa, N3, He, Hz, CO3, and O3 instead of progressing polymer by polymer. The
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availability of data in the literature created a wide range of reported data points. Therefore,
missing values significantly limit the power of their data set. To their credit, the authors chose
not to fill their dataset with synthetically generated values despite apparent limitations. Many
researchers have reported the addition of user bias with data curation. However, their data sets
have failed to include Polymers with Intrinsic Microporosity (PIMs), an essential branch of
polymers already established in the literature for efficient gas transport. Experimental studies on
PIM structures have also agreed with these results [83][84]. The data mined from these studies
are limited to existing reported polymers, which restricts their use for novel membrane designs.
Therefore, Yang et al. used a more expanded approach to include both theoretical and
experimental data from PolyInfo [85] and the Membrane Society of Australasia (MSA) [86]. The
authors’ dataset had potential ladder type and polyimide-based PIMs conducive to gas transport

[38].

Fetanat et al. deviated from the trend of designing pristine polymeric membranes by exploring
the domain of nanocomposite membranes, commonly known as Mixed Matrix Membranes
(MMM)[63] . For that, the authors’ strategy focused on mining the ultrafiltration polymeric
membranes with nanomaterials. They surveyed the literature on ultrafiltration nanocomposite
polymeric membranes and gathered 735 sample spaces with eight polymer supports. The authors
then categorized the nanomaterial features into support, nanoparticle type, size, distribution,
and concentration (%wt). Polymeric phase concentration (%wt), solvent type and concentration,
operation pressure, contact angle, thin layer thickness, post-treatment temperature, and
duration were also included in the input variables. The ML models developed using these data
were then used to evaluate insights into solute rejection, pure water flux, and flux recovery for

ultrafiltration membrane selection and fabrication.

Other researcher also attempted to include membrane compositions with these fabrication
conditions into a design database. For example, Gao et al. used fabrication conditions to gain
insights into the polyamide membrane fabrication process. They included features such as initial
monomer concentration, polymerization time, heat curing time, additive and solvent type, and a
nanomaterial dispersion medium to reveal the uncertainties of the polymer membrane

fabrication process. However, their data set included missing data points due to the literature's
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lack of reported fabrication data [37]. The authors mined 218 published works and gathered
water permeability and salt rejection data. A normalized approach was taken by defining salt ions
into five fundamental properties: valence, ionic radius, Stokes radius, hydrated radius, and
hydration free energy. It allowed them to collect and model a broader dataset. A similar approach

in gas separation membrane is forthcoming.

2.2 Functional Description of Membrane Material
Each functional material is defined on a set of specific-factors related to the material’s function.

In membrane application, these specific-factors can specify the material transport properties.
Finer details must be identified and included in the material’s functional description to increase
model prediction efficacy. Therefore, developing an efficient membrane material functional
description is a crucial step in the ML-based material design processes. Zhou et al. identified three
critical characteristics of a good descriptor: (1) the descriptor should offer a unique definition for
each sample space, representing a unique material characterization, (2) the descriptor should be
sensitive to the design objective by having a unique sensitivity in relation to parts of the materials
instead of just tabulating material descriptors versus properties, and (3) the descriptors should
be easy to translate and produce [17]. Furthermore, polymer repeat units should be represented
by a dynamic descriptor that includes chemical connectivity. Molecular fingerprints are
remarkably reliable as polymer material descriptors compared to Molecular Descriptor (MD),

Molecular Image (Ml), and Molecular Graph (MG) [87][88]-[91][89].

Barnett et al. and Gao et al. in their work chose the Morgan fingerprint as their functional
descriptor [37][36]. This technique allows chemical groups to be represented with greater
flexibility due to their atomic group size and length definition flexibility [88]. Barnett et al.
decided to use a more dynamic fingerprint approach for this process instead of a static group
contribution. These fingerprints can evolve on limited capacity as new materials are designed
and predicted. There are some overlaps as chemical entities are converted into a binary vector
due to the limitation of their overlapping bit position. For example, Gao et al.’s work represented

an amine group and sulfonic group using the same binary vector which is reflected in their
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experimentally viable material prediction accuracy [37]. Yang et al. ran a comparative study
between chemical descriptors generated by RDKit [92] and Morgan fingerprint with frequency
(MFF) [93]. The authors’ systematic study complied with other reported results [88] concluded

that MFF performed comparatively better when used to define polymeric gas membranes [38].

In an orthodox approach, Fetanat et al. represented 14 polymers and the solvent types used in
fabrication with numeric values to predict nanocomposite membrane performance. Though,
they did not include any material properties of the filler materials. The filler materials can be
described by material descriptors, summarized in the works of Curtarolo et al. as dimensional
parameters [94]. One-dimensional parameters help define molecular weight, volume,
connectivity, number of electrons and polarities, and surface area; however, two-dimensional
(2D) or even three-dimensional (3D) parameters are preferable to describe functional material

for transport.

2.3 Machine Learning Models
ML models can significantly improve membrane fabrication process. Developing an accurate and

reliable model ensures better predictions. Recognizing the patterns for higher dimensional
variables is essential for novel membrane design. Carefully designed ML model can give valuable
insights into designing membrane materials and optimum fabrication conditions. ML models are
broadly classified as either supervised or unsupervised [95]. Supervised modeling tries to predict
functional descriptor blocks or features conducive to the desired transport based on the mined
data. Broadly, two powerful techniques: regression and classification algorithms, fall under
supervised models. Regression analysis uses parameters such as glass transition temperature,
density, and strain behavior, which each can take free values, to make continuous variable
predictions. Predictions for discreet targets or searching for the desired predicted function are
known as classification. Among them, linear classifiers, support vector machines, decision trees

and Random forest are all common types of classification algorithms in material science[96].
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Supervised modeling trains under a defined dataset and predicts based on recognized
relationships with the trained models. On the other hand, unsupervised ML aims to identify
functional relationships from input data in a process called “clustering” based on the modeling
objective. Clustering algorithms can group together similar samples or data points based on their
features, allowing researchers to identify groups or clusters of samples with similar properties or
behaviors. This can be useful in identifying new membrane materials or optimizing membrane
properties from material. It can be beneficial for categorizing hidden conducive patterns in
material design from a large comparative dataset. Unsupervised ML models are useful in
reducing dimensionality of a large dataset to reduces the number of data inputs to a manageable
size while also preserving the data integrity. Although in membrane field, we seldom encounter
with a large enough dataset, however, the material itself can be represented in high dimensional
blocks or features. Unsupervised ML can be beneficial in such scenarios to visualize and extract
the most relevant features that are responsible for the variations in the dataset. Furthermore,
some unsupervised ML models like Principal component analysis (PCA) can be used to detect
outliers in a dataset [97]. These can help us mine a better dataset with reduced homogeneity
issues. Other unsupervised ML models that include dimensionality reduction techniques such as
t-Distributed Stochastic Neighbor Embedding (t-SNE) can help to visualize high-dimensional data
and identify patterns and relationships, as well as anomaly detection algorithms that can identify
unusual or anomalous data points that may be indicative of faulty or poorly performing
membranes[98]. Furthermore, t-SNE can be used to identify the optimal combination of
membrane components that will yield the desired properties. By visualizing the relationships
between different membrane components, researchers can design and optimize membranes
that have improved performance and selectivity. Returning to the supervised modeling, the
model needs to be “trained” and later “validated” against a defined dataset, creating the need
to choose a ratio between training and validation data. Barnett et al. split their datasets into a
3:1 ratio for their Gaussian Process Regression (GPR) models. This nonparametric model
computes the distribution of all possible functions over the feed data. Each data point is related

based on the original non-linear observations translated into a higher-dimensional space known
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as kernel functions [99]. The authors observed stable predictions after adding approximately 400

data points into the model when training it on variable-sized datasets[36].

Missing values in the dataset is a significant challenge when developing ML models. Some
models, such as deep neural networks (DNN), cannot process datasets with missing values.
Therefore, replacing missing values in the dataset using generated data, such as using mean or
median values, estimated from statistical distribution or ML models, reduces the dataset's ability
to provide valuable practical insights into the model’s performance [64] [100]. Gao et al.
developed an ensemble algorithm from multiple decision tree regression, Random Forest (RF) to
mitigate this problem. The authors’ XGBoost and CatBoost models managed missing values in the
dataset. They trained models using 80% of the dataset, attaining an R? value of 0.78 for water
permeability with 567 data points, and 0.84 for salt rejection with 1,524 data points for the

validation data sets.

On another work, Yang et al. chose two supervised models, RF regression and DNN, to discover
novel polymeric gas membranes. Previously, Tao et al. reported that these two ML models could
be potentially used for material predictions [41]. However, Yang et al. reported an average 0.74
R2 value for RF and 0.90 for DNN due to the RF model’s inability to handle data with homogeneity
issues. Furthermore, a dataset with abrupt high and low-performance features also creates fitting

concerns, resulting in a low R? value. More importantly, the dataset's quality, quantity, and
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regression.

al.’s gas permeability database. These values are greater than the accuracy of the RF model at

0.99 and 0.85 for the training and validation sets, respectively (Figure 5). However, in terms of

experimental prediction, the larger disparities of MLP performance between training and testing

dataset means there is significant overfitting problems in MLP than RF [101]. Therefore, RF still

dictates in experimental prediction conforming established literature’s preference.
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2.4 Model Interpretation:

The trained and validated ML algorithm finally steps into the interpretation part. From the group

contribution approach to modern statistical tools, membrane scientists have invested

considerable efforts into identifying novel polymers for membrane applications [60]. Screening

over a potential space has been a primary means for interpreting material discovery predictions

from ML models. This process reduces the material space to a manageable dataset. It is

productive as Barnett et al. explored a similar screening technique by training the ML model with

a gas permeation dataset of 500 to 1,000 polymers. The authors trained and validated model

screened over 11,000 known polymers. Initial screening resulted in more than 100 novel

polymers surpassing the current CO2/CH, selectivity-permeability upper bound [102]. Later, the

authors’ experimental work successfully fabricated two novel polymeric membranes with higher

performance.

For a better visualization, SHAP or

SHapley  Additive  exPlanations

method helps researchers to
calculate the Shapley value for each
transporting “feature,” providing a
comparative insight into the
process [59]. This unique prediction
approach uses differences between
features, allowing researchers to
interpret the data visually and assist
new, novel membrane design. Also,
this process gives the relationships
in terms of positive or negative
contributions to evaluate the
influence of atomic groups on

membrane transport (Figure 6).
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Figure 6: A visual representation of a SHAP analysis; positive
and negative interactions are assigned to pre-defined
features evaluated by ML model based on their respective

contributions to the predicting outcome.
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Gao et al. identified the positive Shapley values for water permeability in the presence of a
specific amine group. Similar conclusions led the authors to build a Morgan fingerprint record of
all atomic groups with positive Shapley values. These virtual references (two) were then
compared to the 310 hand-picked amine monomers from the National Institute for Materials
Science (NIMS) database [85]. The authors then used a sophisticated Bayesian optimization tool
to construct novel polyamide membranes by training the model with fabrication conditions from
literature. This work is the first to include such optimization approach novel for ML assisted
membrane fabrication. They employed Bayesian Optimization or BO on their supervised models
to identify conducive fabrication conditions. Bayesian Optimization is the best fit for these tasks
since it uses Bayesian probability theory to balance exploitation and exploration [103].
Fabrication process of membranes can often be objectified as such optimization for high-
performance materials. It has the potential to facilitate novel chemical and functional material
design for drug discovery, molecular modeling, electrolyte design, and additive manufacturing
[104]. BO can accelerate material design since the feedback loop provides a beneficial interplay
between the inexpensive stochastic surrogate model and expensive computational acquisition
functions to provide an optimal decision for future descriptors [105]. This statistical technique is
also built on Gaussian process regression (GPR) capable of predicting the performance at novel
conditions based on previously tested designs[57] therefore significantly reducing number
experiments and resource cost. For identifying the optimal fabrication condition, they trained ML
model with fabrication conditions from literature as input variables. Further optimization was
done to a significantly smaller space to produce a membrane exceeding upper bound. This novel
optimization approach can be utilized after creating a reliable virtual reference point through ML
models, which is believed to be the key to next-generation membrane development. Such inverse
design techniques, using Bayesian optimization with a well-developed supervised ML model
could produce novel, unprecedented membrane materials that otherwise would not be possible

with conventional screening techniques.
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3. Future Direction for ML-Assisted Membrane Design and fabrication

ML methods enable efficient and reliable screening, novel designs, and optimization for potential
membrane material fabrications. As a result, membrane material development cost and time can
be reduced significantly by generating or screening from the material space. Moreover, potential
predictions will result directly in experimental transport studies, saving time and opening new

opportunities.

The general MATLAB platform has some ML tools that are used for some of these tasks.
Nonetheless, many recently available open-source software packages, such as TensorFlow
developed by Google’s Al department, Scikit-learn in the Python package, and Chainer, have easy-
to-use online guides, tutorials, and books non-specialists can utilize to implement ML models in

their research.

The primary challenge in membrane science begins with creating a reliable and robust database.
Membrane transport data are, in many cases, reported differently. Current approaches do not
adequately translate species' transport properties against membrane materials. Gao et al. tried
to incorporate species (salt) radius and free energy as a normalization approach, which resulted
in a broader and better predicting ML model; however, a more encompassing normalization

approach for membrane material transport would result in a more robust data set.

Standardizing data collection protocols and experimental procedures can help to reduce
variability in the data and improve the homogeneity of the datasets. Which has already been
initiated by the Open Membrane Database for RO and NF membranes[59]. They have a robust
membrane database with a standardized data reporting protocol. Furthermore, creating such
dynamic membrane data repository system will encourage self-reporting membrane data in a
standardized form for other separation systems. Additional information or domain knowledge
related to polymer chemistry, such as crosslinking, swelling, and branching, can also be a key to
novel membrane design and aid the prepossessing of data in the future. By leveraging domain
knowledge, researchers can make more informed decisions about data selection and

preprocessing, and develop more accurate and interpretable ML models. Also, unsupervised ML
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models can be used to detect outliers or unusual data points in a material dataset[97], [106]. By
identifying the data points that lie outside the normal range, it is possible to identify potential
errors or anomalies in the data, thereby creating homogenous dataset. Furthermore, data
augmentation techniques such as data synthesis, data augmentation, and transfer learning can
be used to increase the size and diversity of the available data. These techniques rely on
generating new data by transforming existing data or by transferring knowledge from other
datasets. For membrane research, the advances in other ML based material developments, like

MOF database can be an excellent external source for this data augmentation.

To get a quantitative

250 1
measure of the data
set’s variability, we 200
w
performed a pairwise |2
(=)
molecular similarity é 150 -
analysis on the gas [©
@
. o i
permeation dataset | E 100
=
Yang et al. [38] (Figure l
o 201 | c |
7). Molecular similarity
analysis allows 0- TR I I
. 0.0 0.2 0.4 0.6 0.8 1.0
comparing the degree of similarity

similarity of any two Figure 7. Distribution of molecular similarity analysis on Yang et al.’s

molecules using their database [20]. Distribution is further classified into three classes based

molecular fingerprints. on Tanimoto scale: A: 0-0.3, B: 0.3 -0.6, C: 0.6-1[86].

It is represented by the

“Tanimoto similarity score” given by:

S(M,N)=(MnN)/(MUN)
Here (MNN) represents the size of the intersection, i.e., the number of 1-bits common to M and
N, and (MUN) represents the size of the union, i.e., the number of 1-bits in A or B[107]. A less
varied database results in limited and unreliable predictions. So in a Tanimoto scale, a more

varied database will have most date within 0 to 0.3 degree. Which is desirable as a more varied
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database ensure a reliable experimental prediction. Molecular similarity analysis will ensure easy
evaluation of database on similarity issues.

Molecular interactions between the transporting species and membrane material can create a
point to reduce dimensionality of material’'s functional descriptions. Polymer membranes
present an inherent, significant challenge in functional description. Polymers are not a single
entity; therefore, they cannot be described as a simple static material. They can be best described
as a distribution. The distributions have a significant effect on the membrane properties. For
example, Polyvinyl alcohol membrane-based separations depend largely on polymer weight
distribution[108]. So, a detailed picture of the polymer distribution should be included in
functional descriptions to unlock unknown factors in polymer membrane transport.

Complex relationships exist between a polymer matrix and fillers in a mixed matrix membrane
(MMM). The highly selective filler phase is generally dispersed in a polymer matrix to overcome

the trade-off between permeability and selectivity in a homogeneous polymeric membrane[109],

[110]. However, this hybrid separation - -

films exhibit non-ideal interactions VA "-O
( ) L polymer |
. . - fillers
between the matrix and filler phase. ‘ \
Moore et al. classified these non-ideal el Case |
(Ideal case) (Rigidified polymer layer )

interactions into five categories, which

later translated into the three most ‘ / “\}}f‘ “ f-’g

;‘\_,7/, W
common cases: non-transporting > — Vans’
rigidified polymer layer, limited caged Case Il Case Il
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transporting, and clogged transport
(Figure 8) [111]. Identification is tedious 600
and, in many cases, makes it difficult to &P
evaluate these interactions based solely Case IV Case V

(Caged filler) (Clogged Layer)

on conventional characterization
Figure 8: Summary of filler and matrix interactions

techniques. ML based image processing as identified in Moore et al.’s work [90]

can reveal these interactions and classify

22



them as transport features in database by analyzing through the reported Scanning Electron
Microscope (SEM) images from literature.

Furthermore, topological information often contains the means to define transport in membrane
fillers. 2D nanomaterial structures, one of the most promising potential fillers in membrane
research, topological descriptors have the potential to define transport properties. Information
regarding symmetry, branching, and atom connectivity often reflects features that are hard to
define and utilize with the usual processes [91] [92]. The major drawback of general material
descriptors is that they do not contain stereochemistry information. This problem does not affect
membrane material predictions since most general fillers used for membrane transport are not

affected by the filler backbone's spatial distribution.

ML model development is a dynamic process. Therefore, the choice at each development point
is crucial for subsequent steps. The appropriate choice for functional descriptors can help reveal
new materials. For this, the selected descriptor should be predictive of the target properties and
species transport. Accurate prediction based on properly selected descriptors overshadows the
accuracy, regardless of the choice of ML models [114]. Unfortunately, there are no logical means
by which current descriptors can be used for predicting novel arbitrary bonds using current
“fingerprint” methods. Gao et al. used virtual referencing to create a fingerprint with optimal
features to mitigate this issue; however, the feature flexibility depends on descriptor dynamics.
So, to overcome this issue and describe transport properties related to chemical structure the
simplified molecular-input line-entry system, or SMILES descriptors are introduced. Other novel
material design initiatives also used a formal investigation with a Quantitative structure-property

relationship (QSPR) descriptor in the membrane field [115].

The hidden pattern searching though unsupervised modeling has been proven beneficial into
understanding PFAS C-F bond dissociation energies in relation to the functional chemical trends
[15]. Unsupervised t-SNE can be utilized in similar ways to categorize conducive atomic patterns
from a more robust high dimensional representation of membrane materials into
clusters/families to understand which chemical functional groups are responsible for intended
separation performance.Similar to membrane technology, research into novel Anti-Microbial

Peptides (AMP) development is also an “Edisonian” process. The recent success of the Support
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Vector Machine (SVM) model in designing novel AMP gained attention in other material
designing fields [116]. The SVM algorithm projects the data points in a Euclidian space, where the
position defines the data. It means curation is necessary to manage the missing points to
implement this algorithm. This linear classification technique can be beneficial for novel
membrane design since the data point transport features are classified with an intuitive
understanding of the classification rationale and the relative importance and relationships [117]
[116]. However, conventional ML models require a large data set to implement uncertainty
models in data science. Building such a database is difficult for many scenarios; therefore, new

developments in ML models should consider using small and non-homogenous data sets.

There have been significant advancements in ML algorithms. Nonetheless, in membrane science
interpretation technique of these models is mainly limited to screening. Hasnaoui et al. collected
a database of 149 polymers and modeled it using an Artificial Neural Network (ANN) algorithm
[69]. The authors’ work reported high R? values for the validated model. This work can highly
benefit from the advent of SHAP analysis. In addition, several other potential interpretation
techniques can bring fruitful outcomes in membrane material predictions. Lately, Local
interpretable model-agnostic explanations (LIME)[118] and Yellowbrick visualization[119] are

gaining attention among ML researchers.

Furthermore, ML-based inverse design models have recently utilized supervised modeling to
design novel molecular structures. For example, Yao et al. used a Supramolecular Variational
Autoencoder (SmMVAE) Model to develop a novel Metal-Organic Framework (MOF) to increase
CO,/CH4 and CO,/N; separation [120]. Similar computationally efficient approaches have yielded
never-seen-before chemical structure designs [121]. A future collaborative investigation from
membrane experts and data scientists can benefit from such activities for novel membrane

discovery.

4. Conclusion
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Membrane technology is at a crucial development stage. Advanced data-centric techniques, such
as Machine Learning (ML), are creating new opportunities to replace the age-old “Edisonian”
approach. The concealed information in the large data has the potential to solve many pressing
issues, including discovering high-performance membranes. Integrating ML methods to guide
and enhance the experimentation process through material screening and optimization has
already shown its promises. The development of chemometrics and computer science advances
have also aided the process. We anticipate that the use of ML techniques in membrane research
will continually increase due to the crucial demand of separation membranes along with
developments in effective algorithms and computational tools. Creating a reliable database with
suitable membrane material representations and implementing a reliable ML model with proper
interpretation is vital in ML-assisted membrane fabrication. Balancing this dynamic approach
shall result in significantly accelerating separation membranes material discovery cycle to guide

membrane design while saving money and time.
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