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Abstract: Using automated processes to detect wildlife in uncontrolled outdoor imagery in the 

field of wildlife ecology is a challenging task. This is especially true in imagery provided by an 

Unmanned Aerial System (UAS), where the relative size of wildlife is small and visually similar 

to its background. This work presents an automated feedback loop which can be used to train 

convolutional neural networks with extremely unbalanced class sizes, which alleviates some of 

these challenges. This work utilizes UAS imagery collected by the Wildlife@Home project, 

which has employed citizen scientists and trained experts to go through collected UAS imagery 

and classify it. Classified data is used as inputs to convolutional neural networks (CNNs) which 

seek to automatically mark which areas of the imagery contain wildlife. The output of the CNN 

is then passed to a blob counter which returns a population estimate for the image. The feedback 

loop was developed to help train the CNNs to better differentiate between the wildlife and the 

visually similar background and deal with the disparate amount of wildlife training images 

versus background training images. Utilizing the feedback loop dramatically reduced population 

count error rates from previously published work, from +150% to −3.93% on citizen scientist 

data and +88% to +5.24% on expert data. 

1 Introduction  

Image classification is an important problem for wildlife ecology. Many of today’s ecological 

projects use video or imagery for monitoring and tracking species [1–7]. Learning ecological 

patterns becomes a problem of annotating images and classifying the wildlife they contain. Due 

to the ease of obtaining video and imagery and the large geographic areas to cover, the amount of 

data collected can quickly become too large for ecological researchers to go through manually. 

To overcome this problem, some projects [1–4] have turned to citizen scientists to create 

a larger workforce that can more quickly examine the data, provided enough ordinary people 

volunteer to examine sometimes monotonous video and imagery. However, manual examination 

is prone to human errors, such as fatigue, eye strain, or lack of domain knowledge. To deal with 

these problems, computer vision techniques can be used to automate classification of the data.  

Wildlife@Home is a ecological project with over 100,000 h of collected video, over 

65,000 images from unmanned aerial systems (UAS), and over 1.8 million images from trail 

cameras. An end goal of the project is to create an automated system that can classify the video 

and imagery and differentiate among different species. To obtain labeled data for training 

computer vision techniques and testing their efficacy, Wildlife@Home also employs citizen 

scientists using a webpage that they can visit to record observations.  



A major goal for this UAS imagery is to perform population counts of lesser snow geese 

(Anser caerulescens caerulescens), which take up a tiny fraction of each image and are visually 

similar to the background. In this imagery, a typical snow goose takes up an area less than 18 × 

18 pixels in UAS mosaic images (generated from mosaicing images collected over a region) that 

range from 844 × 755 to over 2000 × 3000 pixels. It is also common for multiple or no geese to 

be in each image. For these images, the information needed is not only if they contain snow 

geese, but also how many. The difference in the proportion of imagery containing snow geese 

relative to the background is great, making the UAS dataset extremely unbalanced. These 

features, and the fact that the background can vary heavily in color and appearance, begin to 

detail some of the challenges of image classification on this dataset.  

Convolutional Neural Networks (CNNs) have seen a surge in popularity due to advances 

in deep learning techniques and their ability to be applied generically to problems based on 

labeled training data. Many CNNs have achieved great accuracy on benchmark datasets such as 

the MNIST handwritten digit dataset [8], ImageNet [9], and the CIFAR 10 and CIFAR 100 

datasets [10]. However, most datasets used with CNNs have fixed size images where the object 

of interest fills a large area in the image. The labeled training data also tends to be fairly uniform 

in the number of training examples for each class, as unbalanced datasets lead to bias in the 

training process. For example, if a two-class dataset is unbalanced 99 to 1, if the CNN simply 

predicts everything as the first class it’s accuracy will be 99%. This is a significant problem in 

this data set, where the wildlife takes up significantly less that 0.1% of the imagery.  

Previous work on Wildlife@Home’s UAS imagery [11] sought to calculate the 

population of the white phase lesser snow geese that were contained in the imagery. This work 

trained CNNs on a dataset labeled separately by experts and citizen scientists, which allowed for 

the comparison of data provided by citizen scientists vs. experts for training CNNs. While 

improving over state of the art results in optical (red, green, blue) imagery, there was still an 88% 

and 150% overestimate when using expert and matched citizen scientist [12] labels, respectively. 

This work presents an automated feedback loop, which updates training data during 

backpropagation to account for the false positives that cause overestimation, allowing the CNNs 

learn from that information and allowing the class sizes to remain more balanced. This approach 

resulted in significant improvements in accuracy, with an average error of +5.24% achieved 

when using the expert provided data and an average error of −3.93% error using the matched 

citizen scientist provided data – results comparable or improving on manual population counts. 

Further, this work is generic and can be applied to any significantly unbalanced data sets.  

2 Related Work  

There are a number of projects in many disciplines that have used citizen scientists to examine 

data and generate results. PlanetHunters [13] used citizen scientists to inspect the NASA Kepler 

public data release using the Zooniverse tool set [14] and identified two new planet candidates. 

GalaxyZoo [15], had more than 100,000 citizen scientists classify galaxies in images from the 

Sloan Digital Sky Survey [16]. Snapshot Serengeti [1] employs the use of citizen scientists to aid 

ecological research by having them classify wildlife in data from camera traps in Serengeti 



National Park. Like PlanetHunters, Snapshot Serengeti also uses Zooniverse. Cornell has also 

produced multiple projects that employed citizen scientists, such as NestWatch [2,3] and 

FeederWatch [2], both of which used citizen scientists to help answer questions about avian 

species and their population sizes. CamClickr is another citizen scientist project that is used to 

record nesting behavior and was used in a university biology class to teach identification of 

objects to students [17].  

Computer vision has also been used to aid ecological research. Xu and Zhu [5] worked on 

automatically finding and identifying seabirds with complex and uncontrolled backgrounds using 

a method called Grabcut [18] to find and segment the seabirds. After segmentation, features were 

extracted and run through three models (k-Nearest Neighbor [19], Logistic Boost [20,21], and 

Random Forest [22]) which voted on the final classification. When their system was run over 

900 samples of 6 species of seabirds, their recognition accuracy was 88.1%. Villa et al. [23] used 

the data gathered from the Snapshot Serengeti project and trained CNNs over that data. Their 

best results had 88.9% Top-1 accuracy.  

Abd-Elrahman et al. [6] used feature-based analysis (with color and shape as the features) 

to detect birds in UAS video. They manually selected the input objects needed for feature-

testing. In the end, their system had false-negative and false-positives rates of under 20% each. 

Another project by Chr´etien et al. [7] used RGB and thermal infrared (TIR) UAS images of 

white-tailed deer. They were unsuccessful in using supervised and unsupervised pixel-based 

detection methods to accurately find the deer, but they were able to use object-based image 

analysis (OBIA) on the RGB and TIR data to achieve 50% detection results with no false 

positives matching manned aerial surveys. However, when using only RGB imagery which 

contained 4 deer, OBIA detected 1,946 deer. 

3 Wildlife@Home Dataset  

3.1 Gathering the Data  

The UAS imagery used in this project was collected using a Trimble UX51 fixed wing UAS. The 

images were collected in Wapusk National Park in Manitoba, Canada in 2015 and 2016. Flights 

were flown at altitudes of 75 m, 100 m, and 120 m above ground level. A 16 megapixel Sony 

camera placed in the nadir position recorded the images with an 80% overlap between 

consecutive images. Over 65,000 images were taken in total, which reached over 3TB in size.  

The images taken were then used to create mosaics for each flight. The Trimble Business 

Center2 (version 3.51) was used for the 2015 data and Pix4D3 (version 3.2.23) was used for the 

2016 data. In total, 36 distinct mosaics were created that were over 50 GB in size. Each mosaic 

was then split down into mosaic split images (MSIs) that could be shown to experts and citizen 

scientists through a web portal. From the 36 mosaics, 8,759 MSIs were created.

 

 

 



3.2 Labeling of the Data  

Wildlife@Home uses a web portal (Fig. 1), to allow experts 

and citizen scientists (collectively known as users) to go 

through collected imagery and make observations. Users are 

shown an image and instructed to draw a box around each 

observed wildlife in such a way as to completely envelop the 

wildlife while minimizing the amount of negative space 

(background) in the box. The users then label the box 

according to the species and coloration they believe the 

wildlife to be. Documentation is available for them to 

compare against. Should they find no wildlife in an image, 

they can mark “nothing here”. The boxes and labels marked 

by the users are recorded in a database for further usage.  

The data generated through the web portal is given 

one of two designations, expert or unmatched. Unmatched observations are the raw observations 

from the citizen scientists, which were matched against each other to increase the accuracy of the 

data using the 10 pixel corner point and intersection methods found in [12]. This brings the 

number of designations to three:  

1. Expert - if the recording user is a trained expert. This data is considered to be true without 

fault (although in reality there are errors) and is considered the baseline by which all 

others (citizen scientists and CNN predictions) are judged against.  

2. Unmatched - if the recording user is a citizen scientist with no training by the project leaders.  

3. Matched - if two or more citizen scientist observations are matched, the intersection of their 

bounding boxes is a matched observation [12].  

For this project, only expert and matched data were considered, as Mattingly et al. [12] 

determined that matched data greatly improves on unmatched data.  

3.3 Technical Issues and Corrections  

In 2015, there was a mechanical error in the RGB camera used that resulted in the images having 

a strong blue tint. To fix this, the 2015 images were compared and normalized against the 2016 

images. Each of the red, green, and blue channels were multiplied by 233.0/150.0, 255.0/189.0, 

and 236.0/190.0, respectively, floored, and then capped at 255. These numbers were chosen by 

sampling several images from both 2015 and 2016 data and comparing the RGB values of white 

phase snow geese in both datasets.  

 

 

 

 

Fig. 1. The graphical user interface (GUI) 

of the web portal for identifying objects in 

ecological imagery for the Wildlife@Home 

projects. This screenshot shows a UAS 

image with two white snow geese identified 

by the user. 



4 Methodology  

Previous work on the Wildlife@Home dataset in [11] has 

promising results. CNNs were trained that produced a number 

of false positives, ending with an 88% overestimation of the 

population due to certain areas of background, mainly rocks 

with similar features to the geese, being misclassified (Fig. 2). 

One possible reason for this has to do with the nature of the 

data. The UAS dataset is extremely unbalanced, and while the 

unbalanced datasets problem is well defined with many 

solutions, it is also important to note that the per pixel 

percentage of background with similar features to the snow 

geese is quite small compared to the rest of a background class 

that varies vastly in color and features. As it happens, a small 

subset of this background class looks more like a snow goose (a 

different class) than it looks like the rest of background (the 

same class). The small subset of background data, thus, is of 

primary interest. 

Let us define two subclasses of the background class: “hard” background is similar to the 

foreground, and “easy” background is everything else. Let us also define “background similar to 

foreground” as “background data that might be marked as a false positive by an arbitrary, trained 

CNN”. If the majority class is undersampled (to deal with the unbalanced dataset) and images are 

taken from the background class randomly, few hard background images would ever be trained 

against.  

In a sense, the Wildlife@Home dataset has an unbalanced dataset inside another 

unbalanced dataset. Background is a strong majority over foreground, and easy background is a 

strong majority over hard background. One solution, and the one explored in this work, would be 

to present more hard background images to the CNN, i.e., undersample the easy background 

and/or oversample the hard background.  

One way to do this is to split the background into two separately labeled classes, hard and 

easy, and have the CNN consider them separately. The largest inhibitor to this method, however, 

is labeling of the hard and easy background, which would be infeasible to do manually, 

especially with such an open-ended definition. A similar method is ensuring that hard 

background is shown to the CNN at higher rates than found in the dataset (oversample the 

minority subclass, or undersample the majority sub-class). This runs into the same problem of 

trying to identify hard and easy background as the previous method. As strict truth labels are not 

needed, an automated feedback loop approach can be used. 

4.1 Feedback Loop  

Let us change the definition of “background similar to the foreground” to “background data that 

might be marked as a false positive by a particular, trained CNN”. With this definition, when a 

Fig. 2. An example of an image and 

CNN prediction from previous work 

[11]. Note that it correctly identifies 

the white phase snow geese, but 

misclassifies background with similar 

features to the geese. The boxes in the 

prediction are at the actual locations of 

the geese. 



CNN is run over the dataset, one can define the false positives 

as hard and the remaining background as easy (Fig. 3).  

In the feedback loop, a CNN is given feedback by 

identifying hard background and retraining the CNN over the 

same overall dataset, but with more sampling of hard 

background. Ideally, after retraining, the CNN should have less 

false positives. Multiple iterations of retraining should benefit 

this even more. To retrain a CNN at iteration t of the feedback 

loop, the starting weights will be the weights from iteration       

t − 1.  

This approach provides a benefit where in each training 

iteration, only a small subsample of the entire background set 

needs to be used for training. However, it does need to run over the background data after each 

training iteration to determine false positives. However, If the network correctly predicted an 

image at iteration t of the feedback loop, it will probably predict that same image correctly at 

iteration t + 1. In order to mitigate this cost, if the CNN at iteration t misclassifies an example, 

then the retrained CNN at iteration t+1 will run over that example to see if the retraining 

corrected it. If the example was correctly classified or not run over that iteration, then the CNN 

at iteration t+ 1 has some probability of running over that example. This handles the case where 

the retraining caused a previously correct classification to become incorrect. 

4.2 Counting Objects  

The process of training and running the CNNs in such a way that the 

detected objects can be counted was the same as in [11,24]. CNNs 

were trained on fixed size images which had relatively small 

dimensions. The fixed size images were comprised of sub-images of 

larger images (the MSIs). Experts and citizen scientists placed 

bounding boxes around snow geese in the imagery, and those 

bounding boxes were used to label the sub-images.  

Once a CNN was trained (or retrained) on these sub-images, 

it was run over full size images. To run the CNN over the full size 

images, the CNN was first run over its sub-image of appropriate size 

in the top left-hand corner of the image, then it was strided across 

the image, generating predictions on the sub-images as it goes (Fig. 

4).  

The outputs from each sub-image were reconstructed into a prediction for the whole 

image. When an image is run through a CNN using a softmax classifier, a probability between 0 

and 1 is returned for each class. Each pixel in the prediction image also has probabilities that it is 

of each class. The formula for calculating this vector is C0(pj ) = s∈S(pj ) CNN(s) where pj is the 

jth pixel in the image, C0(pj ) is a function returning a vector of confidences that pixel j is of 

each class, S(pj ) is the set of all sub-images containing pixel j, and CNN(s) is the output from 

Fig. 3. Basic flowchart for feedback loop. 

 

Fig. 4. Example of striding a CNN 

across an image. When the CNN 

reaches the right edge, it will move 

down and start again at the left 

edge. 



running the CNN on sub-image s. The sums may total to greater than one for a particular class, 

so they are normalized using the square of the value over the sum of squares for all values in the 

vector. The equation for the probability of each class, c in the set of all classes C, for pixel j is:

. Each class is assigned a color, and by counting blobs of the color assigned to 

snow geese, population can be predicted. 

5 Implementation  

5.1 Data 

One goal of this project was to compare expert data and citizen scientist data for training CNNs. 

So, only MSIs that had both expert observations and matched observations were used to facilitate 

direct comparison. There are far more MSIs that have no observed wildlife than MSIs that do 

(2803 vs. 1351), so 20% of the MSIs with observations in them (262 MSIs) and 20% of the MSIs 

that did not have observations in them (558 MSIs) were set aside for testing. The total dataset 

had 3334 training MSIs and 820 test MSIs.  

The observations from the users are contained in bounding boxes of various sizes, and the 

MSIs themselves are not of a consistent size. However, CNNs need labeled fixed size input for 

training and running. To deal with this, sub-images from the MSIs were put into IDX files (same 

format used for MNIST). A fixed image size was chosen as the input size of the CNN. The 

images of snow geese (foreground) were obtained separately for each user designation, while the 

background images were shared amongst the different designations. For each designation the 

initial training IDXs were created by combining the unique foreground set with the shared 

background set.  

To obtain foreground data on wildlife observations of a different size than the needed 

input, the center of the observation became the center of a new bounding box of the input size, 

which was then extracted and added to the IDX data4. There were 2054 and 6560 foreground 

observations for the expert and matched data, respectively. The difference between the classes is 

because more citizen scientists looked at the data than experts. Increasing the number of citizen 

scientists looking at an MSI causes an increase in 2-way matched observations that is greater 

than linear (n citizen scientists cause nC2 matched observations). Experts are unmatched so the 

number of observations is linear in the number of experts. Eight input sized background sub-

images were taken from each training MSI for a total of 26,672 background examples. The 

locations within the MSIs were chosen at random while ensuring that they did not overlap with 

an observation from any user designation.  

5.2 CNN and Feedback Loop  

The CNN was implemented using C++ and OpenCL. Each type of layer had their feed forward 

and backpropagation functions computed using OpenCL, while the C++ code preprocessed the 

data and made the appropriate OpenCL calls. OpenCV was used for reading and writing images. 

All code is available at https://github.com/Connor-Bowley/neuralNetwork. The feedback loop 

was implemented using C++ and Qt. It comprised of a simple interface to get the needed inputs 

and call the C++ programs for training and running the CNNs.



Because the CNNs are trained on IDX files and tested against PNG images, the feedback 

loop searched the PNGs for false positives5 and extracted those areas into IDX files. Areas close 

to a bounding box were exempt from being extracted because the area predicted to be a snow 

goose was often larger than the goose itself. The definition of “close” was set to be: any sub-

image with a pixel contained in a box that extends from a user supplied bounding box by N 

pixels in each direction is exempt from being marked as misclassified where N is the CNN input 

size. All misclassified sub-images were appended onto the previous iteration’s training IDXs.  

5.3 CNN Architecture and Settings  

The size of the training sub-images in the IDXs was set to 18×18 pixels, as most of the bounding 

boxes around the snow geese were within this size. Given the 18 × 18 input, the CNN 

architecture was created (Fig. 5), which is the same as used in [11]. After each convolutional 

layer, a batch normalization layer [25] and an activation layer (Leaky ReLU [26] bounded to 

[−5000.0, 5000.0]) was placed, in that order. For batch normalization, γs were initialized to 1 and 

βs to 0.  

Weights for the neurons in the convolutional and fully connected layers were initialized 

using N(μ, σ), μ = 0, σ = 2/n where n is the number of inputs to the neuron. After each weight 

update, the value was bounded such that |w| ≤ 50.0 for each weight w. The bound here and for 

Leaky ReLU were to prevent outputs from reaching NaN or ±∞.  

Prior to training or prediction, all data was normalized. When training, the normalization 

used was to subtract each pixel by the mean and divide by the standard deviation with respect to 

all pixels from all training images. The mean and standard deviation calculated during training 

was then used for preprocessing at run time. For instances of retraining, the mean and standard 

deviation was from all images ever trained on, 

including images from previous iterations.  

Minibatch gradient descent was used, with 

minibatch size of 64. The learning rate started at 1 × 

10−3 and was multiplied by 0.75 each epoch. L2 

Regularization [27] was used with a λ of 0.05. 

Training was done for 30 epochs, and the epoch whose 

weights had the best accuracy on the training data was 

chosen as the final output. Nesterov Momentum [28] was used with a momentum constant of 0.9.  

For the feedback loop, each dataset and sampling rate pair had 3 separate trials run. Each 

trial had 5 iterations, consisting of 1 base training and 4 retraining iterations. Each retraining 

iteration had its initial weights, γs, and βs set to the result of the previous iteration’s training. 

Other parameters, such as number of epochs, were the same.  

For predictions over the training and test MSIs, the stride used for striding the CNN 

across the MSIs was 9 pixels in each direction.  

Four different ratios of background to foreground were used, 1:1, 3:1, 5:1, and 7:1. In 

general an N:M ratio would say that the CNN trained on N background examples for every M 

Fig. 5. Architecture of the CNNs used in this 

work 



foreground examples it trained on. Because the amount of background to foreground is greater 

than even 7:1, the subset of background used each epoch was chosen at random from the 

background in the IDXs and differed each epoch.  

The CNNs were trained and run on a Mac Pro using a 3.5 GHz 6-Core Intel Xeon E5 

processor.  

6 Results  

Three runs were conducted for each configuration of training set and 

background to foreground sampling ratio. The results of the blob 

counter over the prediction images were averaged (Table 1). CNNs 

trained on the expert dataset and the CNNs trained on the matched 

dataset both had low error. Interestingly, the CNNs trained on the 

matched data performed better under higher background to foreground 

ratios than the ones trained with expert data. One possible reason for 

this is that the citizen scientist data is matched while the expert data is 

not. There was not enough expert data to do matching over it, and there 

are confirmed cases of expert misclassification.  

CNNs that went through the feedback loop even one iteration 

had significantly less error than their baselines (Table 2). This decrease 

was larger than the decrease in error that happened when the sampling 

rates were changed. While increasing the sampling of background did 

reduce error in the baseline, it usually increased the error when using 

the feedback loop. The exception to this was going from a 1:1 to a 3:1 

with the matched data. This suggests that the bias introduced from the 

large 

 

 

CNNs were trained using given data set and the background to foreground sampling ratio, 

BG:FG. Predict is predicted population on test set. Actual is actual count over test set by 

experts. The numbers are average of best iteration results of 3 runs. Bold face rows are 

best for their training set. Italicized row is best overall. 

 

Fig. 6. Average error based on 

iteration for each dataset and 

BG:FG sampling ratio. Line is 

average; filled in portion 

shows max and min values at 

each iteration.  

 



 

∗While these numbers averaged to a very low amount of error from the actual, the 

individual numbers themselves were not the best in their respective runs. At iteration 0, 

the feedback loop has not yet been employed, which makes it an effective baseline. It can 

be seen that even one iteration of retraining drastically cuts the error. The best iteration 

varied between trials. The average best iteration for each CNN is given in parentheses. 

ratios caused too many false negatives in the retraining. Note the population predictions after the 

feedback loop are low for all ratios other than 1:1.  

The estimates generated by the CNNs for each configuration of training set and background to 

foreground ratio were graphically represented at each iteration. The worst error obtained by any 

CNN that had been through the feedback loop at all, did better than the very best baseline (Fig. 6; 

a 215 goose under-estimate for the worst feedback CNN over expert 7:1 compared to 273 over-

estimate for the best baseline run over matched 7:1). 

7 Conclusion  

This paper used data gathered from citizen scientists and experts to train convolutional neural 

networks. These networks were able to provide estimates of the population of white phase snow 

geese collected from from UAS imagery. While previous work yielded a large number of false 

positives [11], the addition of a feedback loop in this work drastically reduced the error and 

yielded runs whose population estimates were not always overestimates.  

 The feedback loop introduced is simple, yet effective, way to increase accuracy on 

massively unbalanced datasets. It provided an automated approach to choosing which examples 

from the majority class were most important to include in training. As the focus of the feedback 

loop was more the data itself than the CNNs, any new improvements in CNN training techniques 

could be easily applied to system. In fact, any image classification method that uses supervised 

training could most likely be used with the feedback loop.  

 The best results for CNNs trained on the data provided by the citizen scientists had an 

average error of only 3.93% for their population estimates, down from 150% in previous work. 

Similarly, CNNs trained on expert provided data had an average error of 5.24% down from 88% 



in previous work. The low error for both datasets shows both the viability of using citizen 

scientists to produce training data for CNNs and the viability of using CNNs in ecological 

research. 
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