
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Computer Science Faculty Publications Department of Computer Science

6-12-2018

Detecting wildlife in unmanned aerial systems imagery using Detecting wildlife in unmanned aerial systems imagery using

convolutional neural networks trained with an automated convolutional neural networks trained with an automated

feedback loop feedback loop

Connor Bowley

Marshall Bowley

Andrew Barnas

Susan Ellis-Felege

Travis Desell
University of North Dakota, tdesell@cs.und.edu

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/cs-fac

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Connor Bowley, Marshall Bowley, Andrew Barnas, et al.. "Detecting wildlife in unmanned aerial systems
imagery using convolutional neural networks trained with an automated feedback loop" (2018). Computer
Science Faculty Publications. 21.
https://commons.und.edu/cs-fac/21

This Conference Proceeding is brought to you for free and open access by the Department of Computer Science at
UND Scholarly Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of UND Scholarly Commons. For more information, please contact
und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/cs-fac
https://commons.und.edu/cs
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/cs-fac/21
https://commons.und.edu/cs-fac?utm_source=commons.und.edu%2Fcs-fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=commons.und.edu%2Fcs-fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/cs-fac/21?utm_source=commons.und.edu%2Fcs-fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

Detecting Wildlife in Unmanned Aerial Systems Imagery Using Convolutional Neural

Networks Trained with an Automated Feedback Loop

Connor Bowley1, Marshall Mattingly1, Andrew Barnas2, Susan Ellis-Felege2, and Travis Desell1

1 Department of Computer Science, University of North Dakota, Grand Forks, ND, USA

{connor.bowley,marshall.mattingly,travis.desell}@und.edu

2 Department of Biology, University of North Dakota, Grand Forks, ND, USA

{andrew.barnas,susan.felege}@und.edu

Abstract: Using automated processes to detect wildlife in uncontrolled outdoor imagery in the

field of wildlife ecology is a challenging task. This is especially true in imagery provided by an

Unmanned Aerial System (UAS), where the relative size of wildlife is small and visually similar

to its background. This work presents an automated feedback loop which can be used to train

convolutional neural networks with extremely unbalanced class sizes, which alleviates some of

these challenges. This work utilizes UAS imagery collected by the Wildlife@Home project,

which has employed citizen scientists and trained experts to go through collected UAS imagery

and classify it. Classified data is used as inputs to convolutional neural networks (CNNs) which

seek to automatically mark which areas of the imagery contain wildlife. The output of the CNN

is then passed to a blob counter which returns a population estimate for the image. The feedback

loop was developed to help train the CNNs to better differentiate between the wildlife and the

visually similar background and deal with the disparate amount of wildlife training images

versus background training images. Utilizing the feedback loop dramatically reduced population

count error rates from previously published work, from +150% to −3.93% on citizen scientist

data and +88% to +5.24% on expert data.

1 Introduction

Image classification is an important problem for wildlife ecology. Many of today’s ecological

projects use video or imagery for monitoring and tracking species [1–7]. Learning ecological

patterns becomes a problem of annotating images and classifying the wildlife they contain. Due

to the ease of obtaining video and imagery and the large geographic areas to cover, the amount of

data collected can quickly become too large for ecological researchers to go through manually.

To overcome this problem, some projects [1–4] have turned to citizen scientists to create

a larger workforce that can more quickly examine the data, provided enough ordinary people

volunteer to examine sometimes monotonous video and imagery. However, manual examination

is prone to human errors, such as fatigue, eye strain, or lack of domain knowledge. To deal with

these problems, computer vision techniques can be used to automate classification of the data.

Wildlife@Home is a ecological project with over 100,000 h of collected video, over

65,000 images from unmanned aerial systems (UAS), and over 1.8 million images from trail

cameras. An end goal of the project is to create an automated system that can classify the video

and imagery and differentiate among different species. To obtain labeled data for training

computer vision techniques and testing their efficacy, Wildlife@Home also employs citizen

scientists using a webpage that they can visit to record observations.

A major goal for this UAS imagery is to perform population counts of lesser snow geese

(Anser caerulescens caerulescens), which take up a tiny fraction of each image and are visually

similar to the background. In this imagery, a typical snow goose takes up an area less than 18 ×

18 pixels in UAS mosaic images (generated from mosaicing images collected over a region) that

range from 844 × 755 to over 2000 × 3000 pixels. It is also common for multiple or no geese to

be in each image. For these images, the information needed is not only if they contain snow

geese, but also how many. The difference in the proportion of imagery containing snow geese

relative to the background is great, making the UAS dataset extremely unbalanced. These

features, and the fact that the background can vary heavily in color and appearance, begin to

detail some of the challenges of image classification on this dataset.

Convolutional Neural Networks (CNNs) have seen a surge in popularity due to advances

in deep learning techniques and their ability to be applied generically to problems based on

labeled training data. Many CNNs have achieved great accuracy on benchmark datasets such as

the MNIST handwritten digit dataset [8], ImageNet [9], and the CIFAR 10 and CIFAR 100

datasets [10]. However, most datasets used with CNNs have fixed size images where the object

of interest fills a large area in the image. The labeled training data also tends to be fairly uniform

in the number of training examples for each class, as unbalanced datasets lead to bias in the

training process. For example, if a two-class dataset is unbalanced 99 to 1, if the CNN simply

predicts everything as the first class it’s accuracy will be 99%. This is a significant problem in

this data set, where the wildlife takes up significantly less that 0.1% of the imagery.

Previous work on Wildlife@Home’s UAS imagery [11] sought to calculate the

population of the white phase lesser snow geese that were contained in the imagery. This work

trained CNNs on a dataset labeled separately by experts and citizen scientists, which allowed for

the comparison of data provided by citizen scientists vs. experts for training CNNs. While

improving over state of the art results in optical (red, green, blue) imagery, there was still an 88%

and 150% overestimate when using expert and matched citizen scientist [12] labels, respectively.

This work presents an automated feedback loop, which updates training data during

backpropagation to account for the false positives that cause overestimation, allowing the CNNs

learn from that information and allowing the class sizes to remain more balanced. This approach

resulted in significant improvements in accuracy, with an average error of +5.24% achieved

when using the expert provided data and an average error of −3.93% error using the matched

citizen scientist provided data – results comparable or improving on manual population counts.

Further, this work is generic and can be applied to any significantly unbalanced data sets.

2 Related Work

There are a number of projects in many disciplines that have used citizen scientists to examine

data and generate results. PlanetHunters [13] used citizen scientists to inspect the NASA Kepler

public data release using the Zooniverse tool set [14] and identified two new planet candidates.

GalaxyZoo [15], had more than 100,000 citizen scientists classify galaxies in images from the

Sloan Digital Sky Survey [16]. Snapshot Serengeti [1] employs the use of citizen scientists to aid

ecological research by having them classify wildlife in data from camera traps in Serengeti

National Park. Like PlanetHunters, Snapshot Serengeti also uses Zooniverse. Cornell has also

produced multiple projects that employed citizen scientists, such as NestWatch [2,3] and

FeederWatch [2], both of which used citizen scientists to help answer questions about avian

species and their population sizes. CamClickr is another citizen scientist project that is used to

record nesting behavior and was used in a university biology class to teach identification of

objects to students [17].

Computer vision has also been used to aid ecological research. Xu and Zhu [5] worked on

automatically finding and identifying seabirds with complex and uncontrolled backgrounds using

a method called Grabcut [18] to find and segment the seabirds. After segmentation, features were

extracted and run through three models (k-Nearest Neighbor [19], Logistic Boost [20,21], and

Random Forest [22]) which voted on the final classification. When their system was run over

900 samples of 6 species of seabirds, their recognition accuracy was 88.1%. Villa et al. [23] used

the data gathered from the Snapshot Serengeti project and trained CNNs over that data. Their

best results had 88.9% Top-1 accuracy.

Abd-Elrahman et al. [6] used feature-based analysis (with color and shape as the features)

to detect birds in UAS video. They manually selected the input objects needed for feature-

testing. In the end, their system had false-negative and false-positives rates of under 20% each.

Another project by Chr´etien et al. [7] used RGB and thermal infrared (TIR) UAS images of

white-tailed deer. They were unsuccessful in using supervised and unsupervised pixel-based

detection methods to accurately find the deer, but they were able to use object-based image

analysis (OBIA) on the RGB and TIR data to achieve 50% detection results with no false

positives matching manned aerial surveys. However, when using only RGB imagery which

contained 4 deer, OBIA detected 1,946 deer.

3 Wildlife@Home Dataset

3.1 Gathering the Data

The UAS imagery used in this project was collected using a Trimble UX51 fixed wing UAS. The

images were collected in Wapusk National Park in Manitoba, Canada in 2015 and 2016. Flights

were flown at altitudes of 75 m, 100 m, and 120 m above ground level. A 16 megapixel Sony

camera placed in the nadir position recorded the images with an 80% overlap between

consecutive images. Over 65,000 images were taken in total, which reached over 3TB in size.

The images taken were then used to create mosaics for each flight. The Trimble Business

Center2 (version 3.51) was used for the 2015 data and Pix4D3 (version 3.2.23) was used for the

2016 data. In total, 36 distinct mosaics were created that were over 50 GB in size. Each mosaic

was then split down into mosaic split images (MSIs) that could be shown to experts and citizen

scientists through a web portal. From the 36 mosaics, 8,759 MSIs were created.

3.2 Labeling of the Data

Wildlife@Home uses a web portal (Fig. 1), to allow experts

and citizen scientists (collectively known as users) to go

through collected imagery and make observations. Users are

shown an image and instructed to draw a box around each

observed wildlife in such a way as to completely envelop the

wildlife while minimizing the amount of negative space

(background) in the box. The users then label the box

according to the species and coloration they believe the

wildlife to be. Documentation is available for them to

compare against. Should they find no wildlife in an image,

they can mark “nothing here”. The boxes and labels marked

by the users are recorded in a database for further usage.

The data generated through the web portal is given

one of two designations, expert or unmatched. Unmatched observations are the raw observations

from the citizen scientists, which were matched against each other to increase the accuracy of the

data using the 10 pixel corner point and intersection methods found in [12]. This brings the

number of designations to three:

1. Expert - if the recording user is a trained expert. This data is considered to be true without

fault (although in reality there are errors) and is considered the baseline by which all

others (citizen scientists and CNN predictions) are judged against.

2. Unmatched - if the recording user is a citizen scientist with no training by the project leaders.

3. Matched - if two or more citizen scientist observations are matched, the intersection of their

bounding boxes is a matched observation [12].

For this project, only expert and matched data were considered, as Mattingly et al. [12]

determined that matched data greatly improves on unmatched data.

3.3 Technical Issues and Corrections

In 2015, there was a mechanical error in the RGB camera used that resulted in the images having

a strong blue tint. To fix this, the 2015 images were compared and normalized against the 2016

images. Each of the red, green, and blue channels were multiplied by 233.0/150.0, 255.0/189.0,

and 236.0/190.0, respectively, floored, and then capped at 255. These numbers were chosen by

sampling several images from both 2015 and 2016 data and comparing the RGB values of white

phase snow geese in both datasets.

Fig. 1. The graphical user interface (GUI)

of the web portal for identifying objects in

ecological imagery for the Wildlife@Home

projects. This screenshot shows a UAS

image with two white snow geese identified

by the user.

4 Methodology

Previous work on the Wildlife@Home dataset in [11] has

promising results. CNNs were trained that produced a number

of false positives, ending with an 88% overestimation of the

population due to certain areas of background, mainly rocks

with similar features to the geese, being misclassified (Fig. 2).

One possible reason for this has to do with the nature of the

data. The UAS dataset is extremely unbalanced, and while the

unbalanced datasets problem is well defined with many

solutions, it is also important to note that the per pixel

percentage of background with similar features to the snow

geese is quite small compared to the rest of a background class

that varies vastly in color and features. As it happens, a small

subset of this background class looks more like a snow goose (a

different class) than it looks like the rest of background (the

same class). The small subset of background data, thus, is of

primary interest.

Let us define two subclasses of the background class: “hard” background is similar to the

foreground, and “easy” background is everything else. Let us also define “background similar to

foreground” as “background data that might be marked as a false positive by an arbitrary, trained

CNN”. If the majority class is undersampled (to deal with the unbalanced dataset) and images are

taken from the background class randomly, few hard background images would ever be trained

against.

In a sense, the Wildlife@Home dataset has an unbalanced dataset inside another

unbalanced dataset. Background is a strong majority over foreground, and easy background is a

strong majority over hard background. One solution, and the one explored in this work, would be

to present more hard background images to the CNN, i.e., undersample the easy background

and/or oversample the hard background.

One way to do this is to split the background into two separately labeled classes, hard and

easy, and have the CNN consider them separately. The largest inhibitor to this method, however,

is labeling of the hard and easy background, which would be infeasible to do manually,

especially with such an open-ended definition. A similar method is ensuring that hard

background is shown to the CNN at higher rates than found in the dataset (oversample the

minority subclass, or undersample the majority sub-class). This runs into the same problem of

trying to identify hard and easy background as the previous method. As strict truth labels are not

needed, an automated feedback loop approach can be used.

4.1 Feedback Loop

Let us change the definition of “background similar to the foreground” to “background data that

might be marked as a false positive by a particular, trained CNN”. With this definition, when a

Fig. 2. An example of an image and

CNN prediction from previous work

[11]. Note that it correctly identifies

the white phase snow geese, but

misclassifies background with similar

features to the geese. The boxes in the

prediction are at the actual locations of

the geese.

CNN is run over the dataset, one can define the false positives

as hard and the remaining background as easy (Fig. 3).

In the feedback loop, a CNN is given feedback by

identifying hard background and retraining the CNN over the

same overall dataset, but with more sampling of hard

background. Ideally, after retraining, the CNN should have less

false positives. Multiple iterations of retraining should benefit

this even more. To retrain a CNN at iteration t of the feedback

loop, the starting weights will be the weights from iteration

t − 1.

This approach provides a benefit where in each training

iteration, only a small subsample of the entire background set

needs to be used for training. However, it does need to run over the background data after each

training iteration to determine false positives. However, If the network correctly predicted an

image at iteration t of the feedback loop, it will probably predict that same image correctly at

iteration t + 1. In order to mitigate this cost, if the CNN at iteration t misclassifies an example,

then the retrained CNN at iteration t+1 will run over that example to see if the retraining

corrected it. If the example was correctly classified or not run over that iteration, then the CNN

at iteration t+ 1 has some probability of running over that example. This handles the case where

the retraining caused a previously correct classification to become incorrect.

4.2 Counting Objects

The process of training and running the CNNs in such a way that the

detected objects can be counted was the same as in [11,24]. CNNs

were trained on fixed size images which had relatively small

dimensions. The fixed size images were comprised of sub-images of

larger images (the MSIs). Experts and citizen scientists placed

bounding boxes around snow geese in the imagery, and those

bounding boxes were used to label the sub-images.

Once a CNN was trained (or retrained) on these sub-images,

it was run over full size images. To run the CNN over the full size

images, the CNN was first run over its sub-image of appropriate size

in the top left-hand corner of the image, then it was strided across

the image, generating predictions on the sub-images as it goes (Fig.

4).

The outputs from each sub-image were reconstructed into a prediction for the whole

image. When an image is run through a CNN using a softmax classifier, a probability between 0

and 1 is returned for each class. Each pixel in the prediction image also has probabilities that it is

of each class. The formula for calculating this vector is C0(pj) = s∈S(pj) CNN(s) where pj is the

jth pixel in the image, C0(pj) is a function returning a vector of confidences that pixel j is of

each class, S(pj) is the set of all sub-images containing pixel j, and CNN(s) is the output from

Fig. 3. Basic flowchart for feedback loop.

Fig. 4. Example of striding a CNN

across an image. When the CNN

reaches the right edge, it will move

down and start again at the left

edge.

running the CNN on sub-image s. The sums may total to greater than one for a particular class,

so they are normalized using the square of the value over the sum of squares for all values in the

vector. The equation for the probability of each class, c in the set of all classes C, for pixel j is:

. Each class is assigned a color, and by counting blobs of the color assigned to

snow geese, population can be predicted.

5 Implementation

5.1 Data

One goal of this project was to compare expert data and citizen scientist data for training CNNs.

So, only MSIs that had both expert observations and matched observations were used to facilitate

direct comparison. There are far more MSIs that have no observed wildlife than MSIs that do

(2803 vs. 1351), so 20% of the MSIs with observations in them (262 MSIs) and 20% of the MSIs

that did not have observations in them (558 MSIs) were set aside for testing. The total dataset

had 3334 training MSIs and 820 test MSIs.

The observations from the users are contained in bounding boxes of various sizes, and the

MSIs themselves are not of a consistent size. However, CNNs need labeled fixed size input for

training and running. To deal with this, sub-images from the MSIs were put into IDX files (same

format used for MNIST). A fixed image size was chosen as the input size of the CNN. The

images of snow geese (foreground) were obtained separately for each user designation, while the

background images were shared amongst the different designations. For each designation the

initial training IDXs were created by combining the unique foreground set with the shared

background set.

To obtain foreground data on wildlife observations of a different size than the needed

input, the center of the observation became the center of a new bounding box of the input size,

which was then extracted and added to the IDX data4. There were 2054 and 6560 foreground

observations for the expert and matched data, respectively. The difference between the classes is

because more citizen scientists looked at the data than experts. Increasing the number of citizen

scientists looking at an MSI causes an increase in 2-way matched observations that is greater

than linear (n citizen scientists cause nC2 matched observations). Experts are unmatched so the

number of observations is linear in the number of experts. Eight input sized background sub-

images were taken from each training MSI for a total of 26,672 background examples. The

locations within the MSIs were chosen at random while ensuring that they did not overlap with

an observation from any user designation.

5.2 CNN and Feedback Loop

The CNN was implemented using C++ and OpenCL. Each type of layer had their feed forward

and backpropagation functions computed using OpenCL, while the C++ code preprocessed the

data and made the appropriate OpenCL calls. OpenCV was used for reading and writing images.

All code is available at https://github.com/Connor-Bowley/neuralNetwork. The feedback loop

was implemented using C++ and Qt. It comprised of a simple interface to get the needed inputs

and call the C++ programs for training and running the CNNs.

Because the CNNs are trained on IDX files and tested against PNG images, the feedback

loop searched the PNGs for false positives5 and extracted those areas into IDX files. Areas close

to a bounding box were exempt from being extracted because the area predicted to be a snow

goose was often larger than the goose itself. The definition of “close” was set to be: any sub-

image with a pixel contained in a box that extends from a user supplied bounding box by N

pixels in each direction is exempt from being marked as misclassified where N is the CNN input

size. All misclassified sub-images were appended onto the previous iteration’s training IDXs.

5.3 CNN Architecture and Settings

The size of the training sub-images in the IDXs was set to 18×18 pixels, as most of the bounding

boxes around the snow geese were within this size. Given the 18 × 18 input, the CNN

architecture was created (Fig. 5), which is the same as used in [11]. After each convolutional

layer, a batch normalization layer [25] and an activation layer (Leaky ReLU [26] bounded to

[−5000.0, 5000.0]) was placed, in that order. For batch normalization, γs were initialized to 1 and

βs to 0.

Weights for the neurons in the convolutional and fully connected layers were initialized

using N(μ, σ), μ = 0, σ = 2/n where n is the number of inputs to the neuron. After each weight

update, the value was bounded such that |w| ≤ 50.0 for each weight w. The bound here and for

Leaky ReLU were to prevent outputs from reaching NaN or ±∞.

Prior to training or prediction, all data was normalized. When training, the normalization

used was to subtract each pixel by the mean and divide by the standard deviation with respect to

all pixels from all training images. The mean and standard deviation calculated during training

was then used for preprocessing at run time. For instances of retraining, the mean and standard

deviation was from all images ever trained on,

including images from previous iterations.

Minibatch gradient descent was used, with

minibatch size of 64. The learning rate started at 1 ×

10−3 and was multiplied by 0.75 each epoch. L2

Regularization [27] was used with a λ of 0.05.

Training was done for 30 epochs, and the epoch whose

weights had the best accuracy on the training data was

chosen as the final output. Nesterov Momentum [28] was used with a momentum constant of 0.9.

For the feedback loop, each dataset and sampling rate pair had 3 separate trials run. Each

trial had 5 iterations, consisting of 1 base training and 4 retraining iterations. Each retraining

iteration had its initial weights, γs, and βs set to the result of the previous iteration’s training.

Other parameters, such as number of epochs, were the same.

For predictions over the training and test MSIs, the stride used for striding the CNN

across the MSIs was 9 pixels in each direction.

Four different ratios of background to foreground were used, 1:1, 3:1, 5:1, and 7:1. In

general an N:M ratio would say that the CNN trained on N background examples for every M

Fig. 5. Architecture of the CNNs used in this

work

foreground examples it trained on. Because the amount of background to foreground is greater

than even 7:1, the subset of background used each epoch was chosen at random from the

background in the IDXs and differed each epoch.

The CNNs were trained and run on a Mac Pro using a 3.5 GHz 6-Core Intel Xeon E5

processor.

6 Results

Three runs were conducted for each configuration of training set and

background to foreground sampling ratio. The results of the blob

counter over the prediction images were averaged (Table 1). CNNs

trained on the expert dataset and the CNNs trained on the matched

dataset both had low error. Interestingly, the CNNs trained on the

matched data performed better under higher background to foreground

ratios than the ones trained with expert data. One possible reason for

this is that the citizen scientist data is matched while the expert data is

not. There was not enough expert data to do matching over it, and there

are confirmed cases of expert misclassification.

CNNs that went through the feedback loop even one iteration

had significantly less error than their baselines (Table 2). This decrease

was larger than the decrease in error that happened when the sampling

rates were changed. While increasing the sampling of background did

reduce error in the baseline, it usually increased the error when using

the feedback loop. The exception to this was going from a 1:1 to a 3:1

with the matched data. This suggests that the bias introduced from the

large

CNNs were trained using given data set and the background to foreground sampling ratio,

BG:FG. Predict is predicted population on test set. Actual is actual count over test set by

experts. The numbers are average of best iteration results of 3 runs. Bold face rows are

best for their training set. Italicized row is best overall.

Fig. 6. Average error based on

iteration for each dataset and

BG:FG sampling ratio. Line is

average; filled in portion

shows max and min values at

each iteration.

∗While these numbers averaged to a very low amount of error from the actual, the

individual numbers themselves were not the best in their respective runs. At iteration 0,

the feedback loop has not yet been employed, which makes it an effective baseline. It can

be seen that even one iteration of retraining drastically cuts the error. The best iteration

varied between trials. The average best iteration for each CNN is given in parentheses.

ratios caused too many false negatives in the retraining. Note the population predictions after the

feedback loop are low for all ratios other than 1:1.

The estimates generated by the CNNs for each configuration of training set and background to

foreground ratio were graphically represented at each iteration. The worst error obtained by any

CNN that had been through the feedback loop at all, did better than the very best baseline (Fig. 6;

a 215 goose under-estimate for the worst feedback CNN over expert 7:1 compared to 273 over-

estimate for the best baseline run over matched 7:1).

7 Conclusion

This paper used data gathered from citizen scientists and experts to train convolutional neural

networks. These networks were able to provide estimates of the population of white phase snow

geese collected from from UAS imagery. While previous work yielded a large number of false

positives [11], the addition of a feedback loop in this work drastically reduced the error and

yielded runs whose population estimates were not always overestimates.

 The feedback loop introduced is simple, yet effective, way to increase accuracy on

massively unbalanced datasets. It provided an automated approach to choosing which examples

from the majority class were most important to include in training. As the focus of the feedback

loop was more the data itself than the CNNs, any new improvements in CNN training techniques

could be easily applied to system. In fact, any image classification method that uses supervised

training could most likely be used with the feedback loop.

 The best results for CNNs trained on the data provided by the citizen scientists had an

average error of only 3.93% for their population estimates, down from 150% in previous work.

Similarly, CNNs trained on expert provided data had an average error of 5.24% down from 88%

in previous work. The low error for both datasets shows both the viability of using citizen

scientists to produce training data for CNNs and the viability of using CNNs in ecological

research.

References

1. Lion Research Center, University of Minnesota. http://www.snapshotserengeti. org/. Accessed 2012

2. Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V., Shirk, J.: Citizen science:

a developing tool for expanding science knowledge and scientific literacy. BioScience 59(11), 977–984

(2009)

3. Phillips, T., Dickinson, J.: Tracking the nesting success of north America’s breeding birds through public

participation in NestWatch (2008)

4. Wood, C., Sullivan, B., Iliff, M., Fink, D., Kelling, S.: eBird: engaging birders in science and conservation.

PLoS Biol. 9(12), e1001220 (2011)

5. Xu, S., Zhu, Q.: Seabird image identification in natural scenes using grabcut and combined features.

Ecol. Inf. 33, 24–31 (2016)

6. Abd-Elrahman, A., Pearlstine, L., Percival, F.: Development of pattern recognition algorithm for

automatic bird detection from unmanned aerial vehicle imagery. Surv. Land Inf. Sci. 65(1), 37 (2005)

Detecting Wildlife in Unmanned Aerial Systems Imagery 81

7. Chr´etien, L.-P., Th´eau, J., M´enard, P.: Visible and thermal infrared remote sensing for the detection

of white-tailed deer using an unmanned aerial system. Wildl. Soc. Bull. 40(1), 181–191 (2016)

8. LeCun, Y., Cortes, C.: MNIST handwritten digit database. AT&T Labs (2010).

http://yann.lecun.com/exdb/mnist

9. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,

Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput.

Vis. (IJCV) 115(3), 211–252 (2015)

10. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

11. Bowley, C., Mattingly, M., Ellis-Felege, S., Desell, T.: Toward using citizen scientists to drive

automated ecological object detection in aerial imagery. In: 2017 IEEE 12th International Conference on

e-Science (e-Science). IEEE (2017)

12. Mattingly, M., Barnas, A., Ellis-Felege, S., Newman, R., Iles, D., Desell, T.: Developing a citizen science

web portal for manual and automated ecological image detection. In: 2016 IEEE 12th International

Conference on e-Science (e-Science), pp. 223–232. IEEE (2016)

13. Fischer, D.A., Schwamb, M.E., Schawinski, K., Lintott, C., Brewer, J., Giguere, M., Lynn, S., Parrish, M.,

Sartori, T., Simpson, R., Smith, A., Spronck, J., Batalha, N., Rowe, J., Jenkins, J., Bryson, S., Prsa, A.,

Tenenbaum, P., Crepp, J., Morton, T., Howard, A., Beleu, M., Kaplan, Z., vanNispen, N., Sharzer, C.,

DeFouw, J., Hajduk, A., Neal, J.P., Nemec, A., Schuepbach, N., Zimmermann, V.: Planet hunters: the first

two planet candidates identified by the public using the kepler public archive data. Mon. Not. R. Astron.

Soc. 419(4), 2900–2911 (2012)

14. Simpson, R., Page, K.R., De Roure, D.: Zooniverse: observing the world’s largest citizen science

platform. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 1049–1054.

ACM (2014)

15. Lintott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M.J., Nichol, R.C.,

Szalay, A., Andreescu, D., Murray, P., Vandenberg, J.: Galaxy zoo: morphologies derived from visual

inspection of galaxies from the sloan digital sky survey. Mon. Not. R. Astron. Soc. 389(3), 1179–1189

(2008)

16. York, D.G., Adelman, J., Anderson Jr., J.E., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.,

Barkhouser, R., Bastian, S., Berman, E., et al.: The sloan digital sky survey: technical summary. Astron. J.

120(3), 1579 (2000)

17. Voss, M.A., Cooper, C.B.: Using a free online citizen-science project to teach observation &

quantification of animal behavior. Am. Biol. Teach. 72(7), 437–443 (2010)

18. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph

cuts. In: ACM Transactions on Graphics (TOG), vol. 23, no. 3. pp. 309–314. ACM (2004)

19. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27

(1967)

20. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp.

148–156 (1996)

21. Friedman, J.H.: Additive logistic regression: a statistical view of boosting. Ann. Statist. 28, 337–407

(2000)

22. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

23. Gomez, A., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of

animal species in camera-trap images using very deep convolutional neural networks, arXiv preprint

arXiv:1603.06169 (2016) 82 C. Bowley et al.

24. Bowley, C., Andes, A., Ellis-Felege, S., Desell, T.: Detecting wildlife in uncontrolled outdoor video

using convolutional neural networks. In: 2016 IEEE 12th International Conference on e-Science (e-

Science), pp. 251–259. IEEE (2016)

25. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal

covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

26. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models.

In: Proceedings of the ICML, vol. 30, p. 1 (2013)

27. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the

Twenty-first International Conference on Machine Learning, p. 78. ACM (2004)

28. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O (1/k2).

In: Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372–376 (1983)

	Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop
	Recommended Citation

	tmp.1550603234.pdf.V9SH3

