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Coronary artery disease (CAD) is the most common cause of death globally. Patients

with suspected CAD are usually assessed by exercise electrocardiography (ECG).

Subsequent tests, such as coronary angiography and coronary computed tomography

angiography (CCTA) are performed to localize the stenosis and to estimate the degree of

blockage. The present study describes a non-invasive methodology to identify patients

with CAD based on the analysis of both rest and exercise seismocardiography (SCG).

SCG is a non-invasive technology for capturing the acceleration of the chest induced by

myocardial motion and vibrations. SCG signals were recorded from 185 individuals at rest

and immediately after exercise. Two models were developed using the characterization

of the rest and exercise SCG signals to identify individuals with CAD. The models were

validated against related results from angiography. For the rest model, accuracy was

74%, and sensitivity and specificity were estimated as 75 and 72%, respectively. For the

exercise model accuracy, sensitivity, and specificity were 81, 82, and 84%, respectively.

The rest and exercise models presented a bootstrap-corrected area under the curve

of 0.77 and 0.91, respectively. The discrimination slope was estimated 0.32 for rest

model and 0.47 for the exercise model. The difference between the discrimination slopes

of these two models was 0.15 (95% CI: 0.10 to 0.23, p < 0.0001). Both rest and

exercise models are able to detect CAD with comparable accuracy, sensitivity, and

specificity. Performance of SCG is better compared to stress-ECG and it is identical

to stress-echocardiography and CCTA. SCG examination is fast, inexpensive, and may

even be carried out by laypersons.

Keywords: coronary artery disease, seismocardiography (SCG), electrocardiograph (ECG), exercise stress test,

heart mechanical activity

1. INTRODUCTION

Coronary artery disease (CAD) is the most common cause of death worldwide (GBD 2017 Disease
and Injury Incidence and Prevalence Collaborators, 2018). Risk factors for CAD are high LDL
cholesterol, low HDL cholesterol, high blood pressure, family history, diabetes, smoking, age, and
obesity. These risk factors may cause atherosclerotic plaques within the coronary arteries. When
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the plaques build up they may narrow or even occlude the vessel.
As a result, the oxygen supply to the heart muscle is reduced and
symptoms like angina pectoris, shortness of breath or fatiguemay
occur. Severe complications of CAD are myocardial infarction,
ventricular fibrillation, heart failure, and death.

Once symptoms of CAD occur, the affected patients may
consult a cardiologist, who will perform a rest and exercise
electrocardiography (ECG). In case the ECG is pathologic,
further tests, such as coronary angiography and coronary
computed tomography angiography (CCTA) are performed in
order to figure out the location, extent, and degree of coronary
occlusion (Ashley and Niebauer, 2004).

Rest and stress ECG are extensively used for diagnosis of
CAD. However, in many cases diagnosis of CAD using the
morphology of a rest ECG is not straightforward, especially when
the disease is in an early stage. Compared to the rest ECG, the
stress ECG shows better sensitivity regarding CAD diagnosis,
although sensitivity is still below 70% (Al-Shehri et al., 2011).

Cardiac imaging techniques (coronary angiography, CCTA)
are currently the gold standard for the diagnosis of CAD.
However, these techniques are expensive, only available in
hospitals and in the case of coronary angiography, invasive
(Al-Shehri et al., 2011).

Many patients with CAD are asymptomatic. It would explain
why this disease is the leading cause of death globally. To lower
the overall mortality rate of CAD, a technology is required, which
is inexpensive, easy to use, fast, reliable and accurate. As a result,
a great interest in alternative techniques has been promoted to
simplify the procedure of detecting CAD (for example recently a
method has been suggested for detecting CAD using the sound of
turbulent blood flow induced by coronary stenosis Schmidt et al.,
2015; Winther et al., 2016, 2018; Thomas et al., 2017). Among
them a technology using seismocardiography (SCG) for detecting
CAD has the potential to fulfill these requirements.

SCG is a non-invasive technology for capturing the
acceleration of the chest induced by the contraction and
relaxation of the myocardium. The acceleration is recorded
dorsoventrally, back to front, using an accelerometer placed
on the sternum, close to the xiphoid. SCG was initially
recommended, in the early 1960s, for monitoring heart rate
variability (Baevskii et al., 1964). In the late 80s and early 90s,
SCG was used as a technology for measuring the myocardium
motion during ventricular contraction and during early and
late ventricular filling (Salerno and Zanetti, 1990; Zanetti and
Salerno, 1991). A study conducted by Crow et al. later, confirmed
that the fiducial points of the dorsoventral SCG were associated
with aortic and mitral valve opening and closure events (Zanetti
et al., 1991; Crow et al., 1994).

Considering the well-studied relation between heart wall
motion and acute or chronic ischemia caused by CAD (Tennant
and Wiggers, 1935; Chen et al., 1980; Morganroth et al., 1980),
Salerno et al. suggested SCG as a non-invasive technology for
detecting coronary artery disease (Salerno et al., 1990; Salerno
and Zanetti, 1991). To investigate the seismographic changes
associated with coronary artery stenosis and ischemia caused by
decreased coronary blood flow, in a study conducted by Salerno
et al. 35 patients were studied during coronary angioplasty

(Salerno et al., 1991). The findings were consistent with the
hypothesis that the SCG changes were due to ischemic changes
in ventricular wall motion.

Several studies were later conducted to assess the ability
of exercise SCG for detecting CAD. Salerno et al. studied the
morphology of exercise SCG in patients with ≥50% coronary
artery stenosis (Salerno and Zanetti, 1990). Changes in the
morphology of SCG prior to and immediately after exercise were
reported as being significant during isovolumetric contraction
up to the occurrence of aortic valve opening. Their findings
suggested that exercise SCG in conjunction with 12-channel ECG
improved the sensitivity of detection of coronary artery stenosis
compared to ECG alone.

In this study, we proposed a new automatic and non-invasive
methodology to identify patients with CAD based on the analysis
of both rest and exercise SCG. The SCG signals were recorded
before and immediately after exercise using an accelerometer
mounted on the chests in the supine position. Patients with more
than 50% occlusion in at least one of their coronary arteries,
diagnosed by coronary angiography, were considered as part
of the CAD group. This method could offer new possibilities
for monitoring CAD with a very simple procedure outside the
clinical setting.

2. MATERIALS AND METHODS

2.1. Data Set
The current manuscript presents a new methodology for
detecting coronary artery disease using the data set collected
in 1988–92. The protocol was approved by the human
subject research committee of Abbott North-western Hospital,
Minneapolis, MN, on March 11, 1988. The study was carried
out in accordance with the recommendations of the research
committee of Abbott North-western Hospital, Minneapolis, MN.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki.

Two hundred and four participants were enrolled in the study.
All participants underwent a treadmill exercise following the
Bruce protocol. SCG and 12-lead ECG signals were recorded
in the supine position just prior to exercise (rest recording),
immediately after returning to the supine position at the end
of exercise (post-exercise recording) and again at the end of
the recovery period (recovery recording). Standing 12-lead ECG
signals were obtained during the exercise as well.

The SCG signals were recorded using an ultra low-frequency
piezoelectric crystal accelerometer (Seismed Instruments, Inc.,
Minneapolis, Minn) with a linear response between 0.3 and 800
Hz and a sensitivity of 1.0 V/g. The accelerometer was placed on
the sternum close to the xiphoid process. Both SCG and ECG
signals were sampled at 250 Hz.

Participants were classified as having coronary artery disease
if ≥50% stenosis was present in at least one coronary artery. A
subgroup of participants had a coronary angiogram. For patients
without an angiogram, the probability of coronary artery disease
was estimated using the Framingham prospective risk score
(D’Agostino et al., 2008). Participants with ≤2% probability of
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coronary disease were assumed to have <50% stenosis in all
coronary arteries.

Among the 204 participants enrolled for study, 19 participants
(9.3%) were excluded from the study due to lack of information
from angiography, very poor quality ECG or SCG signals,
or unwillingness to continue the study. Of the remaining
185 participants, 148 patients (80.0%) underwent the coronary
angiography. Significant CAD was found in 117 out of 148
(79.1%) patients while in 31 out of 148 (20.9%) patients no
significant CAD reported by coronary angiography.

The subgroup of participants without an angiogram, 37 out of
185 (20.0%), had an estimated CAD risk ≤2%. Among them, 10
out of 37 were sent for Thallium stress test and all had a negative
result; 27 out of 37 were sent for ECG stress test and 22 out of
27 had a negative result. Five patients with positive ECG stress
test were excluded from the study. It resulted in a total of 180
participants included in the further analysis.

When including the 32 out of 180 (20.0%) individuals with
an estimated risk of CAD ≤2% into the calculation, a total of 65
(35.7%) had no significant CAD and 117 (64.2%) had significant
CADwith an occlusion rate≥50% in at least one coronary artery.
The average age of the participants was 55 ± 11 years: 59 ±

9 years for the patients with CAD and 48 ± 11 years for the
participants with no significant CAD. There were 129 males and
56 females among participants.

More information and details about the data set can be found
elsewhere (Salerno et al., 1992).

2.2. Data Processing
The methodology suggested and developed in this study was
depicted in Figure 1. After preprocessing, an algorithm was
independently applied to the rest and exercise SCG recordings
to form families of cycles with similar morphology. Several
features were then extracted from each family. Later, two binary
multivariate logistic regression classifiers were developed: the rest
CAD classifier (CADrest) was trained based on features extracted
from rest SCG cycles and the exercise CAD classifier (CADexrc)
was developed over a data set that included features extracted
from both rest and exercise SCG cycles. Leave-one-subject-out
method was employed to validate the classifiers.

2.2.1. Preprocessing
To remove baseline wandering, a zero-phase high-pass
Butterworth filter with an order of 5 and the cut-off frequency
of 0.5 Hz was applied to the rest and exercise SCG signals.
Subsequently, the average of SCG signals was removed and the
zero-mean signals were normalized between –1 and 1.

2.2.2. Algorithm for Forming the Family of Cycles
Within a subject, the morphology and also the frequency
components of the SCG recording varied from one cycle to
another. This variation could be mainly due to the effects
of breathing (Tavakolian et al., 2008). Accordingly, instead of
analyzing all cycles of each SCG signal, only very similar cycles,
grouped into families, were included in the further analysis.

The procedure of finding the family of similar cycles involved
the following steps:

- R peaks of ECG were detected using the Pan-Tompkin
algorithm (Pan and Tompkins, 1985) and were used to
segment each SCG signal into cycles.

- Considering scgi and scgj as the i
th and jth cycles of the SCG

signal, respectively, the warping paths, iSCGi and iSCGj, that
minimized the total Euclidean distance between scgi(iSCGi)
and scgj(iSCGj), were calculated via the Dynamic Time
Warping (DTW) (Müller, 2007).

- Mcorr was estimated as:

Mcorr(i, j) = normCorr(scgi(iSCGi), scgj(iSCGj)) (1)

where Mcorr is a n by n matrix and n is the number of
cycles in the SCG recording. Each cell Mcorr(i, j) represented
the DTW cross-correlation between scgi and scgj which is
the normalized cross-correlation between scgi(iSCGi) and
scgj(iSCGj).

- The average of each column of Mcorr was estimated and the
cycle scgmax was chosen as the cycle with the maximum
average.

- The DTW cross-correlation between all cycles and scgmax were
calculated and all the cycles with a DTW cross-correlation
value larger than the maximum average were grouped to form
a family. The rest of the cycles were discarded and all further
analysis were applied to the cycles in the family.

The families of cycles were formed for the SCG signals recorded
during rest and immediately after the exercise test.

2.3. Feature Extraction
From each family of cycles, several features categorized
as morphological, temporal, spectral, non-linear, and time-
frequency features were extracted (Table 1).

2.3.1. Morphological Features
Using an automated algorithm for delineation of SCG, proposed
by Khosrow-Khavar et al. (2016) the fiducial points of each
SCG cycle including MC, IM, AO, AC, and MO were located
(Figure 2). These fiducial points are suggested to be associated
with mitral valve closure (MC), isovolumic contraction (IM),
aortic valve opening (AO), aortic valve closure (AC), and mitral
valve opening (MO), respectively (Crow et al., 1994). Three
features were extracted including the average of amplitude of
MC to IM of all SCG cycles within a family, the average
of amplitude of IM to AO and the average of the ratio
of the amplitude of IM to AO to the amplitude of MC
to IM.

2.3.2. Temporal Features
The average and standard deviation of the length of all SCG cycles
within each family were estimated. In addition, the rate of zero
crossing, total energy, energy entropy, skewness, and kurtosis of
each family were estimated.

2.3.3. Spectral Features
The power spectral density (PSD) of a SCG family was estimated
using Burg’s method through an autoregressive modeling with
1,024 points and an order of 16. The power in each of the
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FIGURE 1 | Different steps of methodology designed and developed to identify patients with CAD from control group.

following frequency bands was computed by determining the
area under the PSD curve bounded by the band of interest: Band1
with frequencies >10 Hz, Band2 with frequencies >10 and <20

Hz, and Band3 with frequencies >20 and <30 Hz. Three features
were extracted from PSD including the ratio of the power in
Band1 to the total power, the ratio of the power in Band2 to
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TABLE 1 | Description of the features extracted from the family of SCG cycles.

Feature Description

Morphological features

meanAmpmc−im The average of amplitude of MC to IM of all SCG cycles within a

family

meanAmpim−ao The average of amplitude of IM to AO of all SCG cycles within a

family

Ratio The ratio of meanAmpim−ao to meanAmpmc−im

temporal features

meanHR The average of the length of all SCG cycles within each family

sdHR The standard deviation of the length of all SCG cycles within

each family

Zerocross The rate of zero crossing of all SCG cycles within a family

Engtot The value of total energy of all SCG cycles within a family

Eneng The value of the energy entropy of all SCG cycles within a family

Skewness The measure of the symmetry of each family distribution (or the

lack of it) around the mean, defined as skewness = µ3/σ3/2

where µ3 and σ are the third central moment and the standard

deviation of each family

kurtosis The measure of the peakedness (or flatness) of each family

distribution, relative to the normal distribution, defined as

kurtosis = µ4/σ4 − 3 where µ4 and σ are the forth central

moment and the standard deviation of each family

Spectral features

nBand1 The ratio of the power in the frequency band with the

frequencies <10 Hz to the total power

nBand2 The ratio of the power in the frequency band with the

frequencies >10 Hz and <20 Hz to the total power

nBand3 The ratio of the power in the frequency band with the

frequencies >20 Hz and <30 Hz to the total power

Non-linear features

sampEnt

(tau, m, r)

The value of sample entropy of all SCG cycles within a family

with the embedding delay of tau = 1, 5, 10, 15, 20, the

embedding dimension of m = 3, and the cutoff radius of

r = 0.2×standard deviation of time series

ApEnt

(tau, m, r)

The value of approximate entropy of all SCG cycles within a

family with the embedding delay of tau = 1, 5, 10, 15, 20, the

embedding dimension of m = 3, and the cutoff radius of

r = 0.2×standard deviation of time series

corrDim

(tau, m)

The value of correlation dimension of all SCG cycles within a

family with tau = 1, 5, 10, 15, 20, and m = 3

Time-frequency features

wavEnt(j) The wavelet entropy of all SCG cycles within a family at

resolution levels of j = 1 .. 4, using “db4” mother wavelet (Rosso

et al., 2001)

wavEnttot The total wavelet entropy of all SCG cycles within a family

the total power and the ratio of the power in Band3 to the
total power.

2.3.4. Non-linear Features
For each family of cycles, the sample entropy, approximate
entropy and the correlation dimension were estimated.

2.3.5. Time-Frequency Features
The wavelet decomposition of the family of beats was estimated
at resolution levels of j = 1 .. 4, using “db4” mother wavelet. The

wavelet entropy at each level j and then the total wavelet entropy
were estimated as defined by Rosso et al. (2001).

2.3.6. Combined Features
To form the data set for training the CADexrc classifier, the
features extracted from the rest SCG cycles and the exercise
SCG cycles were combined. To consider the variation between
the SCG signals recorded during the rest and after exercise, the
difference between each pair of rest and exercise features were
estimated and added to the row of features as follows:

diffFeaturei =
(restFeaturei − exrcFeaturei)

(restFeaturei + exrcFeaturei)/2
(2)

where restFeaturesi and exrcFeaturesi are the ith feature from the
rest and exercise set of features, respectively. Subsequently, the
data set used to train the CADexrc classifier contained the rest
features, the exercise features and the combined features.

2.4. Statistical Learning
2.4.1. Model Development and Validation
Least absolute shrinkage and selection operator (LASSO)method
was employed to select the relevant features and to develop the
final binary multivariate logistic regression classifiers, CADrest

and CADexrc. The LASSO tuning parameter, λ, was adjusted
through 5-fold cross-validation (James et al., 2000).

Leave-one-subject-out method was employed to validate the
accuracy of the classifiers. In this method, which is the most
extreme form of cross-validation, the features of N-1 participants
were assigned to the training set and were used to train a CAD
classifier. A decision threshold was chosen for the CAD classifier
to maximize a weighted classification score defined as [(the
number of correct identifications of true positives) + (the number
of correct identifications of true negatives)]. The CAD classifier
was then applied to the only participant assigned to the test set
to predict the probability belonging to the CAD class (predicted
risk). Predicted risk above the decision threshold indicated that
the individual has classified into CAD class. This procedure
repeated N times.

The performance of the CAD classifiers was evaluated in
terms of accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV).

2.4.2. Comparison Between Models
To compare CADrest and CADexrc models, the bootstrap
corrected area under the receiver operating characteristic curve
(AUC), net reclassification improvement (NRI), and integrated
discrimination improvement (IDI) were estimated (Leening
et al., 2014).

Bootstrap corrected AUCs were estimated for the CADrest

and CADexrc models (Smith et al., 2014). For calculating
the bootstrap corrected AUC, 100 bootstrap samples with
replacement were generated using the original data set with
N participants. The classifiers were developed in bootstrap
samples and tested in the original sample. The difference
in AUCs, was computed to estimate the optimism and the
corrected AUC.
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FIGURE 2 | ECG and SCG signals were simultaneously recorded from a 67-year-old male participant with two arteries occluded more than 50%: (A) during rest and

(B) immediately after exercise. Characteristic points of SCG labeled as MC, IM, AO, AC, and MO coincide with mitral valve closure, isovolumic contraction, aortic valve

opening, aortic valve closure, and mitral valve opening, respectively.

The NRI quantified the net improvement in reclassifying
patients with and without CAD using the CADexrc model as
compared to the CADrest model.

Rest and exercise discrimination slopes were estimated as the
difference in the average predicted risk between participants with
and without CAD predicted by CADrest and CADexrc models,
respectively. The IDI was quantified as the increased difference
between rest and exercise discrimination slopes.

2.5. Interpretation of Exercise ECG
ECG recordings were interpreted blindly by an expert.
An abnormal exercise ECG was defined as follows: ≥1
mm horizontal or downsloping ST depression or ≥2 mm
of upsloping ST depression. If the rest ECG showed ST
depression of ≥1 mm, then ≥2 mm of additional horizontal
or downsloping ST depression was required to be classified
as abnormal.

3. RESULTS

3.1. Model Development and Validation
The performance of the rest and exercise models obtained
through the leave-one-subject-out validation procedure is
depicted in Table 2. Regarding accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV), the CADexrc shows better performance relative to the
CADrest model.

Regarding the performance of ECG, rest ECG showed ST
depression in 7/180 (3.8%) patients. For the 117 patients
with ≥50% stenosis in at least 1 coronary artery, the
sensitivity of exercise ECG was 70% and for the 63 patients
without significant coronary artery stenosis, the specificity for
exercise ECG was 55%. Total accuracy of exercise ECG was
65% (Table 2).

Considering the exercise performance 71/180 (39.4%) patients
did not achieve 85% of maximal heart rate. Although the

TABLE 2 | Classification performance for rest SCG (CADrest model), exercise

SCG (CADexrc model), and exercise ECG.

Model Accuracy

(95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI)

PPV

(95% CI)

NPV

(95% CI)

CADrest
(rest model)

74%

(66 to 79)

75%

(62 to 79)

72%

(66 to 86)

84%

(76 to 90)

62%

(60 to 70)

CADexrc
(exercise model)

82%

(76 to 87)

84%

(76 to 89)

80%

(72 to 89)

88%

(82 to 94)

70%

(63 to 79)

Exercise ECG 65%

(58 to 72)

70%

(62 to 78)

55%

(43 to 69)

75%

(66 to 83)

50%

(38 to 62)

CI, PPV, and NPV stand for confidence interval, positive predictive value, and negative

predictive value, respectively.

sensitivity of exercise ECG decreased in those patients to 60%, the
sensitivity of exercise SCG did not change significantly (86%).

3.2. Comparison Between Models
The areas under the curve (AUC) of the CADrest and CADexrc

models are depicted in Figure 3. The CADexrc model has the
higher AUC compared to the CADrest (p-value < 0.001). The
bootstrap-corrected AUC of the CADrest was 0.77 (95% CI 0.75
to 0.89); for the CADexrc it was 0.88 (95% CI 0.86-0.90).

The CADexrc classifier exhibited a 10% net improvement in
classification of patients with CAD and a 6% net improvement
in patients without CAD at a decision threshold of 0.60. In the
other word, a SCG stress test would increase the number of
true positives and also decrease the number of false negatives.
However, the increase in the number of true positives was
more significant compared to the decrease in the number of
false negatives.

Figure 4 shows the predicted risk for individuals with and
without CAD estimated using the CADrest and CADexrc models.
The discrimination slope was estimated as 0.32 using the CADrest

model and 0.47 using the CADexrc model. The difference between
discrimination slopes of these two models which is equivalent to
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FIGURE 3 | The area under the curve of the receiver operating characteristic

of the CADrest (dashed line), which was trained over the features extracted

merely from the rest SCG cycles, and the CADexrc model (solid line), which

was trained over the features extracted from the rest and immediately after

exercise SCG cycles.

integrated discrimination improvement was 0.15 (95%CI: 0.10 to
0.23, p-value < 0.0001).

4. DISCUSSION

We have developed and validated a prediction model, CADexrc,
that uses the mechanical activity of the heart, recorded during
rest and immediately after exercise, to identify patients with
more than 50% occlusion in at least one coronary artery. The
features used to develop the model were derived from families of
similar cardiac cycles. Thismodel delivered a bootstrap-corrected
AUC of 0.88 (95% CI: 0.86 to 0.90) and provided a significant
improvement (p-value < 0.001) in classification performance
relative to the model using the features of the rest SCG cycles,
with a bootstrap corrected AUC of 0.77 (95% CI: 0.75 to 0.89).

It was anticipated that in identifying the patients with CAD,
the CADexrc model would reveal better performance compared
to the CADrest model. During exercise, the oxygen demand
of the heart muscle increases. To fulfill this higher demand,
the coronary arteries dilate so more oxygenated blood can be
transported to the heart muscle. However, if coronary arteries are
affected by arteriosclerosis, their dilation capacity is decreased.
This may lead to insufficient oxygen supply to the heart, causing
myocardial ischemia. Consequently, contractility and motion
of the myocardium are decreased. Other reason accounted for
difficulties of detecting CAD using rest SCG may be due to the
dilation of coronary arterioles. The coronary arterioles arising
from the stenosed artery would normally dilate in response to a
decrease in blood flow. It would explain why coronary blood flow

at rest is not reduced in patients even with 70% stenosis in a single
coronary artery (Uren et al., 1994). However, it only applies to
the branched vessels and is only relevant if the basal myocardial
oxygen demand remained constant, for example during the rest.

Although the findings of the current study showed that the
performance of rest SCG was not as high as the exercise SCG
in identifying patients with CAD, however, the rest SCG reached
better performance compared to the exercise ECG (Table 2). The
sensitivity and specificity of the rest SCG were 75 and 72%,
respectively, which were higher compared to those calculated for
the exercise ECG (70 and 55%, respectively, for sensitivity and
specificity). These findings were supported by the results of other
studies as well. Several studies showed that the sensitivity of the
exercise ECG ranged between 68 and 75% (Al-Shehri et al., 2011;
McLellan and Prior, 2012) and the specificity ranged from 70 to
77% (McLellan and Prior, 2012). Besides, there is a considerable
drawback that an exercise ECG test can only be performed by a
trained physician. In contrast to the exercise ECG, a rest SCG can
be recorded by individuals without the medical background.

In a study conducted by Salerno et al. an exercise SCG was
suggested for detecting CAD and its accuracy was evaluated alone
and in conjunction with an exercise ECG (Salerno et al., 1992).
The authors analyzed the changes in waveform morphology
and waveform amplitude of the SCG that occurred between the
recordings prior to and immediately after exercise. The proposed
method was validated on the same set of patients initially used
to develop the method and not in a separate test data set.
The results showed a sensitivity and specificity of 80 and 69%,
respectively, for detection of ≥50% coronary artery stenosis.
In the current study, our suggested method was trained and
validated in the separate data sets and still achieved the better
performance, with higher sensitivity and specificity matrices
relative to the performance reported by Salerno et al. (1992).
In addition, Salerno et al. did not report the performance of
the rest SCG. In the same study, sensitivity and specificity were
reported as 67 and 51%, respectively, for the exercise ECG.
Comparing these results shows that the exercise SCG provided
better performance in identifying patients with CAD compared
to the exercise ECG. Even the rest SCG contributed to a more
accurate implementation in classifying patients with suspected
CAD, conducted in the same data set.

An evidence-based analysis of more than 120 publications
was recently conducted to determine the accuracy of stress
echocardiography with regard to CAD. Overall pooled
sensitivity of 80% (95% CI: 0.77–0.82) and specificity of
84% (95% CI: 0.82–0.87) were reported using coronary
angiography as the reference standard (Medical Advisory
Secretariat, 2010). In our study, exercise SCG showed similar
results in terms of sensitivity and specificity compared to
those reported for the stress echocardiography. In our
opinion, performing an exercise SCG is more convenient
than performing a stress echocardiography. Furthermore,
analysis of SCG recordings is much easier than interpreting
echocardiographic images.

Performance of the exercise SCG is also comparable with the
performance of coronary computed tomography angiography
(CCTA). Sensitivity and specificity of CCTA are stated to be
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FIGURE 4 | Box plots of predicted risk of individuals with and without CAD estimated by (A) CADrest and (B) CADexrc. The discrimination slope, which is the

difference between the mean predicted risk for individuals with and without CAD, was estimated as 0.3 using the CADrest model and 0.5 using the CADexrc model.

between 85 and 90% and 64 and 90%, respectively. However,
CCTA has a very high negative predictive value, especially
in low to intermediate risk subjects (Al-Shehri et al., 2011).
Furthermore, CCTA is only available in specialized centers and
it is by far more expensive compared to SCG examination.

In the current study, instead of analyzing all cycles of each
SCG recording, we selected a group of similar cycles, the so-
called family of cycles. Family selection reduces the cycle to cycle
variation of SCG morphology by finding the cycles with a high
level of similarities. The variability in the morphology of SCG
cycles ismainly due to the effect of breathing which ismore severe
after exercise. As a result, family selection step was essential to
select the main representative morphology for each participant.
In fact, our study showed a significant increase in the overall
accuracy of the algorithms with the family selection procedure.

The findings of the current study may suggest two possible
scenarios for the use of SCG in the detection of CAD: (1)
SCG obtained with exercise ECG in the clinical setting and, (2)
resting SCG and ECG recorded at home in a portable stand-
alone solution. Similar to an exercise ECG, the exercise SCG
would be restricted to medical facilities under the supervision
of a trained physician (e.g., a cardiologist) due to the risk of a
stress induced cardiac event. However, as reported by Salerno
et al. (1992) and supported by this study, the combination of
exercise SCG with exercise ECG would increase the sensitivity
of detecting CAD. Accordingly, if this technology is used in
the clinical setting, the combination of exercise SCG would
increase the sensitivity of the ECG stress test. Furthermore,
the results of the current study showed that the performance
of the rest SCG was comparable to the performance of
the exercise ECG. In addition, our results showed that the
sensitivity of exercise SCG did not change significantly in
the patients who did not achieve 85% of maximal heart rate
while the sensitivity of exercise ECG dropped dramatically
from 70 to 60% in those patients. It would suggest that
for detecting CAD the exercise SCG test may not need to
reach the maximal effort. In other words, it could be possible

to develop a portable at-home screening tool for coronary
artery disease based on the SCG recorded during the rest or
after a very moderate effort, such as a fast walk approved
by a physician.

Future Work
In our future studies, we aim to address the following limitations
of the current study: (a) analysis of other accelerometer axis
as well as rotational gyroscope. In the current study, we only
analyzed the z-axis of the accelerometer signal in the dorsoventral
direction. However, the movement of the chest due to cardiac
vibration is not limited to this direction. It may also manifest
itself in the other two accelerometer axes and also in rotational
movements, which can be picked up by gyroscopes (Jafari Tadi
et al., 2017). We intend to record these additional signals in the
future study. With this technique, we hope to increase sensitivity,
specificity, and accuracy of CAD identification; (b) analysis
of stenosis with different degree of occlusion. In the current
study, we investigated the possibility of identifying patients with
stenosis ≥50% in at least one coronary artery. In a future
study, we will investigate the possibility of early detection of the
individuals with coronary artery stenosis of a 25% occlusion rate.
Also, we will investigate the potential of SCG in localizing the
coronary occlusion; (c) exploring the rest SCG as a stand-alone
solution for detection of CAD. Since conducting an exercise SCG
is not feasible without clinical control, in the future study we
will investigate the ability of resting SCG to detect CAD as a
stand-alone solution; and, (d) exploring different exercise levels
required for detection of CAD. We will explore the minimum
intensity of the exercise load needed to provide a performance
comparable with exercise SCG at the maximum load conducted
in a clinical setting. This would provide the data needed for
the development of a portable at-home CAD screening solution
using SCG.

In conclusion, we found that rest SCG and exercise SCG are
able to identify patients with coronary artery stenosis≥50%. The
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performance of SCG is better compared to the exercise ECG and
is more or less identical with stress-echocardiography and CCTA.
SCG is faster and less expensive and can even be carried out by
individuals without any medical background. However, further
studies are necessary in order to prove that SCG under resting
conditions is a sufficient stand-alone solution for identifying
coronary artery disease.
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