Effect of Intermittent Hyperoxia on Stem Cell Mobilization and Cytokine Expression
Persistent post concussion research

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Intent-to-Treat Population</th>
<th>Per-Protocol Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline, Mean (SD)</td>
<td>After Intervention, Mean (SD)</td>
</tr>
<tr>
<td>Rivermead Post-Concussion Symptoms Questionnaire 3 Subscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard care</td>
<td>5.4 (2.7)</td>
<td>5.1 (2.8)</td>
</tr>
<tr>
<td>HBO</td>
<td>5.5 (3.3)</td>
<td>4.2 (3.0)</td>
</tr>
<tr>
<td>Sham</td>
<td>4.7 (3.1)</td>
<td>3.5 (3.3)</td>
</tr>
<tr>
<td>Rivermead Post-Concussion Symptoms Questionnaire 13 Subscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard care</td>
<td>27.1 (12.2)</td>
<td>25.5 (13.9)</td>
</tr>
<tr>
<td>HBO</td>
<td>27.5 (13.1)</td>
<td>22.5 (12.4)</td>
</tr>
<tr>
<td>Sham</td>
<td>25.5 (11.6)</td>
<td>20.7 (12.8)</td>
</tr>
<tr>
<td>Total Rivermead Post-Concussion Symptoms Questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard care</td>
<td>32.5 (14.4)</td>
<td>30.6 (16.1)</td>
</tr>
<tr>
<td>HBO</td>
<td>33.0 (15.8)</td>
<td>26.7 (14.8)</td>
</tr>
<tr>
<td>Sham</td>
<td>30.2 (14.2)</td>
<td>24.2 (15.4)</td>
</tr>
</tbody>
</table>

Abbreviation: HBO, hyperbaric oxygen.

* The 95% CIs were calculated using 95% binomial exact CIs.

b Wilcoxon signed rank test.

1.5, 1.2 x40 n=71

Miller et al 2015
Conclusions
Among service members with PCS, HBO showed no benefits over an air sham compression procedure, but symptoms in both groups improved compared with mTBI care without supplemental chamber interventions.

This outcome suggests that the observed improvements were not oxygen mediated but may reflect nonspecific improvements related to placebo effects. Taken with results from other concurrent investigations, our study does not support phase 3 trials of HBO for the treatment of PCS at this time.
Experts would never consider room air (21% oxygen), delivered at 1.2 ATA, to be an acceptable therapeutic dose for any approved clinical indication.

It is illogical to think that this dose will have a biologically beneficial effect for any approved indication.
Question

- Was this really a placebo effect or did both groups improve because of treatment with different doses of oxygen
Acronym “CD”

- Cluster of differentiation
- Cell surface markers
- Identify stem cell sub-populations

- CD34
- CD133
- CD45
- “pro-angiogenic stem cells”
Pathway

Adapted from Thom, S.R et al. 2011
Stem cell mobilization by oxygen

- CD34+ stem cell in humans
 - 1520 torr PiO₂
 - (2.0ATA x 100%O₂ x 760 torr)
 - Suggesting a dose response

- Modulating SC mobilization

(Thom, Bhopale et al. 2006)
Question

- Will similar physiologic activity (pro-angiogenic stem cell mobilization) be seen at PiO$_2$ \leq 760 Torr (100% O$_2$ @ 1ATA)

- 319 Torr PiO$_2$ (42% O$_2$)
Specific Aims

Specific Aim 1:
Determine the extent of proangiogenic stem cell mobilization in venous plasma in response to intermittent hyperoxia (↑PiO$_2$ 319 torr) compared to control (room air PiO$_2$ ~159 torr).

Hypothesis:
Proangiogenic stem cells will be significantly mobilized
Specific Aims

Specific Aim 2:
Determine the expression of VEGF and TNFα in venous plasma after exposure to intermittent $\uparrow\text{PiO}_2$ 319 torr.

Hypothesis
TNFα expression will significantly decrease and VEGF will increase
Treatment setup 319 torr \(\uparrow \text{PO}_2 \)
Treatment setup
12 Sprague Dawley Rats

Control group
n=6 \(\text{PiO}_2 \) 159 torr
(21% oxygen)

2 hours daily for 10 days

24 hrs. delay

Sacrifice and process samples

Flow Cytometry and ELISA

Data Analysis

Treatment Group
n=6 \(\text{PiO}_2 \) 319 torr
(42% oxygen)

2 hours daily for 10 days

24 hrs. delay

Sacrifice and process samples

Flow Cytometry and ELISA
Methodology – Sample preparation

- Draw >8 mL venous blood from IVC into heparin tubes
- Lyse red blood cells – ammonium chloride
- Centrifuge to separate cells from plasma
- Freeze plasma for cytokine ELISA
- Stain cells with antibodies
- Quantify stem cells with flow cytometry
- Quantify cytokine expression with ELISA
Data Analysis

- Non-parametric Mann Whitney test

- using a p of < .05 to indicate a difference between the groups
Results Pro-angiogenic stem cells

- Hematopoietic Pro-angiogenic
 - CD45+/133+ Hyperoxia
 - CD45+/133+ Normoxia
 - CD45+/133+ p = 0.0087

- Non-Hematopoietic Endothelial
 - CD45-/133+ Hyperoxia
 - CD45-/133+ Normoxia
 - p = 0.23

- Non-Hematopoietic Stem Cells
 - CD45-34+ Hyperoxia
 - CD45-34+ Normoxia
 - p = 0.16

Cytokines and growth factors
CD133+ neovascularization

Suggesting CD133 modulates vascular healing

(Nakanishi, Ishikawa et al. 2009)
Results – Cytokine Expression
Tumor Necrosis Factor α (TNF α)

- signal protein
- macrophages
 - Induce fever / Systemic inflammation
 - Apoptosis
 - inhibit tumor growth
- Potent inducer of neo-vascularization
VEGF

- signal protein
- many cells
- stimulates the formation of blood vessels
Results – Cytokine Expression

TNFα expression
- Absorbance (AU)
- \(p = 0.004 \)

VEGF expression
- Absorbance (AU)
- \(p = 0.17 \)
Results – Cytokine Expression

More trends

Adipokine implicated in the pathogenesis of chronic inflammation
- Increased levels linked with risk of Type 2 diabetes
- Cardiovascular disease
- Cancer

Macrophage inflammatory protein
- Found to be elevated in patients with depression
Conclusions

- First study to demonstrate
 - at a P_{iO_2} 320 Torr
 - pro-angiogenic stem cell mobilization
 - suppression of an inflammatory cytokine

- Suggests the possibility of proangiogenic stem cell mobilization in humans at much lower oxygen pressure than previously postulated.
Implications

- Low intensity intermittent oxygen therapy may enhance re-vascularization.

- Increases questions regarding shams that intermittently increase PiO₂, even at relatively low levels.
Future Directions

- Repeat this experiment in humans
Thank you

- Dr. Marlowe Eldridge
- Dr. Kara Goss
- Dr. Balasubrumanium
- Dr. Greg Barton
- Dr. Reudolf Braun
- Dr. Aleksey Sobakin
- Dr. Arij Beshish
- Dr. Drew Watson
- Dr. K. Haraldsdottir
- Dave Pegelow

- Kayla Moses
- Dr. Laura Tetri
- Taylor Levin
- Ryan Centanni
- Lauren Nettenstrom
- Dr. Emily Farrell
- Dr. Donata Oertel
- Dr. Burt Olson
- Dr. Gary Diffee
- Julia MacLaughlin
- Family
Questions?
Kmaclaughlin@pediatrics.wisc.edu