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Welcome to the MALL

Welcome to UND’s Math Active Learning Lab (MALL)! The MALL is a research-based approach designed to
support student engagement with math. The premise of the MALL is that the best way to learn math is by doing
math, not by watching someone else do math. This means that most of your time in this course will be spent
doing math with the MALL instructors and tutors available to support your learning. The philosophy of the
MALL is well described by H. A. Simon’s quote

“Learning results from what the student does and thinks and ONLY from what the student does and
thinks. The teacher can advance learning only by influencing what the student does to learn.”

For many of you, this is your first college math course. Quite possibly, this course and our expectations may be
different from your high school mathematics experiences. We cannot stress strongly enough your role in ensuring
your success in this class. More than anything else, your choices will determine your success in this course.

• Attending class (focus group) regularly,

• diligently working in ALEKS and this Notebook,

• studying for exams, and

• seeking help when you need it

will lead to success. We will be asking you to use the ALEKS resources and to work in your notebooks before
coming to class. In your weekly focus group, your instructor will support your learning by facilitating small-
group assignments and providing mini-lectures on the more challenging topics.

Instead of sitting in a lecture class for hours each week AND then being expected to do practice problems outside
of class, part of your “class time” is spent doing homework in ALEKS. This provides instant feedback and links
you to resources as needed. Using ALEKS allows us to individualize the student learning path. Students can
move quickly through topics they are familiar with and take the time they need to learn more challenging topics.
To help you get the most out of ALEKS, we have created this notebook. If ALEKS and the notebook are still
leaving you confused about a topic, we expect you to ask an instructor or tutor for help.

MALL Staff
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How to use ALEKS

Working in ALEKS with the Notebook

• Every ALEKS topic is in the Notebook.

• Not every topic in the Notebook will be in YOUR Learning Carousel.

◦ If you have already mastered a topic, you will not see the topic in your Learning Carousel.

◦ You do NOT need to complete the Notebook for a topic you have already mastered.

• How to work through ALEKS topics

1. ALEKS presents you with a topic.

2. Use the table of contents to find the topic in the Notebook.

3. You will find one of the following icons to help direct your learning.

◦ Indicates you should watch a video. You may be asked to select a different video than the

first video to pop up.

◦ You should open the e-book.

* You may need to scrolll down to find the appropriate topic.

* Notebook entries are made to look EXACTLY like the e-book material

◦ Open the dictionary to show definitions of terms.

◦ Directs you to resources your instructor has added.

◦ If there is no icon, the material should come directly from the Learning Page, which is the first
page presented to you with a new topic.

The Learning Carousel

• To bring down the Learning Carousel, click the on the upper left side of the ALEKS Learning page.

• indicates a goal topic for the current module

• indicates a locked topic. Click the icon to see what topics must be worked to unlock it.

• No icon means it is a prerequisite topic. Use the Index to find the topic in your Notebook.
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How to use ALEKS

• When the Learning Carousel is pulled down, you can

◦ Click the for options to filter topics.

◦ The Filter menu is shown below.

Search for topic You can type in the name of a topic to find it.

TAGS Click in the boxes to show only the topics that are

* goal topics,

* unlocked,

* have videos.

Hamburger Menu

• The Hamburger Menu is in the upper left of your ALEKS screen.

• The options in the Hamburger Menu are shown below.

Home Takes you back to the home screen.

Learn Opens the next topic ALEKS has ready for you to learn.

Review Opens up topics you have learned or mastered for you to
review.

Calendar Opens a calendar view of deadlines for weekly modules
and exams.

Gradebook Shows your grades for ALEKS modules and exams. The
complete and official gradebook is in Blackboard.

Reports Opens a menu of reports that provide additional information
about your progress in ALEKS. We encourage you to take a look
at these pages.
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How to use ALEKS

Technical Support

ALEKS Technical Support is available at https://www.aleks.com/support/contact_support or by phone at
(800) 258-2374. Call Technical support if you need help with

• accessing your account.

• locating a video.

• questions diplaying correctly.

• other technical issues not related to math content.

12
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Math

Instructor: Email:

Phone: Office:

Focus Group:

Required Course Materials: ALEKS 18-week access and the
Course Notebook

All email correspondence will go to your official UND email address.

Course prerequisites and content: Properties of the real number system, factoring, linear
and quadratic equations, functions, polynomial and rational expressions, inequalities, systems of
equations, exponents, radicals. Graphing of basic functions. Study skills and problem solving
techniques will be incorporated throughout the course. Does not satisfy any requirements for
graduation, nor does it transfer. A grade of S is required in this course to be eligible to take Math
103 or Math 107.

The Math Active Learning Lab (MALL): Research shows that
, not by listening to someone talk about or present the

subject. The primary reason many students do not succeed in traditional math courses is that
they do not do the problems or spend enough time engaged with the material.

The MALL is a research-based approach designed to support student engagement with math.
Most of your time in this course will be spent doing math, and your instructor will support your
learning by facilitating in-class assignments and providing mini-lectures on the more challenging
topics. Instructors and tutors are available during the required MALL time to provide just-in-time
support.

In a traditional math class, all students are expected to learn at the same pace. In the MALL,
the ALEKS learning system allows you to work at you own pace, skip topics you have already
mastered, and provides feedback as you are working.

COVID-19: All members of the University community have a role in creating and maintaining a
COVID-19 resilient campus. There are several expectations that all community members, includ-
ing students, are asked to follow for the safety of all:

• maintain physical of at least 6 feet while in UND facilities,
• wear coverings during interactions with others and in the classroom,
• wash their hands often and use hand sanitizer,
• properly clean spaces that they utilize, and
• if experiencing any symptoms, and call their health care provider.

• Students electing not to comply with any of the COVID related requirements will not be
permitted in the , and may be subject to disciplinary action.



All members of the University community are expected to model positive both
on- and off-campus. Information regarding the pandemic and UND’s efforts to create a COVID
resilient campus is available on the COVID-19 blog (http://blogs.und.edu/coronavirus/).
Please subscribe to stay up to date on COVID related information.

Students who test positive for COVID-19 or are identified as a close contact are expected to
self-isolate/quarantine. If you have tested positive for COVID-19 or

have been placed in quarantine due to being identified as a close contact or travel we strongly
recommend that you report the information to the Office of Student Rights and Responsibilities at
701.777.2664 or online at https://veoci.com/veoci/p/w/ss2x4cq9238u. Doing so will ensure
students have the support they need to continue with their academic goals and to protect others.

Due to the evolving circumstances of the COVID-19 pandemic, all information in this syllabus
may need to be to meet the needs of remote instruction. Every effort will be
made to operate in a manner consistent with the expectations outlined in this document.

Course Components

Focus Group

• Assignments given during the Focus Group meetings will be completed in small groups.
◦ On-time attendance is to earn full-credit on the assignment.
◦ Unless required for the Focus Group activity, cell-phone or computer use will result

in a zero for the day.
• Students who do not attend the meeting, or contact the instructor the

first week, will be DROPPED FROM THE COURSE.
• Students who do not their Initial Knowledge Check within two full days

of their first class meeting will be DROPPED FROM THE COURSE.
• Once a week you will meet in class, the other day you will work in ALEKS in the MALL

or remotely.
• Focus Group Absences

◦ If due to a serious emergency, absences will usually be excused. Documentation
.

◦ University sanctioned absences must be documented
prior to the absence.

◦ Travel plans cause for an excused absence.
◦ All focus group assignments have a

to account for any unexcused absences.
◦ Absences will be addressed on a case-by-case basis.

ALEKS

• Weekly module to be completed by at 11:59 pm.
• Can work anywhere you have internet access.
• Deadlines be extended because of home computer or home internet

issues.
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MALL Time

• Spend at least 2.5 hours in the MALL working in ALEKS from to
• MALL time must be completed in O’Kelly 33 (face-to-face) or virutally through Zoom.
• MALL time is class time, you should be working only on .
• Credit for MALL time is based on front desk check-in/out.
• Check-in with your UND ID when entering and check-out when exiting the MALL.

◦ Failure to check-in/out results in minutes recorded.
◦ Check-in/out with another student’s ID is academic dishonesty.

• Minutes from one week to another.
• Focus Group time toward your MALL time.
• Food is NOT allowed in the MALL.
• The MALL is the place to get your math questions answered!
• MALL staff are there .

Notebook

• Graded in Focus Group.
• for MALL time and Focus Group.

Topic Goal Extra Credit

• Complete 10 topics in ALEKS by at 11:59 pm.
• Earn a Focus Group bonus point.

Exams

• There will be exams.
• Each exam will have 125 pts

◦ ALEKS exam: 100 pts
∗ Must be completed in the MALL exam area
∗ Must be completed by 9:00 pm the the written exam.
∗ UND ID is required to take your ALEKS exam.
∗ All scratch work must be submitted to as a PDF within

30 min of test completion.
∗ You may not leave your table during an exam without permission.
∗ Cell phones must be placed face on the table.

◦ Written exam: 25 pts
∗ will be given during the Focus Group meeting.

Exam 1: Exam 2: Exam 3:

Final Exam

• The final exam will be a comprehensive ALEKS exam.
• All scratch work must be submitted to Blackboard within 30 min of test completion.
• The final ALEKS exam must be completed by Wednesday, December 16 at 7:30 pm.
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Grading

• Your course grade will be a weighted average of the following:

Exams %
Final Exam %
MALL Time 10%
Focus Group Activities 10%
Module Completion 15%

• You must earn 70% or higher to get an S.

Try Score

• Your Try Score reflects your effort in this course.
• The Try Score is composed of:

◦ focus group participation,
◦ notebook completion,
◦ MALL time and
◦ module completion.

• This is included in your course grade, but will be shared with your academic
advisor.

Finishing the Course Early

• Given the individualized nature of this course it is possible to complete the course .
• Each time an exam is given, students have the option to take the final

in place of the scheduled exam.
• To qualify to take the final early

◦ the week before the written exam, arrange with the MALL office to take a proctored
Knowledge Check

◦ at least 90% of the in the course on this proctored ALEKS Knowledge
Check

Academic Honesty

• All students in attendance at the University of North Dakota are expected to be honorable
and to observe standards of conduct appropriate to a community of scholars.

• Academic misconduct includes
◦ all acts of dishonesty in any academically related matter.
◦ any knowing or intentional help or attempt to help, or conspiracy to help, another

student.
◦ use of , books, calculators, or any electronic devices on

exams.
• A student who attempts to obtain credit for work that is not their own (whether that be

on a homework assignment, exam, etc.) will receive for that item of
work, and at the professor’s discretion, may also receive a failing grade in the course.

• For more information read the Code of Student Life at https://und.policystat.com/

policy/6747183/latest/.
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Accommodations

• Disability
◦ Contact me to request disability accommodations, discuss medical information, or

plan for an emergency evacuation.
◦ To get confidential guidance and support for disability accommodation requests, stu-

dents are expected to register with DSS at http://und.edu/disability-services/,
190 McCannel Hall, or 701.777.3425.

• COVID-19
◦ Due to COVID-19 students may need to request course adjustments, flexibility in

delivery of content, and increased absenteeism.
◦ Students with concerns regarding physically attending class during COVID-19 are

encouraged to do the following:
∗ Talk with your to determine appropriate accommodations,

as soon as possible
∗ Students with a known disability should contact Disability Student Services

(DSS).

Starfish

• Important information is available to you through Starfish, which is an online system used
to help students be successful.

• When an instructor observes student behaviors or concerns that may impede academic
success, the instructor may raise a flag that notifies the student of the concern and/or refer
the student to their academic advisor or UND resource.

• Please pay attention to these emails and take the recommended actions. They are sent to
help you be successful!

• Starfish also allows you to
◦ schedule appointments with various offices and individuals across campus.
◦ request help on a variety of topics
◦ search and locate information on offices and services at UND

• You can log into Starfish by clicking on Logins on the UND homepage and then selecting
Starfish. A link to Starfish is also available in Blackboard once you have signed in.

Notice of Nondiscrimination

• It is the policy of the University of North Dakota that no person shall be discriminated
against because of race, religion, age, color, gender, disability, national origin, creed, sexual
orientation, gender identity, genetic information, marital status, veteran’s status, or polit-
ical belief or affiliation and the equal opportunity and access to facilities shall be available
to all.

• Concerns regarding Title IX, Title VI, Title VII, ADA, and Section 504 may be addressed
to:

◦ Donna Smith, Director of Equal Employment Opportunity/Affirmative Action and
Title IX Coordinator, 401 Twamley Hall, 701.777.4171

◦ UND.affirmativeactionoffice@UND.edu
◦ Office for Civil Rights, U.S. Dept. of Education, 500 West Madison, Suite 1475,

Chicago, IL 60611
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Resolution of Problems
Should a problem occur, you should speak to your instructor first. If the problem is not resolved,
meet with Dr. Michele Iiams, MALL Director. If the problem continues to be unresolved, go to
Dr. Gerri Dunnigan, Mathematics Department Chair, and next to the college Dean. Should the
problem persist, you have the right to go to the Provost next, and then to the President.

How to Seek Help When in Distress

• We know that while college is a wonderful time for most students, some students may
struggle.

• You may experience students in distress on campus, in your classroom, in your home, and
within residence halls.

• Distressed students may initially seek assistance from faculty, staff members, their parents,
and other students.

• In addition to the support we can provide to each other, there are also professional support
services available to students through the Dean of Students and University Counseling
Center.

◦ Both staffs are available to consult with you about getting help or providing a friend
with the help that he or she may need.

◦ For more additional information, please visit the UND Cares program Webpage at
https://und.edu/student-life/student-rights-responsibilities/.
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Time Management

Good time management, good study skills and good organization will help you be successful in this course (and
all of your classes). Answer the following questions.

1. To motivate yourself to complete a course, it is helpful to have clear reasons for taking the course. List your
goals for taking this course.

2. Taking 12-15 credit-hours is the equivalent of a full-time job. Often students try to work too many hours
while taking classes.

NOTE: Students need to work to pay tuition, rent, buy food, etc., but working too many extra hours for
things that are not needed can really impact their success. There is a balance between working to earn
money now and having to spend more money later to retake courses.

(a) Write down the number of of credit-hours you are taking this term and the number of hours you work
per week.

• Number of credit-hours

• Number of hours worked per week

(b) The table gives the recommended limit to the
number of hours you should work for the
number of credit-hours you are taking.

• How do your numbers from part (a) com-
pare to those in the table?

Number of Maximum Number of Hours

Credit-Hours of Work per Week

3 40

6 30

9 20

12 10

15 0
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Time Management

(c) Keep in mind that other responsibilities in your life, such as your family, might also make it necessary
to limit your hours at work even more. What other responsibilities do you have?

(d) It is often suggested that you devote 2 hours of study and homework time outside of class for each
credit-hour you take. For example:

12 credit-hours 15 credit-hours
24 study hours 30 study hours
36 total hours 45 total hours

• Based on the number of credit-hours you are taking, how many study hours should you plan for?

credit hours X 2 = study hours

• What is the total number of hours (class time plus study time) that you should devote to school?

credit hours + study hours = total hours

• Your MALL course is a 3-credit course. This means you might need to spend up to 9 hours each
week in class, working in ALEKS, or studying.

• At least 2 of these hours should be completed in the MALL.

On the next page, write down the times each day (for the next week) that you

• have scheduled classes,

• are scheduled to work

• other non-negotiable commitments (family, organization meetings, etc.)

• times that you plan to work in the MALL

• times that you plan to study outside of the MALL
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Time Management

Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday

8:00 - 8:30

8:30 - 9:00

9:00 - 9:30

9:30 - 10:00

10:00 - 10:30

10:30 - 11:00

11:00 - 11:30

11:30 - 12:00

12:00 - 12:30

12:30 - 1:00

1:00 - 1:30

1:30 - 2:00

2:00 - 1:30

2:30 - 3:00

3:00 - 3:30

3:30 - 4:00

4:00 - 4:30

4:30 - 5:00

5:00 - 5:30

5:30 - 6:00

6:00 - 6:30

6:30 - 7:00

7:00 - 7:30

7:30 - 8:00

8:00 - 8:30

8:30 - 9:00

9:00 - 9:30

9:30 - 10:00

10:00 - 10:30

10:30 - 11:00
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Test Analysis

Have you ever thought of your graded test as a learning experience? There is a lot you can learn about yourself,
your study habits, and your test-taking skills by examining your graded test after you get it back.

• Did you do as well as you thought you could?

• Or is there room for improvement?

You may think, ”the test was too hard” or “the teacher didn’t give us enough time”, but, chances are, your in-
structor has been giving a similar test under similar conditions to many students before you. So let’s see what
YOU can do to earn a higher score on your next test.

Look at your graded test and analyze if each point loss was due to your having been unprepared for that problem,
a concept error, or a careless error .

• Being underprepared for a problem means you didn’t know how to do the problem because you hadn’t
done the homework that would have prepared you for it. Often an error made is considered an underpre-
pared error if you look at the problem and have no idea where to begin.

• A concept error is one where you really didn’t understand the concept behind the problem. No matter how
much time was available for a problem like this, you wouldn’t have been able to do it correctly because
you have no conceptual understanding of the problem. This is not a procedural error: you can apply a pro-
cedure and still not understand the concept. Students demonstrate conceptual understanding in mathematics
when they provide evidence that they can recognize, label, and generate examples of concepts; use and
interrelate models, diagrams, manipulatives, and varied representations of concepts; identify and apply
principles; know and apply facts and definitions; compare, contrast, and integrate related concepts and
principles; recognize, interpret, and apply the signs, symbols, and terms used to represent concepts. Con-
ceptual understanding reflects a student’s ability to reason in settings involving the careful application of
concept definitions, relations, or representations of either.

• A careless error is one where you understood the problem and knew how to solve it, but you made a
mistake that could have been avoided. Maybe you copied the problem or your handwriting incorrectly,
made a relatively minor mistake in calculation, or some similar error.
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Test Analysis

1. In the chart below, put the number of points you missed on each problem under the correct heading. Then
find the total in each column.

Problem unprepared
concept
error

careless
error

Total points
Total
points

Total
points

2. In which column did you have the most missed
points? What does that tell you about yourself?

3. What can you learn from this exercise?

Being Unprepared
Consider the points you lost because you were unprepared. Why did you take a test without being fully
prepared? Often, activities and responsibilities in life interfere with good intentions about being diligent in
attending class, completing the notebook, completing MALL time, and completing the module. It may be
time to:

• re-examine your weekly schedule and make sure you are devoting a sufficient amount of time to this
class. Lay out a time management grid of your schedule making sure to schedule your MALL time
and math study time throughout the week.

• re-commit yourself to succeeding in this class. Think about your college and career goals and remind
yourself of how this course helps you get one step closer to achieving them.

4. List two steps you will take to remedy being unprepared.
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Test Analysis

Concept Errors
Now consider the concept errors point loss. A high total in this column tells you that you didn’t understand
the concepts very well. You may understand a math concept for the hour you’re working on problems, but
forget it by the next day; possibly because you didn’t do enough homework.

• Take Knowledge Checks when they appear. Knowledge Checks (KCs) are the way ALEKS helps you
identify topics you are not retaining. Take each KC as if it were a QUIZ (no notebooks, calculators,
friends, other websites, etc.) AND to the BEST OF YOUR ABILITY. Topics that you need to revisit will
appear again in later modules as they are needed.

• Get the help you need immediately! Math concepts build on each other. Each new idea is based
on many previous concepts. Make sure you get the help you need immediately, as soon as you find
yourself beginning to feel lost, so that the confusion doesn’t compound itself - otherwise it can become
like a snowball, getting bigger and bigger as it roles through the snow.

If your total loss due to concept errors is fairly large, find out where you can get the help you need. A high
concept error total is cause for concern and must be addressed immediately for you to succeed.

5. Which of the following can help you when you are struggling with math?

(a) your instructor

(b) MALL tutors

(c) Reworking and asking questions about previous Focus Group assignments

(d) Completing your Notebook pages

(e) All of the above

Careless Errors
Next look at careless error point loss. Careless errors are often caused by hurrying during a test or by lack
of concentration due to test-anxiety or over-confidence. Here are some strategies that have worked for other
students:

• Do the easiest problems first. When you first start a test, look it over and note which problems will
be easiest for you. Do all those problems first to ensure you don’t leave an easy problem blank just
because it is at the end of the test. Finishing problems you find easy will help build your confidence!
Then go through the rest of the test from beginning to end.

• Work carefully and neatly. As you do each problem, try to focus on one step at a time.

• Review each problem to look for careless errors when you finish the test. Find and correct common
careless errors like arithmetic mistakes and sign errors before you turn in your test.

• Whenever possible, check your answer.

A lot of points can be gained by slowing down and being careful.

6. What are things you will do next time to prevent careless errors?

7. Now take half of your careless errors point total and add it back to your test total. What could your test
grade have been? Would it have changed the letter grade?
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Word problem with addition or subtraction of integers

Carefully read through the example on the Learning Page.

YOU TRY IT: The table gives the average high temperature for a week in January in Newfoundland.

1. How much higher was the average tempera-
ture on Sunday than on Wednesday?

Day High Temp ( °C)

Mon -2

Tues -6

Wed -7

Thurs 0

Fri 1

Sat 8

Sun 10

Least common multiple of 2 numbers

Open the Instructor Added Resource which will direct you to a video to complete the following.

Write the least common multiple of the numbers given.

a. Least common multiple of and : We write lcm
( )

= .

Explain why this is true.

b. Least common multiple of and : We write lcm
( )

.
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Prime Factorization Method

Prime factorization of :

Prime factorization of :

lcm
(
24, 18

)
= = .

Underline the factors needed for 24.
Circle the factors needed for 18.

List the Multiples Method

Multiples of :

Multiples of :

Circle the least common multiple of 24 and 18.
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EXAMPLE: Find the LCM of 10 and 8.
Listing Multiples

• List the multiples of the largest number:
Multiples of 10 are 10, 20, 30, 40, 50, 60, 70, 80, 90, ...

• Find the first multiple that is also divisible
by the smaller number: We see 40 and 80
are common multiples of 10 AND 8.

• Thus, the smallest (least) common multi-
ple of both 10 and 8 is 40.

Prime factorization

• Find the prime factorization of both num-
bers: 8 = 2× 2× 2 = 23 and 10 = 2× 5.

• The LCM must include the greatest num-
ber of each prime factor: The LCM of 10
and 8 must include 23 and 51 as factors.

• This makes the LCM 23 · 5 = 8 · 5 = 40.

YOU TRY IT:

2. Find the LCM of 18 and 14

3. Find the LCM of 13 and 4

Addition and subtraction of 3 fractions involving signs

Watch Video 6: Practice with Subtraction of Real Numbers to complete the following. NOTE: This may not be

the first video that pops up. Select this video from the list of videos on the left of the video box.

PROCEDURE Subtracting Real Numbers

If a and b are real numbers, then .

Complete ONLY part a. Subtract.

a.
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EXAMPLE:

Add or subtract.
1
8
− 3

16
−
(
−3

4

)
First we find the least common denominator.
Here the LCD is 16.

1
8
− 3

16
−
(
−3

4

)
=

2
2
· 1

8
− 3

16
− 4

4
·
(
−3

4

)
=

2
16
− 3

16
−
(
−12

16

)
=

2− 3− (−12)
16

=
2− 3 + 12

16
=

11
16

YOU TRY IT:
Add or subtract.

4.
3
7
− 2

3
− 2

21

Signed fraction division

Watch Video 9: Dividing Real Numbers Involving Fractions to complete the following.

Simplify.

a. b.

EXAMPLE: Divide −8
9
÷ 3

7
.

We multiply by the reciprocal.

−8
9
÷ 3

7
= −8

9
· 7

3

=
−8 · 7
9 · 3

= −56
27

YOU TRY IT:

5. Divide −9
2
÷ 6

7
.
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Division involving zero

We will use the following facts for division involving 0.

Fact 1: 0 by any (other than ) equals

Fact 2: Any number by is

Click on the icon to complete the following.

Understanding division with 0

Consider, for example, .

To get the answer, we ask “What number by 4 gives ?

The answer is . That is, since , we get that .

Next, consider 0÷ 4.

To get the answer, we ask “What number by gives 0?

The answer is . That is, since we get that .

Finally, consider 4÷ 0

To get the answer we ask “What number multiplied by gives ?

But there is , because any number by
gives 0.

Thus is . We get the same result with any

number, not just 4.

So, any number by is .

YOU TRY IT: Evaluate each expression.

6.
13
0

= 7.
0
13

=
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Exponents and integers: Problem type 1

Watch Video 10: Simplifying Expressions Involving Exponents to complete the following.

DEFINITION Definition of bn

Suppose that b is a and n is a

. Then,

bn =

Simplify.

a. b.

c. d.

Exponents and integers: Problem type 2

Watch the video Exercise: Evaluating an exponential expression to complete the following. NOTE: This may

not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Evaluate the expression.

YOU TRY IT: Simplify.

8. (−6)2 9. −62
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Exponents and signed fractions

If you not already done so, watch Video 10: Simplifying Expressions Involving Exponents and take notes on

the previous page under the topic Exponents and integers: Problem type 1 or watch the video again for a review.

YOU TRY IT: Simplify.

10. −(−5)3 11. (− 1
5 )

3

Order of operations with integers and exponents

We must follow the rules for order of operations. Here is that order.

1.

2.

3.

4.

YOU TRY IT: Simplify.

12. 42 − (5− 2)2 · 3 13.
12 − (−3)2 + 2

1− 22
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Properties of real numbers

Complete the following chart. For these properties, we suppose that x, y, and z are real numbers.

Properties of Addition Properties of Multiplication

Commutative

Associative

Identity

Inverse

Distributive Property

and

Multiplication Property of Zero

and

YOU TRY IT: State the Property of Real Numbers that is used.

14. 3 + (6 + x) = (3 + 6) + x

15. 4 · (y + 3) = 4 · y + 4 · 3

16. 7 · x = x · 7
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Distributive property: Integer coefficients

Watch Video 5: Practice Applying the Distributive Property to complete the following.

Apply the distributive property of multiplication over addition.

1. 2.

3. 4.

YOU TRY IT: Simplify.

17. −3(4x− 5) 18. (3x + 2)7

Using distribution with double negation and combining like terms to simplify:
Multivariate

Watch Video 9: Simplifying an Expression with Nested Parentheses to complete the following.

Simplify the expressions by clearing parentheses and combining like terms.

1. 2.
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YOU TRY IT: Simplify the expressions by clearing parentheses and combining like terms.

19. −3(4x− 5y) + 2(7x + y) 20. 2(3x + 4y)− (x + 5y)− 3x

Additive property of equality with signed fractions

Open the e-book to complete the following.

Addition and Subtraction Properties of Equality

Let a, b, and c represent real numbers.

Addition property of equality: If a = b, then .

Subtraction property of equality: If a = b, then .

EXAMPLE: Solve x + 4
5 = 2

3 for x.

Subtract 4
5 from both sides of the equation.

x + 4
5 = 2

3

x + 4
5 − 4

5 = 2
3 − 4

5

x + 0 = 10
15 − 12

15

x =
10− 12

15
x = − 2

15

Check:

− 2
15 +

4
5

?
= 2

3

− 2
15 +

12
15

?
= 2

3

10
15

?
= 2

3

�102

�153
= 2

3X

YOU TRY IT: Solve for y.

21. y− 3
5 = 2

7

Check:
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Multiplicative property of equality with signed fractions

Watch Video 3: Multiplication and Division Properties of Equality to complete the following. NOTE: This may

not be the first video that pops up. Select this video from the list of videos on the left of the video box.

PROPERTY Multiplication and Division Properties of Equality

Let a, b, and c represent real numbers. Then

• Multiplication property of equality: If a = b then

• Division property of equality: If a = b, then provided

Solve.

Check:

1.

Check:

2.

Check:

3.

YOU TRY IT:

22. Solve
4
3

y = −5 for y.

Check:
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Solving a two-step equation with integers

Watch Video 4: Solving a Linear Equation Requiring Multiple Steps and complete the following.

Solve the equation. Check:

YOU TRY IT: Solve.

23. −3y + 4 = 10 24.
x
3
− 5 = 2

Solving a two-step equation with signed fractions

Watch Video 6: Solving an Equation by First Clearing Fractions to complete the following.

Solve the equation.
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YOU TRY IT: Solve for x.

25. 2
7 x + 1

14 = 2

Solving a linear equation with several occurrences of the variable: Variables on
both sides and distribution

Watch Video 5: Guidelines for Solving a Linear Equation in One Variable and complete the following.

PROCEDURE Solving Linear Equations in One Variable

1. Simplify of the equation.

2. Collect all on of the equation.

3. Collect all on the of

the equation.

4. Use the multiplication or division property of equality to obtain a

for the variable.

5. Check the potential in the equation.

Solve the equation.
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YOU TRY IT:

26. Solve. 1− 2x− 4 = x− 5(x− 7) + 4

Watch Video 6: Solving a Linear Equation in One Variable to check your work.

Translating a sentence into a multi-step equation

Open the Instructor Added Resource which will direct you to a video to complete the following.

Translate the sentence into an equation.

Seven times the sum is .

Equation:

a.

The of a number is equal to 8.

Equation:

b.

Four is equal to 6.

Equation:

c.
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EXAMPLE:
Twice the difference of x and 3 is 18.

• “Twice” means 2 times

• “difference of x and 3” is (x− 3).

• “is 18” means = 18

The equation is 2(x− 3) = 18.

EXAMPLE:
3 is the same as 5 less than the quotient of 16 and
a number m.

• “is the same as 3” means 3 =.

• the “quotient of 16 and a number m” is

written
16
m

• “5 less than” is
16
m
− 5

The equation is 3 =
16
m
− 5 or

16
m
− 5 = 3

YOU TRY IT:

27. 7 more than the quotient of a number d and
6 is 9.

Writing a multi-step equation for a real-world situation

Watch Video 3: An Application with Consecutive Integers to complete the following. NOTE: This may not be

the first video that pops up. Select this video from the list of videos on the left of the video box.

The sum of consecutive integers is . Find the integers.

Let be

is

is third( )

The integers are .
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Writing a one-step expression for a real-world situation

Open the Instructor Added Resource which will direct you to a video to complete the following.

Write the algebraic expression for each situation.

1. Treyvan ran a race. He ran 6 miles an hour, and the race took him t hours to complete.

Write the expression for the question: How ?

Expression: miles.

2. The Super Swing golf team won $5989 playing in golf tournaments last year. The winnings were split
evenly among the p players.

Write the expression for the question: How ?

Expression: dollars.

3. Emerson made 72 chocolate chip cookies and w raisin cookies.

Write the expression for the question: How ?

Expression: .

4. Jim received a prize of x dollars from a chess tournament. The tournament cost him 50 dollars to enter.

Write the expression for the question: What were ?

Expression: dollars.

EXAMPLE:
Last week Missy spent 84 hours gaming. This
week she spent g hours gaming. Using g write
an expression for how many more hours Missy
spent gaming last week than this week.

Missy spent 84− g more hours gaming last week
than this week.

YOU TRY IT:

28. Fred watched only 2 episodes of “Game of
Thrones” and George binge watched t episodes.
Using t write an expression for how many more
episodes George watched than Fred.
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Solving a word problem with two unknowns using a linear equation

Watch the video Introduction to Problem Solving to complete the following.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Let be

is number

number − number = 24

The smaller number is .

The larger number is .
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Notes from Focus Group:
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Notes from Focus Group:
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Writing an inequality for a real-world situation

Watch Video 7: Translations Involving Inequalities to complete the following.

Write the expressions as mathematical inequalities.

1. The age, , to be eligible for a certain retirement plan is at years.

2. A doctor ecommends that a person’s daily salt intake, s, is at mg.

3. The total weight, , in an elevator must not lb.

4. The average number of calories, c, that Jen takes in each day is ,
inclusive.

Writing an inequality given a graph on the number line

Click on the to complete the following.

Below are four types of inequalities and their graphs.

x > a

x < a
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EXAMPLE:
Write an inequality for the graph shown below.

−5 −4 −3 −2 −1 0 1 2 3 4 5

The shaded regions includes all numbers to the
right of 2. The closed dot at 2 indicates that 2 is
also shaded. This represents all values greater
than or equal to 2 =⇒ x ≥ 2.

YOU TRY IT:

29. Write an inequality for the graph shown be-
low.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Graphing a linear inequality on the number line

Open the e-book to complete the following.

The set {x|x ≥ 3} represents all real numbers than or equal to 3.

This set can be illustrated graphically on the number line. Graph the inequality in two ways below.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

By convention, a circle • or a

bracket [ is used to indicate that

an endpoint is in the set.

The set {x|x > 3} represents all real numbers greater than or equal to 3.

This set can be illustrated graphically on the number line. Graph the inequality in two ways below.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

By convention, an circle ◦ or a

( is used to indicate

that an enpoint is included in the set.
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Understanding the product rule of exponents

The exponents tell us variables to .

Introduction to the product rule of exponents

Simplify x6 · x5

Method 1:

Using the definition of exponent, we can rewrite this product until we have a single power of x.

x6︷ ︸︸ ︷
x6 · x5 = · ︷ ︸︸ ︷

x · x · x · x · x =

Method 2:

The method above suggests a rule called the product rule of exponents. It says that for any integers

and any we have the following.

am · an =

So, when powers with the , we

.

Using the rule with the current problem, we get the following.

x6 · x5 = x6+5 = x11

EXAMPLE: Simplify m2 ·m ·m4

Method 1:

m2 ·m ·m4 =

m2︷ ︸︸ ︷
m ·m ·

m1︷︸︸︷
m ·

m4︷ ︸︸ ︷
m ·m ·m ·m = m7

Method 2: m2 ·m ·m4 = m2+1+4

YOU TRY IT:

83. Simplify p5 · p3 · p.
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Product rule with positive exponents: Univariate

Watch Video 1: Multiplying Monomials to complete the following.

Multiply the monomials.

1. 2. 3.

EXAMPLE:

Simplify −7w3 · 2w6.

Since multiplication is commutative we can re-
order the factors.

−7w3 · 2w6 = −7 · 2 · w3 · w6

=− 14 · w3+6

=− 14x9

YOU TRY IT:

84. Simplify 4x3 · (−2x5).

Product rule with positive exponents: Multivariate

If you have not already done so, watch Video 1: Multiplying Monomials and take notes under the previous

topic Product rule with positive exponents: Univariate.

EXAMPLE:

Simplify 4y2 · 4x5 · (−1x6y6).

Since multiplication is commutative we can re-
order the factors.

4y2 · 4x5 · (−1x6y6)

=4 · 4 · (−1) · x5 · x6 · y2 · y6

=− 16 · x5+6 · y2+6

=− 16x11y8

YOU TRY IT:

85. Simplify 3y7 · 4x3y4 · x5.
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Understanding the power rules of exponents

Carefully read through the example on the Learning Page.

Introduction to the power of a power rule of exponents

Open the Instructor Added Resource which will direct you to a video to complete the following.

Simplify .

Method 1:

Power of a power rule of exponents

For any integer n and any numbers a and b, we have the following.

(am)n =

Method 2:

YOU TRY IT:

86. Simplify (x5)6.
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Introduction to the power of a product rule of exponents

Open the Instructor Added Resource which will direct you to a video to complete the following.

Simplify .

Method 1:

Power of a product rule of exponents

For any integer n and any numbers a and b, we have the following.

(ab)n =

Method 2:

YOU TRY IT:

87. Use the power of a product rule to simplify (3p)4.
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Introduction to the quotient rule of exponents

Open the Instructor Added Resource which will direct you to a video to complete the following.

Simplify .

Quotient Rule of Exponents

am

an =

where m and n are and a is any .

When powers with the , we

the exponents.

Or using the Quotient Rule of Exponents:

YOU TRY IT: Simplify.

88.
y9

y3 89.
y3

y9
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Quotient of expressions involving exponents

Carefully read the example on the Learning Page.

EXAMPLE:

Simplify
x8y6

x3y4 .

x8y6

x3y4 =
x8

x3 ·
y6

y4

= x8−3y6−4

= x5y2

YOU TRY IT:

90. Simplify
a5b6

a7b4 .

Power rules with positive exponents: Multivariate products

Watch Video 2: Summary of Properties of Exponents to complete the following. NOTE: This may not be the

first video that pops up. Select this video from the list of videos on the left of the video box.

Name Property/Definition Example

Product bmbn = bm+n

Quotient
bm

bn = bm−n

Power of a
power

(bm)n = bmn

Power of a
product

(ab)m = ambm

Power of a
quotient

(
a
b

)m

=
am

bm

Zero
exponent

Definition: b0 = 1 for b 6= 0

Negative
exponent

Definition: b−n =

(
1
b

)n

=
1
bn for b 6= 0
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EXAMPLE: Simplify (−5x2y)3.

Using the power of a product rule we get

(−5x2y)3 = (−5)3(x2)3(y1)3

= −125x6y3

YOU TRY IT:

91. Simplify (−3xy4)2.

Power and quotient rules with positive exponents

Open the Instructor Added Resource which will direct you to a video to complete the following.

Simplify. Write your answer using only positive exponents.

1.

2.

YOU TRY IT: Simplify. Write your answer using only positive exponents.

92.
(−16xy5

8x3y

)3
93.

(5xy2)3

(−10xy3)2
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Evaluating expressions with exponents of zero

Watch the video Definition of b to the Zero Power to complete the following.

DEFINITION Definition of b0

Let b be a nonzero real number. Then b0 = 1

Simplify.

1. 2. 3.

4. 5.

Show the example used to explain why b0 = 1 for any nonzero number b.

YOU TRY IT: Simplify.

94. −30 95. (−5)0

116



Module 6

Evaluating an expression with a negative exponent: Whole number base

For any number a and any whole number , we have the following.

Rule 1: a−n =

Move to the and change to .

Rule 2:
1

a−n =

Move to the and change to .

Evaluating an expression with a negative exponent: Negative integer base

Watch Video 4: Definition of b to a Negative Exponent to complete the following.

DEFINITION Definition of b−n

Let b be a and n be
an integer. Then

b−n = =

Take the of

the and change

the to

.

Simplify. Write the answers with positive exponents.

1. 2. 3.
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EXAMPLE: Write all answers with positive ex-
ponents. Simplify 8x−2.

8x−2 =
8
1
· x−2

1

=
8
1
· 1

x2

=
8
x2

YOU TRY IT:
Simplify. Write all answers with positive expo-
nents.

96. −7(−2)−3 =

Evaluating an expression with a negative exponent: Positive fraction base

Watch the video Exercise: Simplifying Expressions with Negative Exponents to complete the following.

Simplify and write the answer with positive exponents only.

Write the answer with positive exponents.

EXAMPLE:

Simplify
(−2

3

)−4

.

(−2
3

)−4

=

(
3
−2

)4

=

(
3
−2

)(
3
−2

)(
3
−2

)(
3
−2

)
=

81
16

YOU TRY IT:

97.
(

5
−2

)−3

=
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Rewriting an algebraic expression without a negative exponent

Watch the video Rewriting an algebraic expression without a negative exponent to complete the following.

Write the following expressions using only positive exponents and simplify your answers.

1.
1

−5v−2

2.
7

3n−4

3. 2x−3

EXAMPLE:
Write all answers with positive exponents.

Simplify
1

8x−2 .

1
8x−2 =

1
8
· 1

x−2

=
1
8
· x2

1

=
x2

8

YOU TRY IT:
Simplify. Write all answers with positive expo-
nents.

98.
2
−x−8 =
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Introduction to the product rule with negative exponents

We’ll be using the following rules for exponents.

Product rule:
For any number a and any integers m and n, we have the following.

am · an =

So, when powers with the , we

the .

Negative exponent rule:

For any number a and any integer m, we have the following.

a−m =

EXAMPLE:
Use only positive exponents in your answer.

Simplify u−4 · u · u−6.

u−4 · u · u−6 = u−4+1+(−6) product rule

= u−9

=
1
u

definition of negative exponent

YOU TRY IT:
Simplify. Use only positive exponents in your
answer.

99. x−3 · x−5 · x2

Product rule with negative exponents

Open the Instructor Added Resource which will direct you to a video to complete the following.

Simplify. Use only positive exponents in your answer.
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YOU TRY IT: Simplify. Use only positive exponents in your answer.

100. 5c2d−4 · 2c3 · 6c−2d4

Quotient rule with negative exponents: Problem type 1

We will use the following rules for exponents.

Quotient rule:
For any number a and any m and n, we have the following.

am

an =

So, when powers with the base, we the

.

Negative exponent rule:

For any number a and any integer m, we have the following.

a−m =

EXAMPLE:
Use only positive exponents in your answer.

Simplify
u−4

u−6 .

u−4

u−6 = u−4−(−6) quotient rule

= u2

YOU TRY IT:
Simplify. Use only positive exponents in your
answer.

101.
x−8

x−5
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Power of a power rule with negative exponents

We’ll be using the following rules for exponents.

Power of a power rule:

For any number a and any m and n, we have the following.

(am)n =

Negative exponent rule:

For any nonzero a and any integer m, we have the following.

a−m =

EXAMPLE:
Use only positive exponents in your answer.

Simplify (a4)−3.

(a4)−3 = a4·(−3) Power of a power rule

= a−12

=
1

a12

YOU TRY IT:
Simplify.

102. (x−3)5

103. (y−6)−7

Notes from Focus Group:
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Degree and leading coefficient of a univariate polynomial

Watch Video 2: Degree, Descending Order, Leading Term, and Coefficients to complete the following.

Given the polynomial

a. List the terms of the polynomial.

b. Write the polynomial in descending order.

c. State the degree of the polynomial and the leading coefficient.

Degree: Leading coefficient:

Given the polynomial

a. Identify the degree of each term.

b. Identify the degree of the polynomial.

Simplifying a sum or difference of two univariate polynomials

Watch Video 6: Subtracting Polynomials Horizontally and Vertically to complete the following. NOTE: This

may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

DEFINITION Subtraction of Polynomials

If A and B are , then .

Subtract the polynomials
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YOU TRY IT: Add the polynomial.

104. (−3x5 + 2x3 + 5) + (7x5 − 8x3 + 9)

Multiplying a univariate polynomial by a monomial with a negative coefficient

Watch Video 2: Multiplying a Monomial by a Polynomial to complete the following. NOTE: This may not be

the first video that pops up. Select this video from the list of videos on the left of the video box.

Multiply the polynomials.

1.

2.

EXAMPLE:
Rewrite without parentheses.

−6y6(−2y2 − 5y + 3)

= (−6y6)(−2y2) + (−6y6)(−5y) + (−6y6)(3)

= 12y8 + 30y7 − 18y6

YOU TRY IT:
Multiply the polynomials.

105. −5x3(2x2 − 7x + 6)
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Multiplying a multivariate polynomial by a monomial

If you have not already done so, watch Video 2: Multiplying a Monomial by a Polynomial and take notes under

the previous topic Multiplying a univariate polynomial by a monomial with a negative coefficient.

EXAMPLE:
Rewrite without parentheses.
(14xy2 − 5x2y + x3y)(−2y)

(14xy2 − 5x2y + x3y)(−2y)

= (14xy2)(−2y)− (5x2y)(−2y) + (x3y)(−2y)

= −28xy3 + 10x2y2 − 2x3y2

YOU TRY IT:
Rewrite without parentheses.

106. −4x3y7z(2xy2z4 − 1
2 x5y)

Multiplying binomials with leading coefficients of 1

Watch Video 3: Multiplying Binomials to complete the following.

Multiply the polynomials.

YOU TRY IT: Multiply the polynomials.

107. (x− 3)(x + 5)
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Multiplying binomials with leading coefficients greater than 1

Watch Exercise: Multiplying Binomials to complete the following.

Multiply the polynomials by using the distributive property.

EXAMPLE:
Multiply the polynomials. (4x− 7)(2x + 1)

(4x− 7)(2x + 1)
= 4x(2x) + 4x(1) + (−7)(2x) + (−7)(1) Distributive Property

= 8x2 + 4x− 14x− 7

= 8x2 − 10x− 7

YOU TRY IT:
Multiply the polynomials.

108. (2x− 3)(3x + 5)

Multiplying binomials with negative coefficients

Carefully read through the example on the Learning Page.

EXAMPLE:
Multiply the polynomials (−2x + 1)(−x + 7).

(−2x + 1)(−x + 7)
= (−2x)(−x) + (−2x)(7) + 1(−x) + (1)(7)

= 2x2 − 14x− x + 7

= 2x2 − 15x + 7

YOU TRY IT: Multiply the polynomials.

109. (2x− 3)(−3x + 5)
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Multiplication involving binomials and trinomials in one variable

Watch Video 5: Multiplying a Binomial by a Trinomial to complete the following.

Multiply the polynomials.

EXAMPLE: Multiply the polynomials (2y2 − 5y− 1)(3y2 − 4y + 4) .

(2y2 − 5y− 1)(3y2 − 4y + 4)

= 2y2(3y2 − 4y + 4)− 5y(3y2 − 4y + 4)− 1(3y2 − 4y + 4) Distributive Property

= 2y2(3y2) + 2y2(−4y) + 2y2(4)− 5y(3y2)− 5y(−4y)− 5y(4)− 1(3y2)− 1(−4y)− 1(4) Distributive
Property

= 6y4 − 8y3 + 8y2 − 15y3 + 20y2 − 20y− 3y2 + 4y− 4

= 6y4 − 23y3 + 25y2 − 16y− 4 Combine like terms

YOU TRY IT: Multiply the polynomials.

110. (x− 3)(3x2 + 4x− 5)
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Multiplying conjugate binomials: Univariate

Watch Video 7: Multiplying Conjugates to complete the following. NOTE: This may not be the first video

that pops up. Select this video from the list of videos on the left of the video box.

FORMULA Special Case Products

(a + b)(a− b) = The product of conjugates results in a

.

Multiply the polynomials. Show the work.

1. 2.

EXAMPLE:
Multiply the polynomials (5− 4x)(5 + 4x).

(5− 4x)(5 + 4x) = 52 − (4x)2

= 25− 16x2

YOU TRY IT: Multiply the polynomials.

111. (3x + 4)(3x− 4)
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Squaring a binomial: Univariate

Watch Video 8: Squaring Binomials to complete the following. NOTE: This may not be the first video that

pops up. Select this video from the list of videos on the left of the video box.

FORMULA Special Case Products

• (a + b)2 =

• (a− b)2 =

The square of a binomial results in a

.

Multiply.

1.

2.

EXAMPLE: Multiply (4− 3x)2.

(4− 3x)2 = (4− 3x)(4− 3x)

= 16− 12x− 12x + 9x2

= 16− 24x + 9x2

YOU TRY IT: Multiply.

112. (3x− 2)2
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Dividing a polynomial by a monomial: Univariate

Watch Video 1: Dividing a Polynomial by a Monomial to complete the following.

Divide.

1.

2.

YOU TRY IT: Divide.

113.
3x4 − 6x3 + 9x

3x2
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Polynomial long division: Type 1

Watch the video Dividing Polynomials Using Long Division to complete the following.

Divide the polynomials by using long division. Check your answer by multiplication.

NOTE: The video uses the variable y for this ex-
ample.

Divide. (3x3 − 7x2 − 4x + 3)÷ (x− 3)

3x2 + 2x + 2
x− 3

)
3x3 − 7x2 − 4x + 3
− 3x3 + 9x2

2x2 − 4x
− 2x2 + 6x

2x + 3
− 2x + 6

9

Check: (divisor)(quotient) + remainder = dividend

The quotient is .

The remainder is .

EXAMPLE:
Use polynomial long division to evaluate:

4x2 + 15x + 30
x− 2

)
4x3 + 7x2 − 3
− 4x3 + 8x2

15x2

− 15x2 + 30x
30x − 3
− 30x + 60

57

The quotient is 4x2 + 15x + 30.

The remainder is 57.

YOU TRY IT:
Use polynomial long division to evaluate:

114. (2x3 + 3x2 + 4x + 3)÷ (x + 3)
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Polynomial long division: Type 2

Watch the video Video 3: Long Division of Polynomials to complete the following. NOTE: This may not be

the first video that pops up. Select this video from the list of videos on the left of the video box.

NOTE: The video uses the variable y for this ex-
ample.

Divide. (5x2 + 2x3 − 1)÷ (2x + 1)
x2 + 2x− 1

2x + 1
)

2x3 + 5x2 − 1
− 2x3 − x2

4x2

− 4x2 − 2x
− 2x− 1

2x + 1
0

Check: (divisor)(quotient) + remainder = dividend

The quotient is .

The remainder is .

EXAMPLE:
Use polynomial long division to evaluate:
(x4 + 3x3 + x− 5)÷ (x2 − 3)

x2 + 3x + 3
x2 − 3

)
x4 + 3x3 + x− 5

− x4 + 3x2

3x3 + 3x2 + x
− 3x3 + 9x

3x2 + 10x− 5
− 3x2 + 9

10x + 4

The quotient is x2 + 3x + 3.

The remainder is 10x + 4.

YOU TRY IT:
Use polynomial long division to evaluate:

115. (6x3 + 5x2 + 7x− 1)÷ (3x + 1)
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Greatest common factor of 2 numbers

Open the Instructor Added Resource which will direct you to a video to complete the following.

Greatest Common Factor (GCF)

The GCF is the .

Find the GCF of the following numbers.

• GCF( )

Factors of :

Factors of :

Common factors:

GCF( )=

• GCF( )

Factors of :

Factors of :

Common factors:

GCF( ) =

• GCF( )

Factors of :

Factors of :

Common factors:

GCF( ) =

YOU TRY IT: Find the GCF of the two numbers

116. GCF(35, 28)
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Greatest common factor of three univariate monomials

Watch Video 1: Identifying the Greatest Common Factor to complete the following.

Identify the greatest common factor.

The greatest common factor of a polynomial is the greatest common factor that

.

1. For the polynomial the GCF = .

List the factors of each term:

Circle the factors in each term that must be in the GCF.

Pause the video and try this yourself.

2.

List the factors of each term: Circle the factors in each term that must be in the GCF of these terms.

The GCF of this polynomial is .

Play the video and check your answer.
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EXAMPLE: Find the GCF of the terms of the
polynomial 36x7 + 90x6 − 72x4

First, find the GCF of the coefficients, 36, 90, and
72 by listing the factors of each.

36 = 2 · 2 · 3 · 3 = 22 · 32

90 = 2 · 3 · 3 · 5 = 2 · 32 · 5
72 = 2 · 2 · 2 · 3 · 3 = 23 · 32

The GCF is 2 · 3 · 3 = 2 · 32 = 18

Faster method:

• the GCF(36, 90, 72) is made up of the
smallest power of each of the common
factors.

• 36, 90, and 72 have factors of 2 and 3 in
common.

• The smallest power of 2 in any list is 1 and
the smallest power of 3 in any list is 2.

Thus, the GCF is 21 · 32 = 18.

Next, find the GCF of the variables, x7, x6, and
x4.

The common factor for each of these is x
and the smallest power of x is x4. So, the
GCF(x7, x6, x4) = x4.

The GCF of the terms of the polynomial is 18x4.

YOU TRY IT:
Find the GCF.

117. 20x5, 60x3, and 4x2

Greatest common factor of two multivariate monomials

Open the Instructor Added Resource which will direct you to a video to complete the following.

Find the GCF of the terms , , and .
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YOU TRY IT: Find the greatest common factor of the two terms.

118. 14a3b5 and 49ab7

Factoring out a monomial from a polynomial: Univariate

Watch Video 2: Factor Out the Greatest Common Factor to complete the following.

Factor out the greatest common factor (GCF).

YOU TRY IT: Factor out the GCF.

119. 14x4 − 7x3 + 21x

Factoring out a binomial from a polynomial: GCF factoring, basic

Watch the video Factoring Out a Binomial Factor to complete the following.

Factor out the greatest common factor.

What is the common factor in all three terms?
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EXAMPLE:
Factor out the GCF.

4x3(x2 + 3)− 2x(x2 + 3) + (x2 + 3)

(x2 + 3) is the factor common to all 3 terms so we
write:

4x3(x2 + 3)− 2x(x2 + 3) + (x2 + 3)

= (x2 + 3)(4x3 − 2x + 1)

YOU TRY IT:
Factor out the GCF.

120. y3(y + 2)− y(y + 2)− 9(y + 2)

Factoring a univariate polynomial by grouping: Problem type 1

Watch Video 7: Factoring by Grouping to complete the following. NOTE: This may not be the first video that

pops up. Select this video from the list of videos on the left of the video box.

Factor by grouping.

What is the first pair of terms? What is the GCF of these terms?

What is the second pair of terms? What is the GCF of these terms?

Check:
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EXAMPLE: Factor by grouping.

3x3 − 2x2 + 12x− 8

In the first pair of terms the GCF is x2.
In the second pair of terms the GCF is 4.

3x3 − 2x2 + 12x− 8 = x2(3x− 2) + 4(3x− 2)

3x− 2 is the common factor in these two terms.

3x3 − 2x2 + 12x− 8 = x2(3x− 2) + 4(3x− 2)

= (3x− 2)(x2 + 4)

YOU TRY IT: Factor by grouping.

121. y3 + 3y2 − 3y− 9

Factoring a univariate polynomial by grouping: Problem type 2

If you have not completed the Notebook entry for the previous topic, watch Video 7: Factoring by Grouping

and complete the notes now.

EXAMPLE: Factor by grouping.

12x4 − 20x3 − 3x + 5

In the first pair of terms the GCF is 4x3.

12x4 − 20x3 − 3x + 5 = 4x3(3x− 5)− 3x + 5

3x− 5 is not quite the same as the last two terms,
−3x + 5.

Factor out −1.
If we factor −1 out of −3x + 5 we get

−3x + 5 = −1(3x− 5).

Then,

12x4 − 20x3 − 3x + 5 = 4x3(3x− 5)− 1(3x− 5)

= (3x− 5)(4x3 − 1)

YOU TRY IT: Factor by grouping.

122. 2y3 − 8y2 − y + 4

Notes from Focus Group:
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Module 8-Review

To help you review for your upcoming exam, this module contains all of the topics from the modules since the
last exam. Topics that you have already mastered will not appear in your carousel.

� Complete this module before you take the ALEKS exam.

� Each exam has two parts.

• The ALEKS exam (100 pts)

◦ The ALEKS exam must be taken in the MALL.
◦ The ALEKS exam is a Comprehensive Knowledge Check.

· Your score is the number of topics you have mastered out of the number of topics you should
have mastered by this point.

◦ If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
◦ Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.

• The Written exam (25 pts)

◦ Take your written exam in class the day of your focus group.
◦ To study for the written exam:

· Rework your old Focus Group assignments.
· Rework any topics in ALEKS you may have lost on the ALEKS exam.

Score

ALEKS Exam

Written Exam
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Factoring a quadratic with leading coefficient 1

Watch Video 9: Factoring Trinomials with a Leading Coefficient of 1 to complete the following.

Factor completely.

List the factors of the 3rd term in the trinomial.

Why were the factors −3 and −7 chosen?

Check:

YOU TRY IT: Factor completely.

123. x2 − 12x + 27

Factoring a quadratic with a negative leading coefficient

Watch Video 7: Factoring a Trinomial with a Negative Leading Coefficient to complete the following.

Factor the trinomial completely by using any method. Remember to look for a common factor first.

The GCF of the terms is . Since the first term is we factor out a .

To factor into two binomials we need two numbers whose product is and sum is .
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YOU TRY IT: Factor completely.

124. −x2 + 2x + 3

Factoring out a constant before factoring a quadratic

Watch the video Exercise: Factoring a Trinomial with a Leading Coefficient of 1 and a GCF to complete the

following. NOTE: This may not be the first video that pops up. Select it from the list of videos in the video box.

Factor the trinomial completely by using any method. Remember to look for a common factor first.

The GCF of the terms is . Since the first term is we factor out a .

To factor into two binomials we need two numbers whose product is and sum is .

EXAMPLE:
Factor completely. 4x2 + 8x− 4

We factor out 4, the GCF of the trinomial to get

4x2 + 8x− 4 = 4(x2 + 2x− 1).

When we apply the trial and error or ac-method
we find that there are no factors of −1 that add
to +2.

The trinomial cannot be factored any further and
we say that x2 + 2x− 1 is prime.

4(x2 + 2x− 1) is the final answer.

YOU TRY IT:
Factor completely.

125. 6a2 + 21a− 12

126. 12x2 + 6x + 18

145



Module 9

Factoring a quadratic with leading coefficient greater than 1: Problem type 1

Watch Video 5: Factoring a Trinomial with Leading Coefficient not Equal to 1 (Trial-and-Error Method) to complete

the following.

Factor.

Factoring a quadratic with leading coefficient greater than 1: Problem type 2

Watch Video 4: Factoring a Trinomial by the Trial-and-Error Method (Leading Coefficient Not Equal to 1) to com-

plete the following.

Factor completely.

The GCF of the three terms is .

The leading terms of the binomials must be

( )( ) or ( )( )

List the factors of the last term of the trinomial.
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EXAMPLE: Factor completely 6x2 − x− 15.

Using the trial-and-error method for factoring,
we list the factors of 6 and −15.

6 − 15
1, 6 − 1, 15
2, 3 1, − 15

− 3, 5
3, − 5

• The first term of the binomials must be fac-
tors of 6.

• The last term of the binomials must be fac-
tors of −15.

• The sum of the product of the outer and the
product of the inner terms of the binomials
must add to −1x.

Since −1x is close to zero we choose factors that
are “close” together. Let’s try 2 and 3 as factors
of 6 and −3 and 5 as factors of −15. This gives
us the following options:

1. (3x− 3)(2x + 5)

2. (3x + 3)(2x− 5)

3. (3x− 5)(2x + 3)

4. (3x + 5)(2x− 3)

We discard options 1 and 2 because the binomi-
als (3x ± 3) have a common factor of 3. This is
NOT possible because the terms of 6x2 − x + 15
do not have a common factor.

Next we test #3. The sum of the product of the
outer and the product of the inner terms of the
binomials must be −1x.

Outer: −5(2x) = −10x Inner: 3x(3) = 9x
Sum: −10x + 9x = −x

This pair of binomials meets all of our needs.
Thus, the factored form of 6x2 − x + 15 is

(3x− 5)(2x + 3)

YOU TRY IT: Factor completely.

127. 2x2 − 7x− 15

147



Module 9

Factoring a perfect square trinomial with leading coefficient 1

Watch Video 10: Recognizing and Factoring a Perfect Square Trinomial to complete the following. NOTE: This

may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Factor completely.

The GCF is

This trinomial is a perfect square trinomial. Before we factor this, let’s remember how to square a binomial.

(a + b)2 =

We can rewrite 4x2 + 12x + 9 as .

This can be factored as .

Check:

EXAMPLE:
Factor completely. x2 − 14x + 49

This is a perfect square trinomial if it fits the
form:

(a)2 + a(a)(b) + (b)2

We can write

x2 − 14x + 49 = (x)2 + 2(x)(−7) + (−7)2

which fits the form of a perfect square trinomial.
Thus,

x2 − 14x + 49 = (x + (−7))2 = (x− 7)2

YOU TRY IT: Factor completely.

128. x2 − 10x + 25
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Factoring a perfect square trinomial with leading coefficient greater than 1

If you have not completed the Notebook entry for the previous topic, watch Video 10: Recognizing and

Factoring a Perfect Square Trinomial and complete the notes now.

EXAMPLE:
Factor completely. 9x2 − 24x + 16

This is a perfect square trinomial if it fits the
form:

(a)22a(a)(b) + (b)2

We can write

9x2 − 24x + 16 = (3x)2 + 2(3x)(−4) + (−4)2

which fits the form of a perfect square trinomial.
Thus,

9x2 − 24x + 16 = (3x + (−4))2 = (3x− 4)2

YOU TRY IT: Factor completely.

129. 16x2 − 20x + 25

Factoring a product of a quadratic trinomial and a monomial

Watch Video 6: Factoring a Trinomial Using the Trial-and-Error Method and when Rearranging Terms is Necessary

to complete the following. NOTE: This may not be the first video that pops up. Select it from the list of videos in
the video box.

Factor completely.

The GCF is
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EXAMPLE: Factor completely.

7x5 − 14x4 − 7x3

The GCF is 7x3. Factoring out 7x3 we have

7x5 − 14x4 − 7x3 = 7x3(x2 − 2x− 1)

Next we try to factor x2 − 2x− 1.

Using trial-and-error we look for factors of −1
that sum to −2.

−1 and 1 is the only pair of factors for −1 and
−1 + 1 6= −2.

Thus, x2 − 2x− 1 cannot be factored any further
and we say that x2 − 2x− 1 is prime.

7x3(x2 − 2x− 1) is completely factored.

YOU TRY IT:

130. Factor completely. −20x3 + 34x2 − 6x

Factoring a difference of squares in one variable: Basic

Watch Video 1: Introduction to Factoring a Difference of Squares and a Sum of Squares to complete the following.

Factor completely if possible.

1. 2.

First, we remember taking the product of

conjugates such as .

The result is the or a2− b2.

A sum of squares .

a2 + b2 is .
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EXAMPLE:
Factor completely, if possible. 100− y2

We can write 100− y2 = (10)2 − (y)2.

This shows that it is a difference of two squares
which factors as

(10− y)(10 + y)

YOU TRY IT: Factor completely, if possible

131. x2 − 49

Factoring a difference of squares in one variable: Advanced

Watch Video 2: Factoring a Difference of Squares to complete the following. NOTE: This may not be the first

video that pops up. Select this video from the list of videos on the left of the video box.

Factor completely.

1.

2.

3.

Perfect squares Perfect Squares

12 = (x1)2 =

22 = (x2)2 =

32 = (x3)2 =

42 = (x4)2 =

52 =

62 =

72 =

82 =

92 =

102 =

112 =

122 =

132 =
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Solving an equation written in factored form

Watch Video 2: Solving a Quadratic Equation Using the Zero Product Rule to complete the following.

PROPERTY Zero Product Rule

If ab = 0, then or .

Solve the equation .

EXAMPLE:
Solve the equation −2x(x− 4)(8 + x) = 0.

−2x(x− 4)(8− x) = 0

−2x = 0 or x− 4 = 0 or 8− x = 0
x = 0 or x = 4 or 8 = x

The solution is x = 0, 4, 8.

YOU TRY IT:

132. Solve the equation (x + 5)(2x− 3) = 0.

Finding the roots of a quadratic equation with leading coefficient 1

Watch Video 4: Solving a Quadratic Equation Using the Zero Product Rule to complete the following.

Solve the equation.
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EXAMPLE: Solve equation x2 − 11x = −18.

First we MUST rewrite the equation so that it is
set = 0.

x2 − 11x = −18

x2 − 11x + 18 = 0

Using the trail-and-error method of factoring, we
have

x2 − 11x + 18 = (x− 9)(x− 2)

We solve the equation as follows:

x2 − 11x + 18 = 0
(x− 9)(x− 2) = 0

x− 9 = 0 or x− 2 = 0
x = 9 or x = 2

The solution is x = 9, 2.

YOU TRY IT:

133. Solve the equation x2 + 4x− 21 = 0.

134. Solve the equation x2 + 8x = −15.

Finding the roots of a quadratic equation of the form ax2 + bx = 0

Watch Video 5: Solving a Quadratic Equation using the Zero Product Rule to complete the following.

Solve the equation.

EXAMPLE:
Solve the equation 2x2 + 8x = 0.

2x2 + 8x = 0
2x(x + 4) = 0

2x = 0 or x + 4 = 0
x = 0 or x = −4

The solution is x = 0,−4.

YOU TRY IT:

135. Solve the equation 4x2 − 20x = 0.
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Finding the roots of a quadratic equation with leading coefficient greater than 1

Open the e-book to complete the following.

Solving a Quadratic Equation by Factoring

Step 1 Write the equation in the form .

Step 2 completely.

Step 3 Apply the . That is, each factor equal to

and solve the resulting equations.

If necessary for step 2, review the topic “Factoring a quadratic with leading coefficient greater than 1: Problem
type 2.”

EXAMPLE:
Solve the equation 15x2 + 7x− 4 = 0.

15x2 + 7x− 4 = 0
(5x + 4)(3x− 1) = 0

5x + 4 = 0 or 3x− 1 = 0

x = −4
5

or x =
1
3

The solution is x = − 4
5 , 1

3 .

YOU TRY IT:

136. Solve the equation 4x2 − x− 3 = 0.

137. Solve the equation 9x2 + 3x− 2 = 0.
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Solving a quadratic equation needing simplification

Watch Video 6: Solving a Quadratic Equation Using the Zero Product Rule to complete the following.

Solve the equation.

EXAMPLE: Solve: 2x2 − x− 3 = (x + 1)2.

2x2 − x− 3 = (x + 1)2

2x2 − x− 3 = x2 + 2x + 1

x2 − 3x− 4 = 0
using the trial-and-errormethod we get

(x− 4)(x + 1) = 0
x = 4,−1

YOU TRY IT:

138. Solve: 2x2 + x = (x− 2)2 − 10
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Solving a word problem using a quadratic equation with rational roots

Watch Video 10: Solving a Geometry Application Using a Quadratic Equation (Area of a Rectangle) to complete

the following.

The area of a rectangular field is . The length is .

Find the .

YOU TRY IT:

139. The length of a rectangular photograph is 7 in more than the width. If the area is 78 in2, what are the
dimensions of the photograph?
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Writing a quadratic equation given the roots and the leading coefficient

Open the Instructor Added Resource which will direct you to a video to complete the following.

Write the quadratic equation whose roots are and and whose leading coefficient is .
Use the letter x to represent the variable.

YOU TRY IT:

140. Write the quadratic equation whose roots are −7 and 2 and whose leading coefficient is -1.
Use the letter x to represent the variable.

Notes from Focus Group:
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Notes from Focus Group:
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Evaluating a rational function: Problem type 1

Open the e-book to complete the following.

Definition of a Rational Function

A function is a if it can be written in the form . Where

p and q are and .

Watch Video 2: Evaluating a Rational Function for Selected Values in the Domain to complete the following.

Evaluate the function for the given value of x. f (x) =

1.

2.

3.

4.

The function is at .

The value 3 is in the of the function.

Write the domain of the function in set-builder notation and in interval notation.

f (x) =
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EXAMPLE:
Given f (x) =

x + 3
6− 3x

, find the following.

a. f (4)

f (4) =
4 + 3

6− 3(4)
=

7
6− 12

= −7
6

b. f (−5)

f (−5) =
−5 + 3

6− 3(−5)

=
−2

6− (−15)
= −2

21 = − 2
21

c. f (2)

f (2) =
2 + 3

6− 3(2)
=

5
0

=⇒ f (2) is un-

defined because the function is not defined
at x = 2.

YOU TRY IT:
Given g(x) =

7− 4x
7x− 4

, find the following.

141. g(1)

142. g( 4
7 )

143. g(0)

Restriction on a variable in a denominator: Quadratic

Division by is .

So the expression is undefined when its is .

We must find all values of x for which the expression is undefined.

So we set the equal to and solve.

EXAMPLE: Find all excluded values for
y + 2
y2 − 9

.

We must exclude values when y2 − 9 = 0.

y2 − 9 = 0
(y− 3)(y + 3) = 0
y− 3 = 0 or y + 3 = 0

y = 3,−3

y + 2
y2 − 9

is undefined when y = 3 or y = −3.

YOU TRY IT:

144. Find all excluded values of
u + 7

u2 − 4u + 4
.
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Simplifying a ratio of factored polynomials: Linear factors

Watch Video 5: Simplifying a Rational Expression to complete the following. NOTE: This may not be the first

video that pops up. Select this video from the list of videos on the left of the video box.

PROPERTY Fundamental Principle of Rational Expressions

Let p, q, and r represent polynomials such that q 6= 0 and r 6= 0. Then

pr
qr

= = =

Simplify the expression.

The expressions
2x− 6

x2 − 8x + 15
and

2
x− 5

are equivalent for all real numbers except

and because they make the denominator equal to .

EXAMPLE: Simplify.

5(2x + 1)(x− 4)
35(x− 4)(x− 3)

.
Divide the numerator and denominator by 5.

A51(2x + 1)(x− 4)
��357(x− 4)(x− 3)

=
(2x + 1)(x− 4)
7(x− 4)(x− 3)

Divide the numerator and denominator by x− 4.

(2x + 1)����(x− 4)1

7����(x− 4)1(x− 3)
=

2x + 1
7(x− 3)

5(2x + 1)(x− 4)
35(x− 4)(x− 3)

=
2x + 1

7(x− 3)
for all real num-

bers except x = 4 and x = 3 because they make
the denominator equal to 0.

YOU TRY IT:

145. Simplify
8(2x + 3)(x− 7)

18(2x + 3)(x + 7)
.
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Simplifying a ratio of polynomials using GCF factoring

To simplify the expression, we first the and

the .

Then, we look to .

EXAMPLE:

Simplify
18x2 − 24x
18x2 − 36x

.

We factor out the greatest common factor (GCF)
from the numerator and the denominator.

18x2 − 24x
18x2 − 36x

=
6x(3x− 4)
18x(x− 2)

Divide numerator and denominator by 6x.

��6x1(3x− 4)
��18x3(x− 2)

=
3x− 4

3(x− 2)

YOU TRY IT:

146. Simplify
24x2 + 2x
12x2 + x

.

Simplifying a ratio of linear polynomials: 1,−1, and no simplification

Watch Video 7: Recognizing a ratio of −1 to complete the following.

Recognizing a ratio of 1

5
5
= = 1

Recognizing a ratio of −1

5
−5

= = −1

Additional examples of a ratio = −1:
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EXAMPLE: Simplify.

a.
x− 4
4− x

x− 4
4− x

=
x− 4

−1(−4 + x)

=
���x− 4
−1����(x− 4)

= −1

b.
3x− 6y
2y + x

3x− 6y
2y + x

=
3(x− 2y)

2y + x

Cannot be simplified.

YOU TRY IT: Simplify.

147.
x + 2
2− x

148.
4y− 6x
3x− 2y

Simplifying a ratio of polynomials by factoring a quadratic with leading coefficient
1

If you have not completed the Notebook entry for the topic, “Simplifying a ratio of factored polynomials:

Linear factors”, watch Video 5: Simplifying a Rational Expression and complete the notes now.

EXAMPLE: Simplify
x2 + x− 6

4x− 8
.

We factor out the GCF from the numerator and
factor the denominator.

x2 + x− 6
4x− 8

=
(x + 3)����(x− 2)

4����(x− 2)

=
x + 3

4

YOU TRY IT:

149. Simplify
x2 + 3x + 2

3x + 6
.
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Simplifying a ratio of polynomials: Problem type 1

Watch Video 6: Identifying the Restricted valued for a Rational Expression and Simplifying the Expression to

complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of
videos on the left of the video box.

1. Factor the numerator and denominator.

2. Identify the restricted value(s) for x in this expression.

3. Simplify the expression.

EXAMPLE: Simplify
x2 + x− 6

8− 4x
.

We factor out the GCF from the numerator and
factor the denominator.

x2 + x− 6
8− 4x

=
(x + 3)(x− 2)

4(2− x)

=
(x + 3)(x− 2)
4(−1)(x− 2)

=
(x + 3)����(x− 2)
−4����(x− 2)

=
x + 3
−4

or
−(x + 3)

4
or − x + 3

4

YOU TRY IT:

150. Simplify
15− 5x

x2 − 9x + 18
.
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Multiplying rational expressions involving multivariate monomials

Watch Video 1: Multiplying Rational Expressions to complete the following

PROCEDURE To multiply rational expressions, multiply the and

multiply the . Then simplify if possible.

p
q
· r

s
= provided that q 6= 0 and s 6= 0

Multiply the rational expressions.

1.

2.

EXAMPLE: Multiply
4m4n2

3mn5 ·
15n
2m2 .

4m4n2

3mn5 ·
15n
2m2 =

2 · 2 ·m4 · n2 · 3 · 5 · n
3 ·m · n5 · 2 ·m2

=
2 · 2 · 3 · 5 ·m4 · n3

2 · 3 ·m3 · n5

Divide numerator and denominator by 2 and 3.

=
�2 · 2 · �3 · 5 ·m4 · n3

�2 · �3 ·m3 · n5

=
2 · 5 ·m4 · n3

m3 · n5

Divide numerator and denominator by n3.

=
2 · 5 ·m4

m3 · n2

Divide numerator and denominator by m3.

=
2 · 5 ·m

n2

=
10m
n2
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YOU TRY IT:

151. Multiply
2a
3b2 ·

9b
14a2 .

Multiplying rational expressions made up of linear expressions

Open the e-book to complete the following.

Multiplying Rational Expressions

Step 1 Factor the and of each expression.

Step 2 the numerators and multiply the .

Step 3 Reduce the of factors to 1 or −1 and

.

EXAMPLE: Multiply
3x + 6
5x− 10

· x− 2
4x + 8

.

Factor out the GCF in each term then simplify.

3x + 6
5x− 10

· x− 2
4x + 8

=
3(x + 2)
5(x− 2)

· x− 2
4(x + 2)

=
3����(x + 2)
5����(x− 2)

· �
��x− 2

4����(x + 2)
= 3

20

YOU TRY IT:

152. Multiply
−5x + 15
2x + 18

· 3x + 27
x− 3

.

Dividing rational expressions involving linear expressions

Open the e-book to complete the following.

Division Property of Rational Expressions

Let p, q, r, and s represent polynomials, such that q 6= 0 and s 6= 0. Then

p
q
÷ r

s
= =
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EXAMPLE:

Divide
8z− 16
−20

÷ 3z− 6
40

.

8z− 16
−20

÷ 3z− 6
40

=
8z− 16
−20

· 40
3z− 6

=
8(z− 2)
−1 · 20

· 2 · 20
2(z− 2)

=
8����(z− 2)
−1 ·��20

· �2 ·��20
�2����(z− 2)

= −8

YOU TRY IT:

153. Divide
4x

8x + 4
÷ 6

14x + 7
.

Dividing rational expressions involving quadratics with leading coefficients of 1

Watch Video 4: Dividing Rational Expressions to complete the following.

Divide and simplify.

EXAMPLE:

Divide
t2 − 49

t2 + 4t− 21
÷ t2 − 2t− 35

t2 + 8t + 15
.

t2 − 49
t2 + 4t− 21

÷ t2 − 2t− 35
t2 + 8t + 15

=
t2 − 49

t2 + 4t− 21
· t2 + 8t + 15

t2 − 2t− 35

=
(t− 7)(t + 7)
(t + 7)(t− 3)

· (t + 3)(t + 5)
(t− 7)(t + 5)

=
���

�(t− 7)����(t + 7)
���

�(t + 7)(t− 3)
· (t + 3)����(t + 5)
���

�(t− 7)����(t + 5)

=
t + 3
t− 3

YOU TRY IT:

154. Divide
x2 − 25

x2 + x− 20
÷ x2 − 2x− 15

x2 + 7x + 12
.
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Introduction to the LCM of two monomials

Open the Instructor Added Resource which will direct you to a video to complete the following.

Find the LCM of and .

Multiples of :

Multiples of :

LCM( ) = .

The LCM of and is since

The LCM of and is since

LCM( ) =

YOU TRY IT:

155. Find the LCM of 15xy and 20x2y3z.

Writing equivalent rational expressions with monomial denominators

Watch Video 4: Writing Equivalent Fractions to complete the following.

Convert each expression to an equivalent expression with the indicated denominator.

1. 2.
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EXAMPLE:
Convert each expression to an equivalent expres-
sion with the indicated denominator.

3x
5y2 =

20xy5

To obtain the fraction equivalent to
3x
5y2 with the

denominator 20xy5 we multiply by a “form of 1”.

Since we need to multiply 5y2 by 4xy3 to get
20xy5 our “form of 1” is

4xy3

4xy3

The equivalent fraction is

3x
5y2 ·

4xy3

4xy3 =
12x2y3

20xy5

YOU TRY IT:
Convert each expression to an equivalent expres-
sion with the indicated denominator.

156.
2w
7

=
14w5

Finding the LCD of rational expression with linear denominators: Relatively prime

Watch Video 3: Determining the Least Common Denominator Between Two Rational Expressions to complete the

following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left
of the video box.

PROCEDURE Determining the LCD of Two or More Expressions

•

• The LCD is the

from the , where each factor is raised to its .

Determine the LCD for each group of fractions.

1. 2.
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EXAMPLE:
Find the LCD of

8
3x + 6

and
x

4x− 8
.

We begin by factoring the denominators.
8

3x + 6
=

8
3(x + 2)

x
4x− 8

=
x

4(x− 2)

The denominators do not have any common
factors. We call these denominators relatively
prime.

The LEAST COMMON denominator of rela-
tively prime denominators is the product of all
of the factors in the denominators.

The LCD is
3 · (x + 2) · 4 · (x− 2) = 12(x + 2)(x− 2).

YOU TRY IT:

157. Find the LCD of
5

6x− 16
and

7
3x

.

Adding rational expressions with common denominators and GCF factoring

Open the e-book to complete the following.

1. Addition and Subtraction of Rational Expressions with Like Denominators

To add or subtract rational expressions, the expressions must have the

. As with fractions, we or rational

expressions with the denominator by the terms in the

and then writing the result the

. Then, if possible, we the expression to

.

Addition and Subtraction Properties of Rational Expressions

Let p, q, and r represent polynomials where q 6= 0. Then

1.
p
q
+

r
q
= 2.

p
q
− r

q
=
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EXAMPLE:

Simplify
x2

x− 4
− x + 12

x− 4
.

x2

x− 4
− x + 12

x− 4
=

x2 − (x + 12)
x− 4

=
x2 − x− 12

x− 4

=
��

��(x− 4)(x + 3)
���x− 4

= x + 3

YOU TRY IT:

158. Simplify
6x

3x− 1
+

5x
3x− 1

.

Adding rational expressions with linear denominators without common factors:
Basic

Watch Video 7: Subtracting Rational Expressions to complete the following. NOTE: This video may not

pop-up. Select it from the list of videos.

Subtract.
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EXAMPLE:

Simplify
3

x + 2
+

5
x + 1

.

3
x + 2

+
5

x + 1
=

3
x + 2

· x + 1
x + 1

+
5

x + 1
· x + 2

x + 2

=
3(x + 1)

(x + 2)(x + 1)
+

5(x + 2)
(x + 1)(x + 2)

=
3(x + 1) + 5(x + 2)

(x + 1)(x + 2)

=
3x + 3 + 5x + 10
(x + 1)(x + 2)

=
8x + 13

(x + 1)(x + 2)

YOU TRY IT:

159. Simplify − 2
x− 1

+
3

x + 4
.

Adding rational expressions with linear denominators with common factors: Basic

To do the addition, the must be the same.

So first, we find the .

Watch the video Exercise: Subtracting Rational Expressions with Unlike Denominators 1 to complete the fol-

lowing.

Add or subtract as indicated.
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Adding rational expressions with denominators axn and bxm

Open the e-book to complete the following.

Adding and Subtracting Rational Expressions

Step 1 Factor the of each rational expression.

Step 2 Identify the .

Step 3 Rewrite each rational expression as an with
the LCD as its denominator.

Step 4 Add or subtract the , and write the result over the

denominator.

Step 5 Simplify, if possible.

Watch Video 5: Adding Rational Expressions to complete the following.

Add.

EXAMPLE: Add.
6

7x
+

4
x3

The LCD is 7x3

6
7x

+
4
x3 =

6
7x
· x2

x2 +
4
x3 ·

7
7

=
6x2

7x3 +
28
7x3

=
6x2 + 28

7x3

YOU TRY IT: Add.

160.
5

6b4 +
7
4b
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Complex fraction without variables: Problem type 1

Watch Video 2: Simplifying a Complex Fraction using Method I to complete the following.

Simplify the complex fraction.

EXAMPLE: Simplify
15
8
5
2

.

A fraction bar means division so we can write
the complex fraction as

15
8
5
2

=
15
8
÷ 5

2

When we divide by a fraction we multiply by the
reciprocal of the divisor.

15
8
÷ 5

2
=

15
8
· 2

5

Simplifying,�
�153

�84
· �2

1

�51
=

3
4

YOU TRY IT:

161. Simplify
9
4
3
10
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Complex fraction without variables: Problem type 2

Watch Video 2: Simplifying a Complex Fraction using Method I to complete the following.

PROCEDURE Simplifying a Complex Fraction (Method I)

1. the fractions in the .

the fractions in the .

2. Divide the by the .

3. , if possible.

Simplify the complex fraction by using Method I.

Watch Video 4: Simplifying a Complex Fraction using Method II to complete the following.

PROCEDURE Simplifying a Complex Fraction (Method II)

1. and of the complex

fraction by the within the expression.

2. Apply the and

and .

3. , if possible.

Continued on the next page
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Simplify the complex fraction by using Method II.

Notes from Focus Group:
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Square root of a rational perfect square

Watch the video Video 11: Evaluating Square Roots to complete the following.

Finding the of a number is essentially like

.

Simplify the expressions.

1.

2.

3.

Simplify, if possible.

4.

5.

EXAMPLE: Simplify, if possible.√
54
24

54 and 24 are not perfect squares so first try to
simplify the fraction in the radical.√

54
24

=

√
9 · 6
4 · 6

We can divide 6 out of the numerator and de-
nominator so that,√

9 · �6
4 · �6

=

√
9
4

Since
( 3

2

)2
= 9

4 √
9
4
=

3
2

YOU TRY IT: Simplify, if possible.

162.
√

49 =

163. −
√

75
48

=

164.
√
−64 =
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Square root of a perfect square monomial

To find this number, we can use the following property of square roots.

√
AB = for any numbers A and B

Carefully read through the example on the Learning Page.

EXAMPLE: Simplify the following.
√

81x10

We can write
√

81x10 =

√
92 ·

(
x5
)2

Which is equal to 9x5. Thus,
√

81x10 = 9x5

YOU TRY IT: Simplify the following.

165.
√

a14 =

166.
√

49y8 =

167.
√

16x6 =

Complex fraction: GCF factoring

Watch the video Exercise: Simplifying Complex Fractions Using Method I to complete the following.

Simplify the complex fraction by using Method I.

EXAMPLE: Simplify.
3x

x−5
7

4x−20

=
3x

x− 5
· 4x− 20

7

=
3x

x− 5
· 4(x− 5)

7

=
3x
���x− 5

· 4����(x− 5)
7

=
12x

7

YOU TRY IT: Simplify .

168.
7a

a+3
1

4a+12

.
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Complex fraction made of sums involving rational expressions: Problem type 1

Watch Video 3: Simplifying a Complex Fraction Using Method I to complete the following. NOTE: This may

not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Simplify the complex fraction by using Method I.

EXAMPLE: Simplify
1− 4

3x
4

3x + 1
.

Using Method II,(
1− 4

3x

)
·3x(

4
3x + 1

)
·3x

=
1 · 3x− 4

3x · 3x
4

3x · 3x + 1 · 3x

=
3x− 4
4 + 3x

YOU TRY IT:
Simplify.

169.
1

5x − 3

2 + 1
5x

.
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Solving a rational equation that simplifies to linear: Denominators a, x, or ax

Open the e-book to complete the following.

Solving a Rational Equation

1. Factor the of all rational expressions. Identify any values of the variable for

which any expression is .

2. Identify the of all terms in the equation.

3. both sides of the equation by the .

4. Solve the .

5. Check the potential solutions in the original equation. Note that

for which the equation is cannot be a solution to the equation.

Watch Video 2: Solving a Rational Equation to complete the following.

Solve the equation.
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EXAMPLE:

Solve
1
2
+

9
x
=

2
3

.

1
2
+

9
x
=

2
3

6x
1

(
1
2
+

9
x

)
=

6x
1

2
3

6x
1
· 1

2
+

6x
1
· 9

x
=

6x
1
· 2

3
3x + 54 = 4x

54 = x

YOU TRY IT:

170. Solve
3
4
− 4

x
=

5
6

.

Solving a rational equation that simplifies to linear: Denominators ax and bx

Watch the video Exercise: Solving a Rational Equation 1 to complete the following.

Solve the rational equation.
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EXAMPLE:
Solve

1
2
− 3

2p
=

p− 4
p

.

1
2
− 3

2p
=

p− 4
p

Multiply both sides of the equation by 2p

2p
(

1
2
− 3

2p

)
= 2p

(
p− 4

p

)
2p
(

1
2

)
− 2p

(
3

2p

)
= 2��p

(
p− 4

��p

)
p− 3 = 2(p− 4)
p− 3 = 2p− 8
−p = −5

p = 5

YOU TRY IT:

171. Solve
2

3y
+

1
4
=

11
6y
− 1

3
.

Solving a rational equation that simplifies to linear: Denominator x + a

Watch the video Exercise: Solving a Rational Equation 3 to complete the following. NOTE: This may not be

the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the rational equation. x 6=
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EXAMPLE:

Solve
3

p− 7
= −2.

3
p− 7

= −2

Multiply both sides of the equation by the LCD p− 7

(p− 7)
(

3
p− 7

)
= (p− 7)(−2)

���
�(p− 7)
(

3

��
�p− 7

)
= (p− 7)(−2)

3 = −2p + 14
2p = 11

p =
11
2

YOU TRY IT:

172. Solve 5 =
4

2y + 1
.

Solving a rational equation that simplifies to quadratic: Denominator x

Watch Video 4: Solving a Rational Equation to complete the following.

Solve the equation. .
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EXAMPLE: Solve 2 +
6
a
= a + 7.

Multiply both sides of the equation by a

a
(

2 +
6
a

)
= a(a + 7)

2a + 6 = a2 + 7a

a2 + 5a− 6 = 0
(a− 1)(a + 6) = 0

a = 1,−6

YOU TRY IT:

173. Solve
3
x2 = 2 +

1
x

.

Solving a rational equation that simplifies to quadratic: Proportional form, basic

Watch the video Exercise: Solving a Proportion to complete the following.

Solve the proportion.

EXAMPLE: Solve
1

b− 5
=

b− 3
3

.

Multiply both sides of the equation by the
LCD 3(b− 5).

3(b− 5) · 1
b− 5

= 3(b− 5) · b− 3
3

Divide out common factors in the numerators and denominators

3����(b− 5) · 1
���b− 5

= �3(b− 5) · b− 3
�3

(b− 5)(b− 3) = 1 · 3
b2 − 3b− 5b + 15− 3 = 0

b2 − 8b + 12 = 0
(b− 6)(b− 2) = 0

b = 6 or 2

YOU TRY IT:

174. Solve
4

y + 12
=

y
8y + 11

.
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Solving for a variable in terms of other variables in a rational equation: Problem
type 1

Watch Video 6: Solving a Formula for a Different Variable to complete the following.

Solve for V.

Solving a proportion of the form (x+a)
b = c

d

Watch Video 1: Introduction to Proportions to complete the following.

Solve the proportion.

DEFINITION The ratio of a to b can be written as
a
b

where b 6= 0.

An equation that is called a .
For example:

a
b
= for and
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EXAMPLE:
Solve

3
x + 4

= − 5
x− 1

for x.

Multiply both sides of the equation by the LCD
(x + 4)(x− 1)

3
x + 4

· (x + 4)(x− 1) =
−5

x− 1
· (x + 4)(x− 1)

Divide out common factors in the numerators and denominators
3

���x + 4
·����(x + 4)(x− 1) =

−5
���x− 1

· (x + 4)����(x− 1)

3(x− 1) = −5(x + 4)
3x− 3 = −5x− 20

8x = −17

x = −17
8

YOU TRY IT:

175. Solve
2

x− 1
=

1
x + 6

for x.

Word problem on proportions: Problem type 1

Watch Video 2: An Application of Rational Equations: Solving a Proportion to complete the following.

Franco drove on of gas in his Honda hybrid. How many gallons

will he need for a trip across country?
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Word problem on proportions: Problem type 2

Watch Video 3: An Application of Rational Equations: Solving a Proportion to complete the following.

The ratio of female to male students taking algebra is If the total number of students

taking the algebra class is , how many students are ?

Finding all square roots of a number

Watch the video Video 1: Definition of a Square Root to complete the following.

b is a square root of a if .

Determine the square roots of the given real number.

1. 2. 3.
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Estimating a square root

Complete the following table of square roots.

Cube root of an integer

Watch the video Evaluating Roots to complete the following.

YOU TRY IT: Evaluate the roots without using a calculator. Identify those that are not real numbers.

a) b) c)

d) e) f)

YOU TRY IT: Simplify the following.

176. 3
√

125 = 177. 3
√
−8 = 178. − 3

√
216 =
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Introduction to simplifying a radical expression with an even exponent

Watch the video Simplifying the nth Root of Perfect nth Powers to complete the following.

Simplify the expressions. Assume that all variables represent positive real numbers.

After completing the table to the right pause the video to try simplifying the expressions on your own.

1.

2.

3.

4.

Continue the video to check your answers.

Perfect squares Perfect Cubes

(x1)2 = (x1)3 =

(x2)2 = (x2)3 =

(x3)2 = (x3)3 =

(x4)2 = (x4)3 =

Table for a square root function

The table gives x and asks that we find the corresponding

.

Compete the table below from the Learning Page.

x Evaluate f (x) = f (x)
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Word problem involving multiple rates

Watch the video Exercise: Solving a Rational Equation Application Involving Work to complete the following.

Karen can wax her SUV in . Clarann can wax the same SUV in , how long will it take
them to wax the SUV together?

Work Rate Time
Portion of Job
Completed

Karen

Clarann

( )
+

( )
=

( )

+ =
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Graphing a square root function: Problem type 1

Watch the video Video 11: Graphing a Radical Function to complete the following.

Given , the domain is .

Graph f by making a table of points.

x f (x)

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

Notes from Focus Group:
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Module 12-Review

To help you review for your upcoming exam, this module contains all of the topics from the modules since the
last exam. Topics that you have already mastered will not appear in your carousel.

� Complete this module before you take the ALEKS exam.

� Each exam has two parts.

• The ALEKS exam (100 pts)

◦ The ALEKS exam must be taken in the MALL.
◦ The ALEKS exam is a Comprehensive Knowledge Check.

· Your score is the number of topics you have mastered out of the number of topics you should
have mastered by this point.

◦ If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
◦ Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.

• The Written exam (25 pts)

◦ Take your written exam in class the day of your focus group.
◦ To study for the written exam:

· Rework your old Focus Group assignments.
· Rework any topics in ALEKS you may have lost on the ALEKS exam.

Score

ALEKS Exam

Written Exam
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Finding nth roots of perfect nth powers with signs

Open the e-book to complete the following.

Definition of an nth Root

b is an nth root of a if .

Example: 2 is a root of because .

Example: 2 is a root of because .

Example: 2 is a root of because .

Evaluating n
√

a

1. If is an integer and , then is the

principal ( ) nth root of a.

Example:

2. If is an integer then is the .

Example:

3. If is an , then .

EXAMPLE:

Evaluate the following.

− 4
√

81

Since 34 = 81

− 4
√

81 = − 4
√

34 = −3

YOU TRY IT:

Simplify the following.

179. 4
√
−16 =

180. 3
√
−125 =
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Finding the nth root of perfect nth power monomial

Watch the video Simplifying the nth Root of Perfect nth Powers to complete the following.

Simplify the expressions. Assume that all variables represent positive real numbers.

After completing the table to the right pause the video to try simplifying the expressions on your own.

1.

2.

3.

4.

Continue the video to check your answers.

Perfect squares Perfect Cubes

(x1)2 = (x1)3 =

(x2)2 = (x2)3 =

(x3)2 = (x3)3 =

(x4)2 = (x4)3 =

EXAMPLE: Simplify the following.

4
√

625p12

Since we are finding the 4th root we want to write
each factor as an equivalent power of 4.

We can write 625 = 54 and p12 = (p3)4.

4
√

625p12 = 4
√

54(p3)4 = 5p3

YOU TRY IT:
Simplify the following.

181. 3
√

27x15 =

182. 5
√

32x10 =
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Converting between radical form and exponent form

Watch the video Video 3: Converting Between Radical Notation and Rational Exponents to complete the follow-
ing.

Convert each expression to radical notation. Assume all variables represent positive real numbers.

1. 2. 3.

Convert each expression to an expression with rational exponents. Assume all variables represent positive
real numbers.

4.

6.

5.

7.

YOU TRY IT: Write as an exponential expression.

183. 5
√

x2 = 184.
√

y3 =

Write as a radical expression.

185. x5/3 = 186. y2/7 =
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Rational exponents: Unit fraction exponents and whole number bases

Watch the video Definition of “a” to the 1/n Power to complete the following.

DEFINITION Let a be a real number, and let n > 1 be an integer. Then,

a1/n = provided that is a real number.

Write each expression in radical notation and simplify.

1. 2. 3.

4. 5. 6.

Rational exponents: Unit fraction exponents and bases involving signs

If you have not already done so, watch the video Definition of “a” to the 1/n Power and take notes under the

previous topic Rational exponents: Unit fraction exponents and whole number bases.

YOU TRY IT: Simplify the following.

187. −811/4 = 188. (−64)1/3 =
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Rational exponents: Non-unit fraction exponent with a whole number base

Watch Video 2: Definition of ”a” to the m/n Power to complete the following.

DEFINITION Let a be a real number, and let m and n be positive integers that share no common
factors other than 1. Then,

1. a1/n = provided that is real number.

2. am/n = provided that is a real number.

Write the expression in radical notation and simplify.

1.

3.

2.

4.

YOU TRY IT: Simplify the following.

189. 272/3 = 190. (−81)3/4 =
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Simplifying the square root of a whole number less than 100

Watch Video 5: Simplifying a Radical with a Numerical Factor in the Radicand to complete the following.

Simplify the expression .

Another way to simplify this is to find the largest perfect square that is a factor of our radicand.

Simplifying the square root of a whole number greater than 100

One of the properties of square roots is the product property.

√
a× b = for any nonnegative numbers a and b

If you have not already done so, watch Video 5: Simplifying a Radical with a Numerical Factor in the Radicand

and take notes under the previous topic.
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Rational exponents: Product rule

Watch Video 4: Properties of Rational Exponents to complete the following.

PROPERTY Let a and b be nonzero real numbers. Let m and n be rational numbers such that am, an, and
bm are real numbers.

Description Property Example

Multiplying like bases aman =

Dividing like bases
am

an =
53/4

51/2 =

Power rule (am)n =

Power of a Product (ab)m = (c1/3d1/2)6 =

Power of a Quotient
(

a
b

)m

=

Assume that all variables represent positive real numbers.

EXAMPLE:
Use only positive exponents in your answer.

Simplify u
1
4 · u− 1

6 .

u
1
4 · u− 1

6 = u
1
4+(− 1

6 ) product rule

= u
3
12− 2

12 get common denominator

= u
1
12

YOU TRY IT:
Simplify. Use only positive exponents in your
answer.

191. x−1 · x 1
5
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Rational exponents: Power of a power rule

If you have not watched Video 4: Properties of Rational Exponents under the previous topic Rational expo-

nents: Product rule, do so now.

Simplify. Assume that all variables represent positive real numbers and use only positive exponents in
your answer.

EXAMPLE:
(

u
1
4

)5

(
u

1
4

)5

= u
1
4 ·5 power of a power rule

= u
5
4 Simplify

YOU TRY IT:

192.
(

x
2
3

) 1
4

Simplifying a radical expression with an even exponent

Watch Video 7: Simplifying Radicals by using an Alternative Method to complete the following. NOTE: This

may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Simplify the expressions. Assume that x, y and z represent positive real numbers.

1.

2.

Assume that all variables represent positive real numbers.

EXAMPLE:
Simplify

√
75y16.

√
75y16 =

√
52 · 3y16 because 75 = 25 · 3

= 5
√

3y16 because
√

25 = 5

= 5y8
√

3 the power divided by the index
is 8 with no remainder

YOU TRY IT: Simplify the following.

193.
√

24x8 =

194.
√

18x10 =
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Simplifying a radical expression with an odd exponent

Watch Video 3: Simplifying Radicals to complete the following. NOTE: This may not be the first video that

pops up. Select this video from the list of videos on the left of the video box.

Simplify the expressions. Assume that x and y are positive real numbers.

a) b) c)

d) e)

Recall: must be raised to a .

Assume that all variables represent positive real numbers.

EXAMPLE:
Simplify

√
50p11.

√
50p11 =

√
52 · 2 · p11 because 50 = 25 · 2

= 5
√

2p11 because
√

52 = 5

= 5p5√2p the power divided by the index
is 5 with remainder of 1

YOU TRY IT: Simplify the following.

195.
√

20x11 =

196.
√

27x15
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Simplifying a higher root of a whole number

Open the e-book to complete the following.

Simplified Form of a Radical

Consider any radical expression where the radicand is written as a product of prime factors. The
expression is in simplified form if all the following conditions are met:

1. The radicand has raised to a power greater than or equal to

the .

2. The radicand does not contain a .

3. There are no in the of a fraction.

Assume that all variables represent positive real numbers.

EXAMPLE: Simplify 4
√

243.

We can write 243 = 35 = 34 · 3
4
√

243 =
4
√

34 · 3
=

4
√

34 · 4
√

3

= 3 4
√

3

YOU TRY IT: Simplify the following.

197. 5
√

128 =

Introduction to square root addition or subtraction

Watch the video Adding or Subtracting Radical Expressions 1 to complete the following.

Add or subtract the radical expression, if possible.
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YOU TRY IT: Simplify the following.

198. 7
√

5− 4
√

5 = 199. 8
√

3 + 2
√

3 =

Square root addition or subtraction

Open the e-book to complete the following.

Definition of Like Radicals

Two radical terms are called like radicals if they have the and

.

Avoiding Mistakes

The process of adding like radicals with the distributive property is similar to adding

. The end result is that the

are added and the radical factor is .

√
3 +
√

3 = 1
√

3 + 1
√

3 =

Be careful: True or False:
√

3 +
√

3 =
√

6

True or False:
√

x +
√

y =
√

x + y

EXAMPLE: Simplify 3
√

12 + 2
√

48.

3
√

12 + 2
√

48

= 3
√

4 · 3 + 2
√

16 · 3 Factor out the perfect
square in each term

= 3 · 2
√

3 + 2 · 4
√

3 Take the square root of
each perfect square

= 6
√

3 + 8
√

3 Simplify

= (6 + 8)
√

3 Distributive property

= 14
√

3

YOU TRY IT: Simplify the following.

200. 3
√

40−
√

8 + 2
√

50 =
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Introduction to simplifying a sum or difference of radical expressions: Univariate

Watch Video 3: Adding and Subtracting Radicals to complete the following.

Add or subtract as indicated.

EXAMPLE:
Simplify

√
24x−

√
54x

√
24x−

√
54x

=
√

4 · 6x−
√

9 · 6x Factor out the perfect
square in each term

= 2
√

6x− 3
√

6x Take the square root of each
perfect square

= (2− 3)
√

6x Distributive property

= −
√

6x

YOU TRY IT: Simplify the following.

201.
√

75w−
√

27w =

Simplifying a product involving square roots using the distributive property: Basic

Watch the video Multiplying Radical Expressions 2 to complete the following.

Multiply the radical expressions.

209



Module 13

EXAMPLE: Multiply 3
√

5(2
√

5 + 4)

3
√

5(2
√

5 + 4)

= 3
√

5 · 2
√

5 + 3
√

5 · 4 Use the distributive
property

= 3 · 2
√

5 ·
√

5 + 4 · 3
√

5 Commutative property
of multiplication

= 6
√

5 · 5 + 12
√

5 Use the property
√

A ·
√

B =
√

A · B
= 6 · 5 + 12

√
5 Because

√
5 · 5 = 5

= 30 + 12
√

5

YOU TRY IT: Simplify the following.

202. 2
√

6(
√

3−
√

7) =

Square root multiplication: Basic

Watch Video 1: Introduction to the Multiplication of Radicals to complete the following.

PROPERTY Multiplication Property of Radicals

Let a and b represent real numbers such that n
√

a and n
√

b are real numbers.

n
√

a · n
√

b =

Multiply. Assume that x represents a positive real number.

1.

2.

3.
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Square root multiplication: Advanced

Watch Video 2: Multiplying Radical Expressions to complete the following.

Multiply and simplify the result. Assume that all variables represent positive real numbers.

1.

2.

EXAMPLE: Simplify 2
√

20 ·
√

54

2
√

20 ·
√

54

= 2
√

20 · 54 Use the property
√

A
√

B =
√

AB
for positive A and B

= 2
√

4 · 5 · 9 · 6 Factor out the perfect squares

= 2
√

4 · 9 · 5 · 6
= 2 · 2 · 3

√
30 Take the square root of the

perfect squares

= 12
√

30

YOU TRY IT: Simplify the following.

203. 3
√

24 · 2
√

18 =
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Simplifying a product of radical expressions: Univariate

Take notes from the Learning Page.

Simplify . Assume that all variables represent positive real numbers.

= Using the property for positive A and B

= Multiplying under the square root sign

= Factoring out the

= Using the property for positive A and B

=

EXAMPLE: Simplify
√

5b ·
√

15b2

√
5b ·
√

15b2

=
√

5b · 15b2 Use the property
√

A
√

B =
√

AB
for positive A and B

=
√

75b3 Multiply under the square root sign

=
√

25b2 · 5b Factor out the perfect square

= 5b
√

5b Take the square root of the
perfect square

YOU TRY IT: Simplify the following.

204.
√

12x5 · 2
√

10x =

Notes from Focus Group:
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Notes from Focus Group:
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Simplifying a quotient of square roots

We’ll use the following property of square roots to simplify our expression.

Quotient property of square roots

= for any nonnegative numbers a and b, where b 6= 0

Carefully read through the example on the Learning Page and take notes.

EXAMPLE: Simplify

√
2
10√

2
10

=

√
1
5

Divide under the square root sign

=

√
1√
5

Use quotient property of square roots

=
1√
5

Simplify the square root:
√

1 = 1

A simplified radical fraction does NOT have a
radical in the denominator.

We rationalize the denominator by multiplying

by

√
5√
5

, which equals 1.

1√
5
·
√

5√
5
=

√
5

5
=⇒

√
2

10
=

√
5

5

YOU TRY IT: Simplify the following.

205.

√
9
7
=

215
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Introduction to solving a radical equation

Watch Video 1: Introduction to Radical Equations to complete the following.

Solve the equations.

1. 2.

Avoiding Mistakes

When an equation is raised to an , it is necessary to

in the original equation.

Show why this is important.

YOU TRY IT: Solve the following.

206.
√

y = −7 207.
√

x = 8
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Solving a radical equation that simplifies to a linear equation: One radical, basic

Watch Video 2: Procedure to Solve a Radical Equation to complete the following.

PROCEDURE Solving Radical Equations

1. . If an equation has more than one radical, choose one of the
radicals to isolate.

2.

3. . If the equation still has a radical, repeat steps 1 and 2.

4.

Solve the equation.

Watch Video 4: Solving a Radical Equation with No Solution to complete the following. NOTE: This may not

be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve
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Solving a radical equation that simplifies to a linear equation: One radical, ad-
vanced

Watch the video Exercise: Solving an Equation Containing One Radical 1 to complete the following. NOTE:

This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the equation.

EXAMPLE:
Solve

√
y + 8 + 2 = 4√

y + 8 + 2 = 4√
y + 8 = 2

(
√

y + 8)2 = (2)2

y + 8 = 4
y = −4

Check the solution.
√
−4 + 8 + 2 ?

= 4
√

4 + 2 ?
= 4

4 = 4

y = −4 is a solution.

YOU TRY IT:

208. Solve
√

2x + 29 + 3 = 1
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Solving a radical equation that simplifies to a quadratic equation: One radical, basic

Watch the video Solving a Radical Equation in which One Potential Solution Does not Check to complete the

following.

Solve the equation.

EXAMPLE: Solve for y.√
y + 18 + 2 = y√

y + 18 = y− 2

(
√

y + 18)2 = (y− 2)2

y + 18 = y2 − 4y + 4

0 = y2 − 5y− 14
0 = (y− 7)(y + 2)
y = −2, 7

Check the solutions.
√
−2 + 18 + 2 ?

= −2
√

7 + 18 + 2 ?
= 7

√
16 + 2 ?

= −2
√

25 + 2 ?
= 7

4 + 2 ?
= −2 5 + 2 ?

= 7
6 6= −2 7 = 7

y = 7 is a solution.

YOU TRY IT: Solve for x.

209.
√

2x + 29 + 3 = x
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Algebraic symbol manipulation with radicals

Watch the video Exercise: Solving an Equation Containing One Radical 3 to complete the following.

Assume all variables represent positive real numbers.

Solve for :

YOU TRY IT: Solve for V.

210. b =

√
3V
h
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Word problem involving radical equations: Advanced

Watch the video Exercise: Solving an Equation Containing One Radical 7 to complete the following.

If an object is dropped from an , its velocity at impact with the ground

is given by where g is the acceleration due to gravity and h is the initial height.

a. Find the initial height (in feet) of an object if its ft/sec.

(Assume that the acceleration due to gravity is .)

b. Find the initial height (in meters) of an object if its m/sec.

(Assume that the acceleration due to gravity is . Round to the nearest tenth of a
meter.)
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Using i to rewrite square roots of negative numbers

Open the e-book to complete the following.

Definition of the Imaginary Number i

i =

Note: From the definition of i, it follows that .

Definition of
√
−b for b > 0

Let b be a positive real number. Then

EXAMPLE: Simplify
√
−50.

We use the letter i for
√
−1.

For any positive real number a, we have the
property

√
−a = i ·

√
a.

√
−50 = i

√
25 · 2 = 5i ·

√
2

YOU TRY IT: Simplify.

211.
√
−24

212.
√
−15

Solving an equation of the form x2 = a using the square root property

Watch Video 1: Introduction to the Square Root Property to complete the following.

Solve the equation. This video shows two ways to solve the equation. Make sure to write down BOTH ways.

PROPERTY The Square Root Property

For any real number k, if x2 = k, then .
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All variables represent real numbers.

EXAMPLE:
Solve x2 = −100.
This equation has no real number solution.

There is no value for x that can be squared to get
a negative answer.

YOU TRY IT: Solve.

213. x2 = 36

214. x2 = 5

Solving a quadratic equation using the square root property: Exact answers, basic

Watch Video 2: Solving Quadratic Equations Using the Square Root Property to complete the following.

Solve the equations.

1. 2.

3. 4.
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YOU TRY IT: Solve.

215. x2 − 40 = 0 216. 3x2 + 6 = 0

Solving a quadratic equation using the square root property: Exact answers, ad-
vanced

Watch Video 3: Solving Quadratic Equations Using the Square Root Property to complete the following.

Solve the equations.

1.

2.
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EXAMPLE: Solve: 2(x + 1)2 − 16 = 0.
We need to write the equation with only the
squared expression on the left side.

2(x + 1)2 − 16 = 0
Add 16 to both sides

2(x + 1)2 = 16
Divide both sides by 2

(x + 1)2 = 8
Use the Square root property

x + 1 = ±
√

8
Isolate x

x = −1± 2
√

2

YOU TRY IT:

217. Solve: 1
2 (x− 2)2 − 5 = 0

Applying the quadratic formula: Exact answers

Watch Video 1: Introduction to the Quadratic Formula to complete the following.

FORMULA The Quadratic Formula

Given a quadratic equation ax2 + bx + c = 0 (a 6= 0), the solutions are:

x =

Solve the equation by using the Quadratic Formula.
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YOU TRY IT: Solve using the Quadratic Formula.

218. x2 − 3x + 1 = 0

Solving a quadratic equation with complex roots

Watch the video Solving a Quadratic Equation by Using the Quadratic Formula to complete the following.

Solve the equation by using the quadratic formula.

226



Module 14

EXAMPLE: Solve 5x2 − 4x + 1 = 0 using the
quadratic formula.

5x2 − 4x + 1 = 0

x =
−(−4)±

√
(−4)2 − 4(5)(1)
2(5)

x =
4±
√
−4

10

x =
4± 2i

10

x =
2
5
± 1

5
i

YOU TRY IT:

219. Solve 3x2 + 2x + 1 = 0 by using the
quadratic formula.

Domain and range from the graph of a parabola

It is possible to determine the domain and range of a function from its graph.

The is the set of all the numbers that appear as of
points on the graph.

The is the set of all the numbers that appear as of
points on the graph.

The graph of a function is a .

When a parabola is a , it extends to the left and right . It also

extends upward or downward .

YOU TRY IT: Find the domain and range of the quadratic given below.

220.

−10 −8 −6 −4 −2 2 4 6 8 10

−10

−8

−6

−4

−2

2

4

6

8

10

x

y
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How the leading coefficient affects the shape of the parabola

Watch Video 6: Investigating the Graphs of Quadratic Functions (vertical stretch and shrink) to complete the

following.

Graph the functions defined below on the same graph.

x f (x) g(x) h(x)

If we make a conjecture, we might think that the
graph of y = ax2

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

5

6

7

8

9

10

x

y

Graph the functions defined below on the same graph.

x f (x) g(x) h(x)

If we make a conjecture, we might think that the
graph of y = ax2 is a reflection over the x-axis for

.
The reflection of y = x2 will stretch if a < −1 and
shrink if −1 < a < 0.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

x

y
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Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola

A parabola is a graph such as those shown below.

Here are some facts about parabolas. On each graph label the vertex and the axis of symmetry.

Parabola opening upward Parabola opening downward

The vertex is the on the graph. The vertex is the on the graph.

The is the line that the divides the parabola

into . (This line goes through the .)

Finding the x-intercept(s) and the vertex of a parabola

Finding the x-intercept(s)

An x-intercept is the of a point where the graph .

A parabola can have , , or x-intercepts.

At each point where a graph crosses the x-axis, the .

To find any x-intercepts of the parabola we let and solve the resulting
quadratic equation.

y =

0 =

0 =

solution:

So the two x-intercepts are

Continued on the next page
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Watch the video Exercise: Determining the Vertex of a Quadratic Function to complete the following.

The Vertex Formula

For f (x) = ax2 + bx + c (a 6= 0) the vertex is given by(−b
2a

, f
(−b

2a

))

Find the vertex by using the vertex formula. r(x) =

x-coordinate of the vertex:

y-coordinate of the vertex:

Vertex:

EXAMPLE: Find the vertex of

f (x) = −2x2 − 16x− 40

by using the vertex formula.

−b
2a

=
−(−16)
2(−2)

=
16
−4

= −4

f (−4) = −2(−4)2 − 16(−4)− 40
= −32 + 64− 40 = −8

So the vertex is (−4,−8).

YOU TRY IT:

221. Find the vertex of g(x) = 2x2− 4x− 9 using
the vertex formula.
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Graphing a parabola of the form y = x2 + bx + c

Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of .

Vertex:

x-coordinate:

y-coordinate:

x-intercepts:

x y

1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

4

5

6

7

8

9

10

x

y
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Graphing a parabola of the form y = ax2 + bx + c: Integer coefficients

Watch Video 3: Applying the Vertex Formula and Graphing a Quadratic Function to complete the following.

NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the
video box.

FORMULA The Vertex Formula For f (x) = ax2 + bx + c (a 6= 0) the vertex is given by(−b
2a

,
4ac− b2

4a

)
or

Given f (x) =

a = b = c =

a. Use the vertex formula to find the vertex.

b. Determine the y-intercept.

c. Determine the x-intercept(s).

−3−2−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−15
−14
−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

1
2
3

x

y

Notes from Focus Group:
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Notes from Focus Group:

233



Module 15-Final Review

To help you review for your upcoming final exam, this module contains all of the topics from the course. Topics
that you have already mastered will not appear in your carousel.

• ALEKS final exam

◦ The ALEKS final exam must be taken in the MALL.

◦ The ALEKS final exam is a Comprehensive Knowledge Check.

◦ The ALEKS final exam must be completed by .

• To study for the final exams:

◦ Complete this ALEKS Final Review Module.

◦ Rework the problems on your old exams.

◦ Review your old Focus Group assignments.
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Solutions

Module 1

1. 17°C

2. 126

3. 52

4. − 1
3

5. − 21
4

6. undefined

7. 0 (zero)

8. 36

9. −36

10. 125

11. − 1
125

12. −11

13. 2

14. Associative Property
of Addition

15. Distributive Property

16. Commutative Property
of Multiplication

17. −12x + 15

18. 21x + 14

19. 2x + 17y

20. 2x + 3y

21. y = 31
35

22. y = − 15
4

23. y = −2

24. x = 21

25. x = 27
4

26. x = 21

27. 7 +
d
6
= 9

28. t− 2

Module 2

29. x < 2

30.

−5 −4 −3 −2 −1 0 1 2 3 4 5

31.
−4 −3 −2 −1 0 1 2 3 4

32. All numbers.

−5 −4 −3 −2 −1 0 1 2 3 4 5

33. 13

34. x = A + y− 12

35. A
7 − 4 = x

36. x < 5

37. x ≥ 7
8

38. x > 0 and x ≤ 4

39. (−∞, 2]

40. x < −63

41. x ≤ − 32
3

42. (−3,−2]

−6−5−4−3−2−1 0 1 2 3 4 5

43. (−∞,−3] ∪ (−2, ∞)

−6−5−4−3−2−1 0 1 2 3 4 5

44. {3,−3}

45. No solution

46. {7,-7}

47. All real numbers

Module 3

48.
−5 −4 −3 −2 −1 0 1 2 3 4 5

49.
−6−5−4−3−2−1 0 1 2 3 4 5

50. |x| < 1

51. no

52. no

53. yes
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Solutions

54.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

55.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

56.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

57.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

58. (−3, 0), (2, 0), (0,−2)

59. m = 3
4

60. m is undefined

61.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

(3, 2)

(−3, 0) (0, 1) x

y

62.

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

6

7

x

y

m = −3
y-intercept:(0, 2)

63. slope: −2
y-intercept: (0, 4)

64. Slope-intercept: y = 3x + 1
Standard Form: −3x + y = 1

65. vertical line: x = 3 horizon-
tal line: y = 7

66. y = − 3
5 x− 11

5

67.
x f (x)
-2 -3
-1 -1
0 1
1 3
2 5

68. domain: {2,−5, 0, 5}
range: {3, 1,−4}

Module 5

69. domain: (−∞, ∞)
range: [−2, ∞)

70. [−100, ∞)

71. (−∞, 100]

72. Function

73. Not a Function

74. −31

75. g(1) = 3

76. x = 0

77. (2, 4) is a solution.

78.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

The solution set is {(−3,−4)}

79. {(−2, 1)}

80. (−2, 2)

81. x = 61°, y = 58°

82. notepad: $1.85
marker: $0.65

Module 6

83. p9

84. −8x8

85. 12x8y11

86. x30

87. 81p4

88. y6

89. 1
y6

90. b2

a2

91. 9x2y8

92. − 8y12

x6

93. 5x
4

94. −1

95. 1

96. 7
8

97. − 8
125

98. −2x8

99. 1
x6

100. 60c3

101. 1
x3

102. 1
x15

103. y42

Module 7

236



Solutions

104. 4x5 − 6x3 + 14

105. −10x5 + 35x4 − 30x3

106. −8x4y9z5 + 2x8y8z

107. x2 + 2x− 15

108. 6x2 + x− 15

109. −6x2 + 19x− 15

110. 3x3 − 5x2 − 17x + 15

111. 9x2 − 16

112. 9x2 − 12x + 4

113. x2 − 2x + 3
x

114. quotient: 2x2 − 3x + 13
remainder: -36

115. quotient: 2x2 + x + 2
remainder: −3

116. 7

117. 4x2

118. 7ab5

119. 7x(2x3 − x2 + 3)

120. (y + 2)(y3 − y− 9)

121. (y + 3)(y2 − 3)

122. (y− 4)(2y2 − 1)

Module 9

123. (x− 9)(x− 3)

124. −(x − 3)(x + 1) or (3 −
x)(x + 1)

125. 3(a + 4)(2a− 1)

126. 6(2x2 + x + 3)

127. (2x + 3)(x− 5)

128. (x− 5)2

129. Not a perfect square trino-
mial. Does not factor.

130. −2x(5x− 1)(2x− 3)

131. (x− 7)(x + 7)

132. x = −5, 3
2

133. x = 3,−7

134. x = −3, − 5

135. x = 0, 5

136. x = − 3
4 , 1

137. x = 1
3 , − 2

3

138. x = −3,−2

139. 6 in X 13 in

140. −x2 − 5x− 14 = 0

Module 10

141. 1

142. Undefined

143. − 7
4

144. 2

145. 4(x−7)
9(x+7)

146. 2

147. x+2
2−x

148. −2

149. x+1
3

150. − 5
x−6

151. 3
7ab

152. − 15
2

153. 7x
6

154. x+4
x−4

155. 60x2y3z

156. 4w6

14w5

157. 2 · (3x− 8) · 3x = 6x(3x−
8)

158. 11x
3x−1

159. x−11
(x−1)(x+4)

160. 10+21b3

12b4

161. 15
2

Module 11

162. 7

163. − 5
4

164. Not a real number

165. a7

166. 7y4

167. 4x3

168. 28a

169. 1−15x
10x+1

170. x = −48

171. y = 2

172. y = −1
10

173. x = − 3
2 , 1

174. y = −2, 22

175. x = −13

176. 5

177. −2

178. −6

Module 13

179. No real solution

180. −5

181. 3x5

182. 2x2
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Solutions

183. x2/5

184. y3/2

185. 3
√

x5

186. 7
√

y2

187. −3

188. −4

189. 9

190. Not a real number

191. 1

x
4
5

192. x
1
6

193. 2x4
√

6

194. 3x5
√

2

195. 2x5
√

5x

196. 3x7
√

3x

197. 2 5
√

4

198. 3
√

5

199. 10
√

3

200. 6
√

10 + 8
√

2

201. 2
√

3x

202. 6
√

2− 2
√

42

203. 72
√

3

204. 4x3
√

30

Module 14

205. 3
√

7
7

206. No solution

207. x = 64

208. No Solution

209. x = 10

210. V = b2h
3

211. 2i
√

6

212. i
√

15

213. x = ±6

214. x = ±
√

5

215. x = ±2
√

10

216. ±i
√

2

217. x = 2±
√

10

218. 3±
√

5
2

219. x = − 1
3 ± i

√
2

3

220. Domain: (−∞, ∞)
Range: [−6, ∞)

221. (1,−11)
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Index

Adding rational expressions with common denominators and GCF factoring, 171
Adding rational expressions with denominators axn and bxm, 174
Adding rational expressions with linear denominators with common factors: Basic, 173
Adding rational expressions with linear denominators without common factors: Basic, 172
Addition and subtraction of 3 fractions involving signs, 28
Additive property of equality with signed fractions, 35
Additive property of inequality with signed fractions, 51
Algebraic symbol manipulation with radicals, 220
Applying the quadratic formula: Exact answers, 225

Classifying slopes given graphs of lines, 76
Classifying the graph of a function, 105
Complex fraction made of sums involving rational expressions: Problem type 1, 182
Complex fraction without variables: Problem type 1, 175
Complex fraction without variables: Problem type 2, 176
Complex fraction: GCF factoring, 181
Converting between radical form and exponent form, 200
Cube root of an integer, 191

Degree and leading coefficient of a univariate polynomial, 125
Distributive property: Integer coefficients, 34
Dividing a polynomial by a monomial: Univariate, 132
Dividing rational expressions involving linear expressions, 167
Dividing rational expressions involving quadratics with leading coefficients of 1, 168
Division involving zero, 30
Domain and range from ordered pairs, 83
Domain and range from the graph of a continuous function, 89
Domain and range from the graph of a parabola, 227
Domain of a square root function: Basic, 90

Estimating a square root, 191
Evaluating a quadratic expression: Integers, 50
Evaluating a rational function: Problem type 1, 160
Evaluating an expression with a negative exponent: Negative integer base, 117
Evaluating an expression with a negative exponent: Positive fraction base, 118
Evaluating an expression with a negative exponent: Whole number base, 117
Evaluating expressions with exponents of zero, 116
Evaluating functions: Linear and quadratic or cubic, 91
Exponents and integers: Problem type 1, 31
Exponents and integers: Problem type 2, 31
Exponents and signed fractions, 32
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INDEX

Factoring a difference of squares in one variable: Advanced, 151
Factoring a difference of squares in one variable: Basic, 150
Factoring a perfect square trinomial with leading coefficient 1, 148
Factoring a perfect square trinomial with leading coefficient greater than 1, 149
Factoring a product of a quadratic trinomial and a monomial, 149
Factoring a quadratic with a negative leading coefficient, 144
Factoring a quadratic with leading coefficient 1, 144
Factoring a quadratic with leading coefficient greater than 1: Problem type 1, 146
Factoring a quadratic with leading coefficient greater than 1: Problem type 2, 146
Factoring a univariate polynomial by grouping: Problem type 1, 139
Factoring a univariate polynomial by grouping: Problem type 2, 140
Factoring out a binomial from a polynomial: GCF factoring, basic, 138
Factoring out a constant before factoring a quadratic, 145
Factoring out a monomial from a polynomial: Univariate, 138
Finding nth roots of perfect nth powers with signs, 198
Finding x- and y-intercepts given the graph of a line given the equation: Basic, 74
Finding x- and y-intercepts given the graph of a line on a grid, 72
Finding all square roots of a number, 190
Finding inputs and outputs of a function from its graph, 94
Finding outputs of a one-step function that models a real-world situation: Function notation, 93
Finding slope given two points on the line, 74
Finding the nth root of perfect nth power monomial, 199
Finding the x-intercept(s) and the vertex of a parabola, 229
Finding the roots of a quadratic equation of the form ax2 + bx = 0, 153
Finding the roots of a quadratic equation with leading coefficient 1, 152
Finding the roots of a quadratic equation with leading coefficient greater than 1, 154
Finding the slope and y-intercept of a line given its equation in the form y = mx + b, 79
Finding the slope of horizontal and vertical lines, 75
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola, 229

Graphically solving a system of linear equations, 96
Graphing a compound inequality on the number line, 48
Graphing a function of the form f (x) = ax2, 105
Graphing a line by first finding its slope and y-intercept, 78
Graphing a line given its equation in slope-intercept form: Fractional slope, 71
Graphing a line given its equation in slope-intercept form: Integer slope, 70
Graphing a line through a given point with a given slope, 77
Graphing a linear inequality on the number line, 47
Graphing a parabola of the form y = ax2 + bx + c: Integer coefficients, 232
Graphing a parabola of the form y = x2 + bx + c, 231
Graphing a square root function: Problem type 1, 194
Graphing a vertical or horizontal line, 71
Greatest common factor of 2 numbers, 135
Greatest common factor of three univariate monomials, 136
Greatest common factor of two multivariate monomials, 137

Hamburger Menu, 11
How the leading coefficient affects the shape of the parabola, 228

Identifying functions from relations, 91
Identifying solutions to a linear equation in two variables, 69
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INDEX

Identifying solutions to a system of linear equations, 95
Interpreting the graphs of two functions, 106
Introduction to simplifying a radical expression with an even exponent, 192
Introduction to simplifying a sum or difference of radical expressions: Univariate, 209
Introduction to solving a radical equation, 216
Introduction to solving an absolute value equation, 57
Introduction to square root addition or subtraction, 207
Introduction to the LCM of two monomials, 169
Introduction to the power of a power rule of exponents, 111
Introduction to the power of a product rule of exponents, 112
Introduction to the product rule of exponents, 109
Introduction to the product rule with negative exponents, 120
Introduction to the quotient rule of exponents, 113

Least common multiple of 2 numbers, 26

Multiplication involving binomials and trinomials in one variable, 129
Multiplicative property of equality with signed fractions, 36
Multiplicative property of inequality with integers, 53
Multiplying a multivariate polynomial by a monomial, 127
Multiplying a univariate polynomial by a monomial with a negative coefficient, 126
Multiplying binomials with leading coefficients greater than 1, 128
Multiplying binomials with leading coefficients of 1, 127
Multiplying binomials with negative coefficients, 128
Multiplying conjugate binomials: Univariate, 130
Multiplying rational expressions involving multivariate monomials, 166
Multiplying rational expressions made up of linear expressions, 167

Order of operations with integers and exponents, 32

Plotting a point in the coordinate plane, 68
Polynomial long division: Type 1, 133
Polynomial long division: Type 2, 134
Power and quotient rules with positive exponents, 115
Power of a power rule with negative exponents, 122
Power rules with positive exponents: Multivariate products, 114
Product rule with negative exponents, 120
Product rule with positive exponents: Multivariate, 110
Product rule with positive exponents: Univariate, 110
Properties of real numbers, 33

Quotient of expressions involving exponents, 114
Quotient rule with negative exponents: Problem type 1, 121

Rational exponents: Non-unit fraction exponent with a whole number base, 202
Rational exponents: Power of a power rule, 205
Rational exponents: Product rule, 204
Rational exponents: Unit fraction exponents and bases involving signs, 201
Rational exponents: Unit fraction exponents and whole number bases, 201
Restriction on a variable in a denominator: Quadratic, 161
Rewriting an algebraic expression without a negative exponent, 119

Set-builder and interval notation, 49
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INDEX

Signed fraction division, 29
Simplifying a higher root of a whole number, 207
Simplifying a product involving square roots using the distributive property: Basic, 209
Simplifying a product of radical expressions: Univariate, 212
Simplifying a quotient of square roots, 215
Simplifying a radical expression with an even exponent, 205
Simplifying a radical expression with an odd exponent, 206
Simplifying a ratio of factored polynomials: Linear factors, 162
Simplifying a ratio of linear polynomials: 1,−1, and no simplification, 163
Simplifying a ratio of polynomials by factoring a quadratic with leading coefficient 1, 164
Simplifying a ratio of polynomials using GCF factoring, 163
Simplifying a ratio of polynomials: Problem type 1, 165
Simplifying a sum or difference of two univariate polynomials, 125
Simplifying the square root of a whole number greater than 100, 203
Simplifying the square root of a whole number less than 100, 203
Solving a compound linear inequality: Graph solution, basic, 54
Solving a compound linear inequality: Interval notation, 56
Solving a distance, rate, time problem using a system of linear equations, 104
Solving a linear equation with several occurrences of the variable: Variables on both sides and distribution, 38
Solving a proportion of the form (x+a)

b = c
d , 188

Solving a quadratic equation needing simplification, 155
Solving a quadratic equation using the square root property: Exact answers, advanced, 224
Solving a quadratic equation using the square root property: Exact answers, basic, 223
Solving a quadratic equation with complex roots, 226
Solving a radical equation that simplifies to a linear equation: One radical, advanced, 218
Solving a radical equation that simplifies to a linear equation: One radical, basic, 217
Solving a radical equation that simplifies to a quadratic equation: One radical, basic, 219
Solving a rational equation that simplifies to linear: Denominator x + a, 185
Solving a rational equation that simplifies to linear: Denominators a, x, or ax, 183
Solving a rational equation that simplifies to linear: Denominators ax and bx, 184
Solving a rational equation that simplifies to quadratic: Denominator x, 186
Solving a rational equation that simplifies to quadratic: Proportional form, basic, 187
Solving a system of linear equations using elimination with addition, 99
Solving a system of linear equations using elimination with multiplication and addition, 100
Solving a system of linear equations using substitution, 97
Solving a two-step equation with integers, 37
Solving a two-step equation with signed fractions, 37
Solving a two-step linear inequality: Problem type 2, 52
Solving a value mixture problem using a system of linear equations, 103
Solving a word problem involving a sum and another basic relationship using a system of linear equations, 101
Solving a word problem using a quadratic equation with rational roots, 156
Solving a word problem using a system of linear equations of the form Ax + By = C, 102
Solving a word problem with two unknowns using a linear equation, 42
Solving an absolute value equation: Problem Type 1, 58
Solving an absolute value equation: Problem Type 2, 59
Solving an absolute value inequality: Problem Type 1, 65
Solving an absolute value inequality: Problem Type 2, 66
Solving an absolute value inequality: Problem Type 3, 67
Solving an equation of the form x2 = a using the square root property, 222
Solving an equation written in factored form, 152
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Common Properties, Graphs & Formulas

Solving for a variable in terms of other variables in a rational equation: Problem type 1, 188
Solving for a variable in terms of other variables using addition or subtraction with division, 51
Solving for a variable in terms of other variables using addition or subtraction: Advanced, 50
Solving for a variable inside parentheses in terms of other variables, 51
Solving inequalities with no solution or all real numbers as solutions, 60
Square root addition or subtraction, 208
Square root multiplication: Advanced, 211
Square root multiplication: Basic, 210
Square root of a perfect square monomial, 181
Square root of a perfect square with signs, 88
Square root of a rational perfect square, 180
Squaring a binomial: Univariate, 131

Table for a linear function, 82
Table for a square root function, 192
Technical Support, 12
The Learning Carousel, 10
Translating a sentence into a multi-step equation, 39
Translating a sentence into a multi-step inequality, 61

Understanding the power rules of exponents, 111
Understanding the product rule of exponents, 109
Using i to rewrite square roots of negative numbers, 222
Using distribution with double negation and combining like terms to simplify: Multivariate, 34

Variable expressions as inputs of functions: Problem type 1, 93
Vertical line test, 92

Word problem involving multiple rates, 193
Word problem involving radical equations: Advanced, 221
Word problem on proportions: Problem type 1, 189
Word problem on proportions: Problem type 2, 190
Word problem with addition or subtraction of integers, 26
Working in ALEKS with the Notebook, 10
Writing a compound inequality given a graph on the number line, 52
Writing a multi-step equation for a real-world situation, 40
Writing a one-step expression for a real-world situation, 41
Writing a quadratic equation given the roots and the leading coefficient, 157
Writing an absolute value inequality given a graph on the number line, 68
Writing an equation in slope-intercept form given the slope and a point, 79
Writing an inequality for a real-world situation, 46
Writing an inequality given a graph on the number line, 46
Writing equivalent rational expressions with monomial denominators, 169
Writing the equation of the line through two given points, 81
Writing the equations of vertical and horizontal lines through a given point, 80
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Common Properties, Graphs & Formulas

ARITHMETIC PROPERTIES

Associative:
addition: a + (b + c) = (a + b) + c

Identity:
addition: 0 + a = a

multiplication: a(bc) = (ab)c multiplication: 1 · a = a

Commutative:
addition: a + b = b + a

Inverse:
addition: a + (−a) = 0

multiplication: ab = ba multiplication: a · 1
a = 1, a 6= 0

Distributive: a(b + c) = ab + ac

FRACTIONS

Adding:
a
b
+

c
d
=

ad + bc
bd

Multiplying:
a
b
· c

d
=

ac
bd

Subtracting:
a
b
− c

d
=

ad− bc
bd

Dividing:
a
b
÷ c

d
=

a
b
· d

c
=

ad
bc

FACTORING

Difference of Two Squares Sum and Difference of Two Cubes

a2 − b2 = (a− b)(a + b) a3 + b3 = (a + b)(a2 − ab + b2)

a2 + b2 =Does not factor a3 − b3 = (a− b)(a2 + ab + b2)

Perfect Square Trinomials

a2 − 2ab + b2 = (a− b)2

a2 + 2ab + b2 = (a + b)2

DISTANCE AND MIDPOINT FORMULAS

Distance between (x1, y1) and (x2, y2) Midpoint between (x1, y1) and (x2, y2)

d =
√
(x2 − x1)2 + (y2 − y1)2 m =

(
x1 + x2

2
,

y1 + y2

2

)
ABSOLUTE VALUE

Statement Equivalent Statement Statement Equivalent Statement

|x| = a x = a or x = −a |x| ≤ a −a ≤ x ≤ a

|x| = |y| x = y or x = −y |x| ≥ a x ≤ −a or x ≥ a

CIRCLE

Standard Form of a Circle with center (h, k) and radius r: (x− h)2 + (y− k)2 = r2
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Common Properties, Graphs & Formulas

COMMON GRAPHS

f (x) = mx + b f (x) = x f (x) = x2

(0, b)

slope m

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

f (x) = x3 f (x) =
√

x f (x) = 3
√

x

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

f (x) = |x| f (x) =
1
x

f (x) = ex

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

f (x) = ln x f (x) =
1
x2 x2 + y2 = r2

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

(r, 0)
x

y
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Common Properties, Graphs & Formulas

GEOMETRY

Rectangle

l

w
x

Perimeter Area

P = 2l + 2w A = lw

Parallelogram

b

4

a h
Perimeter Area

P = 2a + 2b A = bh

Triangle

b

a ch Perimeter Area

P = a + b + c A = 1
2 bh

Trapezoid b1

b2

ha c
P = a + b1 + b2 + c Area

A =

(
b1 + b2

2

)
h

Circle r Circumference Area

C = 2πr A = πr2

Right Circular Cone

h
r

a

Volume Surface Area

V = 1
3 πr2h A = πr

√
r2 + h2

Right Circular Cylinder

h

r
a

Volume Surface Area

V = πr2h A = 2πrh

Sphere
r

a

Volume Surface Area

V = 4
3 πr3 A = 4πr2

Parallelepiped

w

h
l

a

Volume Surface Area

V = lwh A = 2(lw + lh + wh)
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Common Properties, Graphs & Formulas

PROPERTIES OF EXPONENTS

am · an = am+n am

an = am−n (an)m = anm (ab)m = ambm

a0 = 1, a 6= 0 a−n =
1
an

(
a
b

)n

=
an

bn

DEFINITION OF LOGARITHM

logax = y ⇐⇒ ay = x ln x = y ⇐⇒ ey = x

LAWS OF LOGARITHMS

loga m + loga n = loga mn ln m + ln n = ln mn

loga m− loga n = loga
m
n ln m− ln n = ln m

n

loga mn = n loga m ln mn = n ln m
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