Equations of Motion in a Rotating Noninertial Reference Frame

Nicholas L. Sponsel

Follow this and additional works at: https://commons.und.edu/es-showcase

Part of the Mathematics Commons

Recommended Citation
Sponsel, Nicholas L., "Equations of Motion in a Rotating Noninertial Reference Frame" (2018). Essential Studies UNDERgraduate Showcase. 16.
https://commons.und.edu/es-showcase/16
Equations of Motion in a Rotating Noninertial Reference Frame

The Coriolis Force
Nicholas L Sponsel
Department of Mathematics, Department of Physics and Astrophysics, University of North Dakota

Objectives
To demonstrate how "fictitious" forces arise from a frame of reference that isn’t in a state of inertia, a familiar model is constructed in the form of a rotating planet.
- Describe the motion of a sphere rotating about a stationary axis
- Determine the equations of motion of an object moving in the frame of the planet’s surface
- Test the solutions with expectations under different parameters

Introduction
Newton’s first law of mechanics states that a body remains at rest or in uniform motion unless acted upon by a force. Though not explicitly stated, this law defines an inertial reference frame. If a reference frame is subject to acceleration intrinsic to its motion, like the surface of a rotating sphere, it is a noninertial frame of reference. Seemingly measurable forces that manifest from this frame are termed fictitious forces and are artificial corrections required due to attempts to extend Newton’s equations to a noninertial system [1].

Homogeneous Solution
When solving differential equations, a general solution for the equation $\ddot{x} = A\dot{x}$ is:

$$e^{At} = \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{\lambda_3 t} \end{bmatrix} V^{-1},$$

where matrix V is a composite of the eigenvectors of A, V^{-1} is its inverse, and λ_i are the eigenvalues of A.

Particular Solution
The particular solution can be represented with a linear operator such as $L_{op}\vec{p}_p = \vec{g}(t)$, and solved using a Green’s function.

$$L_{op}\vec{g}(t, t_0) = \delta(t - t_0)$$

A function can be rewritten with a Dirac delta so that,

$$L_{op}\vec{p}_p = \int_{-\infty}^{\infty} \vec{g}(t, t_0) \delta(t - t_0) \, dt_o$$

Complete Solution
$$v_x = g_s \sin^2 \omega t + v_{yo} \cos 2\omega t - v_{yo} \sin 2\omega t - v_{xo} \sin 2\omega t$$
$$v_y = g_s (\sin 2\omega t - 2\omega t) - v_{yo} \sin 2\omega t + v_{yo} \omega t (\cos 2\omega t + \alpha) + v_{xo} \sin 2\omega t + \omega t (\alpha - \sin 2\omega t)$$
$$v_x = -v_y (\sin^2 \phi + \sin^2 \omega t) + v_{yo} \sin 2\omega t + v_{yo} \omega t (\cos 2\omega t + \alpha) + v_{xo} \sin 2\omega t + \omega t (\alpha - \sin 2\omega t)$$

Change of Frame Transformation
If the rotating sphere is embedded in a “fixed” [1] frame the equation that relates measurements from an observer rotating on the surface to that of a celestial, “fixed”, observer is as follows:

$$\frac{dv}{dt} = \frac{dv}{dt}_{\text{rotating}} + \vec{\omega} \times \vec{v}$$

The velocity, \vec{v}, as measured by the fixed observer is dependent on the angular velocity of the sphere. To derive the fictitious forces, the same process can be carried out to determine acceleration $\frac{dv}{dt}_{\text{rotating}}$ corrections between the frames.

$$F_{\text{fictitious}} = F - m\ddot{x} \times \vec{v} - m\omega^2 \vec{v} \times (\vec{\omega} \times \vec{v}) - 2m\omega \times \vec{v} \times \vec{w}. \tag{5}$$

Each term in equation 5 can be interpreted physically as:

- F: sum of the forces acting on the object as measured in the fixed system
- $-m\ddot{x} \times \vec{v}$: result of rotational acceleration
- $-m\omega^2 \vec{v} \times (\vec{\omega} \times \vec{v})$: centrifugal force
- $-2m\omega \times \vec{v} \times \vec{w}$: Coriolis force.

Results
Explicit values for the aforementioned equations are as follows:

- $\ddot{z} = 0 \quad \ddot{\phi} = -\frac{g_s}{\omega} \sin 2\omega t$,
- $\ddot{\omega} = -\frac{g_s}{\omega} \cos 2\omega t + \frac{2}{\omega} \sin 2\omega t - \frac{2\omega^2}{\omega} \cos 2\omega t$,
- $L_{op} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right]$.

To test whether these solutions agree with expectations ω and α can be altered. If an object is dropped over a pole ($\alpha = 0$) it should only be affected by gravity. If dropped at the equator ($\alpha = \frac{\pi}{2}$) an additional easterly velocity should occur. If there is no rotation, only the gravity term should survive. Additionally, in the Northern Hemisphere a particle projected in a horizontal plane will be directed towards the right of the particle’s motion [1]. All deflections in the Southern Hemisphere are opposite to the Northern. For the velocity vector function, $\vec{v}(\phi, \alpha, t)$, these constraints result in:

- $\vec{v}(0, 0, \omega) = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $\vec{v}(\frac{\pi}{2}, \alpha, 0) = \left[\begin{array}{c} \frac{g_s}{\omega} \sin 2\omega t \\ \frac{g_s}{\omega} \cos 2\omega t \end{array} \right]$
- $\vec{v}(\alpha, \pi, 0) = \left[\begin{array}{c} 0 \\ 0 \\ -\frac{g_s}{\omega} \sin 2\omega t \end{array} \right]$
- $\vec{v}(\alpha, \frac{\pi}{2}, 0) = \left[\begin{array}{c} \frac{g_s}{\omega} \cos 2\omega t \\ \frac{g_s}{\omega} \sin 2\omega t \end{array} \right]$

Figure 1: The path an object traces when experiencing “fictitious” forces induced by a noninertial frame of reference. A target due south on a globe (a) is deflected from a straight path (b) by the rotational motion of the globe. © Encyclopaedia Britannica

Figure 2: Easterly deflection demonstrated by the change in velocity, v_y, over one minute. Motion in the Northern Hemisphere deflects to the right, while motion in the southern hemisphere deflects left.

Additional Information
The southerly deflection is on the order of a million times smaller than the easterly deflection. Despite many attempts, no credible evidence that the southerly deflection has been detected has been correctly measured [2].

References

Acknowledgements
I would like to thank Dr. William Schmalz of the Department of Physics and Astrophysics for demonstrating the use of Green’s functions in solving for solutions in noninertial reference frames.

Contact Information
- Email: nicholas.l.sponsel@ndus.edu
- Phone: +1 (701) 777 7891