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Abstract Devils Lake, a terminal lake in eastern North Dakota, has risen more than 9 

meters between 1992-2013, producing a 286% increase in lake area, and causing more 

than one billion dollars ($US) in direct damages.  An annual volumetric lake water 

budget is developed from monthly hydroclimatological variables for the period 1951-

2010 to investigate the rapid lake expansion.  The lake is an amplifier terminal lake in 

which long-term climatic changes are amplified by positive feedback mechanisms, 

causing the lake to transition from a precipitation-dominated to a runoff-dominated water 

budget.  Factors specific to the Devils Lake Basin further amplify this positive feedback 

relationship.  These include principles of fill-spill hydrology that operate between 

individual sub-basins within the closed basin, and between the innumerable wetland 

complexes within each sub-basin.  These factors create a pronounced non-stationary 

precipitation-runoff relationship in the basin during both long-term wetting and drying 

phases. 

 
 
 

Key words Devils Lake; terminal lake; volumetric lake water budget; amplifier lake; 

non-stationarity; precipitation-runoff relationship 

 

  



1   INTRODUCTION 

A large portion of the surface of Earth drains to inland lowland depressions that form 

terminal lakes.  These closed basin lakes are normally saline and are often referred to 

as inland saline (salt) lakes.  The total volume of water contained within saline lakes is 

comparable to that of freshwater lakes, and they form an important global water 

resource (Williams 1996, 2002). 

Terminal lakes are dynamic hydrological systems, and their record of historical 

lake level fluctuations is considered a sensitive indicator of climate change (Mason et al. 

1994).  Such lakes can experience large and rapid changes in lake level, lake area, and 

lake volume due to the integrated effects of multiple climatic forcings (Szesztay 1974, 

Mason et al. 1994).  Lake level fluctuations are driven by short-term and long-term 

variations in climate, and also by lake bathymetry such that the lake area-lake volume 

relationship of a saline lake can have preferred states in lake level (Street 1980, 

Mohammed and Tarboton 2011, Haghighi et al. 2016).  Terminal lake level fluctuation is 

also extremely sensitive to human modification of basin hydrology, including human 

abstraction or augmentation of surface or groundwater inflow, diversion of tributaries, 

and alteration of basin land use/land cover (Coe & Foley 2001, Micklin 2007, Williams 

1996, 2002). 

Devils Lake is a terminal saline lake in the Devils Lake closed basin in eastern North 

Dakota (Fig. 1).  The closed basin has an area of 9 868 km2, of which 8 599 km2 drains 

to Devils Lake, and 1 269 km2 drains to Stump Lake, an adjacent saline lake to the east.  

The rise in lake level, and increase in lake area and lake volume of Devils Lake has 

been large and sudden since 1993 (Fig. 2).  From 30 September 1992 to 30 September 



2013 the lake level (LL, m) rose from 433.62 to 442.75 m (ΔLL = 9.13 m), lake area (LA, 

km2) expanded from 179.9 to 694.6 km2 (ΔLA = 286%), and lake volume (LV, km3) 

increased from 0.704 to 4.003 km3 (ΔLV = 469%) (Fig. 2).  Devils Lake began spilling 

into Stump Lake in 1999, and the two lakes now form a single lake system.  At a lake 

level of 444.40 m Devils Lake spills naturally through the Tolna Coulee into the 

Sheyenne River, and becomes part of the Red River of the North drainage basin. 

The lake has experienced catastrophic flooding over the past two decades (Larson 

2012).  The lake flooding that resulted required the raising and extension of levees to 

protect the City of Devils Lake, the raising of roads and bridges to preserve critical 

infrastructure, the destruction or relocation of more than 500 structures, and the 

inundation of more than 60,000 hectares of prime agricultural farmland (Zheng et al. 

2014).  Direct federal and state payments for flood damages have exceeded $1 Billion 

($USD), although the total direct/indirect and tangible/intangible flood losses are 

certainly much higher (Smith & Katz 2013). 

The abrupt and dramatic change in the hydrological regime at Devils Lake has 

not been fully explained.  Basic hydrological investigations by Ryan and Wiche (1988), 

Wiche (1992), Wiche and Pusc (1994), and Vecchia (2008) provide an overview of the 

lake hydrology, while Hoerling et al. (2010) present a preliminary investigation of the 

climatological basis of the recent lake rise.  Todhunter and Knish (2014) examined the 

relationship between the frequency of weather-types and lake volume changes from 

1965-2010 and found statistically significant changes in the frequency of selected 

weather types over time that indicated a trend toward increased advection of more 

humid weather types consistent with the historical rise in lake level.  Their results and 



those of Hoerling et al. (2010) support a climatic explanation for the historical lake rise 

at Devils Lake, but the results are not as strong nor as profound as might have been 

anticipated given the unprecedented rate of lake rise. 

The purpose of this study is to investigate the hydrological basis of the sudden 

rise in Devils Lake.  The first objective is to construct an annual volumetric water budget 

for the lake for water years 1951-2010 that considers both hydroclimatic variability and 

the effects of lake bathymetry.  The second objective is to quantify the relationship 

between precipitation input to the basin and runoff inflow to the lake for the same study 

period. 

2   BACKGROUND 

2.1 Study area 

Devils Lake Basin lies within the Drift Prairie physiographic region that was traversed by 

a continental ice sheet during the last glaciation (Bluemle & Clayton 1984).  Devils Lake 

includes a series of separate bays arranged in a linear sequence, separated from one 

another by a swale of higher elevation, and underlain by the Spiritwood Aquifer.  The 

bays were formed by glacial thrusting of subglacial materials caused by elevated pore 

water pressures beneath the advancing ice sheet (Bluemle and Clayton 1984). 

The closed basin includes a series of sub-basins, each drained by a major 

coulee that flows south and empties into a small lake (Ryan and Wiche 1988).  These 

sub-basin lakes form a natural chain of lakes; each lake is located within a glacial 

depression, separated from each of the adjacent lakes in the chain by a swale with a 

unique spill elevation.  Runoff from one sub-basin and lake does not directly contribute 

to the next lower sub-basin until the swale elevation separating the two sub-basins is 



reached and the lake can spill into the lower lake in the chain.  Runoff along the chain of 

lakes proceeds in an east to west direction, and enters into northwest Devils Lake 

through Big Coulee.  Prior to 1979, all runoff produced within the chain of lakes moved 

east to west through Big Coulee and into Devils Lake.  In 1979 a levee was constructed 

along the natural outlet from Dry Lake, and Channel A was constructed connecting Dry 

Lake to Sixmile Bay on Devils Lake. Detailed maps of all channels, sub-basins, and the 

chain of lakes are available in Wiche and Pusc (1994) and from the North Dakota State 

Water Commission (http://www.swc.nd.gov/info_edu/reports_and_publications/ 

pdfs/wr_investigations/wr22_report.pdf). 

Surface runoff now enters Devils Lake through three sources: the eastern sub-

basins that enter Devils Lake through Channel A, the western sub-basins that enter 

Devils Lake through Big Coulee, and a limited amount of local runoff from areas 

adjacent to Devils Lake.  The upper basin lands consist of clay-rich surficial deposits 

underlain by Cretaceous shale; both possess very low permeability, and groundwater 

flow rates are extremely small (Wiche and Pusc 1994). 

A great number of topographically-closed depressions of variable size and depth 

were left by the continental ice sheet in the prairie landscape (Zhang et al. 2009, Shaw 

et al. 2013).  Water storage in these prairie potholes is normally highest in the spring 

following the melt of the winter snow cover (Hayashi et al. 2016).  A large portion of the 

upper basin drains internally to these pothole depressions, which frequently do not fill to 

a high enough level to spill to adjacent lower level pothole depressions.  Surface water 

drainage between adjacent depressions is thus normally disconnected.  The region 

lacks a well-defined surface drainage system, and the fraction of the area contributing to 

http://www.swc.nd.gov/info_edu/reports_and_publications/%20pdfs/wr_investigations/wr22_report.pdf
http://www.swc.nd.gov/info_edu/reports_and_publications/%20pdfs/wr_investigations/wr22_report.pdf


the surface stream network varies on a seasonal and inter-annual basis.  The volume of 

water stored within prairie potholes varies dynamically across time, which results in 

great temporal variation in the number, average depth, and permanence of prairie 

potholes in the landscape.  Pothole abundance, depth, and permanence are greatest in 

the early spring and during deluge periods, and decrease through summer and during 

drought periods (Zhang et al. 2009). Regional runoff totals are primarily driven by 

snowmelt and rain-on-snow processes (Berghuijs et al. 2016). 

This complex natural hydrological setting has been extensively modified by 

human action over time.  Extensive historical land cover change from native prairie 

grasses to cultivated crops has occurred, that would have resulted in decreased surface 

infiltration and increased surface runoff (van der Kamp et al. 2003).  The region has 

experienced moderate land cover change between 1973 and 2000 (Auch et al. 2011, 

Drummond et al. 2012), including extensive wetland drainage (Johnston 2013). 

2.2 Late Holocene and historical lake level fluctuations 

Geological field investigations show that within the past 4,000 years Devils Lake has 

gone completely dry four times, and spilled over to the Red River of the North three 

times (Bluemle et al.1999).  The natural condition for the lake is to be rising toward 

overflow to the neighboring Stump Lake or Sheyenne River, or falling toward 

desiccation as a dry lake bed (Bluemle et al.1999).  Widely fluctuating lake levels are 

the normal condition for the lake, while long periods of stable lake levels are 

uncommon.  Multiple paleolimnological studies of Holocene climate variability from 

northern Great Plains saline lakes show a similar pattern of lake level instability (Laird et 

al. 2003, Shapley et al. 2005, Grimm et al. 2011).  These studies reveal a coherent 



regional pattern during the late Holocene of large oscillations between longer periods of 

high salinity-dry conditions, and shorter periods of low salinity-wet conditions.  The 

transitions between these two modes appear to be relatively rapid, suggesting large and 

abrupt changes in the long-term hydroclimatic drivers controlling surface moisture 

availability, and rapid response of the lake system to such changing inputs (Laird et al. 

2003). 

2.3 Hydroclimate modes 

Studies of the climatological basis of the historical rise in lake level at Devils Lake 

identified 1980 as one such transition point between drier and wetter hydroclimatic 

modes (Vecchia 2008, Hoerling et al. 2010, Todhunter and Fietzek-DeVries 2016).    

These low-frequency variations in regional hydrology must be related to persistent, 

large-scale, low-frequency circulation anomalies (Hirschboeck 1987), but the precise 

mix and phase of climate indices driving the two modes has yet to be identified. 

The two hydroclimatic modes are associated with distinctive hydrological 

responses, producing what has been referred to as a drought to deluge cycle (Winter 

and Rosenberry 1998, Todhunter and Rundquist 2004, Zhang et al. 2009).  Todhunter 

(2016) developed a hydroclimatic profile of the two climate modes that included: climate 

variables (precipitation (mm), air temperature (C)), lake hydrology variables (lake 

evaporation (mm), net lake evaporation (mm)), closed lake variables (inflow factor (%), 

climate parameter (fraction)), selected climatic water balance variables (aridity index 

(fraction), precipitation minus potential evapotranspiration (mm), potential 

evapotranspiration minus actual evapotranspiration (mm), mean annual soil moisture 

(mm), dryness index (fraction), moisture index), and hydrology variables (surface inflow 



(km3), runoff ratio (%)).  Mode 1 was a cooler and drier mode, while mode 2 was a 

warmer and wetter mode.  Mean annual precipitation onto the lake increased from 466 

to 579 mm from mode 1 to mode 2 (113 mm or 24% increase).  This modest but 

sustained increase in the primary hydrological driver was amplified into much larger 

changes in regional hydrology between the two modes.  Mean annual surface inflow to 

the lake increase from 0.041 to 0.198 km3 (383% increase) and mean annual runoff 

ratio increased from 1.08 to 4.12% (282% increase) from mode 1 to mode 2. 

2.4 Regional hydrology 

Devils Lake has experienced a precipitous increase in lake volume since 1993 (Fig. 2).  

This increase would appear to require additional causation than the transition from a 

drier and cooler hydroclimate mode to a wetter and warmer hydroclimate mode, and the 

basin’s location along a sharp hydrotone gradient (Todhunter 2016).  In the absence of 

human drivers of landscape change, the relationship between precipitation input and 

streamflow output in most environments is assumed to be linear and stationary (Gupta 

et al. 2015). 

There are three reasons to question this assumption for the Devils Lake Basin.  

First, even in basins where the annual precipitation-runoff relationship varies linearly 

across the normal range of precipitation variations, a non-linear relationship may occur 

with extreme high and low precipitation variations due to the effect of basin hydrological 

memory, and the manner by which basin antecedent wetness conditions control the 

partitioning of climatic input to hydrological output (Risbey and Entekhabi 1996).  

Fundamental changes in internal basin dynamics during multiyear dry periods can 

impact the annual precipitation-runoff relationship (Saft et al. 2016a).  The climate mode 



transition that occurred in 1980 makes such a non-stationary relationship probable 

(Todhunter and Fietzek-DeVries 2016). 

Second, principles of fill-spill hydrology operate within the multiple wetland 

complexes within each sub-basin (Spence and Woo, 2003).  These principles have 

been studied for wetlands in the Canadian Prairie Pothole Region, and must certainly 

hold for the North Dakota Prairie Pothole Region (Spence 2007, Shook and Pomeroy 

2011, Ehsanzadeh et al. 2012, Shaw et al. 2012, 2013, Dumanski et al. 2015, Shook et 

al. 2015).  Snowmelt is the dominant source of runoff, and the transformation of 

snowmelt to runoff, and runoff to streamflow are non-linear (Shook et al. 2015).  Local 

depressions within a sub-basin do not contribute runoff to that sub-basin’s lake until its 

spill elevation is reached, and the wetland complex is hydrologically connected to its 

lake.  Sub-basin contributing area is spatially and temporally dynamic, with the 

contributing area of each sub-basin expanding and contracting based upon the wetland 

storage levels and wetland connectivity experienced across the multitude of sub-basin 

wetland complexes. 

Third, the sub-basins in the upper Devils Lake basin follow similar principles of 

fill-spill hydrology (Ryan and Wiche 1988).  Each sub-basin drains to the next lowest 

sub-basin only when its lake level exceeds the elevation of the topographic swale 

separating the two adjacent lakes and the two adjacent sub-basins become 

hydrologically connected.  The entire upper basin contributes runoff into Devils Lake 

only when every lake in the chain is above its spill elevation and flowing over its swale 

to the next lowest lake in the chain.  If any lake along the chain is below spill elevation 

its sub-basin area, and that of all sub-basins above it in the chain, is not contributing 



runoff to Devils Lake (Ryan and Wiche 1988).  The entire upper basin is hydrologically 

connected to Devils Lake only when multiple thresholds of lake level are exceeded.  

Thus, the area contributing surface inflow to the lake (Ri) is dynamic through time, 

expanding during wet phases, and contracting during dry phases, and producing a non-

stationary contributing area to Devils Lake.  It is hypothesized that all three effects 

contribute to the non-stationary runoff regime apparent in the hydrology of Devils Lake 

(Saft et al. 2015, Shook et al. 2015). 

3   DATA AND METHODS 

3.1 Monthly lake water budget data 

Monthly water budget data for Devils Lake was provided by the USGS North Dakota 

Water Science Center (A. Vecchia, personal communication, 14 October 2011).  These 

included monthly totals of lake precipitation (PL, mm), lake evaporation (EL, mm) and 

inflow (Ri, km3) for January 1950 through December 2010.  Net lake evaporation (EL – 

PL, mm) was determined as a secondary variable from the primary data.  This data is 

considered the best available estimate of the lake hydrology, and served as the basis 

for a lake level frequency analysis for Devils Lake (Wiche and Vecchia 1996), and two 

versions of a stochastic simulation model used to evaluate the impact of pumping from 

proposed outlets upon future lake levels (Vecchia 2002, 2008).  The total inflow term 

(Ri) includes the sum of inflow from the USGS stream gages at Big Coulee and Channel 

A, and local ungaged inflow from the peripheral area of Devils Lake.  Full details 

concerning the development of the monthly PL, EL, and Ri time series are given in 

Wiche and Vecchia (1996) and Vecchia (2002, 2008).  A standard water year running 

from 1 October to 30 September is examined to capture winter snow accumulation, 



spring snowmelt production, and summer thunderstorm precipitation within a single 

year. 

3.2 Lake water budget 

For a large lake with high lake volume inertia it is appropriate to analyze the lake water 

budget over an annual time step.  The change in lake volume (LV) for an annual time 

step is given by the water balance equation for a terminal lake: 

LV = Ri + PLLA + Gi – ELLA – Go        [1] 

Here Ri is surface runoff into the lake (km3), PL is direct precipitation onto the lake (mm), 

LA is lake area (km2), EL is evaporation from the lake (mm), and Gi and Go are 

groundwater inflow and outflow from the lake (Mason et al. 1994).  Shallow groundwater 

inflow from glacial till deposits and deep groundwater contributions to the lake are 

estimated to be only 0.0037 km3 yr-1, and do not have an important effect upon annual 

lake fluctuations (Wiche and Pusc 1984).  In the summer of 2005 construction began on 

a series of outlets to pump and remove water from the Devils Lake system to mitigate 

flood damages (North Dakota State Water Commission 2014).  When operative, the two 

outlets have a pumping capacity of 17.0 cms. The last year of minimal pumping volume 

was 2010, which marks the ending date of the analysis (W. Schuh, personal 

communication, North Dakota State Water Commission, 22 June 2015). 

By assuming that net groundwater flow (Gi – Go) is negligible and can be dropped from 

the analysis (Wiche and Pusc 1984), and ending the analysis in 2010 when human 

abstraction by pumping became an important water balance term, equation 1 can be 

simplified: 



LV = Ri  + P – E          [2] 

Here LV is the change in lake volume (km3), and surface inflow to the lake (Ri) is the 

water year total of the monthly values provided by the USGS.  Lake precipitation (P, 

km3) and lake evaporation (E, km3) are discretized annual totals obtained by multiplying 

the water year total precipitation on the lake (PL, mm) and evaporation from the lake (EL, 

mm) by the lake area (LA, km2) on 30 September (Mohammed and Tarboton 2012). 

3.3 Historical lake level and lake volume time series 

Historical observations of lake level for Devils Lake were obtained from USGS Water 

Data for the Nation (USGS 2013).  This dataset is a composite of infrequent 19th 

Century survey elevations, annual observations through 1930, discontinuous daily 

observations through 1965, and daily observations to the present. 

Advances in satellite remote sensing have led to recent improvements in our 

ability to measure lake level and lake area, and thus to estimate lake volume variations 

(Gao 2015).  The complete lake hypsometry defining the relationships between lake 

level, lake area, and lake volume is normally not known for closed lakes, but is available 

for Devils Lake.  Tables of LL-LA and LL-LV relationships for lake levels between 426.7-

445.6 m (1400.0-1462.0 feet) were obtained from the USGS (2014), which allowed for 

the creation of a LV time series from the historical LL series. 

4   RESULTS 
 

4.1 Annual volumetric lake water budget totals 

Direct precipitation onto the lake (PL), evaporation from the lake (EL), and lake net 

evaporation (EL – PL), in units of depth (mm), are the standard measurements available 



for examining the hydrology of terminal lakes (Gao 2015).   Surface runoff into the lake 

(Ri), is usually measured as a flow rate (cms) but is easily converted to an annual 

surface runoff volume (km3).  A plot of the annual totals for PL (mm), EL (mm), and EL – 

PL (mm) for water years 1951-2010 is available in Todhunter (2016).  Table 1 gives the 

mean (X), standard deviation (S) and coefficient of variation (CV) for each variable for 

the 60-year study period. 

Annual precipitation onto the lake surface (PL) averages 523 mm, and has a 

coefficient of variation (CV) of 21% (Table 1).   Annual lake evaporation (EL) averages 

763 mm, and is much less variable with a CV of only 8% (Table 1).  The lake freezes 

over during the cold season, so lake evaporation normally only occurs between April-

November.  The maximum lake depth is currently about 15.0 m, with an average lake 

depth of about 5.8 m.  The shallow lake depth, large wind fetch, and active regional 

wind regime produces a well-mixed lake with a single thermal layer that experiences 

minimal lake heat storage, and a maximum average monthly lake evaporation of 153 

mm occurring in August. 

Lake net evaporation (EL – PL) is the only natural source of water loss unless the 

lake level exceeds the ordinary high water mark of 444.4 m.  Average lake net 

evaporation is 241 mm (Table 1), with annual totals ranging between -73.4 and 586.7 

mm; negative values occurred in only three of the sixty years.  The CV for lake net 

evaporation is 59%, the second highest CV for the four lake water budget variables 

(Table 1).  A weak but statistically significant inverse linear relationship occurs between 

PL and EL (Fig. 3, P=0.031, SAS for Windows v.9.4), which leads to high interannual 

variability in lake net evaporation (Table 1).  Evaporation from shallow freshwater lakes 



is controlled by the lake energy budget (Schertzer 1997, Lenters et al. 2005).  Net 

radiation is the dominant driver of interannual variation of lake evaporation, and net 

radiation and lake evaporation have a strong positive relationship in this region (Lenters 

et al. 2005).  Moderate inverse relationships are found between lake evaporation and 

the lake-air temperature difference and Bowen ratio (Lenters et al. 2005).  Years with 

increased annual precipitation are associated with higher levels of cloud cover, 

decreased solar radiation transmission, reduced surface net radiation, and reduced lake 

evaporation (Lenters et al. 2005). 

Annual totals for the lake water budget variables determined from the volumetric 

analysis for water years 1951-2010 are shown in Figure 4 and summarized in Table 2.  

These are the annual totals for PL, EL, and EL – PL (mm) shown in Todhunter (2016), but 

here converted to volumetric totals for P, E, and E – P (km3).  Direct precipitation onto 

the lake (P, km3) exceeded the surface inflow to the lake (Ri, km3) on 44 of the 60 years; 

the volume of surface inflow to the lake was greatest for the remaining 16 years.  Total 

water input to Devils Lake over the 60-year period was 15.73 km3, of which 8.33 km3 

(53.0%) was by direct precipitation on the lake, 7.18 km3 (45.7%) was by surface inflow, 

and 0.22 km3 (1.3%) by groundwater inflow.  Total water output from Devils Lake was 

11.56 km3 over the 60-year period, of which lake evaporation contributed 11.47 km3 

(99.2%).  Pumping from the lake outlets totaled only 0.09 km3 (0.8%) and was 

inconsequential through 2010, but has become an important output variable since 2010.  

Pumping removed 0.063 km3 of water in 2010, which is comparable to the average 

annual net evaporation (E – P) of 0.054 km3 (Table 2).   Pumping can now potentially 



double the average lake net evaporation, and will have an important role in the future 

lake water budget. 

Surface inflow to the lake (Ri) is the most variable lake water budget component, 

and is the lake input most responsible for the dramatic rise in lake level at Devils Lake.  

Mean annual Ri is 0.120 km3 (Table 2), but annual totals range between 0.0-0.720 km3, 

producing a CV of 141%.  Surface inflow to the lake is dominated by spring snowmelt 

production, with peak monthly Ri totals occurring in April.  Winter precipitation (Dec-Feb) 

is only 9% of annual precipitation, but spring surface inflow (Mar-May) is 69% of annual 

surface inflow to the lake.  Summer runoff (Jun-Aug) to the lake is only 24% of annual Ri 

although summer precipitation is 46% of annual PL.  A preliminary examination of 

annual Ri in Figure 4 reveals three distinct clusters.  First, a period of minimal Ri from 

the beginning of the period of analysis through the late 1960s; second, a period of 

moderate Ri beginning in the late 1960s and lasting through the early 1990s; finally, a 

period of much greater Ri beginning in the early 1990s and continuing through the end 

of the period of analysis. 

The net change in lake volume (LV) obtained from the discretized water budget 

shown in Figure 4 is 3.42 km3, while the measured change in lake volume between 30 

September 1950 and 30 September 2010 is 4.17 km3, for a closure error of -0.75 km3 (-

18%).   This small closure error is most likely attributable to the assumptions and 

uncertainties associated with development of the lake water budget database (Vecchia 

2008), and the use of an annual time step in discretizing the volumetric lake water 

budget. 



Several additional variables used to characterize terminal lakes are given in Table 3 

(Szesztay 1974, Street 1980, Mason et al 1994).    These include the inflow factor (IF, 

%): 

    
  

     
              [3] 

A precipitation factor (PF, %) can also be determined as a complimentary variable: 

    
 

      
              [4] 

Neglecting the minimal groundwater input, surface inflow contributes 30.2% of lake 

volume input for the study period, with precipitation on the lake providing the remaining 

69.8% (Table 3). 

4.2 Ratio of lake area to closed basin area 

The area of a closed basin (A, km2) is the sum of the lake area (LA, km2) and the basin 

area (BA, km2).  Figure 5 shows lake area as a percentage of closed basin area for 

1901-2014.  The percentage averages 2.8% over the study period, but varies between 

1.1 < LA / A < 9.0%.  This variable has an important control over the relative contribution 

of PL and Ri to lake input, and has been found to range between <1.0% to nearly 50% 

for closed basins throughout the world (ILEC 2005).  Even after the spectacular rise in 

lake level the percentage is still less than 9% for the Devils Lake basin, placing it toward 

the lower end of the distribution among global closed basins. 

4.3 Precipitation-runoff relationship 

The precipitation-runoff relationship is a statistical model that shows drainage basin 

runoff response across a range of years of variable wetness (Saft et al. 2015).  It 



aggregates drainage basin runoff response to precipitation input at an annual time step, 

and is a simple yet effective characterization of drainage basin precipitation-runoff 

processes (Saft et al. 2015).  If human influences upon runoff are minor and 

precipitation is the main driver of runoff variations, the plot of annual precipitation 

against annual runoff will assume a linear pattern in most hydrological environments 

(Gupta et al. 2015).  For cold regions, however, Dumanski et al. (2015) and Shook and 

Pomeroy (2012) have shown that changes in precipitation phase, and the duration of 

precipitation events can also influence hydrological response even with no change in 

annual precipitation amount.  In a water-limiting environment a non-linear relationship 

may arise due to human influences upon drainage basin processes, or due to climatic 

drivers other than annual precipitation totals (Saft et al. 2015).  The scatter plot of 

annual lake precipitation (PL, mm) versus annual surface inflow (Ri, km3) for the study 

period reveals no coherent aggregate linear or non-linear relationship (Fig. 6).  For 

example, for an annual PL total of 600 mm, annual runoff (Ri) ranges from 0.0 km3 to 

more than 0.7 km3. 

The runoff ratio (RR, %) is defined as the volume of runoff to the lake (Ri) divided 

by the volume of precipitation falling on the sub-basin (PB, mm).  It is determined by: 

    
  

       
              [5] 

where PB is assumed equal to PL.  The time series of RR for the 60-year study period is 

shown in Figure 7.  The average RR value is 2.6% (Table 3), but varies for individual 

years between 0.0 ≤ RR ≤ 14.3%.  Only one year had no runoff (RR = 0.0), although 

many years experienced minimal runoff with RR values close to zero.  The interannual 

variation in RR is extreme, with a CV of 136%, and RR ranging by more than three 



orders of magnitude.  A nine-term binomial filter has been applied to the annual RR time 

series in Figure 7 to help identify long-term patterns of variation (Richard Heim, Jr., 

personal communication, Meteorologist, NOAA National Centers for Environmental 

Information, 5 March 2018). 

The use of double-mass curves to check the consistency of relationship between 

hydrological variables is a standard method in hydrology (Searcy and Hardison 1960).  

In Figure 8 cumulative surface runoff to the lake (Ri, km3) is plotted against cumulative  

precipitation on the lake (PL, mm) for water years 1951-2010.  If the relationship 

between the two variables is a fixed ratio the two variables should plot as a linear trend, 

with scatter about the line due to short-term basin memory effects.  A break in the 

plotted double-mass curve would indicate a change in the relationship between 

precipitation input and runoff generation over time (Searcy and Hardison 1960).  In 

Figure 8, three distinct phases occur in the double-mass curve: (a) Phase 1: 1951-1968; 

(b) Phase 2: 1969-1992; (c) Phase 3: 1993-2010.  Figure 8 indicates a non-stationary 

precipitation-runoff relationship during the study period, with regime transitions 

occurring in 1969 and 1993. 

The sub-totals for each set of variables given in Tables 1, 2, and 3 were 

determined for the three periods of precipitation-runoff relationship identified in Figure 8.   

The annual water budget variables for standard lake measurements are summarized in 

Table 1.  PL shows a steady increase from phase 1 through phase 3.  The coefficient of 

variation for PL is comparable for phases 1 and 2, but much smaller for phase 3.  EL 

shows a moderate increase from phase 1 to 2, and then a small decline for phase 3.  EL 



– PL has a small increase from phase 1 to 2, but then a more substantial decline for 

phase 3. 

The annual water budget variables for the volumetric analysis are summarized in 

Table 2.  All four variables increase from phase 1 to phase 2, and then again from 

phase 2 to phase 3.  P increases by 89% and then 168% from phase 1 through phase 

3; E increases by 85% and then 126% from phase 1 through phase 3.  E – P also 

increases progressively from phase 1 through phase 3, but by smaller percentages of 

80 and 44%, respectively.  The largest percentage increase occurs for Ri, which shows 

a 417% increase from phase 1 to 2, and a 392% increase from phase 2 to 3.  The CV 

for P, E, and E – P all increase from phase 1 through phase 3, while the CV for Ri 

decreases continuously from phase 1 through phase 3. 

Key closed lake variables for the three phases defined by Figure 8 are shown in 

Table 3.  Average lake area (LA) as a percentage of closed basin area (A) increased 

from 1.3% in phase 1 to 5.2% in phase 3, which contributed to the increase in the 

volume of direct precipitation onto the lake (P, Fig. 4).  Although the magnitude of P 

increased from phase 1 through phase 3, however, the relative contribution of P to the 

lake water budget declined, with the average precipitation factor (PF, %) decreasing 

from 87.7 to 51.9% from phase 1 through phase 3 (Table 3).  The explosive growth in Ri 

as a contributor to the lake water budget is shown by the increase in the inflow factor 

from an average of 12.3% in phase 1 to an average of 48.1% in phase 3.  By the end of 

the study period Ri was the largest contributor to the lake volumetric water budget.  

Average runoff ratios (RR, %) for the three phases were 0.3, 1.5, and 6.4%, respectively 

(Fig. 7, red horizontal lines), for a nearly twenty-fold increase from phase 1 to phase 3. 



5   DISCUSSION 

The large fluctuations in reconstructed lake level during the late Holocene (Bluemle et 

al. 1999), and observed lake level during the late 20th Century (Fig. 2), are the result of 

special characteristics of the Devils Lake water balance.  Devils Lake is an example of 

an amplifier terminal lake, a term first proposed by Street (1980) following the general 

classification of lake water budgets presented by Szesztay (1974).  The water budgets 

of amplifier terminal lakes are dominated by Ri and E.  Their lake levels exhibit a large-

amplitude response to long-term climatic fluctuations because numerous positive 

feedbacks amplify or attenuate runoff generation from their contributing areas  (Street 

1980).  Two additional factors are also operative in the Devils Lake Basin that create 

temporal lags in the lake system response to the hydroclimatic drivers, and affect the 

rate of amplification/attenuation to the forcings. These concern the location of the basin 

along a dry sub-humid/moist sub-humid hydroclimatic boundary, and the principles of 

fill-spill hydrology that regulate precipitation-runoff relationships at both the basin and 

sub-basin scales. 

Figure 9 shows a conceptual model of the positive feedback relationships in an amplifier 

lake associated with a long-term increase in precipitation (+PL).  The same positive 

feedback relationships hold for a long-term decrease in precipitation (-PL), except that 

all of the terms in the figure would change sign.  Direct precipitation on the lake (PL) is 

the single greatest input to lake volume (LV), contributing 53% of the input to the lake 

over the period of record.  Annual +PL inputs, however, can only produce a small 

impact upon annual +LV.   Long-term climate change producing an increase in annual 

PL leads to an increase in LV for two reasons.  First, the increase in PL contributes 



directly to an increase in lake precipitation (P, km3). For Devils Lake, average PL 

increased by 113 mm (24%) from climate mode 1 to climate mode 2 (Todhunter 2016).  

Second, as lake area (LA) expands it produces an additional linear increase in P due to 

the expanding lake area.  The increase in LA/A from 1 to 9% over the period of record 

(Fig. 5) creates a steadily increasing trend in the P time series (Fig. 4) that is in marked 

contrast to the interannual variability in the PL time series shown in Todhunter (2016).  A 

long-term increase in PL, however, leads to an absolute increase in the contribution of P 

to LV, but a relative decrease in the contribution of P to LV.  Average annual PL 

increases from 471 to 585 mm from phase 1 to phase 3 (Table 1), and average annual 

P increases from 0.054 to 0.274 km3 for the same period (Table 2).  Table 3, however, 

shows a decrease in the precipitation factor of 87.7 to 51.9% from phase 1 to phase 3. 

A long-term increase in PL also contributes to an increase in lake volume (+LV) through 

its direct effect on lake evaporation (EL) and net lake evaporation (EL – PL).  Mean 

annual air temperature warmed by an average of 0.63C from climate mode 1 to climate 

mode 2 (Todhunter 2016), but lake evaporation remained mostly unchanged, increasing 

from 752 to 774 mm for the two climate modes, or from 736 to 750 mm from phase 1 to 

phase 3 (Table 1).  Increasing cloud cover and atmospheric humidity are effective at 

attenuating most of the increased evaporative demand associated with atmospheric 

warming (Schertzer 1997, Lenters et al. 2005). 

More importantly, net lake evaporation, which is the only natural source of lake volume 

loss except for those occasions when the lake overflows through the ordinary high water 

mark and the lake transitions from a closed lake to a flowing lake (Szesztay 1974), 

decreased as the long-term climate transitioned from a drier to a wetter mode.  Table 1 



shows a decrease in EL – PL from 266 to 165 mm from phase 1 to phase 3.  This 

reduces the ability of the lake to remove water, on a unit depth basis, from the lake by 

evaporation. 

As the hydroclimate regime shifts from a drier to a wetter climate mode, Devils Lake 

transitions from a precipitation-dominated to a runoff-dominated water budget, or from a 

P-E to an IP-E lake water budget in the nomenclature of Szesztay (1974) and Street 

(1980).  The slow, progressive, and cumulative effects of the prolonged wetter climate 

mode produce important changes in the water budget and runoff characteristics of the 

upper basin. The increasing trend in PL and decreasing trend in EL – PL have a direct 

positive impact upon LV.   These direct effects, however, are small in comparison to 

their indirect effects upon +LV through surface inflow (Ri).  Although the increase in PL 

from climate mode 1 to climate mode 2, from 466 to 579 mm, is substantial (+24%), it 

can only have a small direct effect upon +LV.   The continuation of the wet cycle has a 

large effect upon the moisture status of the upper basin that dynamically changes Ri.  

Average annual soil moisture (SM) is 57 mm for climate mode 1 and 97 mm for climate 

mode 2 (Todhunter 2016), while mean annual SM increases from 67 to 100 mm from 

phase 1 to phase 3. 

During phase 1 the runoff ratio (RR) averages only 0.3%, and the average precipitation 

factor (PF) is seven times greater than the average inflow factor (IF), even though the 

basin area is 99% of the closed basin area (Fig. 5).  As climate mode 2 becomes 

established, SM slowly begins to increase, leading to a slow but progressive increase in 

RR and Ri.  Once phase 3 becomes established basin area is only 91% of the closed 

basin, but RR now averages 6.4%, for a 20-fold increase from phase 1.  Ri has 



increased from 0.012 to 0.305 km3 from phase 1 to phase 3 (Table 2), for a 25-fold 

increase.  PF and IF are of comparable magnitude during phase 3 (Table 3).  The 

establishment of the wetter climate regime causes both the absolute contribution (Ri, 

km3) and the relative contribution (PF, %) of surface inflow to the volumetric lake water 

budget to increase. 

The volumetric lake water budget time series illustrates these effects and transitions 

(Fig. 4).  During phase 1 (1951-1968) Devils Lake exhibits a clear pattern of a 

precipitation-dominated amplifier terminal lake (P-E).  Inlow factors are always less than 

35%, both P and E are large relative to Ri, and E controls the lake water budget, since 

net lake evaporation allows only small annual fluctuations in LV (Szesztay 1974, Street 

1980).  Phase 3 (1993-2010) shows the pattern for an inflow-dominated amplifier 

terminal lake (IP-E).  Inflow factors now range between 35-65%, and Ri is large relative 

to P and E.  The lake basin now amplifies the effects of the climatic cycle fluctuations on 

the lake water budget leading to a new equilibrium hydrological state. Lake level and 

lake volume are highly unstable, rising quickly when high annual Ri overwhelms net lake 

evaporation, but declining slowly in years when low annual Ri allows net lake 

evaporation to remove water from the lake.  Phase 2 (1969-1992) is a transitional period 

during which the direct effects of PL fluctuations on the lake water budget become less 

important, and the indirect effects of PL fluctuations on the lake water budget become 

dominant through their effects upon inflow.  Results from Todhunter (2016) show that 

there is about a 15-year lag between the establishment of the wetter PL mode and the 

initiation of the upward trend in LV due to the substantial hydrological inertia present in 

the closed lake system (Street 1980, Mason et al. 1994). 



Equilibrium is restored to the positive feedback relationship through the relative changes 

in P and E shown in Figure 10.  Because EL is normally greater than PL, net lake 

evaporation is normally positive, producing an annual net loss in lake volume.   As LA 

expands the rate of growth of E exceeds the rate of growth of P due to the surface area 

dependence of both terms.  Figure 4 shows that both P and E show large increases 

during phase 3, but the continued increase in lake volume is dependent upon annual Ri 

being greater than annual E – P.   The weak negative relationship between EL and PL 

(Fig. 3) is overridden by the positive relationship between E – P and LV (Fig. 10), 

creating a negative feedback that works to restore equilibrium to the lake water budget. 

The precipitous rise in lake volume results from several probable causes (Fig. 2).  First, 

the Devils Lake Basin lies along a hydrotone or a region of sharp hydroclimatical 

transition (Todhunter 2016).  As the climate mode shifts from climate mode 1 to climate 

mode 2 the position of the moist-subhumid/dry-subhumid boundary shifts westward, 

producing changes in the regional moisture status that are small on an absolute basis, 

but much larger on a relative basis. 

Second, basin antecedent wetness conditions play a critical role in precipitation-

runoff partitioning.  Most hydrological investigations assume stationarity in hydrological 

processes across the range of climatic variations (Saft et al. 2015).  They also assume 

that the historical record of precipitation-runoff dynamics captures the full range of basin 

response (Saft et al. 2016b).  Basins that exhibit a linear precipitation-runoff relationship 

for most years may exhibit a non-linear relationship during extremes in the precipitation 

distribution (Risbey and Entekhabi 1996).  Saft et al. (2016a, 2016b) show that 

prolonged drought of decadal-scale or longer causes a reduction in the normal 



precipitation-runoff relationship, and that such a reductions is most likely in drier, flatter, 

less forested basins such as characterize the Devils Lake Basin.  The prolonged 

drought to deluge climate change experienced in the study area would likely produce a 

non-linear increase in the precipitation-runoff partitioning. 

Third, the fill-spill principles of hydrology experienced at the basin scale and among the 

innumerable wetland complexes within each sub-basin would produce non-linear 

relationship precipitation-runoff relationships across all levels of precipitation.  This has 

been demonstrated for watersheds within the glacial drift prairie region of Canada 

(Dumanski et al. 2015, Ehsanzadeh et al. 2012, 2016, Shaw et al. 2012, Shook & 

Pomeroy 2011, Shook et al. 2015).  At the basin scale, the filling and spilling of the 

upper basin chain of lakes would lead to an increase in the hydrological connectivity of 

the sub-basins contributing inflow to Devils Lake, which would produce a pattern of step 

function increases in the effective contributing area to the lake system.  At the sub-basin 

scale, the innumerable wetland complexes would also experience a filling and spilling 

pattern leading to an increase in hydrological connectivity, but the pattern of increase in 

effective contributing area would be much more continuous in nature due to the vast 

number of wetland complexes. 

Figure 8 shows three phases in the precipitation-runoff relationship, with distinct 

thresholds occurring in 1969 and 1993.  Phase 1 illustrates the precipitation-runoff 

relationship of climate mode 1, the cooler and drier climate mode, marked by sub-basin 

lakes and wetland complexes with storage volumes below capacity and not spilling to 

lower elevation areas, minimal hydrological connectivity between the lakes and wetland 

complexes, and low basin-wide antecedent wetness conditions.  Phase 3 illustrates the 



precipitation-runoff relationships of climate mode 2, the warmer and wetter climate 

mode.  Long-term establishment of this climate mode leads to increased basin-wide 

antecedent wetness conditions, increased surface runoff, increased sub-basin lake and 

wetland complex water storage, and increased hydrological connectivity at the basin 

and sub-basin scales.  Phase 2 is a transitional period marked by a progressive 

increase in basin-wide antecedent wetness conditions, increased sub-basin lake water 

levels, increased maximum wetland complex water storage, and improving hydrological 

connections between individual wetland complexes and sub-basins. 

Several topics for further investigation arise.  First, the explanation provided for 

the rapid rise in lake level at Devils Lake was based upon a bulk or basin-wide analysis 

of hydrological processes.  A study employing a physically-based, distributed 

hydrological model would confirm and elaborate upon the explanation offered in this 

paper (Pomeroy et al. 2007).  Second, following Wiche and Pusc (1994), it has been 

assumed that groundwater inflow was a negligible contributing factor to the lake rise.  

The Spiritwood Aquifer underlies the chain of lakes and bays that comprise Devils Lake, 

so this assumption may not be valid as the wet phase becomes fully established.   

Rising groundwater levels close to the lake could lead to both increasing groundwater 

inflow to the lake, and higher surface runoff coefficients in the adjacent area.  Finally, 

Devils Lake acts as a low pass filter on low frequency climate variability (Mason et al. 

1994).  Climate variation is not random, but exhibits preferred time scales of residence 

within each transient state.  Each closed basin lake, acting as a low pass filter with 

specific internal system dynamics, will translate that low frequency climate signature 

into a unique land surface hydrological response.  Understanding this non-linear 



behavior is essential to providing meaningful assessments of hydrological response to 

simulations of future climate change. 

6   CONCLUSIONS 
 

The hydrology of Devils Lake exhibits features common to all amplifier terminal lakes, 

as well as features specific to its glacial formation.  These factors combine to produce 

the large oscillations in lake level that characterize the late Holocene.  During the drier 

drought phase the lake has a precipitation-dominated water budget. As the long-term 

climate transitions to the wetter deluge phase the lake takes on a runoff-dominated 

water budget, following a time lag due to basin memory effects.  Fill-spill hydrology 

effects further accentuate the natural amplifications and dampenings of the positive 

feedback relationships, producing a non-stationary precipitation-runoff relationship in 

surface inflow to the lake. 

These non-linear precipitation-runoff relationships may explain the weak correlations 

obtained between measured streamflow variables and a range of standard climate 

indices (McCabe & Wolock 2014).  The low-frequency variations in regional hydrology 

must be related to persistent, large-scale, low-frequency circulation anomalies, but their 

identification has remained elusive.  Efforts to investigate the direct relationship 

between climate indices and precipitation (rain and/or snowfall) may be more productive 

than the more indirect relationship between climate indices and streamflow.  The fill-spill 

hydrological principles and non-linear precipitation-runoff relationships present in the 

northern glaciated plains also have important implications for the investigation of the 

impact of anthropogenic climate warming upon trends in regional hydrology. 
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TABLES 

 

Table 1 Summary statistics for annual water budget variables for standard lake 

measurements (mm) at Devils Lake. Source: USGS. 

 
Period 

 
Variable 

 
PL 

(mm) 
 

 
EL 

(mm) 

 
EL – PL 
(mm) 

 
POR 

 
X 

 
523 

 
763 

 
241 

 
1951-2010 

 
S 

 
110 

 
64 

 
142 

  
CV (%) 

 

 
21 

 
8 

 
59 
 

 
Phase 1 

 
X 

 
471 

 
736 

 
266 

 
1951-1968 

 
S 

 
101 

 
37 

 
126 

  
CV (%) 

 

 
21 
 

 
5 

 
47 

 
Phase 2 

 
X 

 
515 

 
794 

 
279 

 
1969-1992 

 
S 

 
117 

 
73 

 
144 

  
CV (%) 

 

 
23 

 
9 

 
52 

 
Phase 3 

 
X 

 
585 

 
750 

 
165 

 
1993-2010 

 
S 

 
80 

 
55 

 
130 

  
CV (%) 

 

 
14 

 
7 

 
79 

  



Table 2 Summary statistics for annual volumetric water budget variables (km3) at Devils 

Lake. Source: USGS. 

 

 
Period 

 
Variable 

 
P 

(km3) 
 

 
E 

(km3) 

 
E – P 
(km3) 

 
Ri 

(km3) 

 
POR 

 
X 

 
0.139 

 
0.193 

 
0.054 

 
0.120 

 
1951-2010 

 
S 

 
0.106 

 
0.122 

 
0.045 

 
0.169 

  
CV (%) 

 

 
76 

 
63 
 

 
84 
 

 
141 

 
Phase 1 

 
X 

 
0.054 

 
0.084 

 
0.030 

 
0.012 

 
1951-1968 

 
S 

 
0.014 

 
0.012 

 
0.014 

 
0.021 

  
CV (%) 

 

 
27 
 

 
14 

 
47 

 
177 

 
Phase 2 

 
X 

 
0.102 

 
0.155 

 
0.054 

 
0.062 

 
1969-1992 

 
S 

 
0.031 

 
0.027 

 
0.030 

 
0.070 

  
CV (%) 

 

 
31 

 
18 

 
56 

 
113 

 
Phase 3 

 
X 

 
0.274 

 
0.351 

 
0.078 

 
0.305 

 
1993-2010 

 
S 

 
0.092 

 
0.097 

 
0.066 

 
0.197 

  
CV (%) 

 

 
34 

 
28 

 
85 

 
65 

 
 
  



Table 3 Summary statistics for selected annual volumetric water budget totals for Devils 

Lake. 

 

 
Period 

 

 
Runoff Ratio 

(%) 
 

 
Inflow Factor 

(%) 

 
Precipitation 

Factor 
(%) 

 
LA / A 
(%) 

 
POR 

1951-2010 

 
2.6 

 
30.2 

 
69.8 

 

 
2.8 

 
Phase 1 

1951-1968 

 
0.3 

 
12.3 

 
87.7 

 
1.3 

 
Phase 2 

1969-1992 

 
1.5 

 
30.2 

 
69.8 

 
2.2 

 
Phase 3 

1993-2010 
 

 
6.4 

 
48.1 

 
51.9 

 
5.2 
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