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ABSTRACT

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe
several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the
main survey. In this paper, we describe the “DeepDrill” survey, which used the Spitzer Space
Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs
in two bands, centered on 3.6 𝜇m and 4.5 𝜇m. These observations expand the area which
was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic
Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the
footprints of the LSST DDFs in the Extended Chandra Deep Field–South field (ECDFS), the
ELAIS-S1 field (ES1), and the XMM-Large-Scale Structure Survey field (XMM-LSS). The
observations reach an approximate 5𝜎 point-source depth of 2 𝜇Jy (corresponding to an AB
magnitude of 23.1; sufficient to detect a 1011𝑀� galaxy out to 𝑧 ≈ 5) in each of the two
bands over a total area of ≈ 29 deg2. The dual-band catalogues contain a total of 2.35 million
sources. In this paper we describe the observations and data products from the survey, and
an overview of the properties of galaxies in the survey. We compare the source counts to
predictions from the SHARK semi-analytic model of galaxy formation. We also identify a
population of sources with extremely red ([3.6]−[4.5] > 1.2) colours which we show mostly
consists of highly-obscured active galactic nuclei.

Key words: surveys – infrared: general – infrared:galaxies – catalogues

1 INTRODUCTION

Surveys by the Spitzer Space Telescope have proved extremely valu-
able for finding and characterizing distant galaxies. The redshifting
of the peak of stellar emission at 1.6 𝜇m into the Spitzer bands makes

them especially sensitive to high-redshift galaxies (e.g. Berta et al.
2007; Stefanon et al. 2015; Cecchi et al. 2019). Spitzer data thus pro-
vide a very useful complement to deep surveys in the optical, where
the surface density of galaxies is higher, but intrinsically luminous,

© 2019 The Authors
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2 M. Lacy et al.

high-redshift galaxies that are either quiescent or dust-reddened can
be outnumbered by lower-redshift, lower luminosity blue galaxies.
The Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST; Ivezić et al. 2019) will observe the Southern sky in six opti-
cal bands (𝑢, 𝑔, 𝑟, 𝑖, 𝑧 and 𝑦) in about 800 passes (summed over all
bands) over ten years, to a co-added 5𝜎 depth of 𝐴𝐵 ≈ 24.4− 27.1,
depending on band. Within the survey area, there will be several
Deep Drilling Fields (DDFs) where observations are repeated more
frequently, resulting in both a better sampled cadence, and a deeper
coadded final image (𝐴𝐵 ≈ 26.2−28.7, depending on band; Brandt
et al. 2018; Scolnic et al. 2018). The DDFs will thus become impor-
tant reference fields for both time domain and ultra-deep imaging
studies.

We therefore proposed to observe the DDFs that had already
been defined by the LSST team in the near-infrared with the Spitzer
Space Telescope during its post-cryogenic mission (after the liquid
helium cryogen supply for the telescope was exhausted in May
2009). Although only the two shortest wavelength bands of the
Infrared Array Camera (IRAC; Fazio et al. 2004a; Carey et al. 2010),
at 3.6 and 4.5 𝜇m, continued in operation following the exhaustion
of the cryogenic coolant in Spitzer in 2009, their sensitivity was
almost unchanged, as was the optical behaviour of the telescope
and instrument.

The observations described in this paper supplement an ear-
lier set of observations over smaller areas in these three fields by
the Spitzer Extragalactic Representative Volume Survey (SERVS;
Mauduit et al. 2012), for which images and catalogs are available
from the Infrared Science Archive (IRSA) (a second data release
of SERVS, including the data fusion of Vaccari (2015) and deeper
Spitzer catalogs is planned). The DeepDrill images are of similar
depth to those from SERVS (a 5𝜎 depth of ≈ 2 𝜇Jy in both bands),
but cover more than twice the area (≈ 27 deg2 compared to 12 deg2

in these fields covered by SERVS (see Table 1), though SERVS also
includes a further 6 deg2 in the Lockman and ELAIS-N1 fields).
We also note that deeper warm Spitzer data in the ECDFS field were
taken recently as part of the “Cosmic Dawn Survey" (principal in-
vestigator P. Capak). Figure 1 shows the SERVS-DeepDrill survey
in the context of other surveys at ≈3.6 𝜇m. The IRAC image and
catalog data on the three DDFs described in this paper will be made
available though the Infrared Science Archive (IRSA).

The scientific motivation for this survey closely followed that
for SERVS, namely the study of galaxy evolution as a function of
environment from 𝑧 ∼ 5 to the present, but with the additional
feature of the deep and multi-epoch LSST DDF data. The DDFs
are expected to be observed throughout the ten year duration of the
LSST survey, with a cadence as frequent as once every two nights at
times of year when the fields are available for observation (Brandt
et al. 2018; Scolnic et al. 2018). The time domain adds the ability to
detect and obtain light curves of supernovae in distant galaxies (of
which we expect ∼ 104 in the DDFs; LSST Science Collaboration
et al. 2009), and to allow the study of AGN flares, tidal disruption
events, and other variable phenomena. The Spitzer data provide
information on the properties of host galaxies of supernovae and
other transients and help to identify and classify AGN, and, indeed,
SERVS has already proved useful for these types of investigations
(Lunnan et al. 2014; Falocco et al. 2015; Chen et al. 2018). In
conjunction with other data at optical and shorter near-infrared
wavelengths, the Spitzer survey in these fields will enhance the
study of the host galaxies of supernovae and AGN through improved
estimates of stellar mass, star formation history and reddening (Pforr
et al. 2013).

Medium-depth surveys with warm Spitzer covering areas ∼

Figure 1. Depth versus area for extragalactic surveys at 3.6 𝜇m. Red crosses
indicate surveys taken during the post-cryogenic phase of Spitzer as Ex-
ploration Science or Frontier Legacy surveys (surveys which incorporate
previous efforts in the same fields have been combined). For comparison,
we show surveys taken during the cryogenic mission of Spitzer as cyan cir-
cles, WISE mission in magenta, and two Guaranteed Time/Early Release
(GTO/ERS) surveys planned for the James Webb Space Telescope in grey.
References (top to bottom): AllWISE: Wright et al. (2010); Mainzer et al.
(2011); SpIES: Timlin et al. (2016); SSDF: Ashby et al. (2013a); SWIRE:
Lonsdale et al. (2003); SERVS+DeepDrill: this paper; SHELA: Papovich
et al. (2016); COSMICDAWN Capak et al. (2016); SDWFS Ashby et al.
(2009); SHIRAZ: Annunziatella et al. in preparation; SPLASH: Steinhardt
et al. (2014); SCOSMOS: Sanders et al. (2007); COMPLETE: Labbe et al.
(2016); SpUDS Kim et al. (2011); SEDS: Ashby et al. (2013b); SCANDELS
Ashby et al. (2015); SIMPLE: Damen et al. (2011); GOODS: Dickinson et al.
(2003); JWST ERS/GTO surveys: Rieke et al. (2019).

10−100 deg2 have proven very valuable for both studies of individ-
ual rare objects (with comoving densities ∼ 10−5 to 10−8 Mpc−3),
and statistical studies of populations including luminous AGN and
quasars (∼ 100 deg−2 in such surveys), galaxy clusters (∼ 10 deg−2)
and ultraluminous dusty star-forming galaxies (∼ 1000 deg−2). Ex-
amples from SERVS include gravitational lenses, Lyman-𝛼 nebulae
(Marques-Chaves et al. 2018, 2019) and galaxy clusters at 𝑧 ∼ 0.3−2
(Nantais et al. 2016, 2017; Delahaye et al. 2017; Foltz et al. 2018;
Chan et al. 2019; Pintos-Castro et al. 2019; Old et al. 2020; van der
Burg et al. 2020).

SERVS has proven particularly valuable for the identification
of the host galaxies of radio sources. These galaxies typically have

MNRAS 000, 1–20 (2019)



The Spitzer DeepDrill Survey 3

high stellar masses, and are bright in the IRAC bands, with > 95%
of faint radio sources identified in SERVS (e.g. Luchsinger et al.
2015; Whittam et al. 2015; Mahony et al. 2016; Ocran et al. 2017;
Singh et al. 2017; Cotton et al. 2018; Prandoni et al. 2018; Ocran
et al. 2020a; Ishwara-Chandra et al. 2020). The small population
of infrared-faint radio sources (IFRS) that are unidentified, or very
faint, in the IRAC bands seem to represent a population of dust-
reddened, high-𝑧 radio-loud AGN (Norris et al. 2011; Herzog et al.
2014; Maini et al. 2016).

Dusty star-forming galaxies detected in the mm/submm with
positions from ALMA can often be identified with faint IRAC
sources, allowing better understanding of their stellar masses and ex-
tinctions (Simpson et al. 2014; Gómez-Guĳarro et al. 2019; Leung
et al. 2019; Patil et al. 2019; Dudzevičiūtė et al. 2020; Ocran et al.
2020a,b). Other uses include obtaining constraints on stellar masses
and ages of galaxies in overlapping deep spectroscopic surveys (Cal-
abrò et al. 2017; Thomas et al. 2017; Khusanova et al. 2019), study-
ing cosmic background radiation (Mitchell-Wynne et al. 2016) and
exploiting fields suitable for deep multi-conjugate adaptive optics
observations of distant galaxies (Lacy et al. 2018).

The DDFs have garnered significant observational resources
from other telescopes, from the radio and far infrared through to
the X-ray. A list of the large area (> 1 deg2) surveys in the DDFs
may be found in Table 2 (see also Table 1 of Chen et al. 2018), and
their coverages are illustrated in Figures 2, 3 and 4. In the X-ray,
the XMM-SERVS survey (Chen et al. 2018) is covering the original
SERVS areas in ES1, XMM-LSS and ECDFS. The optical data
are less homogeneous, including data from Hyper Suprime-Cam
(HSC) (Aihara et al. 2018; Ni et al. 2019), the Dark Energy Survey
(DES; Abbott et al. 2018), and the ESO ESIS and VOICE surveys
(Berta et al. 2006; Vaccari et al. 2016), however, as all three fields
will be targeted for deep LSST observations this is not a major
concern. In the near-infrared, the VISTA VIDEO survey (Jarvis
et al. 2013) covers the whole SERVS area, and is supplemented
by VEILS (Hönig et al. 2017) which covers the DES fields that
are repeatedly observed to find supernovae and other time-domain
phenomena (hereafter the DES DDFs). The fields are covered by the
SWIRE survey in the mid-infrared (Lonsdale et al. 2003), and the
HerMES survey in the far-infrared (Oliver et al. 2012). In the radio,
existing deep surveys from the ATCA (ATLAS) (Franzen et al.
2015), GMRT (Smolčić et al. 2018) and LoFAR (Hale et al. 2019)
cover a significant fraction of the fields. The MIGHTEE survey with
MeerKAT, currently underway, will image the inner regions of all
three fields even more deeply at 0.9–1.7 GHz (Jarvis et al. 2016).

Vaccari (2015) combined SERVS data with catalogues of op-
tical and near-infrared photometry that were available at the time in
all five SERVS fields, and Pforr et al. (2019) used these catalogues to
derive photometric redshifts for ≈ 4 million galaxies. Furthermore,
the Herschel Extragalactic Legacy Project has incorporated SERVS
data within their workflows to produce multi-wavelength catalogues
and extract more accurate FIR/SMM fluxes to study the dust prop-
erties of infrared galaxies over cosmic time (Vaccari 2016; Hurley
et al. 2017; Małek et al. 2018; Shirley et al. 2019). For very chal-
lenging applications, such as identifying rare sources, and obtain-
ing photometric redshifts accurate enough to study environments,
more accurate photometry that allows for the difference between
the relatively large Spitzer point spread function and overlapping
ground-based surveys in the near-infrared or optical is needed. This
more refined photometry requires the application of forced pho-
tometry techniques such as The tractor (Lang et al. 2016), and
has been successfully used in the XMM-LSS field (Nyland et al.
2017), with the remaining SERVS/DeepDrill fields to follow. The

improved photometry and photometric redshifts from it enable the
accurate estimation of environmental parameters for galaxies out to
at least 𝑧 ∼ 1.5 (Krefting et al. 2020). The tractor photometry in
XMM-LSS was also used to obtain photometric redshifts for X-ray
AGN in the XMM-SERVS survey (Chen et al. 2018).

This paper is structured as follows: Section 2 describes the
observations, Section 3 the processing of the image data and tests
to assess the quality of the astrometric and photometric calibration.
Section 4 describes the image and catalogue data products to be
included in the release. In Section 5, we present an overview of
the galaxy population in DeepDrill, including colours and source
counts, and also highlight sources with very red [3.6]−[4.5] colours
found in the survey. Section 6 contains a short summary.

2 OBSERVATIONS

We were awarded time to perform a survey of three of the four LSST
DDFs that have been defined at the time of writing: 1 the ELAIS-S1
field (ES1), the XMM-Large-Scale Structure Survey field (XMM-
LSS) and the Extended Chandra Deep Field-South field (ECDFS).
The fourth DDF identified by LSST, the COSMOS field, has deep
coverage (to 5𝜎 depth of≈ 0.3 𝜇Jy in both bands) in the inner 2 deg2

from several Spitzer surveys (Sanders et al. 2007; Steinhardt et al.
2014; Ashby et al. 2018). There is also a wider survey (SHIRAZ;
Annunziatella et al. 2020 in preparation), to a similar depth as
SERVS/DeepDrill that covers an additional ≈ 2 deg2 outside of the
central area to overlap with the Hyper Suprime-Cam Deep Survey
(Aihara et al. 2018).

The central areas of all three of our fields were observed as
part of SERVS (Mauduit et al. 2012) during the early months of
the post-cryogenic Spitzer mission (2009-07-28 to 2011-03-06).
The DeepDrill Survey (Program ID 11086, P.I. Lacy) was observed
between 2015-05-04 and 2016-12-26 (Table 1). The DeepDrill ob-
servations followed the SERVS Astronomical Observation Request
(AOR) construction, with each AOR making up a square tile of nine
pointings, each pointing consisting of six repeats of 100s frames
dithered using the IRAC small cycling dither pattern.2 The use of
Fowler sampling in the IRAC detectors (Fazio et al. 2004b) means
that the 100s frame time corresponds to a little less than 100s in-
tegration on sky: 93.6s at 3.6 𝜇m and 96.8s at 4.5 𝜇m. The fields
were imaged in two epochs to facilitate rejection of asteroids, with
a targeted depth of 12 frames. Due to scheduling constraints, the
time separation of the two epochs was non-uniform, ranging from
a few weeks to ∼ 1 year. The spatial coverage is also non-uniform.
Areas around the edges of the SERVS fields in particular received
additional coverage, and some outlying regions did not receive the
full coverage. Figure 5 shows the distribution of coverage in each
field. The area in each band with a coverage of 9 or more 100-second
frames (i.e. with >87% of the sensitivity of the nominal coverage
of 12 frames), and the area with coverage of 9 or more in both
bands at the same position are listed in Table 1 (the area with both
bands is slightly smaller as the two IRAC detectors are offset). We
encourage users with a need for uniformity in depth to make use of
the supplied coverage maps.

The survey was designed such that source confusion only be-
comes significant near the nominal flux density limit of the survey,
where there are about 30 beams per source, the typical value at

1 https://www.lsst.org/scientists/survey-design/ddf
2 See the IRAC Instrument Handbook https://irsa.ipac.caltech.

edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
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Table 1. Spitzer/IRAC DeepDrill Observations

Field Name DeepDrill Field Centre SERVS Area∗ DeepDrill Total Area† 3.6 𝜇m Total Area† 4.5 𝜇m Total Area† Both
(J2000) (deg2) Observation dates (deg2) (deg2) (deg2)

ES1 00:37:48 −44:01:30 3 2015-09-27 to 2016-10-24 9.2 9.0 8.6
XMM-LSS 02:22:18 −04:49:00 4.5 2015-10-21 to 2016-11-25 9.2 9.4 8.9
ECDFS 03:31:55 −28:07:00 4.5 2015-05-04 to 2016-12-26 9.1 9.4 8.8

∗ The SERVS field centres differ slightly from the DeepDrill ones, but the SERVS fields are entirely encompassed by the DeepDrill survey.
† Total areas are those covered by the SERVS and DeepDrill data combined.

Table 2. Other surveys (> 1deg2) in the DeepDrill fields.

Survey Field(s) Bands/Wavelengths/Energies Overlap Area Depth‡ Reference
(deg2)

XMM-SERVS ECDFS, XMM-LSS, ES1 0.5-10 keV 13 1.7 × 10−15erg cm−2s−1 (0.5-2 keV) Chen et al. (2018)
XXL XMM-LSS 0.5-10 keV 8 5 × 10−15erg cm−2s−1 (0.5-2 keV) Pierre et al. (2016)
DEVILS ECDFS, XMM-LSS 3750-8850Å 4 Spectroscopic,𝑌 < 21.2 Davies et al. (2018)
ESIS ES1 𝐵, 𝑉 , 𝑅 4.5 Vega magnitude ≈ 25 Berta et al. (2006)
VOICE ECDFS 𝑢, 𝑔, 𝑟 , 𝑖 8 𝐴𝐵 magnitude ≈ 26 Vaccari et al. (2016)
DES (DR1) ES1, XMM-LSS, ECDFS 𝑔, 𝑟 , 𝑖, 𝑧 28 𝐴𝐵 = 25.1, 24.8, 24.2, 23.4, 22.2‡‡ Abbott et al. (2018)
HSC (DR1) XMM-LSS 𝑔, 𝑟 , 𝑖, 𝑧, 𝑦 ≈ 6 𝑖𝐴𝐵 ≈ 26.5 − 27.0§ Aihara et al. (2018)
HSC (Ni et al.) ECDFS 𝑔, 𝑟 , 𝑖, 𝑧 5.7 𝐴𝐵 ≈ 25.9, 25.6, 25.8, 25.2 Ni et al. (2019)
SWIRE ECDFS, XMM-LSS, ES1 3.6, 4.5, 5.8, 8.0, 24, 60, 160 𝜇m 27 various depths Lonsdale et al. (2003)
OzDES ES1, XMM-LSS, ECDFS Spectroscopic; 370-880 nm 17 𝑟𝐴𝐵 ≈ 23 Childress et al. (2017)
PFS XMM-LSS Spectroscopic; 380-1260 nm 6 𝐽𝐴𝐵 ≈ 23.4 Takada et al. (2014)
VIDEO ECDFS, XMM-LSS, ES1 (𝑍 )∗ , (𝑌 )∗ , 𝐽 , 𝐻 , 𝐾𝑠 13 (25.7), (24.6), 24.5, 24.0, 23.5 Jarvis et al. (2013)
VEILS ECDFS, XMM-LSS, ES1 𝐽 , 𝐾𝑠 ≈ 6 25.5, 24.5 Hönig et al. (2017)
HerMES ECDFS, XMM-LSS, ES1 250, 350, 500 𝜇m 27 ∼ 25mJy§ Oliver et al. (2012)
ATLAS ECDFS, ES1 1.4 GHz 6.3 14-17𝜇Jy Franzen et al. (2015)
GMRT XMM-LSS 610 MHz 8 ≈ 1 mJy Smolčić et al. (2018)
LoFAR XMM-LSS 120–168 MHz 9 1.4 mJy Hale et al. (2019)
MIGHTEE ECDFS, XMM-LSS, ES1 900-1670 GHz∗∗ 16.6 2𝜇Jy Jarvis et al. (2016)

‡ Typical source detection limit (≈ 5𝜎).
∗ ECDFS was only observed in 𝐽 , 𝐻 and 𝐾𝑠 .
∗∗ A smaller area survey (4 deg2) will also be carried out at 2-4 GHz in ECDFS.
§ The XMM-LSS field of the HSC survey contains one ultradeep pointing and three deep ones, so the depth varies with position.
‡‡ 10𝜎 magnitude limits from Abbott et al. (2018) +0.75 to convert to 5𝜎; note that there is significant overlap between DeepDrill and the DES Deep Drilling fields (see Figures 2-4, which, when the data are
co-added, will be significantly deeper than the main survey).
§ Hurley et al. (2017)

which source confusion becomes significant (Condon et al. 2012).
In Appendix A, we show how the confusion noise is expected to
vary with depth of coverage in the survey, including both confusion
from randomly-distributed sources and an additional term due to
galaxy clustering. To more accurately extract faint source parame-
ters from the deepest parts of the survey we recommend PRF fitting
of sources and their near-neighbors, which can be further improved
by using a prior from a higher resolution survey of similar or greater
depth.

3 DATA ANALYSIS

3.1 Image processing

Data processing of the DeepDrill data was similar to that carried out
for the SERVS dataset (Mauduit et al. 2012), using a data cleaning
pipeline derived from processing SWIRE and COSMOS data (Lons-
dale et al. 2003; Sanders et al. 2007). The processing began with
the Corrected Basic Data (CBCD) frames from the Spitzer Science
Center (basic calibrated data frames with corrections for common
artifacts, see Lowrance et al. 2016). A refined dark frame for each
AOR was constructed after identifying and masking astronomical
sources in the data and subtracted from each individual frame in
the AOR. Hot pixels in the 4.5𝜇m data were masked, and the col-

umn pulldown correction provided in the CBCD was improved (see
Lowrance et al. 2012). The images were then rectified to a common
background level corresponding to the mean background during the
observations. Further corrections were made for latent images on
a frame-by-frame basis, as these are particularly prevalent in warm
mission data. The data were then mosaicked using mopex (Makovoz
et al. 2006) (see table 3 of Mauduit et al. 2012, for the parameters
used).

A pointing issue was found and corrected in the ES1 field,
where the pointing refinement task in the Spitzer data processing
pipeline failed for four of the AORs in the South of the field. We
also found that we needed to correct the photometric calibration of
the SERVS data in ES1, which was taken early in the post-cryogenic
mission, while the instrument performance was still being charac-
terized and before the final array temperatures had been set. This
was done by comparing the fluxes of sources in the overlap between
the SERVS and DeepDrill datasets, and applying the measured off-
sets to the SERVS data (1.04 at [3.6] and 0.98 at [4.5]). The ES1
data are thus all on the final warm mission calibration. Following
Mauduit et al. (2012), the ≈ 1 deg2 in the Southwestern part of the
XMM-LSS field that was taken during the cryogenic mission as part
of the SpUDS programme (Kim et al. 2011) was included in the final
images. The calibrations of these data are the same as those of the
DeepDrill data to within 1%, but the SpUDS data are significantly
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Table 3. IRAC source matches in Gaia DR2: number of matches, mean
position offsets and scatter.

Field Matches Δ(R.A.) Δ(Dec.) 𝜎(R.A.) 𝜎(Dec.)
(arcsec) (arcsec) (arcsec) (arcsec)

ES1 24375 0.07 0.00 0.24 0.22
XMM-LSS 19712 −0.04 0.02 0.23 0.21
ECDFS 23946 −0.02 0.02 0.20 0.21

deeper. Similarly, the central ≈ 0.5 deg2 of the ECDFS field con-
tains data from the much deeper cryogenic SIMPLE (Damen et al.
2011) and GOODS (Dickinson et al. 2003) programmes. However,
in this case we used only a depth of ≈ 12 frames per sky position to
obtain an approximately uniform depth for the survey of that field.

3.2 Astrometric accuracy

We matched the DeepDrill catalogs to Gaia Data Release 2 (DR2;
Lindegren et al. 2018). The IRAC pointing is calibrated using
2MASS (Skrutskie et al. 2006), and the pointing refinement pipeline
now includes proper motion information to provide positions for
epoch J2000 (Lowrance et al. 2016). We therefore used the proper
motion information in Gaia to derive positions appropriate for the
year 2000 to match to the Spitzer positions. We matched the dual-
band DeepDrill catalogues to Gaia using a 1.′′0 match radius. 3%
of sources in the DeepDrill survey have counterparts in Gaia DR2.
The results are shown in Table 3, where we list the mean system-
atic offset between Spitzer and Gaia DR2 positions Δ(R.A.) and
Δ(Decl.), along with the scatter 𝜎(R.A.) and 𝜎(Decl.), representing
the positional accuracy of a typical source in the survey. This scatter
is independent of source flux, and is thus probably dominated by
the scatter in the pointing refinements of individual frames, which
is ≈0.′′3 on an individual CBCD frame (Lowrance et al. 2016). All
systematic offsets when averaged over a mosaic are < 0.1 arcsec.

3.3 Photometric accuracy

The photometric calibration history of IRAC is given in Carey
et al. (2012). The post-cryogenic mission calibration factors were
obtained by matching the fluxes of the standard stars to the cryogenic
observations, and have an absolute accuracy ≈ 3%. Some scatter
is to be expected, as the ≈ 1.′′8 IRAC PSF is undersampled by
the 1.′′2 pixels, and the sensitivity across each pixel varies as a
function of position within the pixel. As most of the sources in
DeepDrill are slightly extended, and because any given point in
the sky is covered by a large number of observations, this intrapixel
sensitivity variation is assumed to average out. Aperture corrections
were applied as described in Mauduit et al. (2012), using the values
in Table 2 of that paper.

As noted in Section 3, some SERVS fields (including ES1)
were taken early in the Spitzer warm mission, before the calibration
factors were finalized. In SERVS, this issue was dealt with by forcing
the flux densities to the same scale as SWIRE. The SWIRE flux
densities were based on an early calibration of IRAC, and thus there
are significant differences between the calibration of the DeepDrill
data (which are based on the final Spitzer post-cryogenic mission
calibration) and the original SERVS data in the same fields. Table 4
gives the ratio of the calibration factors derived from comparing the
DeepDrill to the SERVS Aperture 2 (3.′′9 diameter) flux densities
for sources > 10 𝜇Jy in the same field. The more accurate DeepDrill
calibration is preferred.

Table 4. Differences in the photometic calibration between SERVS and
DeepDrill (the DeepDrill calibration is preferred.)

Field DeepDrill/SERVS flux ratio
3.6 𝜇m 4.5 𝜇m

ES1 0.95±0.01 0.96±0.01
XMM-LSS 0.96±0.01 0.98±0.01
ECDFS 0.95±0.01 0.97±0.01

4 DATA PRODUCTS

This section briefly describes the data products from DeepDrill that
are available in the data release. These consist of images and two sets
of catalogues, single-band catalogues and dual-band catalogues.

4.1 Images

Images were made at a pixel scale of 0.′′60 per pixel (oversampling
the PSF width of 1.′′8), and are calibrated in MJy sr−1. This results
in a conversion factor from pixel values to 𝜇Jy of 8.46. Coverage
images were made, in units of 100-second IRAC frames, along with
uncertainty images. Finally, mask images, showing the location of
bright stars in the fields are included, made using the methods
described in Mauduit et al. (2012).

4.2 Catalogues

Single-band (3.6 𝜇m and 4.5 𝜇m) catalogues were produced using
SExtractor (Bertin & Arnouts 1996). Parameters used are shown
in Table 5, note some of these differ from Mauduit et al. (2012),
principally to improve background filtering: the background mesh
size was changed from 32 to 16 pixels, and the filtersize from five to
three. These changes improved the background estimates in regions
of scattered light around bright objects. The default convolution fil-
ter (2-pixel [1.′′2] FWHM) was used for source detection, along with
a weight map (the depth of coverage map was used). Photometric
apertures labelled 1–5 corresponded to the SWIRE (Lonsdale et al.
2003) standard apertures with radii 1.′′4, 1.′′9, 2.′′9, 4.′′1 and 5.′′8,
respectively, with aperture corrections applied per Mauduit et al.
(2012). Uncertainties in the flux densities are from SExtractor,
adjusted to allow for the effects of pixel resampling and detector
gain. An additional 3% error is added in quadrature to account for
the systematic error in the IRAC flux density scale. The raw output
from SExtractor was filtered to output sources with a signal-to-
noise ratio > 5 in the SWIRE aperture 2 (3.′′9 diameter). The flag
column in the catalogue is a bitwise flag that takes the first and sec-
ond bit of the SExtractor flag (bit 1: photometry may be affected
by neighbours or bad pixels, and bit 2: the source was blended with
a neighboring object), and adds a further flag bit (3) to indicate that
the source is either a bright (𝐾 < 12) star, or within the region af-
fected by the halo of a bright star according to the rules in Mauduit
et al. (2012). The catalog columns are listed in Table 6. The star
masks used to create this flag are included in the data delivery to
the Infrared Science Archive (IRSA). The 3.6 𝜇m and 4.5 𝜇m cat-
alogues contain 2.7 and 2.5 million sources, respectively, summed
over all three fields.

Dual-band catalogues were created by matching the two single-
band catalogues produced by SExtractor with a 0.′′6 matching
radius (before applying the 5𝜎 cut) and then applying a 3𝜎 cut for
the signal-to-noise ratio of the detection in a 3.′′9 diameter at both
3.6 𝜇m and 4.5𝜇m. (We considered using the dual-image capability
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Figure 2. The footprints of multi-wavelength surveys on the ELAIS-S1 field (see Table 2 for survey references), superimposed on a greyscale of the IRAC
4.5 𝜇m coverage. Upper left: optical surveys (the DES DDFs are shown in cyan with rectangles indicating the individual chips, the ESIS survey in mauve
with cross-hatches, and the LSST footprint is shown as a black circle), upper right, near-infrared surveys (VIDEO in red, left hatched and VEILS in orange,
right-hatched), lower left, 24 𝜇m coverage from SWIRE in magenta and far-infrared coverage in HerMES in green (the L4 data is deeper than the hatched L6
data), and lower right the X-ray XMM-SERVS coverage in yellow, cross-hatched and the ATLAS radio survey in red, with circular hatches.

of SExtractor, but we found that the approach of performing two
independent source detection rounds on the individual channels
and then merging the results in catalogue space resulted in a more
reliable catalogue.) There will thus be objects present in the merged
catalogue that are not present in the single-band catalogues (and
vice-versa). The 3.6 𝜇m positions are given in the catalog as these

correspond to the smallest PSF. Columns are listed in Table 7. The
dual-band catalogues in each field contain approximately 800,000
sources, giving a total of 2.4 million sources.

Multiwavelength catalogues in the center 3–5 deg2 of each
of the DeepDrill fields are in the process of construction (Nyland
et al., in preparation, Nyland et al. 2017). These employ forced
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Figure 3. The footprints of multi-wavelength surveys on the XMM-LSS field (see Table 2 for survey references), superimposed on a greyscale of the IRAC
4.5 𝜇m coverage. Upper left: optical surveys (the LSST footprint is shown as a black circle, the DES DDFs are in cyan with rectangles indicating the individual
chips, the HSC-deep survey is in green with left hatches, the HSC-ultradeep in blue with cross-hatching). Upper right: near-infrared surveys (VIDEO in red,
left hatched and VEILS in orange, right-hatched), lower left: 24 𝜇m coverage from SWIRE in magenta and far-infrared coverage from HerMES in green (the
L3 data is the deepest, L4 less deep and L6 the shallowest). Bottom right: X-ray surveys - the XXL survey coverage is shown in light yellow, left-hatched and the
XMM-SERVS survey in dark yellow, cross-hatched). The position of the infrared-bright, variable star Mira (𝐾 ≈ −2.2) is indicated with the black star symbol.

photometry with the tractor (Lang et al. 2016), using the ground-
based near-infrared VIDEO data as a prior to overcome source
blending issues. Recovered IRAC magnitudes from this technique
are a good match to the aperture magnitudes in SERVS/DeepDrill
(Nyland et al. 2017). These catalogues are not part of the initial

DeepDrill data release, but will form part of a subsequent data
release.
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Figure 4. The footprints of multi-wavelength surveys on the ECDFS field (see Table 2 for survey references), superimposed on a greyscale of the IRAC 4.5 𝜇m
coverage. Upper left: optical surveys (the LSST footprint is shown as a black circle, the DES DDFs are in cyan with rectangles indicating the individual chips,
the HSC-deep survey in is green with left hatches, and the VOICE survey is in blue with circular hatches). Upper right: near-infrared surveys (VIDEO in red,
left hatched and VEILS in orange, right-hatched), lower left, 24 𝜇m coverage from SWIRE in magenta and far-infrared coverage in HerMES in green (the L2
data is deeper than the hatched L6 data), and lower right the X-ray XMM-SERVS coverage in yellow, cross-hatched and the ATLAS radio survey in red, with
circular hatches.

5 ANALYSIS AND RESULTS

5.1 [3.6]–[4.5] colour as a function of redshift

To show the variation of galaxy colour with redshift in DeepDrill
we use the photometric redshifts in XMM-LSS from Krefting et al.

(2020). These use tractor-based forced photometry (Nyland et
al. 2020, in preparation, see also Nyland et al. 2017; Cotton et al.
2018) to obtain redshift estimates for 690,000 sources in the overlap
between SERVS and DeepDrill. These photometric redshifts have
an uncertainty in 𝑧/(1 + 𝑧) ≈ 0.03 and outlier fraction 1.5% in
the redshift range 0 < 𝑧 < 1.5. To supplement these photometric
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Figure 5. Area of each field as a function of coverage in units of IRAC image
frames of 100s duration. The distribution for the 3.6 𝜇m band is shown as
the blue dotted line, and that for the 4.5 𝜇m band as the continuous red
line. The small areas of very high (> 50) frame coverage in XMM-LSS and
ECDFS result from the inclusion of data from earlier deep surveys in these
fields, as detailed in Section 3.

Table 5. Source extraction parameters used in SExtractor

Parameter Value

DETECT_MINAREA 5
DETECT_THRESH 1.0
DETECT_MINCONT 0.0005
ANALYSIS_THRESH 0.4
BACK_SIZE 16
BACK_FILTERSIZE 3
BACKPHOTO_TYPE LOCAL

redshifts with a smaller, but more accurate, sample of spectroscopic
redshifts we matched to the OzDES Data Release 1 (Childress et al.
2017), finding 9623 matches within 1

′′
of the DeepDrill positions

(corresponding to≈ 0.4% of the galaxies in DeepDrill). The OzDES
AGN were specially targeted for monitoring programmes.

In the absence of photometric redshifts (still the case over
much of the DeepDrill survey), the [3.6]−[4.5] colour can be used
as a crude redshift indicator (Papovich 2008). Figure 6 shows this
colour as a function of redshift. The models (based on Maraston
2005) show that the dip in the [3.6]−[4.5] colour at 𝑧 ≈ 0.6–0.8 is
a strong function of the shape of the spectral energy distribution in
the near-infrared, which is itself a strong function of the age and
nature of the stellar population. Nevertheless, the spectroscopic and
photometric redshifts show that most galaxies follow a fairly tight
trend in [3.6]−[4.5] colour as a function of redshift. Galaxies with
blue colours (bluer than the blue dotted line at [3.6]−[4.5]= −0.3
in Figure 6) are at 𝑧 ≈ 0.5–0.9, and galaxies with red colours
(redder than the red dotted line corresponding to [3.6]−[4.5]=0.1)
are at 𝑧 >∼ 1.3. Also shown in Figure 6 is the boundary color
commonly used to select AGN candidates from WISE data (Stern
et al. 2012) : [3.5]−[4.6]>0.8 in the Vega system, corresponding to
[3.6]−[4.5]>0.16 in AB. We also plot the colours and photometric
redshifts of submm-selected galaxies from the A2SUDS sample of
Dudzevičiūtė et al. (2020) and the locus of the [3.6]−[4.5] colour
from their composite SED. The very red colour of the A2SUDS
SED in the range 0.3 <∼ 𝑧 <∼ 0.5 is due to the strong 3.3𝜇m Poly-
cyclic Aromatic Hydrocarbon (PAH) feature passing through the
[4.5] band.

In Figure 7 we plot the [4.5] magnitude against redshift for the
sample matched to OzDES, the A2SUDS sample and the galaxies
with photometric redshifts (note that the “banding” in the distri-
bution of photometric redshifts is an artifact of the photometric
redshift algorithm). Most of the galaxies in the survey have stellar
masses between 1010 and 1011𝑀� , and galaxies with masses of
1011𝑀� can be detected out to 𝑧 ≈ 5. As expected, the AGN are
red and bright, though it should be noted that around the AllWISE
limit of 𝐴𝐵 ≈ 19.5 the counts of red galaxies begin to rapidly ex-
ceed those of AGN, making selection of AGN based on [3.6]−[4.5]
colour alone highly contaminated at faint magnitudes.

5.2 Source counts

Source counts from Spitzer surveys have been presented in Fazio
et al. (2004b), Mauduit et al. (2012), Ashby et al. (2013a), Ashby
et al. (2015) and Ashby et al. (2018). We compare the differential
counts (number per square degree per magnitude) in the DeepDrill
fields (Tables 8, 9) to the S-CANDELS counts of Ashby et al.
(2015) (the deepest of the currently-published post-cryogenic mis-
son counts) in Figure 8. Completeness estimates from Mauduit et al.
(2012) were used to correct the counts at AB magnitudes < 21.25;
at fainter magnitudes we ran a new set of simulations (6000 sim-
ulated point sources in each half-magnitude bin) on the DeepDrill
ES1 field to improve our estimates of completeness (Figure 8 (c)).
These simulations involved scaling point sources extracted from the
mosaics to a known flux density corresponding to the mid-point of
the magnitude bin, adding a grid of 6000 of these sources at known
positions to the mosaic, and rerunning SExtractor. The resulting cat-
alogues were then matched to the known positions within 1.′′2, and
the fraction of recovered sources noted as the completeness value
for that bin. These extractions also allowed us to examine possible
biases in the recovered flux densities near the flux density limit
from both Eddington bias (Eddington 1940) and biases from source
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Table 6. Single band catalogue columns

Column(s) Description Units

1 Name (J2000 coordinates prefixed by DD1) -
2 Right Ascension (ICRS) Degrees
3 Declination (ICRS) Degrees
4-8 Aperture corrected flux densities in apertures 1-5 𝜇Jy
9 Isophotal flux density 𝜇Jy
10 SExtractor Auto flux density 𝜇Jy
11-17 Uncertainties on columns 4-10 𝜇Jy
18 Kron radius 0.′′6 pixels
19 Signal-to-noise ratio -
20 Local RMS noise 𝜇Jy
21 Coverage 100s frames
22 Flag (see text) -

Table 7. Dual band catalogue columns

Column(s) Description Units

1 Name (J2000 coordinates prefixed by DD1) -
2 Right Ascension (ICRS) Degrees
3 Declination (ICRS) Degrees
4-8 Aperture corrected flux densities at 3.6𝜇m in apertures 1-5 𝜇Jy
9-13 Aperture corrected flux densities at 4.5𝜇m in apertures 1-5 𝜇Jy
14-23 Uncertainties in columns 4-13 𝜇Jy
24-25 Isophotal flux densities at 3.6 and 4.5𝜇m 𝜇Jy
26-27 Uncertainties in columns 24-25 𝜇Jy
28-29 SExtractor Auto flux densities at 3.6 and 4.5𝜇m 𝜇Jy
30-31 Uncertainties in columns 28-29 𝜇Jy
32-33 Kron radii at 3.6 and 4.5𝜇m 0.′′6 pixels
34-35 Signal-to-noise ratios at 3.6 and 4.5𝜇m -
36-37 Coverage 100s frames
38-39 Flags at 3.6 and 4.5𝜇m (see text) -

confusion resulting in an oversubtracted background. We find sig-
nificant biases only at the faintest magnitudes – at 𝐴𝐵 = 22.75
(2.9 𝜇Jy) the recovered flux densities are higher than those input by
3% at [3.6] and 5% at [4.5], however, this rises to 15% at [3.6] and
24% at [4.5] at 𝐴𝐵 = 23.25 (1.8 𝜇Jy), consistent with Eddington
bias dominating. We thus do not list the counts below 𝐴𝐵 = 22.75.

The DeepDrill counts agree well with the deeper counts from
the literature, starting to diverge slightly at 𝐴𝐵 ≈ 22, probably
due to differences in the photometric algorithms used when the
significance of the DeepDrill detections drops below≈ 10𝜎, and the
source confusion limit is approached. We also constructed counts
from the deeper data in the ≈ 0.45 deg2 of the XMM-LSS field that
uses images from the SpUDS survey, verifying that the counts in
that area have the same shape as the overall counts to 𝐴𝐵 ≈ 22.5,
beyond which they are more complete, as expected.

To measure the counts in DeepDrill, we used the flux densi-
ties within the 3.′′8 diameter aperture (with an aperture correction of
0.736 at [3.6] and 0.716 at [4.5]). This will slightly underestimate the
fluxes (and hence the counts) at bright magnitudes (𝐴𝐵 ∼ 16− 18),
where the galaxies may be resolved on scales larger than the aper-
ture (at brighter magnitudes the counts are dominated by stars).
A comparison to the counts made with the 8.′′2 diameter aperture
(with aperture corrections of 0.920 and 0.905 at [3.6] and [4.5],
respectively) shows that the counts in this range are about ≈ 0.1 dex
higher in both bands. Over other magnitude ranges the differences
are less than 0.1 dex (except at 𝐴𝐵 >∼ 21, when the higher noise
results in more incompleteness in the larger aperture). It is also the

case that the aperture corrections are derived from point sources, so
both the fluxes and the completeness corrections are strictly incor-
rect for marginally-resolved galaxies. However, the good agreement
between the counts from the two apertures with very different aper-
ture corrections argues against this being a significant problem. The
counts of Ashby et al. (2015) used a point-source fitting method
and agree with ours to within 0.1 dex over the whole magnitude
range. The point-source fitting method works better on blended ob-
jects, but also can be affected by flux boosting from very low level
cosmic rays, whereas our use of SExtractor will probably lead to
slight undercounting at faint magnitudes due to blending near the
confusion limit.

We also compare our source counts to two semi-analytic simu-
lations, GALFORM and Shark, and to the Evolution and Assembly
of GaLaxies and their Environments (EAGLE) hydrodynamic sim-
ulations. Semi-analytic simulations can generate large samples for
easy comparison to surveys like DeepDrill, but require some as-
sumptions to be made regarding the effects of dust attenuation in
relation to the geometry of disks and bulges to compute observed
fluxes, compared to hydrodynamical simulations, which use 3D
radiative transfer to calculate these effects directly.

The GALFORM simulated counts are based on a lightcone
specifically built for SERVS. This SERVS lightcone of model galax-
ies was constructed using the Lagos et al. (2012) GALFORM model
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Figure 6. [3.6]−[4.5] colours of galaxies as a function of redshift (cf. Papovich 2008). The grey dots show the galaxies with photometric redshifts in the
XMM-LSS field (Krefting et al. 2020), spectroscopic galaxy targets from the OzDES survey (Childress et al. 2017) (OzDES LRG, ClusterGalaxy, RedMaGiC,
BrightGalaxy, Emission Line Galaxy and Photo-z types) are shown as orange dots, AGN_monitoring targets from OzDES are shown as cyan crosses, and
A2SUDS submm galaxies with photometric redshifts as magenta crosses. The lines indicate various color cuts; the “Blue cut” (blue dotted line) is the line
below which the blue population of Figure 8 (d) is selected; “red cut” (red dotted line) the line above which the red population of Figure 8 (d) is selected. We
also include the [3.5]−[4.6] color cut of Stern et al. (2012) (“AGN cut”; cyan dashed line), above which candidate AGN dominate in the much shallower WISE
survey. Three models based on Maraston (2005) evolutionary synthesis models (see Guarnieri et al. 2019) are shown, a 3 Gyr old dusty star-forming galaxy, a
3 Gyr passive galaxy and a 100 Myr galaxy. (Note that the 3 Gyr models do not extend beyond 𝑧 = 2.17, where the age of the Universe is 3 Gyr.) We also plot
the composite SED of the A2SUDS submm galaxies from Dudzevičiūtė et al. (2020).

variant using the techniques described in Merson et al. (2013). 3 The
lightcone covers the redshift range 0 < 𝑧 < 6, has a sky coverage of
18.09 deg2 and contains model galaxies with apparent, dust attenu-
ated magnitudes in the [3.6] band down to 2 𝜇Jy (see also Krefting
et al. 2020). The Shark simulated lightcone was built from the
Shark semi-analytic model of galaxy formation and evolution (La-
gos et al. 2018, 2019) to compare with the DeepDrill survey. This
lightcone has an area of ≈ 107.9 deg2, and a flux selection at the
[3.6] band > 0.575 𝜇Jy (equivalent to an AB magnitude of 24.5),
with the same redshift range of 0 ≤ 𝑧 ≤ 6.

We computed the predicted number counts from the EAGLE
hydrodynamical simulations (Schaye et al. 2015; Crain et al. 2015)
by extracting all galaxies at 0 < 𝑧 < 8 from their public database
(McAlpine et al. 2016), and particularly their redshift, and apparent
[3.6] and [4.5] flux densities (see Camps et al. (2018) for details
of how these were computed). To calculate the number counts at a

3 The data are available from https://zenodo.org/record/3568147#

.X2utDC9h2L6

given band, we first calculated the area spanned by the box size of
100 Mpc projected in the sky (we assume that the width of the box is
negligible with respect to the luminosity distance and hence we can
assume all galaxies in the box to be at the same redshift). We then
calculate the number of galaxies per unit area at each redshift and
apparent magnitude bin. We then integrate the latter over redshift to
obtain a total number per unit area in each magnitude bin, which we
then divide by the width of the magnitude bin to compare to our other
measurements. We do this at 3.6𝜇m, 4.5𝜇m and for subsamples of
red and blue IRAC galaxies.

Overall, there is a fair agreement between the models and
theobservations in the regime where galaxies dominate the observed
counts (𝐴𝐵 >∼ 18). At intermediate magnitudes, ≈ 18-21, the semi-
analytic models underpredict the number of galaxies compared to
both our counts and those in the literature (by up to a factor of 1.8 in
the [3.6] band and 2.2 in the [4.5] band for Shark), but the EAGLE
hydrodynamic simulation does better. At the faint end (𝐴𝐵 ≈ 22)
the GALFORM model does best, with both Shark and EAGLE
underpredicting the counts. All lightcones contain only the stellar
emission of galaxies in the IRAC bands, neglecting warm dust
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Figure 7. Magnitude versus redshift in [4.5] (symbols as for Figure 6). Also plotted are two instances of the 3 Gyr old dusty star-forming galaxy model in
Figure 6 with stellar masses of 1010𝑀� and 1011𝑀� , and a 1 Gyr dusty galaxy model with 1011𝑀� from the same library, along with the composite submm
galaxy SED from A2SUDS.

Table 8. Counts at 3.6 𝜇m and their uncertainties for the three DeepDrill fields, the mean, and those from the simulations.

AB Mag Completeness ES1 Error XMM-LSS Error ECDFS Error Mean Error Shark GALFORM EAGLE

14.25 1.0 1.586 0.032 1.4 0.04 1.331 0.044 1.453 0.02 0.444 0.521 -
14.75 1.0 1.928 0.022 1.883 0.023 1.91 0.022 1.907 0.013 0.785 0.656 -
15.25 1.0 2.024 0.02 2.068 0.019 2.098 0.018 2.065 0.011 1.09 0.889 -
15.75 1.0 2.185 0.016 2.157 0.017 2.229 0.016 2.191 0.009 1.387 1.164 -
16.25 1.0 2.304 0.014 2.314 0.014 2.371 0.013 2.331 0.008 1.666 1.403 -
16.75 1.0 2.428 0.012 2.447 0.012 2.508 0.011 2.462 0.007 1.986 1.675 -
17.25 1.0 2.613 0.01 2.611 0.01 2.675 0.009 2.634 0.005 2.282 2.023 1.642
17.75 1.0 2.811 0.008 2.825 0.008 2.857 0.008 2.831 0.004 2.576 2.337 2.318
18.25 1.0 3.088 0.006 3.089 0.006 3.111 0.006 3.096 0.003 2.878 2.658 2.853
18.75 1.0 3.427 0.004 3.42 0.004 3.425 0.004 3.424 0.002 3.170 3.018 3.320
19.25 0.98 3.736 0.003 3.734 0.003 3.731 0.003 3.733 0.002 3.448 3.332 3.668
19.75 0.96 3.973 0.002 3.966 0.002 3.969 0.002 3.97 0.001 3.699 3.613 3.915
20.25 0.95 4.132 0.002 4.13 0.002 4.132 0.002 4.131 0.001 3.917 3.846 4.111
20.75 0.94 4.24 0.002 4.241 0.002 4.242 0.002 4.241 0.001 4.086 4.058 4.238
21.25 0.91 4.342 0.008 4.344 0.008 4.345 0.008 4.344 0.008 4.216 4.237 4.338
21.75 0.87 4.433 0.008 4.429 0.008 4.435 0.008 4.432 0.008 4.323 4.404 4.417
22.25 0.83 4.522 0.009 4.529 0.009 4.523 0.009 4.525 0.009 4.422 4.562 4.494
22.75 0.76 4.652 0.010 4.650 0.010 4.646 0.010 4.649 0.009 4.524 4.701 4.580

Counts and errors are expressed as log10 (𝑁 ) , where 𝑁 is the count per square degree per magnitude. The errors are based on Poisson statistics, combined
with the uncertainty in the completeness estimates (which dominate at fainter magnitudes).
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Figure 8. DeepDrill source counts. (a) the 3.6 𝜇m counts: the three sets of points show the completeness-corrected counts from each DeepDrill field. The
dot-dashed magenta line shows the mean counts from the S-CANDELS fields (Ashby et al. 2015). The magenta dotted line shows star counts from the UDS
field (which is within the DeepDrill XMM-LSS field) from Ashby et al. (2015), using the model from Wainscoat et al. (1992) as refined by Cohen (1993, 1994,
1995) and Arendt et al. (1998). (As all three fields have Galactic latitudes of −60◦ ± 15◦ these will be representative of the survey as a whole.) The dashed
black and green lines show the galaxy counts from the Shark (Lagos et al. 2018, 2019) and GALFORM semi-analytic simulations, respectively, and the dotted
red line those from the EAGLE hydrodynamic simulations. (b) the same for the 4.5 𝜇m counts. (c) the survey completeness as a function of magnitude. (d)
counts for red ([3.6]−[4.5]>0.1) and blue ([3.6]−[4.5]<-0.3) sources separately, with the total [4.5] counts also shown, along with model counts from Shark,
GALFORM and EAGLE.
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Table 9. Logarithmic counts at 4.5 𝜇m and their uncertainties for the three DeepDrill fields, the mean, and those from the simulations.

AB Mag Completeness ES1 Error XMM-LSS Error ECDFS Error Mean Error Shark GALFORM EAGLE

14.25 1.0 1.419 0.04 1.289 0.045 1.332 0.043 1.35 0.022 0.297 0.085 -
14.75 1.0 1.761 0.027 1.825 0.024 1.859 0.023 1.817 0.014 0.604 0.521 -
15.25 1.0 1.886 0.023 1.876 0.023 1.908 0.022 1.89 0.013 0.930 0.706 -
15.75 1.0 2.016 0.02 2.037 0.019 2.079 0.018 2.045 0.011 1.24 0.919 -
16.25 1.0 2.201 0.016 2.176 0.016 2.252 0.015 2.211 0.009 1.545 1.225 -
16.75 1.0 2.338 0.014 2.341 0.013 2.387 0.013 2.356 0.007 1.831 1.457 -
17.25 1.0 2.5 0.011 2.508 0.011 2.577 0.01 2.53 0.006 2.149 1.803 1.370
17.75 1.0 2.69 0.009 2.722 0.009 2.762 0.008 2.726 0.005 2.423 2.149 2.015
18.25 1.0 2.965 0.007 2.972 0.006 2.995 0.006 2.978 0.004 2.717 2.453 2.642
18.75 1.0 3.258 0.005 3.263 0.005 3.269 0.005 3.263 0.003 3.012 2.776 3.097
19.25 0.98 3.607 0.003 3.604 0.003 3.608 0.003 3.606 0.002 3.298 3.116 3.517
19.75 0.96 3.919 0.002 3.927 0.002 3.926 0.002 3.924 0.001 3.577 3.450 3.811
20.25 0.95 4.131 0.002 4.131 0.002 4.137 0.002 4.133 0.001 3.829 3.755 4.025
20.75 0.93 4.263 0.002 4.269 0.002 4.268 0.002 4.267 0.001 4.054 4.015 4.195
21.25 0.92 4.347 0.008 4.347 0.008 4.356 0.008 4.35 0.008 4.223 4.224 4.311
21.75 0.89 4.424 0.008 4.419 0.008 4.427 0.008 4.423 0.008 4.331 4.394 4.394
22.25 0.85 4.513 0.009 4.524 0.009 4.517 0.009 4.518 0.009 4.415 4.546 4.466
22.75 0.76 4.639 0.01 4.604 0.01 4.631 0.01 4.625 0.009 4.509 4.665 4.551

Counts and errors are expressed as log10 (𝑁 ) , where 𝑁 is the count per square degree per magnitude. The errors are based on Poisson statistics, combined
with the uncertainty in the completeness estimates (which dominate at fainter magnitudes).

emission from AGNs. Including this may improve the agreement
between some of the models and the data.

We also examine the source counts as a function of colour,
using the red and blue colour cuts described above to isolate
intermediate- (𝑧 ≈ 0.7) and high-redshift (𝑧 >∼ 1.3) galaxies. Figure
8 (d) shows these counts, again compared to the model galaxies.
Both the blue and red counts start well above all the model counts
(in the case of the blue counts at 𝐴𝐵 < 18 this is due to stars),
with EAGLE producing the largest fraction of blue galaxies, and
Shark the smallest. Both sets of observed counts converge to near-
agreement with the Shark simulation at the faint end, but the other
models do less well, with both EAGLE and GALFORM overpre-
dicting the blue counts, and GALFORM also overpredicting the red
counts. This suggests that the redshift distribution of the sources is
quite different in the three simulations. With increasing number of
photometric and spectroscopic redshift for SERVS and DeepDrill,
we will be able to compare the redshift distributions of the data and
the simulations, which will add another dimension to the tests shown
here. A detailed discussion of the galaxy luminosity function and
stellar mass function using DeepDrill data will also be presented in
future papers.

5.3 Very red objects in [3.6]–[4.5]

In this section, we investigate the population of objects in DeepDrill
at extreme red [3.6]−[4.5] colours. Such objects are of interest for
both Galactic astronomy, where late-type dwarf stars with strong
molecular bands can have extreme [3.6]−[4.5] colours (Leggett
et al. 2010), and for extragalactic astronomy, where such [3.6]−[4.5]
colours are sometimes found for highly obscured, highly luminous
AGNs (Tsai et al. 2015). In Table 10 we list the 19 objects detected in
both IRAC bands with a signal-to-noise ratio > 3 ([3.6]−[4.5]>1.2)
that also have 24 𝜇m coverage in SWIRE (3𝜎 depth ≈ 100𝜇Jy; total
area of overlap ≈ 30 deg2). 16 of the objects have detections at 24
𝜇m, implying their SEDs continue to rise rapidly in the mid-infrared.
These are good candidates for dusty high-𝑧 AGN. In Figure 9 we

plot the logarithm of the flux density ratio between 3.6 and 5.8‘𝜇m,
𝑆5.8/𝑆3.6, versus the logarithm of the flux density ratio between 4.5
and 8.0‘𝜇m, 𝑆8.0/𝑆4.5 for the 15 of these objects that are covered by
the SWIRE IRAC 5.8 𝜇m and 8.0 𝜇m observations, and compare to
the colours of spectroscopically-confirmed AGNs from Lacy et al.
(2013). Our very red IRAC objects are redder than nearly all of the
confirmed AGNs, but follow the extrapolation of the colour trend of
AGN to the red (though fall a little below the selection area of Don-
ley et al. 2012). A few of the very red objects have faint detections
in VIDEO (Table 10), for these objects the 𝐾𝑠−[4.5] colours of the
sources detected at 24𝜇m are also consistent with AGNs (Messias
et al. 2012).

The very red AGNs that are detected at 24 𝜇m have some sim-
ilarities to objects selected on the basis of extremely red 𝑅 − 24 𝜇m
colours in surveys with Spitzer (dust-obscured galaxies or “DOGs";
Dey et al. 2008), very red 𝑟 −22 𝜇m colours between the Sloan Dig-
ital Sky Survey and WISE (Ross et al. 2015) and objects with very
red colours between the WISE bands themselves (“Hot DOGs"; Tsai
et al. 2015). These sets of objects are also dominated by AGN emis-
sion in the mid-infrared. However, we emphasize that the [3.6]−[4.5]
colours of the very red objects presented here are typically more
extreme. None of the DOGs, only 11/77 of the red AGN in Ross
et al. (2015) and 5/20 of the Hot DOGs have [3.6]−[4.5] colours as
red as the very red objects described here.

Three sources are not detected at 24 𝜇m, and are thus less likely
to be AGN. One of these (DD J033258.19−274143.8) is in the much
deeper coverage of S-CANDELS, and has faint detections at 5.8 and
8.0 𝜇m (Figure 9). This object was also detected in multiple epochs
of archival Hubble Space Telescope (HST) coverage (2004-08-13
using the ACS instrument through the F850LP filter for proposal
ID 9500 and 2011-12-30 through F814W for the CANDELS ob-
servations, proposal ID 12060). We downloaded the relevant data
from the HST archive, and noted that the object has a significant
proper motion, moving approximately 0.7 arcsec in R.A. and 0.5
arcsec in Decl. between the two epochs. We therefore tentatively
identify this object as a brown dwarf star. With a [3.5]−[4.6] colour
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of 1.6 in AB magnitudes (2.2 in Vega magnitudes), this places the
star in a spectral class approximately at the transition between T and
Y-dwarfs (Leggett et al. 2017). We speculate that the remaining two
objects that lack a 24 𝜇m detection may also be brown dwarfs.

To further investigate the possibility of an AGN origin for the
majority of the very red sources we searched for serendipitously
available mid-infrared spectroscopy as well as deep radio contin-
uum data in the DeepDrill fields. For one of the very red sources,
DD J022050.38−053714.1 (5MUSES-033), the Spitzer IRS spec-
trum from the CASSIS database (Lebouteiller et al. 2011) shows
a strong mid-infrared continuum and spectral features consistent
with an AGN at its photometric redshift (derived from SWIRE
data) of 2.02 (Rowan-Robinson et al. 2013). This source is also
detected in the VLA Sky Survey (VLASS; Lacy et al. 2020) with
a 3 GHz flux density 𝑆3GHz = 2.0 ± 0.2 mJy. The correspond-
ingly high radio luminosity of 𝐿3GHz = 5×1025 W Hz−1 is much
more consistent with the radio emission being powered by an AGN
rather than by star formation (e.g. Kimball et al. 2011). One further
source, DD J022008.87-041819.0 is also detected in VLASS with
𝑆3GHz = 0.54± 0.2 mJy. Its photometric redshift is 2.01, which im-
plies 𝐿3GHz = 1.3×1025 W Hz−1, also more likely to be powered
by an AGN than by star formation. In addition to VLASS, we also
searched for counterparts in the deep radio surveys with published
source catalogs listed in Table 4 (LOFAR, GMRT, and ATLAS).
None of the very red sources is detected in these radio surveys.
We also searched for counterparts in deep (sub-mJy beam−1 rms
sensitivity) commensal 340 MHz data from the VLA Low-band
Ionosphere and Transient Experiment (VLITE4; Clarke et al. 2016;
Polisensky et al. 2016) that were observed during an ultra-deep,
single-pointing VLA imaging campaign centered on the Hubble
Ultra Deep Field (HUDF) within CDFS at 3 GHz (Abrahams et
al. 2020, submitted). Of the 12 very red sources in CDFS that fall
within the currently imaged portion (spanning a width of 2 deg) of
the deep VLITE data, one source (DD J033401.66−265017.0) has a
compact counterpart in VLITE with a primary-beam-corrected flux
of 1.0±0.3 mJy at a SNR of 4.8. The lack of detection in VLASS
implies a moderately-steep spectral index, 𝛼0.34 GHz

3.0 GHz < −0.9. Unfor-
tunately, the source currently lacks a photometric redshift, though
assuming it is at 𝑧 > 1 it is also more likely to be powered by
an AGN. Full details on the deep VLITE imaging centered on the
HUDF will be presented in a forthcoming study (Polisensky et al.,
in preparation).

6 SUMMARY

We describe the DeepDrill survey, which images ≈ 27 deg2 in three
of the four pre-defined LSST Deep Drilling fields to a depth of
≈ 2 𝜇Jy. Accuracy in photometric and astrometric calibration is
described. We illustrate the use of the [3.6]−[4.5] colour to divide
objects into high (𝑧 > 1.3) and low (𝑧 ∼ 0.7) redshift bins. This
property of the [3.6]−[4.5] colour will be particularly valuable for
breaking degeneracies in photometric redshift estimates obtained
from LSST optical data alone in regions of the DDFs not covered
by other deep near-infrared data (e.g. Pforr et al. 2013).

We show that source count data at [3.6] and [4.5] alone can pro-
vide useful comparisons to models of galaxy formation. The model

4 VLITE provides data at 340 MHz from a subset of the VLA antennas
during regular VLA observations above 1 GHz over a field-of-view (mea-
sured at the full-width at half power of the primary beam) of 5.5 deg2 and a
maximum resolution of ∼ 5′′ in the VLA A configuration.

Figure 9. The distribution of the objects with very red [3.6]−[4.5] colours
in mid-infrared color space for all objects with detections in all four IRAC
bands. The black crosses indicate probable AGNs, and the brown dot the
likely brown dwarf (DD J033258.21−274143.7). The cyan dots represent the
spectroscopically-confirmed Spitzer-selected AGNs from Lacy et al. (2013),
with the selection criteria of AGN candidates for that paper shown as the
blue dotted line. We also show the AGN selection criterion of Donley et al.
(2012) as the red dot-dash line. Both infrared AGN selection techniques
shown here rely on the warm dust emission from the AGN outshining the
stellar emission from the host galaxy, see Lacy & Sajina (2020) for a detailed
discussion.

and observed counts generally agree well, but a small discrepancy
observed at intermediate magnitudes warrants further investigation.
These comparisons will be further enhanced when the Spitzer data
are fully combined with the other multiwavelength data in the LSST
Deep Drilling fields. We are currently working on completing multi-
band 0.4-4.5𝜇m catalogs using forced photometry in the centers of
the fields (defined by the overlap between the DeepDrill and VIDEO
surveys). We show that most objects with extremely red [3.6]−[4.5]
colours are mostly identifiable as dusty AGNs at 𝑧 > 1, but we
also find one likely T or Y brown dwarf star and two further brown
dwarf candidates. Future papers will discuss the stellar masses of
galaxies in DeepDrill (Maraston et al. 2020, in preparation) and
their clustering (van Kampen et al. 2020 in preparation).

The 3-5 𝜇m region in the near-infrared is uniquely useful for
capturing light from the peak in the stellar SED at rest frame ≈ 1𝜇m
at 𝑧 ∼ 1 − 4. Although new surveys with Spitzer are no longer
possible, we expect that the legacy value of the existing survey
datasets will last well into the future. When combined with the
existing and planned multiwavlength datasets in these fields, the
DeepDrill data will be able to help answer fundamental questions
about the nature of AGN and galaxy evolution, and its dependence
on environment from before Cosmic Noon to the present.
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[]

Table 10. Mid-infrared and radio photometry of the very red sources from DeepDrill with 24 𝜇m coverage in SWIRE. Infrared photometry is from either the
Spitzer source list (SSTSL2; Teplitz et al. 2010), this paper, or S-CANDELS, as noted in the Notes column.

Name 𝐾𝑠 𝑆3.6 𝑆4.5 𝑆5.8 𝑆8.0 𝑆24 𝑆3GHz Photometric Notes
(AB) (𝜇Jy) (𝜇Jy) (𝜇Jy) (𝜇Jy) (𝜇Jy) (mJy) Redshift

DD J003136.66−432234.9 - 1.2±0.7 6.3±0.7 <20 < 20 <100 - -
DD J003441.85−423119.9 - 3.8±0.5 15.2±0.4 81±4 250±6 1710±80 - - SSTSL2
DD J003449.14−422934.8 - 2.0±0.6 6.4±0.5 42±7 104±7 230±30 - - This paper
DD J003723.88−432554.7 - 1.8±0.6 6.9±0.5 27±7 87±7 290±30 - - This paper
DD J003831.45−440045.2 22.39±0.06 3.0±0.7 10.7±0.6 21±3 70±6 390±80 - - SSTSL2
DD J004411.11−442448.7 - 2.9±0.4 9.3±0.4 <20 - 577±30 - This paper
DD J021821.44−053101.5 - 6.9±0.5 21.4±1.0 125±7 248±7 1430±30 < 0.4 2.02
DD J022008.87−041819.0 21.04±0.02 107.6±3.7 337.9±5.3 997±30 2330±70 6010±30 0.54±0.12 2.01
DD J022017.88−045753.3 - 4.8±0.7 15.4±1.2 28±4 90±8 290±60 < 0.4 - SSTSL2
DD J022050.38−053714.1 - 37.0±1.3 122.9±2.5 380±10 1090±30 5000±200 2.0±0.12 2.05 5MUSES-033; This paper
DD J022228.02−034235.3 - 43.1±1.8 143.6±4.2 320±10 870±30 1094±240 < 0.4 2.34 This paper
DD J032727.28−270621.9 - 1.8±0.9 9.7±0.6 <20 < 20 <100 < 0.15 -
DD J032857.12−284111.8 22.80±0.06 16.0±1.2 56.6±2.2 173±3 443±5 1730±90 < 0.15 - SSTSL2, This paper
DD J033029.88−293445.5 - 4.5±0.5 14.5±0.7 59±7 198±7 680±30 < 0.15 - SSTSL2, This paper
DD J033053.41−274717.8 22.41±0.06 11.9±0.8 46.7±2.0 150±5 480±10 2010±40 < 0.15 - SSTSL2
DD J033258.19−274143.8 22.93±0.06 1.7±0.5 7.3±0.9 5.3±2.2 6.1±1.8 <100 < 0.15 - S-CANDELS
DD J033400.05−283001.9 - 2.7±0.5 9.2±0.8 47±3 80±8 200±40 < 0.15 - SSTSL2
DD J033401.66−265017.0 - 24.4±1.0 76.3±1.7 176±2 227±7 1000±50 < 0.15 - 𝑆340MHz =1.2 mJy; SSTSL2, This paper
DD J033602.31−284944.2 - 3.6±0.4 12.8±1.0 33±2 87±5 490±50 < 0.15 - SSTSL2

† Photometric redshifts are from Rowan-Robinson et al. (2013) except for DD J021821.44−053101.5 which is from Williams et al. (2009).

Table 11. Columns in the SHARK simulated lightcone catalogue.

Column(s) Description Units

1 ID -
2 Right Ascension Degrees
3 Declination Degrees
4 Redshift -
5 Log10(Stellar Mass) Solar masses
6 Log10(Star Formation Rate) Solar masses/year
7 Half-light radius Kpc
8 Bulge-to-Total ratio -
9-13 Apparent mag. in 𝑢, 𝑔, 𝑟 , 𝑖, 𝑧 AB
14-17 Apparent mag. in 𝑌 , 𝐽 , 𝐻 , 𝐾 (VISTA) AB
18 Apparent mag. in WISE [3.4] AB
19-20 Apparent mag. in IRAC [3.6] and [4.5] AB
21 Apparent mag. in WISE [4.6] AB
22-34 Absolute mag. in the above bands AB

DATA AVAILABILITY

The data products from the post-cryogenic Spitzer surveys of the
three LSST DDFs described here (images, coverage maps, uncer-
tainty images, bright star masks and single and dual-band cata-
logues) are available from IRSA (https://irsa.ipac.caltech.
edu/data/SPITZER/DeepDrill). These include mosaic images,
coverage maps, uncertainty images and bright star masks. Each field
has two single-band catalogues cut at 5𝜎, and a dual-band catalogue
requiring a detection at > 3𝜎 at both 3.6 and 4.5𝜇m. The simulated
lightcone catalogue from SHARK is also included in the release, its
columns are described in Table 11.
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APPENDIX A: SOURCE CONFUSION IN THE
DEEPDRILL SURVEY

To better understand how source confusion affects the DeepDrill
survey as a function of depth, and in the presence of source cluster-
ing, we make use of some results from studies at other wavelengths.
The analytic approach described here, although only approximate,
allows us to predict trends in the noise in the survey as a function
of depth, and to compare the contributions of random and clustered
sources to the confusion noise.

Source confusion and its contribution to flux and number count
uncertainties has been investigated by several authors (e.g. Scheuer
1957; Condon 1974; Hacking & Houck 1987; Condon et al. 2012;

Vernstrom et al. 2016). Hacking & Houck (1987) show that the
confusion noise in the absence of clustering, 𝜎random, obeys:

𝜎2
random =

𝛼

2 − 𝛼Ωe𝐴𝐷
2−𝛼
c , (A1)

where𝛼 is the slope and 𝐴 the normalization of the integrated source
counts 𝑛(> 𝑆) = 𝐴𝑆−𝛼 near the survey limit, 𝐷c is the cutoff in
the “deflection” - the deviation of flux density, 𝑆 from the mean
background - at the survey limit, and the effective source area Ωe is
given by:

Ωe =

∫
ℎ(𝒙)𝛼d𝒙, (A2)

where ℎ(𝒙) represents the response of the instrument to a typical
source near the survey limit as a function of position vector 𝒙. For
IRAC, we use the extended Point Response Functions (PRFs) from
the Spitzer Science Center5 as an empirical ℎ(𝒙). The slope of the
integrated source counts close to the flux density limit in both [3.6]
and [4.5] is 𝛼 ≈ 0.5. The non-Gaussian wings of the IRAC PRF,
which are further amplified relative to the core by taking the PRF
to the 0.5 power in Equation A2, means that the integral is slow to
converge, and we chose to limit the integration to the inner 1/4 of
the IRAC array where the bulk of the contributions will occur. This
integration results in effective area at [3.6] of Ω𝑒 = 1.82 × 10−9sr,
and at [4.5] of Ω𝑒 = 1.86 × 10−9sr. These values are much larger
than that of the 1.′′8 FWHM Gaussian that corresponds to the core
of the IRAC PRF at these wavelengths (Ωe = 1.7 × 10−11sr), and
are also much larger than the solid angle of the 1.′′9 radius aperture
through which the source counts are measured (Ωe = 2.7×10−10sr).

Galaxy clustering also adds to confusion noise. The effects
of clustering on the distribution of deflections, 𝑃(𝐷), have been
discussed by Barcons (1992), Takeuchi & Ishii (2004) and Argüeso
et al. (2019), and a full treatment requires complicated mathematics
outside the scope of this paper. Here, we adopt the approach of
Barcons (1992), where we sum the confusion noise contribution
from unclustered sources and a term due to clustering in quadrature
to estimate the total confusion noise 𝜎conf :

𝜎2
conf = 𝜎

2
random+ < 𝐼 >2 Ξ, (A3)

where < 𝐼 > is the mean intensity per beam area, Ωb, and

Ξ =
1
Ω2

b

∫
Ωb

𝑑𝒙1

∫
Ωb

𝑤( |𝒙1 − 𝒙2 |)d𝒙2

where w(𝜃) (and 𝜃 = |𝒙1−𝒙2 |) is the two-point correlation function.
Measurements of the two-point correlation function in DeepDrill
(van Kampen et al. in preparation) show that 𝑤(𝜃) = (𝜃/𝜃0)−𝛿
where 𝛿 ≈ 0.68, and the correlation length, 𝜃0 ≈ 0.′′2.

We next approximate the total noise 𝜎T as the contribution
of instrumental noise, 𝜎I (obtainable from the Spitzer Performance
Estimation Tool 6) and confusion noise, 𝜎T =

√︃
𝜎2

I + 𝜎2
conf . (With

the caveat that the distribution of deflections 𝑃(𝐷) is not Gaussian;
Herranz et al. (2004).) By setting 𝐷 = 𝜎T in Equation A1 and solv-
ing numerically, we recover 𝜎T = 0.41 𝜇Jy at [3.6] and 0.51 𝜇Jy at
[4.5] at the nominal survey depth of 12×100s frames, close to the
empirical result from SERVS of 𝜎T ≈ 0.4 𝜇Jy in both the [3.6] and
[4.5] bands found from measuring the RMS variation in randomly-
placed 1.′′9 radius empty apertures (Mauduit et al. 2012). Table A1

5 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/

calibrationfiles/psfprf/
6 https://irsa.ipac.caltech.edu/data/SPITZER/docs/

dataanalysistools/tools/pet/senspet/index.html
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shows that, as the depth of the survey is increased beyond the nom-
inal depth of 12 frames, 𝜎T decreases, but by factors less that the
square root of the number of frames, and the contribution of confu-
sion noise becomes dominant. The contribution from clustering is
small, but almost constant with depth as it is dominated by bright
sources well above the survey limit, so becomes more significant
in deeper surveys. Source confusion in very deep IRAC images can
be effectively mitigated by PRF subtraction or forced photometry
techniques (e.g. Ashby et al. 2015; Nyland et al. 2017) that remove
the PRF wings from the images, reducing Ωe and Ωb.

Positional accuracy is also affected by source confusion (Hogg
2001). In the case of DeepDrill, however, the low value of 𝛼 results
in the effect of centroid errors due to source blending at the measured
≈ 30 beams per source being <∼0.′′1 (Hogg 2001, their Figure 2).
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Table A1. Calculated noise as a function of depth in DeepDrill
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frames) [3.6] [4.5] [3.6] [4.5] [3.6] [4.5] [3.6] [4.5] [3.6] [4.5]
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