
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Computer Science Faculty Publications Department of Computer Science

6-2019

A Survey on Software Cost Estimation Techniques A Survey on Software Cost Estimation Techniques

Sai Mohan Reddy Chirra

Hassan Reza
University of North Dakota, hassan.reza@UND.edu

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/cs-fac

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Sai Mohan Reddy Chirra and Hassan Reza. "A Survey on Software Cost Estimation Techniques" (2019).
Computer Science Faculty Publications. 27.
https://commons.und.edu/cs-fac/27

This Article is brought to you for free and open access by the Department of Computer Science at UND Scholarly
Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/cs-fac
https://commons.und.edu/cs
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/cs-fac/27
https://commons.und.edu/cs-fac?utm_source=commons.und.edu%2Fcs-fac%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=commons.und.edu%2Fcs-fac%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/cs-fac/27?utm_source=commons.und.edu%2Fcs-fac%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

Journal of Software Engineering and Applications, 2019, 12, 226-248
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.126014 Jun. 30, 2019 226 Journal of Software Engineering and Applications

A Survey on Software Cost Estimation
Techniques

Sai Mohan Reddy Chirra, Hassan Reza

School of Electrical Engineering & Computer Science, University of North Dakota, Grand Forks, USA

Abstract
The ability to accurately estimate the cost needed to complete a specific
project has been a challenge over the past decades. For a successful software
project, accurate prediction of the cost, time and effort is a very much essential
task. This paper presents a systematic review of different models used for soft-
ware cost estimation which includes algorithmic methods, non-algorithmic
methods and learning-oriented methods. The models considered in this re-
view include both the traditional and the recent approaches for software cost
estimation. The main objective of this paper is to provide an overview of
software cost estimation models and summarize their strengths, weakness,
accuracy, amount of data needed, and validation techniques used. Our find-
ings show, in general, neural network based models outperforms other cost
estimation techniques. However, no one technique fits every problem and we
recommend practitioners to search for the model that best fit their needs.

Keywords
Software Cost Estimation, Classical SCE Models, Algorithmic Models,
Non-Algorithmic Models, Learning-Oriented Cost Estimation Techniques

1. Introduction

Software cost estimation is one of the crucial activities of the software develop-
ment which involves predicting the effort, size and cost required to develop a
software system or a software project [1] [2]. Several cost estimation models
have been developed to better estimate the cost of a project. To have better ac-
curacy in software cost estimation it is important to consider appropriate ap-
proaches to apply. Inaccurate effort estimations have been found to be very risky
in the field of industrial economics. Over the past few decades, conducting cost
estimation for different projects was cumbersome, but with the implementation

How to cite this paper: Chirra, S.M.R. and
Reza, H. (2019) A Survey on Software Cost
Estimation Techniques. Journal of Software
Engineering and Applications, 12, 226-248.
https://doi.org/10.4236/jsea.2019.126014

Received: January 26, 2019
Accepted: June 27, 2019
Published: June 30, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.126014
http://www.scirp.org
https://orcid.org/0000-0002-7593-9624
https://doi.org/10.4236/jsea.2019.126014
http://creativecommons.org/licenses/by/4.0/

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 227 Journal of Software Engineering and Applications

of the software cost estimation process, things have positively changed. As it will
be highlighted in this paper, there are different types of software cost estimation
models which can be categorized into Algorithmic models, non-algorithmic
models and learning oriented models [3]. The Algorithmic models include
COCOMO, Function point analysis, Putnam model, etc. The non-algorithmic
models which are also called as the non-parametric models include Expert
judgment, analogy based, price to win, top-down and bottom up. The learn-
ing-oriented models or the machine learning methods include Artificial Neural
Networks (ANN’s), Fuzzy Logic (FL), analogy based, Bayesian Network, Regres-
sion tree, Support Vector Machines, Genetic Algorithm (GA) and case-based
reasoning [1]. The different methods have their pros and cons which imply that
there are not the same in the sense of performance. The discussion will give
more credential to modern methods of machine learning and their impacts on
the software engineering sector.

Software Cost Estimation as a topic entails several issues as it requires keen
observation and frequent trials before stipulating that a certain technique is fit
for the estimation purposes. The utilization of software cost estimation tech-
niques makes it possible to predict the amount of effort and cost that will be in-
curred in a certain software project. Thus, the approximated amount of man-
power needed, and the period required to complete the project in the required
time are all made possible by the software cost estimation process (Figure 1).

However, it still remains to be one of the most difficult areas of software en-
gineering as each achievement made in the area attracts more questions and
research. The algorithmic models primarily rely on the mathematical formulas
and expressions to give a prediction on a project. The formulas exploited in
the sector are also dependent on different factors such as product factor to
calculate the estimations [3]. The non-algorithmic methods are considered to
be most advanced as they have incorporated artificial intelligence in achieving
their results. The field of artificial intelligence (AI) is a different scientific
spectrum that integrates automation with non-algorithmic methods to come
up with more accurate results [1]. The current methods have been improvised
through artificial intelligence such that they can easily estimate the cost of a
project even where limited data is available. More automation and improve-
ments have been performed on the process which has led to the emergence of
more strong methods.

Figure 1. Cost estimation process [3].

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 228 Journal of Software Engineering and Applications

Software cost estimation has the potential to completely change the industry
by providing an accurate prediction of the amount of resources a project might
need to be completed. However, at the moment, these estimation techniques
could lead to important negative effects. The capability to estimate the cost and
effort a project will take is of great importance because overestimation can easily
lead to incurring of financial losses in any organization [1]. Under-estimation on
the other hand, can significantly contribute to poor quality service delivery
leading to failure of the entire project [1]. In a study, it has been reported that
there is an overestimation of up to 40% in the estimating of software projects [4].
There is a need for efficient and accurate estimations to reduce the risks and
timely delivery of a software project within the budget constraint [1]. This paper
will address the strengths and weakness of different cost estimation techniques
used in software cost estimation. Through the discussion, it is plausible for the
researchers and the practitioners to understand the correct area where each
model could be deployed and the factors that make it best suited for the specific
area. All these issues will be highlighted and discussed in this paper (Figure 2).

2. Background and Related Work

Several studies and systematic reviews related to the software cost estimation to
techniques have been conducted to date [1]-[10]. The SLR papers gave the time-
line of the cost estimation methods while the studies conducted gave a discus-
sion on the existing cost estimation methods. There is still a research gap in list-
ing out the popular cost estimation techniques and discussing the strength and
weakness of those cost estimation techniques which aids the researchers and
practitioners to choose which estimation technique to opt for depending on their
needs. According to Jianfeng et al., software development effort estimation
(SDEE) is a process that is used by the project managers or the software devel-
opers in predicting the effort required to develop a software system [2]. Over the

Figure 2. Software cost estimation techniques [7].

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 229 Journal of Software Engineering and Applications

years since the 1990’s, researchers have suggested the implementation of Ma-
chine Learning (ML) models and SDEE in improving on estimation accuracy.
Although there have been numerous researches on the process still there lacks
empirical evidence of comparisons of different software cost estimation tech-
niques. There are ongoing studies and researches that are underway to give de-
tailed literature on the issue of software cost estimations as depicted by Sharma
et al. [1]. The current researchers are aimed at improving o the functionality of
the different cost estimation approaches that are used in software cost estima-
tion. According to Jorgensen et al., it is of great relevance for the users of these
approaches to be well conversant with each approach so as to aid in selecting the
appropriate technique to deploy in software cost estimation [5].

Current studies show that in order for us to be able to understand the
achievements that have been met since the software cost estimation process be-
gan it would be of importance to review the methods back to decades when they
were exploited [3]. Since then to the current year, companies have been exploit-
ing different taxonomies and classification criteria in identifying the suitable
method to support their estimations [7]. The first journals and reports were
published between 50’s and 70’s which proves that studies on software cost esti-
mation existed in the past despite them being conducted manually [8]. With
numerous studies being perfumed on the process we are aware that the entire
process entails software plans, resources, coding, testing, development and de-
sign. Numerous organizations are dependent upon software development for
their stability and sustainability in relation to cost estimations. According to [8],
it is important for the cost of software to be estimated in such a way that it will
not compromise quality, efficiency and timeline. The former methods that were
exploited in the sector were dependent on source line of code (SLOC), cost driv-
ers and function points [3].

However current studies prove that there is a lot of automation in the software
cost estimation process with each technique being implemented to fit the desired
functions [1]. There are basic reasons as to why there is a tremendous research
going on in software cost estimation process; proper budgeting, accurate estima-
tions, software improvement investment analysis, project planning and control,
trade-off and risk analysis.

3. Approaches
3.1. Algorithmic Methods

1) COCOMO (Cost Constructive Model)
COCOMO is one of the classical techniques used in cost estimation [11].

There are different approaches that can be undertaken when it comes to esti-
mating the cost of software projects. Among these methods that are available,
COCOMO (Constructive Cost Model) is the most common model that is ma-
jorly used [11]. It was developed by Barry Bohem in 1981 [11]. The COCOMO
falls under the algorithmic technique. The model has been in existence for many

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 230 Journal of Software Engineering and Applications

years and since it is being up to date serves to indicate that it is highly reliable as
a cost estimation technique.

COCOMO is a software cost estimation approach that uses mathematical
formulas and calculations to estimate the cost of a project. It gives the estimates
regarding the amount of the effort that is required as well as the schedule for the
software project [11]. Thus, it can achieve the two most vital objectives of cost
estimation which ascertain the cost of the essential resources and schedule for
the software project. In addition to the above, the Constructive Cost Model uses
a set of metrics that guide its operations. Function Points (FP) and Object Points
(OP) are the metrics that guide the calculations, and at the same time, they en-
dure that the calculations are in line with codes relating to KLOC and KDSI [11].
COCOMO II, as well as COCOMO 81, are the two versions of Constructive Cost
Model. The model parameters in the Cost Constructive model are derived from
fitting a regression formula using historical projects data [11]. A total of 61
projects are used for COCOMO 81 and 163 projects for COCOMO II [11].

2) COCOMO (Cost Constructive Model) 81
To being with, COCOMO 81 was the first version of this technique. Under

this technique, estimates that are produced, according to [11], have a 20% accu-
racy margin for the actual value of the software while 68% is the accuracy mar-
gin for the time estimate. In the same COCOMO model, there are three
sub-models which apply throughout the lifecycle of the project. They include;
the basic model, the intermediate model, and advanced model. The basic model
is applicable in early life of a project. It is essential in providing a rough estimate
of what is to be expected in the later stages of the project. It offers a glimpse into
what is to be expected and how activities need to be undertaken to meet a set of
requirements [11]. The intermediate model, on the other hand, is different in its
way in that it deals with the estimation of value and time after more details about
the project have been acquired. With the detailed requirements, this model can
effectively initiate the cost estimation process. The advanced model comes as the
last applicable model with COCOMO 81. It only applies upon completion of the
project. It offers a more refined estimate that is useful and reliable.

There are different equations that are used with COCOMO 81. The two equa-
tions that are used with COCOMO help in calculating the effort and scheduled
time. The estimated schedule time is measured in months. The two equations
[11] include;

()PM a KDSI *EAF= (1)

()TDEV c PM d= (2)

Each abbreviation in the equations stands for a factor that affects the cost of
software. Thus, they present dynamics that help in cost estimation.

PM => Person-Months
EAF => Effort Adjustment Factor
TDEV => Scheduled time

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 231 Journal of Software Engineering and Applications

KDSI => Number of lines of code (that is denoted in thousands)
Initials a, b, c and d are constants which result from the mode that is used in

estimating cost.
The modes include organic, semi-embedded, as well as embedded. On the

same note, there are cost drivers that related to COCOMO 81 [11]. For instance,
the EAF serves the purpose of tailoring the estimate so that conditions that affect
the development of the environment are considered. When it comes to the in-
termediate model, a total of 15 drivers are present that affect cost which can be
manipulated into helping to calculate for the EAF [11]. The 15 cost drivers are
segmented into four sections which are product attributes, personal attributes,
computer attributes and project attributes [11]. Depending on the impact that
the cost drivers have on the project development, they are categorized ranging
from very low to extra high [11].

On a different note, various advantages and disadvantages are associated with
the use of COCOMO 81. Its major advantage is that it is simple to estimate cost
with this technique [11]. It is useful to estimate in large projects and takes less
time to estimate the cost. On the other hand, there are various disadvantages
that are associated with the use of this model. With the Constructive Cost Mod-
el, there is a disadvantage of estimation failures. Estimation failures come about
in that estimation is carried out at the early stages of the project. This leaves
room for many errors, and most of these errors can result in failures in estima-
tion. At the early stages of the project many variables have not evolved, and thus
they cannot be considered in the estimation process. All the same, the early
stages do not offer sufficient ground and room for cost estimation that is relia-
ble. In doing so, this form of cost estimation is not reliable and cannot meet the
needs of the current software dynamics.

3) COCOMO (Cost Constructive Model) II
COCOMO II is different from COCOMO 81 considering that is addresses

most of the problems and challenges that were associated with COCOMO 81 is
its inability to offer reliable estimates due to many failures [12]. Additionally, the
inability of COCOMO 81 to gather all input parameters relating to size and time
was another problem. However, COCOMO II addresses these issues considering
that it does not base its estimates at the earlier stage of the project [12]. In addi-
tion to the above, COCOMO II also aims to develop database for software cost
estimates that are characterized with tool capabilities meaning that it can en-
hance and ensure there is the model improvement. Thirdly, and lastly, the model
also aims to allow the provision of the quantitative and analytical framework
that enhances the evaluation of effects that result from software technology im-
provements. This distinct model is not very traditional considering that it allows
for the incorporation of technological changes when it comes to the evaluation
process. Thus, it is effective in that makes it possible to carry out an evaluation
based on additions made to a software project.

All the same, [12] explains that this approach is not very different from

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 232 Journal of Software Engineering and Applications

COCOMO 81. In other terms, the minor changes that are notable in this model
are the use of a higher number of cost drivers. The cost drivers that are used are
different as compared to those that were used in COCOMO 81. When it comes
to calculating to come up with the estimates, the different approach that is un-
dertaken is that variables are used instead of constants. In addition to the above,
lines of code are used as the main metric as opposed to function points that are
used as the main metric in COCOMO 81 [12]. However, function points can al-
so be used in place of lines of code for making estimates. In this case, the line of
code metric tools is customized to act as the LOC. The three models that are
characteristic of COCOMO II are Application Composition Model, Early Design
Model, and Post-Architecture Model. The Application Composition Model is
used for projects that have been built for rapid application [12]. Object points
are useful when it comes to ascertaining size estimates. Prototyping efforts are
employed to help in resolving high-risk issues. Thus, it easily meets the expecta-
tions and the needs of many users making it one of the most used traditional
cots estimation technique favorable for cost estimation of software being cur-
rently developed.

Various advantages and disadvantages are associated with COCOMO II. One
of its advantages is that COCOMO II has a calibration process that is clear and
effective. It is clear and effective in that it has systems in place which clearly de-
fine the main metrics and the variables that are used are more detailed. In addi-
tion to the above, there is the advantage of allowing industries to function more
effectively due to their ability to adopt a model that is flexible to changes. Thus,
COCOMO II is an industry model.

3.1.1. Function Point Analysis
Due to diverse functional aspects in software systems, proper metric systems
remain to be a major concern in software engineering. Therefore, software engi-
neers focus on measuring the functionality size in software development
projects. In reducing the complex task of software metrics in terms of functional
size, functional point analysis method was developed [13]. Functional point
analysis refers to the standardized methods of determining software sizes by us-
ing functional constraints which determine the key features to be designed [14].
Significantly, this method is universal because its application is not limited to
programming languages and technologies. In function point analysis, two major
components are measured. The most crucial aspects of software application
measure in function point analysis comprise the data functionality and transac-
tion functionality attributes [13]. Precisely, the metrics of the two basic features
are determined by evaluating the scope of the system product, quality indicators,
productivity, and the system performance.

Function point analysis (FPA) evaluates the system’s metrics from a function-
al perspective, thereby resolving issues associated with technology dependency
in the development lifecycle [13]. The efficiency of FPA in software engineering
is achieved through a comprehensive analysis of applications in three stages [13].

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 233 Journal of Software Engineering and Applications

The first stage of function point analysis concerns identifying the forms of
transactions to be made in the software applications. Secondly, the engineers
evaluate and appraise the components of the software system. Lastly, the process
involves evaluations of the general system characteristics. Fundamentally, gener-
al system characteristics are categorized using into 14 main features [13]. These
are data processing, system performance, hardware configurations, transaction
rates, data entry, end-user efficiency, online updates, reusability, ease of use,
support of multiples sites and change facilitations [13]. There has also been tre-
mendous research in enhancing function point analysis with non-functional re-
quirements.

3.1.2. Putnam’s Model
The Putnam’s model is a dynamic multivariate model which was developed by
Larry Putnam in the late 1970s for effort estimation [15]. The model functions
by examining the many software projects and analyzing the distribution of
manpower. The relationship between the size and effort is non-linear and is
highly sensitive to delivery time. It provides a simple and computationally
plausible way of predicting software costs. It is used to calculate both effort and
time required to complete a software project based upon the specified size of the
project. The Putnam’s model equation is given as [15]:

1 3
1 3 4 3B Size Effort Time

Productivity
∗

= ∗ (3)

With this model, SLIM is the tool that is useful when it comes to cost estima-
tion and allows workforce scheduling. Thus, it achieves the objectives of cost es-
timation as it provides the schedule and cost of the essential resources. However,
it’s capacity in estimating the total manpower requirements and development
time at an early stage is still not satisfactory [16]. It has the setback of not ac-
counting for other aspects of the software project [16]. There are a series of as-
pects relating to software development especially in its life cycle that needs to be
considered. The uncertainty in the size of the software may lead to the inaccu-
rate cost estimation. According to [17] SLIM’s error percentage is said to be
772.87%. On the contrary, its advantage is that the model is based on two va-
riables that are keys to cost estimation which are time and size [16] and it needs
fewer parameters compared to COCOMO 81 and COCOMO II.

3.2. Non-Algorithmic Methods
3.2.1. Expert Judgement
Expert judgment is one of the traditional techniques that are used in the soft-
ware cost estimation in the early phases of the software development [3]. The
technique is such that it relies heavily on the expertise and the experience of an
expert at cost estimating. It depends on the domain knowledge of the expert ra-
ther than the historical data [3]. The experienced estimator is tasked with the
responsibility of estimating the cost of software based on the fact that they have

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 234 Journal of Software Engineering and Applications

sufficient knowledge that ensures cost estimation is as accurate as possible [3].
On the same note, the expert judgement used to estimate cost on a given project
is often limited to a specific filed of expertise of the estimator. An expert who has
knowledge and experience on a specific field is more likely to have majored in
the given project putting them in a better position to estimate the cost. Expert
judgement comes in handy especially when there are limitations that limit effec-
tive and efficient data collection [18]. In doing so, expert judgement is required
to make decisions based on the limitations and the stringent factors. Delphi
technique is one of the examples that follow the expert judgement approach. An
expert can be able to offer an honest and experienced opinion on the best course
of action when it comes to an understanding of the impacts of a system being
incorporated. There is also a setback of tedious processes that are undertaken in
documenting the factors that an expert requires to make the judgement [3].
Most of the factors in many software projects are many and documenting them
is tedious as well as difficult. There is no specific validation for this approach as
the estimation depends solely on the domain knowledge and previous expe-
riences of the expert.

Additionally, there is the disadvantage of obtaining cost estimates that are bi-
ased and optimistic. Expert judgement is given by experts who have human
emotions and is very likely that their emotions influence the judgement process
[3] [18]. Therefore, there is the possibility that pessimism, optimism, as well as
bias might influence the judgement process.

3.2.2. Top-Down Estimation
Top Down cost estimation approach focuses on estimating the cost of a project
from the global properties of the overall project and using either algorithmic
such as Putnam model or non-algorithmic methods [19]. The estimation is then
split into various components in proportion [19]. This method can be followed
when there is limited historical data available about the similar project. This
technique is more beneficial while the project is still in its early stages. This is
because, at this stage, there is no need for detailed information about the project
[19].

Top Down estimation is used for high-level decisions when the planning ho-
rizon is quite long. This technique is used when there is very little specific
project information where we can get a ballpark estimate. Unlike other cost es-
timation techniques, this approach focuses on activities like management and
integration which are overlooked in other techniques. The major disadvantage is
that the ballpark estimate is very inaccurate [19].

3.2.3. Bottom-Up Estimation
This is the exact opposite of the top-down estimation methodology. In this par-
ticular technique, the cost of every component of the software is derived and
then the final result is obtained by combining these elements to get the total es-
timated cost of the project [19]. The aim of this technique is to obtain a proper

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 235 Journal of Software Engineering and Applications

estimate that will be an accumulation of the estimates of the smaller components
of the software. Depending upon the variety of the projects both the methodolo-
gies are useful [19]. The estimation methodology is best suited for small projects
to estimate the cost.

In the bottom-up estimation, we take each work package or each activity in a
schedule and assign a dollar cost to that and then add them up to get the overall
cost of the project [19]. This can create a very detailed estimate that will be very
accurate. However, there are some disadvantages of the bottom-up estimate.

1) If we add up each activity, we may be lacking any coordination between the
activities such as resource overlap or if some of the dependencies that one activ-
ity has to be finished before another can start.

2) The accuracy is high, but it can also take a lot of time to create this level of
estimate, which means that it can be expensive to create.

So, to overcome these disadvantages it is preferable to do a high-level estimate
i.e. top-down estimate for the whole project and then do some detailed estimates
for the activities that are coming up in the short term.

3.2.4. Price-to-Win Estimation
In this approach, the estimation of the software project is directly proportional
to the budget of the customer. The customer’s budget is more focused rather
than the functionality of the software and the project costs whatever the cus-
tomer has to spend on it [19]. This approach is not so recommended as instead
of focusing on software functionality it focuses more on the client’s budget and
capacity. Accuracy varies drastically based on the client’s budget and therefore it
is rated as low accuracy. This approach does require extensive data or no pre-
vious data at all as the client will convey the requirements and does not depend
on the historical data [19]. It is not a good practice as it may cause a delay in the
development and delivery and may also force the development team to work
overtime. The validation of this approach is based on the customer’s budget and
person-month factor.

On the contrary, the major advantage of the price-to-win approach is that it
the estimation doesn’t exceed the customer’s budget. And as the functionality of
the software is restricted with the customer’s budget the quality of the software is
compromised [19].

3.3. Learning Oriented Models

Machine Learning can be said to be a method of data analysis that is used to au-
tomate analytical model. It is also a branch of Artificial Intelligence (AI) which
can be said to be based on the notion that machines such as robots and other
computerized devices can learn from the data [20]. These approaches have the
ability to learn from previous data and predict the future outcome based on the
previous data. Some of the common machines learning algorithms that have
been exploited in the software cost estimation are neural networks, fuzzy logic,
genetic algorithms, Bayesian networks, support vector regression and analogy

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 236 Journal of Software Engineering and Applications

based. Researchers have proposed several machine learning software cost esti-
mation models in order to improve the estimation accuracy [2]. And several
studies have also reported that under the same model when the model is con-
structed with different historical project datasets or different experimental de-
signs there is a variation in the predicted accuracy [2] [21] [22] [23] [24] [25].

A number of studies have concluded that machine learning models in soft-
ware cost estimation outperform non-machine learning models [1] [2] [9] [10].
The use of these machine learning models in the software cost estimation
process has gained significant popularity due to the wide margin of error in the
classical estimation models [26]. There are remendous and continuous im-
provements in the machine learning algorithms which assists in achieving more
accurate predictions when these are applied [2] [26]. These learning models
consistently predict accurate results because of its learning nature from the pre-
viously completed projects. According to Monika et al. [10] investigation, it had
been concluded that ANN was the prominent methods for developing estimat-
ing models. A brief overview of these models along with their strengths and
weakness in the context of software cost estimation has been discussed. This will
aid the researchers to understand which approach suits best for their methodol-
ogy. Different machine learning models have different strengths and limitations
and thus favor different estimation contexts [2].

3.3.1. Artificial Neural Networks
ANN is one of the major approaches that are exploited in the sector of machine
learning models. As the name suggests, it is usually inspired by the neural part of
the brain system with an intention of imitating an intelligent living organism
[27]. It is composed of two layers, that is the input and output layers, within the
layers there is a hidden layer which constitutes of units whose main purpose is to
assign weights to the data that is fed from the input. These weights are assigned
randomly to the data [28]. They are among the exploited tools in cost estimation
due to their excellent performance [1]. Neural networks have existed for long as
they can be traced back to the year 1940 although the best way to exploit them
was the missing link which has been currently accomplished. There are different
types of neural networks that exist with each of them having a defined level of
complexity coupled with use. The most common and general type of neural
network (NN) is the feed forward neural network as the name suggests data tra-
vels in only one direction which is from input to output [27]. Other types in-
clude Recurrent Neural Network (RN), Convolution Neural Networks (CNN),
LTSM Recurrent Neural Networks, etc. The ANN approach is used in cost esti-
mation where the pattern of certain data requires to be understood prior to es-
timating the project cost. In the cost estimating field, it is used to classify data
into predefined classes, clustering, and prediction [28]. For instance, in projects
such as the stock exchange market, it is used to make predictions in the market
through the exploitation of the previous data.

Artificial Neural Networks are usually excellent in capturing non-linear rela-

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 237 Journal of Software Engineering and Applications

tionships which makes it an iconic advantage of the model. The model has a
deep neural net which requires fewer features [27]. The neural net has the ability
to develop its own features which are also an advantage when limited features
are available in the dataset for training the model. It is also flexible in the sense
that there are a plethora of features one can choose from which include CNN’s,
RNN’s, LSTM RNN’s, etc. (Figure 3).

It has also some limitations whereby sometimes they tend to over-fit the data
in the software cost estimation process [2]. Additionally, the model also requires
an enormous amount of power for computation which may not be available at
all times. It was better if the model is in a position to efficiently operate even in
places where there is less consumption power as putting up the high computa-
tion power is costly to the involving firm.

Several Artificial Neural Networks models have been used in the software cost
estimation processes which are mostly common according to the investigation
[9]:

a) Feed-forward neural network
b) Recurrent Neural Network
c) Radial basis function (RBF) network
d) Neuro-fuzzy networks
Hamza et al. [9] concluded that choosing the right artificial neural network

model is essential to get the accurate estimations. In their study [9] they have al-
so concluded that feed-forward neural network works better than other models
in ANN’s but, the technique needs data filtering to prevent noise. In the case of
noisy data, the radial basis function is more suitable.

Figure 3. A neural network estimation model [3].

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 238 Journal of Software Engineering and Applications

3.3.2. Genetic Algorithms
They are defined as adaptive and heuristic search algorithms which are a subject
to the theory of natural selection by Darwin. In a current, study they are de-
scribed as one of the most active areas of research which have been designed
through nature-inspired metaheuristics [29]. Genetic Algorithm (GA) forms one
of the soft computing techniques in software cost estimation process whereby its
main role is to change certain parameters of classical methods such as COCOMO
approach to predict software cost in a more accurate manner [29]. GA has widely
been exploited in different fields of cost estimation such as correcting the identi-
fication system, path-searching problems within a project [29]. Additionally, GA
has been used to solve a variety of NP-hard computational problems [29]. This
model takes inspiration from nature such as bullet train design based on fish.
Used for optimization problems (Np-problem) few of them are firefly algorithm
particle swarm optimization and cuckoo search just to mention a few.

GA model usually exploits the optimization problem by using an evolutionary
process. The first benefit of the model is the fact that it is easy to set up than
neural networks but is less flexible. Once the algorithm begins it is on its own. It
learns its own features; hence we don’t have to supervise the process. On the
other hand, it has a disadvantage which includes less flexibility, many hyper pa-
rameters which includes preference of functions, reproduction rates, the per-
centage of elitism and cross over, dealing with out of bound conditions, creating
a strategy and setting the required tree sizes and depths within the model [30].
The model has no guarantee of finding an optimal solution, infinite time because
it has asymptotic convergence, containing a number of parameters, sometimes
the result is highly dependent on the parameters set. It has also self-adaptive pa-
rameters. It is computationally expensive and Meta models of functions are used
in this process too.

The original use of the model was to establish manpower required to complete
a certain project [29]. It is also used in scheduling different tasks within the field
of cost estimation which implies that it has the ability to determine and evaluate
a variety of tasks within a single project. It has also been used in mining data
within the same scope which is considered as a complex exercise in case tradi-
tional methods are exploited in place. On the extreme end GA has been used in
optimizing distributed tasks within the software cost estimation process. It has
been used to solve distributed queries which imply that all relevant queries about
a certain project can be accessed during the initial steps of its development. It is
also easy to make assumption and predictions to the software being developed
while using this method. It is somehow time conservative especially when oper-
ated by experienced personnel.

3.3.3. Fuzzy Logic
The model is a computing approach that is based on the degrees of truth rather
than the unusual true or false normally referred to as Boolean logic which most
of the modern computers are based on [31]. Additionally, it can be said to be an

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 239 Journal of Software Engineering and Applications

approach to computing based on many-valued function for instance, instead of a
task completed or not, one can say 50% is completed. Fuzzy Logic (FL) approach
gives an acceptable but definite output which is usually in response to inaccurate
(fuzzy), distorted, incomplete and ambiguous input. FL was developed in 1965
by Loft Zadeh from a concept of fuzzy set theory. The first system is the one that
is exploited in the estimation sector as most of the systems produce crisps data
as input and expect the same type of data as output. There are three steps that
have to be followed while using FL; the first is the Fuzzification which converts a
crisp into a fuzzy set [31]. The second is the Fuzzy Rule-based System, at the step
after all the crisp input has been fuzzified into their respective linguistic values
the inference engine then derives their linguistic values [32]. Defuzzification is
the final step which involves the conversion of fuzzy output into crisp output.

Fuzzy logic is deployed for decision making whereby it can be implemented
with various sizes and abilities ranging from small microcontrollers to large
workstation-station based software development. In the sector of software cost
estimation, FL has been used to give acceptable reasoning although it does not
guarantee accurate reasoning [32]. This approach is very easy to use despite the
fact that it has numerous functions that it can execute when it comes to cost es-
timation of the software development [32]. Also, with the approach, it is advan-
tageous as estimators of software are in a position to estimate and give an antic-
ipation of the different aspects of the project even before the initiation level. The
method has also a fast learning ability compared to other methods under the
same scope [31]. The major disadvantage that the approach lacks guarantee of
accuracy which is a vital part of the software cost estimation as to avoid incur-
ring financial losses. Through the defuzzification process, the model is able to
interact the output into a numerical value as per the desire.

There are a number of three applied approaches under this method which in-
clude; 2FA-kmodes it is used in clustering where numerical datasets are shown
through fuzzy sets however the fuzz k-modes algorithm is used to maintain ca-
tegorical attributes. The second approach is 2FA-kprototype it is used in clus-
tering also where project data are clustered into homogeneous sets [31]. The fi-
nal approach is the classical analogy it is used to predict the effort of the target
project using information from former similar projects. The first two models
2FA-knodes, 2FA-kprototypes perform same and are both better than classical
analogy. The similarity in the functionality of the two models is technically for
the purposes of increasing efficiency within the model [32]. The major disad-
vantage associated with the two models is that they are not very good in
COCOMO dataset and classical analogy doesn’t recognize categories as “less
risky”, “medium”, and “high”. Thus, there is a need for implementations to be
conducted for the model so as to enable future proper operation in case they are
deployed in COCOMO and other datasets.

3.3.4. Bayesian Networks
The model is also referred to as a probabilistic directed acyclic graphical model.

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 240 Journal of Software Engineering and Applications

It exploits graphical models to represent sets of variables coupled with their
conditional dependencies through a directed acyclic graph (DAG) [33]. In other
terms it uses Bayesian inference to perform probability computations they aim at
modeling conditional dependence while developing software cost estimation
which is usually represented by the edges within a directed graph. In addition to
that, the model uses three main inference tasks: inferring unobserved variables,
parameter learning and structure learning [33]. Through developers of software
understanding the different relationships that exist in the model, they can effi-
ciently conduct inference on random variables within software [33]. Each edge
in the model corresponds to a conditional dependency while at the same time
each node corresponds to a unique random variable. Thus, a specific pattern is
usually followed in the model so as to attain its functionality within the software
cost estimation process.

In a recent study, results have indicated that the inclusion of Bayesian Net-
work, a machine-learning model in software cost estimation models it could im-
prove on the levels of accuracy in the project [4]. This approach is able to break
down project data about the cost into a form that is easy to analyze while at the
same time it offers cost items coupled with the probability which can capture the
uncertainty of different items within the software to be developed [33]. In soft-
ware cost estimation sector, it is exploited in initial planning also as it has the
ability to evaluate different parameters of planning such as time, cost coupled
with resources to be exploited in the development of software. This model only
allows exactly tested cost estimation information to be integrated with natural
master feelings.

The best advantage with exploiting this model is that it gives a better assur-
ance on accuracy and it is also able to improve on the overall quality of software
that is being developed. Most of the software cost estimation models have some
difficulties in offering assurance which makes the model outstanding compared
to the rest. It is also a model that saves time which is of great importance when it
comes to software project development [4]. Since the model encodes all va-
riables, then it is also able to handle different types of missing data. In case it is
deployed learning casual relationships, they help better understand a problem
domain as well as forecast the consequences should there be an intervention [4].
Through probabilistic and casual semantics, it is ideal to use the model for
representing prior data and knowledge.

Despite it being a complex approach in software cost estimation it is easy to
use even with staffs who have less experience in the field [33]. On the other hand,
there are some disadvantages while using this model such as Information theo-
retically infeasible it turns out that specifying a prior is extremely difficult chal-
lenge. Thus, being in a position to efficiently exploit this model, then users have
to be well familiarized with the model’s mode of learning. Being in a position to
understand different languages, the model is able to execute more functions
which are advantageous to the project running. Acquiring this knowledge takes

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 241 Journal of Software Engineering and Applications

some significant effort, this implies a lot of time will have to be consumed dur-
ing the training period. Despite a lot of time being spent on training, also on the
other hand it has to be the required training hence improper training would ruin
the entire model. The models also do not always tell the truth as, they don’t spe-
cify their actual prior, but they give credentials to the convenient one.

3.3.5. Support Vector Regression
It is also referred to as support vector networks or machines which are super-
vised models which are capable of learning algorithms and finally analyzing the
same data that will be exploited for regression and classification analysis [34]. In
other description, it is said to be a concept a set of related supervised learning
methods usually used to analyze data coupled with recognized patterns. This
model when applied in software cost estimation it takes a set of input data then
it gives a prediction of each input [4]. The input must be a member of the sup-
port vector machine (SVM) which makes the model to be a non-probabilistic
binary linear classifier [34]. In software cost estimation, it is used to solve prob-
lems related to pattern classification within the software. So as to apply it effec-
tively in software cost estimation developers have to be in a position to design
questions based on a problem and the design involved within the software.

The model has over the year’s utilized regression and classification as the
main mode of analyzing data within software. In China, the model was famously
used in predicting software development efforts [34]. Support vector reasoning
has been found to be helpful in hypertext and text categorization within the
software. This model is usually utilized in software cost estimation so as to im-
prove on the levels of accuracy compared to the classical query refinement
schemes. It is also exploited in image segmentation in different software de-
pending on the role that the software is designed to perform [34]. With the
model in operation, the software development process automatically avoids over
fitting of data. Thus, we can technically say that the model is conservative when
it comes to financial and time while planning for a project.

A major advantage of the model is that it has the ability to work best with text
data known as string kernel [4]. On the other hand, there it has been found to be
occupying a huge memory and it does not operate well when the data set is huge.
Occupying a huge memory concerning storage of data sets makes it inefficient a
factor that they need to reconsider. The fact that it is occupying a huge data set
for storage makes is not being able to meet the cost-effective criterion which
should be a model for each model. In this model, there are implementations and
improvements which have been done on it such as dimensionality reduction
such as PCA and ICA. The implementation has been done on the model so as to
improve on the functionality of the model.

3.3.6. Regression Tree
It is also referred to as a decision tree, is a logical model most exploited for deci-
sion analysis in software cost estimation. It is a common approach exploited in

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 242 Journal of Software Engineering and Applications

software cost estimation based on a number of factors and their consequences
[35]. In other descriptions, the model is perceived as a procedure that is used for
classification and regression in the sector of software cost estimation process
[35]. The model is usually in the form of a tree structure with different internal
nodes that stands for a test on an attribute. Individual branch on the tree usually
represents an outcome of the test and the class label is held on the leaf node.
Looking at the tree from a technical perspective, it is evident that all the
branches stand for a specific function within the software development process.
The model has usually trained through top-down training method which is spe-
cific to a certain direction [35]. However, current research shows there are ef-
forts that are aimed at training the model so as to operate in a multidirectional
purpose. This will be a breakthrough within the sector of software cost estima-
tion as it means the model will be able to execute more functions than it does as
for now [35]. Over the years it has been used to predict the amounts of effort
required to develop a software system which has proved to be a good model as it
saves on time and budgets that have been planned on. Thus, we can technically
say that the model is cost efficient as it saves on the factors that are likely to jeo-
pardize a developing project.

The regression tree has been widely used in inductive learning, in turn, it has
proved to be good in terms of predictive accuracy especially in software cost es-
timation process despite its complexity [35]. One of the main advantages is the
fact that it is fast compared to neural networks and support vector reasoning.
The efficiency that is instilled in the model is because it has a simple structure
which executes diverse roles is simple steps. Also, while exploiting the model
they tend to be very interpretable thus one can almost make an anticipation of
what is to be formed in the final project. This implies that there are possibilities
of making assumptions on the outcome of the project that is being worked on.

3.3.7. Analogy Based
The analogy was used in the past as a method of supporting or supporting ex-
planations of a particular natural phenomenon which was later incorporated in
the software development sector of software development of for the purposes of
software cost estimations [36]. Analogy Based is one of the most efficient approaches
in software cost estimation due to its outstanding performance and capability of
handling complex datasets [37]. The model exploits comparison as the main form of
a subject to compare software project under considerations with past historical
projects which have prior known characteristics, schedule and efforts. Thus, this
model has to rely on previous projects similar to the ones that are to be developed
thus the levels of accuracy are usually very high [37].

Conventional analogy-based models usually deploy the same number of anal-
ogies in all the projects that it is involved with similar data sets which improves on
the estimation approximations. There are some researchers that claim using the
same number of analogies could only improve on the data sets only and not the
entire project. Thus, when exploiting this model, it is important to understand the

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 243 Journal of Software Engineering and Applications

Table 1. Software cost estimation techniques comparison.

N0 Method Type Strengths Weakness Accuracy Data Validation

1 COCOMO-
II

AM Simple to carryout estimations; takes less time
and effort to estimate; Useful in large projects

Details of the past projects needed to
estimate; May leave out hidden costs
hence lead to more expensive
estimation; Calibration is required;
Cannot meet current software
standards

MA ED EV

2 FPA AM Easy to estimate development costs at the
requirements gathering stage/initial stage;
Independent of languages and tools used

Quality attributes, development time
and man power are not considered

MA LD EV

3 PM AM Estimation depends on only time and size which
are key to cost estimation; Needs fewer
parameters compared to COCOMO 81 and
COCOMO II

Does not consider other important
aspects of the software development

MA LD EV

4 EJ NA Best technique where limited data is available;
Experience of experts makes the estimation
more accurate and realistic

Biased opinions of the experts; Difficult
to document the parameters used by
the experts to estimate; Experts require
experience of similar projects

LA LD EV

5 TDE NA Only few details are required to estimate; Simple
and less time consuming

Difficult to identify low level problems
which causes under estimation; Less
details may overlook important
attributes of the project

LA LD n/a

6 BUE NA More stable compared to top down approach;
Errors are estimated and very stable

Development time and system-level
activities are not considered

LA LD n/a

7 PTWE NA It depends only on the customer budget Costs do not accurately reflect the work
required; Low quality system is
developed due to client budget
constraint

LA ND n/a

8 NN LM Very good in capturing non-linear relationships;
Deep neural Nets do not require a lot of features,
they come up on their own; There is a lot of
flexibility, you could choose different
architectures; RNN’s, LSTM, etc.

They tend to over fit; They require
enormous amount of computation
power

VHA ED NI, DCS,
CVM

9 GA LM Need not be supervised Too many hyper parameters HA ED CVM,
VAF, RWS

10 FL LM Considers real valued states instead of binary Does not perform well on complex
datasets like COCOMO

VHA ED JM, DCS,
CVM

11 BN LM Bayesian network encodes all variables; missing
data entries can be handled

Difficult to model HA ED CVM

12 SVR LM It works best with text data: string kernel It takes a lot of memory (RAM);
Doesn’t scale well when dataset is huge

HA ED LOM

13 RT LM more capable of handling noisy datasets Models are unstable at times, suffer
with high variance, low bias. (Keyword:
bias-variance tradeoff)

MA LD CVM,
DCS, LOM

14 ABE NA Simple and easy to use; No bootstrap cost They do not work with categorical data MA LD EV, ED

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 244 Journal of Software Engineering and Applications

characteristics of each data sets so as to be able to discover the optimum set of
analogies for each project [38]. Accuracy levels can only be increased when users
of the model are aware of the different data characteristics instilled by each data
set. Through the comparison of various datasets, the model is used to approx-
imate the time that a project would take for it to be completed. In cost estima-
tion, the model is relied on to give empirical evidence on the probability of cer-
tain software features being accurate.

It is also flexible and intuitive in nature as it can be applied in a variety of cir-
cumstances where other algorithmic modeling and estimating techniques don’t
operate [36]. As much as it is said to be dependent upon past history so as to ex-
ecute its functions, it can still operate even where past data is not available.
However, there are still some setbacks while using the model as it lacks appro-
priate analogs [38]. For instance, despite it being widely used in the industries it
has not stipulated standards on how it should be exploited for expert opi-
nion-based opinion. The common advantage that most users of the method are
familiar with is the ability of the model to avoid bootstrapping of cost [38]. On
the extreme end, it is accompanied by a major disadvantage which is its inability
to operate with categorical data. Hence more implementations need to be done
on the model so as to enable to operate with all types of data (Table 1).

4. Conclusion & Future Work

In this paper, we presented an overview of the software cost, effort and size esti-
mation techniques based on algorithmic, non-algorithmic and learning-oriented
approaches. We also tabulated all the techniques based on their type, strengths,
weaknesses, amount of data and validation methods used by them. Our major
findings from the previous studies show that the Neural Network based models
outperform other cost estimation techniques in terms of accuracy followed by
fuzzy logic [39]. Our survey also shows that no one technique is perfect and all
of them have their own advantages and disadvantages. We recommend the re-
searchers and practitioners to choose the best technique which fits their best needs.
This study may also give an insight into the software cost estimation techniques for
the researchers who are new to this area. We found that there has not been much re-
search on estimating the development time or schedule for a project. Our future
work may involve researching the application of the LSTM Recurrent Neural Net-
works model in predicting the time series for the project.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Pinkashia, S. and Singh, J. (2017) Systematic Literature Review on Software Effort

Estimation Using Machine Learning Approaches. 2017 International Conference on
Next Generation Computing and Information Systems, Jammu, India, 11-12 De-

https://doi.org/10.4236/jsea.2019.126014

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 245 Journal of Software Engineering and Applications

cember 2017, 43-47. https://doi.org/10.1109/ICNGCIS.2017.33

[2] Wen, J., Li, S., Lin, Z., Hu, Y. and Huang. C. (2012) Systematic Literature Review of
Machine Learning Based Software Development Effort Estimation Models. Infor-
mation and Software Technology, 54, 41-59.
https://doi.org/10.1016/j.infsof.2011.09.002

[3] Barry, B., Abts, C. and Chulani, S. (2000) Software Development Cost Estimation
Approaches—A Survey. Annals of Software Engineering, 10, 177-205.
https://doi.org/10.1023/A:1018991717352

[4] Moloekken-ØEstvold, K., Jørgensen, M., Tanilkan, S.S. Gallis, H., Lien, A.C. and
Hove, S.W. (2004) A Survey on Software Estimation in the Norwegian Industry.
10th International Symposium on Software Metrics, Chicago, IL, 11-17 September
2004, 208-219.

[5] Li, M.-S., He, M., Yang, D., Shu, F.-D. and Wang, Q. (2007) Software Cost Estima-
tion Method and Application. Journal of Software, 18, 775-795.

[6] Magne, J. and Shepperd, M. (2007) A Systematic Review of Software Development
Cost Estimation Studies. IEEE Transactions on Software Engineering, 33, 33-53.
https://doi.org/10.1109/TSE.2007.256943

[7] Tomás, V., Ochoa, S.F. and Perovich, D. (2017) Survey of Software Development
Effort Estimation Taxonomies. Technical Report. Pending ID. Computer Science
Department, University of Chile, Chile.

[8] Rajeswari, K. (2018) A Critique on Software Cost Estimation. International Journal
of Pure and Applied Mathematics, 118, 3851-3862.

[9] Haitham, H., Kamel, A. and Shams, K. (2013) Software Effort Estimation Using Ar-
tificial Neural Networks: A Survey of the Current Practices. 2013 10th Information
Technology: New Generations, Las Vegas, NV, 15-17 April 2013, 731-733.
https://doi.org/10.1109/ITNG.2013.111

[10] Sangwan, O.P. (2017) Software Effort Estimation Using Machine Learning Tech-
niques. 2017 7th International Conference on Cloud Computing, Data Science &
Engineering-Confluence, Noida, India, 12-13 January 2017, 92-98.

[11] Boehm, B.W. (1981) Software Engineering Economics. Prentice-Hall, Englewood
Cliffs, NJ.

[12] Barry, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. and Selby, R. (1995)
Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. Annals of
Software Engineering, 1, 57-94. https://doi.org/10.1007/BF02249046

[13] IFPUG, FPCPM (2000) International Function Point Users Group (IFPUG) Func-
tion Point Counting Practices Manual.

[14] Komal, G., Kaur, P., Kapoor, S. and Narula, S. (2014) Enhancement in COCOMO
Model Using Function Point Analysis to Increase Effort Estimation. International
Journal of Computer Science and Mobile Computing, 3, 265-572.

[15] Putnam, L.H. (1978) A General Empirical Solution to the Macro Software Sizing
and Estimating Problem. IEEE Transactions on Software Engineering, 4, 345-361.
https://doi.org/10.1109/TSE.1978.231521

[16] Warburton, R.D.H. (1983) Managing and Predicting the Costs of Real-Time Soft-
ware. IEEE Transactions on Software Engineering, 5, 562-569.
https://doi.org/10.1109/TSE.1983.235115

[17] Kemerer, C.F. (1987) An Empirical Validation of Software Cost Estimation Models.
Communications of the ACM, 30, 416-429.

https://doi.org/10.4236/jsea.2019.126014
https://doi.org/10.1109/ICNGCIS.2017.33
https://doi.org/10.1016/j.infsof.2011.09.002
https://doi.org/10.1023/A:1018991717352
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1109/ITNG.2013.111
https://doi.org/10.1007/BF02249046
https://doi.org/10.1109/TSE.1978.231521
https://doi.org/10.1109/TSE.1983.235115

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 246 Journal of Software Engineering and Applications

https://doi.org/10.1145/22899.22906

[18] Christopher, R. and Roy, R. (2001) Expert Judgment in Cost Estimating: Modelling
the Reasoning Process. Concurrent Engineering, 9, 271-284.
https://doi.org/10.1177/1063293X0100900404

[19] Hareton, L. and Zhang, F. (2002) Software Cost Estimation. In: Handbook of Soft-
ware Engineering and Knowledge Engineering: Volume 2: Emerging Technologies,
World Scientific Publishing Co Pte Ltd., Singapore, 307-324.
https://doi.org/10.1142/9789812389701_0014

[20] Sharma, S. (2017) Applications of Genetic Algorithm in Software Engineering, Dis-
tributed Computing and Machine Learning. International Journal of Computer Ap-
plications & Information Technology, 9, 208-212.

[21] Gray, A.R. and Macdonell, S.G. (1999) Software Metrics Data Analysis—Exploring
the Relative Performance of Some Commonly Used Modeling Techniques. Empiri-
cal Software Engineering, 4, 297-316. https://doi.org/10.1023/A:1009849100780

[22] Ross, J., Ruhe, M and Wieczorek, I. (2000) A Comparative Study of Two Software
Development Cost Modeling Techniques Using Multi-Organizational and Compa-
ny-Specific Data. Information and Software Technology, 42, 1009-1016.
https://doi.org/10.1016/S0950-5849(00)00153-1

[23] Abbas, H. (2002) Comparison of Artificial Neural Network and Regression Models
for Estimating Software Development Effort. Information and Software Technolo-
gy, 44, 911-922.

[24] Dolado, J.J. (2001) On the Problem of the Software Cost Function. Information and
Software Technology, 43, 61-72.
https://doi.org/10.1016/S0950-5849(00)00137-3

[25] Ingunn, M. and Stensrud, E. (1999) A Controlled Experiment to Assess the Benefits
of Estimating with Analogy and Regression Models. IEEE Transactions on Software
Engineering, 25, 510-525. https://doi.org/10.1109/32.799947

[26] Ahmed, B.M. (2018) Predicting Software Effort Estimation Using Machine Learning
Techniques. 2018 8th International Conference on Computer Science and Informa-
tion Technology, Amman, 11-12 July 2018, 249-256.
https://doi.org/10.1109/CSIT.2018.8486222

[27] Poonam, R. and Jain, S. (2016) Enhanced Software Effort Estimation Using Multi
Layered Feed Forward Artificial Neural Network Technique. Procedia Computer
Science, 89, 307-312. https://doi.org/10.1016/j.procs.2016.06.073

[28] Idri, A., Khoshgoftaar, T.M. and Abran, A. (2002) Can Neural Networks Be Easily
Interpreted in Software Cost Estimation? 2002 IEEE World Congress on Computa-
tional Intelligence. 2002 IEEE International Conference on Fuzzy Systems, Hono-
lulu, HI, 12-17 May 2002, 1162-1167.

[29] Singh, B.K. and Misra, A.K. (2012) Software Effort Estimation by Genetic Algo-
rithm Tuned Parameters of Modified Constructive Cost Model for NASA Software
Projects. International Journal of Computer Applications, 59, 22-26.

[30] Burgess, C.J. and Lefley, M. (2001) Can Genetic Programming Improve Software
Effort Estimation? A Comparative Evaluation. Information and Software Technol-
ogy, 43, 863-873. https://doi.org/10.1016/S0950-5849(01)00192-6

[31] Anupama, K., Soni, A.K. and Soni, R. (2013) Radial Basis Function Network Using
Intuitionistic Fuzzy C Means for Software Cost Estimation. International Journal of
Computer Applications in Technology, 47, 86-95.

https://doi.org/10.4236/jsea.2019.126014
https://doi.org/10.1145/22899.22906
https://doi.org/10.1177/1063293X0100900404
https://doi.org/10.1142/9789812389701_0014
https://doi.org/10.1023/A:1009849100780
https://doi.org/10.1016/S0950-5849(00)00153-1
https://doi.org/10.1016/S0950-5849(00)00137-3
https://doi.org/10.1109/32.799947
https://doi.org/10.1109/CSIT.2018.8486222
https://doi.org/10.1016/j.procs.2016.06.073
https://doi.org/10.1016/S0950-5849(01)00192-6

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 247 Journal of Software Engineering and Applications

https://doi.org/10.1504/IJCAT.2013.054305

[32] Anish, M., Parkash, K. and Mittal, H. (2010) Software Cost Estimation Using Fuzzy
Logic. ACM SIGSOFT Software Engineering Notes, 35, 1-7.
https://doi.org/10.1145/1668862.1668866

[33] Hrvoje, K. and Gotovac, S. (2015) Estimating Software Development Effort Using
Bayesian Networks. 2015 23rd International Conference on Software, Telecommu-
nications and Computer Networks, Split, Croatia, 16-18 September 2015, 229-233.
https://doi.org/10.1109/SOFTCOM.2015.7314091

[34] Bhavendra Kumar, S., Sinhal, A. and Verma, B. (2013) A Software Measurement
Using Artificial Neural Network and Support Vector Machine. International Jour-
nal of Software Engineering & Applications, 4, 41-52.
https://doi.org/10.5121/ijsea.2013.4404

[35] Magne, J. (2004) Regression Models of Software Development Effort Estimation
Accuracy and Bias. Empirical Software Engineering, 9, 297-314.
https://doi.org/10.1023/B:EMSE.0000039881.57613.cb

[36] Ali, I., Amazal, F.A. and Abran, A. (2016) Accuracy Comparison of Analogy-Based
Software Development Effort Estimation Techniques. International Journal of Intel-
ligent Systems, 31, 128-152. https://doi.org/10.1002/int.21748

[37] Hathaichanok, S. and Prompoon, N. (2012) Framework for Developing a Software
Cost Estimation Model for Software Modification Based on a Relational Matrix of
Project Profile and Software Cost Using an Analogy Estimation Method. Interna-
tional Journal of Computer and Communication Engineering, 1, 129-134.
https://doi.org/10.7763/IJCCE.2012.V1.36

[38] Manikavelan, D. and Ponnusamy, R. (2015) Improvised Analogy Based Software
Cost Estimation with Ant Colony Optimization. Research Journal of Applied
Sciences, Engineering and Technology, 10, 293-297.
https://doi.org/10.19026/rjaset.10.2490

[39] Papatheocharous, E. and Andreou, A.S. (2012) Software Cost Modelling and Esti-
mation Using Artificial Neural Networks Enhanced by Input Sensitivity Analysis.
Journal of Universal Computer Science, 18, 2041-2070.

https://doi.org/10.4236/jsea.2019.126014
https://doi.org/10.1504/IJCAT.2013.054305
https://doi.org/10.1145/1668862.1668866
https://doi.org/10.1109/SOFTCOM.2015.7314091
https://doi.org/10.5121/ijsea.2013.4404
https://doi.org/10.1023/B:EMSE.0000039881.57613.cb
https://doi.org/10.1002/int.21748
https://doi.org/10.7763/IJCCE.2012.V1.36
https://doi.org/10.19026/rjaset.10.2490

S. M. R. Chirra, H. Reza

DOI: 10.4236/jsea.2019.126014 248 Journal of Software Engineering and Applications

Abbreviations

AM Algorithmic Method
NA Non-Algorithmic Method
LM Learning-Oriented Method
LA Low Accuracy
MA Moderate Accuracy
HA High Accuracy
VHA Very High Accuracy
ND No Data
LD Limited Data
ED Extensive Data
CVM Cross Validation Method
NI Number of Iterations
VAF Variance Accounted For
RWS Roulette Wheel Selection
JM Jackknife Method
LOM Leave-one-out Method
DCS Degree of Confidence and Significance
EV Empirical Validation
ED Euclidean Distance
WBS Work Breakdown Structure
n/a Not Applicable
COCOMO Cost Constructive Model
FPA Function Point Analysis
PM Putnams’s Model
EJ Expert Judgement
TDE Top Down Estimation
BUE Bottom Up Estimation
PTWE Price-To-Win Estimation
NN Neural Networks
GA Genetic Algorithm
FL Fuzzy Logic
BN Bayesian Networks
SVR Support Vector Regression
RT Regression Tree
ABE Analogy Based Estimation

https://doi.org/10.4236/jsea.2019.126014

	A Survey on Software Cost Estimation Techniques
	Recommended Citation

	A Survey on Software Cost Estimation Techniques
	Abstract
	Keywords
	1. Introduction
	2. Background and Related Work
	3. Approaches
	3.1. Algorithmic Methods
	3.1.1. Function Point Analysis
	3.1.2. Putnam’s Model

	3.2. Non-Algorithmic Methods
	3.2.1. Expert Judgement
	3.2.2. Top-Down Estimation
	3.2.3. Bottom-Up Estimation
	3.2.4. Price-to-Win Estimation

	3.3. Learning Oriented Models
	3.3.1. Artificial Neural Networks
	3.3.2. Genetic Algorithms
	3.3.3. Fuzzy Logic
	3.3.4. Bayesian Networks
	3.3.5. Support Vector Regression
	3.3.6. Regression Tree
	3.3.7. Analogy Based

	4. Conclusion & Future Work
	Conflicts of Interest
	References
	Abbreviations

