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RESEARCH ARTICLE
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the dura mater and are associated with

increased meningeal T cells during murine

disseminated borreliosis

Ali Divan1, Timothy Casselli1, S. Anand Narayanan2, Sanjib Mukherjee2, David C. Zawieja2,

John A. Watt1, Catherine A. Brissette1☯*, M. Karen Newell-Rogers3☯

1 Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota,

Grand Forks, North Dakota, United States of America, 2 Department of Medical Physiology, Texas A&M

Health Science Center, College Station, Texas, United States of America, 3 Trauma, Health & Hazards
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Abstract

Borrelia burgdorferi, the causative agent of Lyme disease, is a vector-borne bacterial infection

that is transmitted through the bite of an infected tick. If not treated with antibiotics during the

early stages of infection, disseminated infection can spread to the central nervous system

(CNS). In non-human primates (NHPs) it has been demonstrated that the leptomeninges are

among the tissues colonized by B. burgdorferi spirochetes. Although the NHP model parallels

aspects of human borreliosis, a small rodent model would be ideal to study the trafficking of spi-

rochetes and immune cells into the CNS. Here we show that during early and late dissemi-

nated infection, B. burgdorferi infects the meninges of intradermally infected mice, and is

associated with concurrent increases in meningeal T cells. We found that the dura mater was

consistently culture positive for spirochetes in transcardially perfused mice, independent of the

strain of B. burgdorferi used. Within the dura mater, spirochetes were preferentially located in

vascular regions, but were also present in perivascular, and extravascular regions, as late as

75 days post-infection. At the same end-point, we observed significant increases in the number

of CD3+ T cells within the pia and dura mater, as compared to controls. Flow cytometric analy-

sis of leukocytes isolated from the dura mater revealed that CD3+ cell populations were com-

prised of both CD4 and CD8 T cells. Overall, our data demonstrate that similarly to infection in

peripheral tissues, spirochetes adhere to the dura mater during disseminated infection, and

are associated with increases in the number of meningeal T cells. Collectively, our results dem-

onstrate that there are aspects of B. burgdorferi meningeal infection that can be modelled in

laboratory mice, suggesting that mice may be useful for elucidating mechanisms of meningeal

pathogenesis by B. burgdorferi.
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Introduction

Lyme disease (LD) is a zoonotic bacterial infection caused by Borrelia burgdorferi that is trans-

mitted to the host via the bite of an infected tick. With the exception of a bulls-eye rash, which

does not present in all individuals, the acute symptoms of LD are non-specific, and flu-like. If

antibiotic treatment is delayed, the infection can disseminate resulting in systemic infection

and inflammation that can include regions of the central nervous system (CNS) [1, 2].

With respect to the neurological manifestations of LD, the NHP has been the most frequently

used animal model. Using NHPs, multiple investigators have shown that tick infestation or

infection with inoculum doses exceeding 107 spirochetes, results in pleocytosis, lymphocytic

meningitis, cranial neuritis and evidence of spirochetes in the CNS [3, 4]. Infection studies in

NHPs also suggest that B. burgdorferi spirochetes have a tropism for the leptomeninges, and

that pathogen burden increases with immunosuppression [5]. Meningeal thickening due to

inflammation has also been reported in response to infection [6, 7].

Although the NHP has been demonstrated to be a suitable model of the neurological mani-

festations of LD, the main limitations of this model are the cost, training, and special ethical

considerations associated with handling these animals [8]. While a handful of studies have pro-

vided evidence that spirochetes can occasionally be cultured out of CNS tissues in mice, CNS

pathology has not been shown to occur as a consequence of intradermal or subcutaneous infec-

tion by B. burgdorferi [9–11]. In contrast, spirochetes belonging to the relapsing fever Borrelia
species do seem to establish infection and cause pathology in the CNS [12, 13].

Recently, the dura mater, the most superficial layer of the meninges covering the brain, has

been shown to contain lymphatic-like vessels that drain cerebrospinal fluid (CSF) and are res-

ponsible for the trafficking of leukocytes from the CNS to peripheral lymph nodes [14]. Given its

role in leukocyte trafficking, the dura mater may play an important role in pathogen control and

CNS homeostasis during infection. Notably, the dura mater also expresses decorin and multiple

isoforms of collagen[15, 16]. Because B. burgdorferi is known to have tropisms for tissues that

express decorin and collagen [17–19], we hypothesized that the dura mater is a tissue that B.

burgdorferi colonizes during disseminated infection. In support of our hypothesis others have

shown that the dura mater is colonized in mice infected by relapsing fever spirochetes [12], how-

ever there are currently no reports in the literature of such phenomenon occurring in mice

infected by B. burgdorferi.
Given the importance of the dura mater in CNS immune cell trafficking, and the need for mouse

models that replicate CNS manifestations of disseminated infection[8], the objective of our study was to

determine whether any strains of B. burgdorferi sensu stricto colonized the dura mater during dissemi-

nated and late disseminated infection. We hypothesized that B. burgdorferi 297 colonized the dura mater

during late stage dissemination and thereafter. Our results, presented below, demonstrate that B. burgdor-
feri is culturable when obtained during disseminated infection (45 days), and remains in the vasculature

and other regions of the dura mater throughout late disseminated infection (75 days). Concurrent with

the presence of spirochetes during late disseminated infection, we demonstrate significant increases in

the number of T cells within the dura and pia mater of infected mice. Collectively, our results suggest

that a mouse model may be appropriate for investigating certain aspects of B. burgdorferi meningeal

infection and associated immune responses.

Materials and methods

Animals

Male C3H/HeN mice were purchased from Charles River or Envigo Laboratories All mice

were housed in temperature and humidity controlled rooms, housed in 12h/12h light/dark

B. burgdorferi colonization of the dura mater and associated T cell responses
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cycles. All animals were 6 weeks old at time of initial needle inoculation. All animal work was

reviewed and approved by institutional animal care and use committees at Texas A&M Health

Science Center and University of North Dakota School of Medicine and Health Sciences.

B. burgdorferi culture and infection

Low passage B. burgdorferi strain 297 [20] was purchased from ATCC. B. burgdorferi strain

B31 clone MI-16 [21] was obtained as a gift from Brian Stevenson. To confirm the presence of

plasmids that were required for infectivity, plasmid content for each strain of B. burgdorferi
was analyzed by multiplex PCR with primers specific for regions unique to each plasmid, as

previously described [22]. Spirochetes were cultured to mid-log phase in BSK-II medium at

37˚C, 5% CO2, and quantified by dark field microscopy using a Petroff-Hausser chamber. Ani-

mals were placed under anesthesia using isoflurane, and infections were administered by

injecting 100uL of inoculum intradermally into the dorsal thoracic midline[23]. Control ani-

mals were needle inoculated intradermally with 100uL of BSK-II medium.

Tissue harvest and tissue culture

Prior to euthanasia, all mice were anesthetized by isoflurane. 50uL of blood was collected from

the saphenous vein of each animal and cultured in 5 mL of BSK medium. After blood collec-

tion, control and infected mice were perfused transcardially with PBS and then 4% paraformal-

dehyde, using a peristaltic pump at a flow rate of 0.8mL/min for 6 minutes. Tissues were

removed and aseptically transferred to 5mL of BSK-II medium containing 2.5 ug/mL ampho-

tericin B and 50ug/mL rifampicin, and cultured in an incubator at 37˚C, 5% CO2 for 42 days.

Samples that did not have any spirochetes in 10 fields of view by day 42 of culture were consid-

ered negative.

qPCR

Heart and brain tissues were isolated and immediately snap-frozen in liquid nitrogen prior to

storage at -80˚C. Tissues were ground under liquid nitrogen, and total DNA was extracted

using DNeasy Blood and Tissue Kit (Qiagen 69506) following the manufacturer’s instructions.

DNA samples were then cleaned and concentrated using Genomic DNA Clean & Concentra-

tor Kit (Zymo D4065). Quantitative PCR for the B. burgdorferi flaB and mouse β-actin genes

was performed on each sample in triplicate, and absolute copy numbers interpolated using

standard curves as previously described [24]. Data were log-transformed, and normalized to

flaB copies per 107 β-actin copies for each sample.

Intravital tracers

Animals were anesthetized with isoflurane and injected retro-orbitally with 100uL of tracer

dye. The tracer dye used was TRITC-conjugated 70 kilodalton lysine-fixable dextran (Invitro-

gen D1818), constituted to a concentration of 10mg/mL in PBS containing 2mM sodium

azide. After retro-orbital injection, the tracer dye was allowed to circulate in the animal for

3 minutes, and each animal was either perfused transcardially as described above, or eutha-

nized without perfusion. Dura samples were collected as described [25], and fixed in 4% para-

formaldehyde overnight. On the following day, tissues were whole-mounted onto positively

charged glass slides and cover-slipped in fluoromount-G with DAPI mounting medium

(Southern Biotech 0100–20). Tissues were screened and imaged by epifluorescence using an

Olympus BX51 microscope. Images were analyzed using FIJI-Image J software.

B. burgdorferi colonization of the dura mater and associated T cell responses
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Immunohistochemistry

Dura samples were collected from transcardially perfused mice by craniotomy, as described

[25]. Each sample was post-fixed in 4% paraformaldehyde for 24h at 4˚C. Samples were permea-

bilized in 0.1% Triton X-100, washed 3 times, and serum-blocked in 2.5% goat serum/PBS con-

taining 1:100 dilution of Fc block (BD 553142). For B. burgdorferi staining, each sample was

incubated in 1:100 dilution of rat anti-mouse unconjugated monoclonal anti-CD31 IgG (BD

550274), and 1:50 dilution biotinylated rabbit anti-B. burgdorferi polyclonal IgG (Invitrogen

PA1-73007) at 4˚C overnight. On the following day, the samples were washed, and stained with

1:100 dilution of Alexa 555 goat anti-rat polyclonal IgG (Invitrogen A-21434), and 1:200 dilution

of Alexa 488 streptavidin (Invitrogen S11223) for 1 hour at room temperature, covered from

light. Secondary antibody-only controls for B. burgdorferi indirect fluorescent assay were per-

formed in vitro and no fluorescence was observed. Some of the dura samples were also stained

for lymphatic vessels in a separate step, using 1:200 unconjugated rabbit anti-mouse polyclonal

LYVE-1 IgG (abcam ab14917), followed by washing and secondary staining with 1:200 Alexa

633 goat-anti rabbit polyclonal IgG (Invitrogen A-21070). For CD3 staining, each sample was

primary stained using 1:200 dilution of rabbit unconjugated polyclonal anti-CD3 IgG (abcam

ab5690), or an equivalent concentration of rabbit unconjugated anti-mouse polyclonal IgG as

an isotype control (abcam ab37415). Secondary staining was performed using 1:600 dilution of

goat Alexa 488 polyclonal anti-rabbit IgG (abcam ab150081). CD31 staining was performed as

described above. All brain samples were serially dehydrated in 10%/20%/30% sucrose, frozen in

OCT (Tissue-Tek 4583), and cut on a cryostat in 50um sections. Representative sections were

taken from each brain, and stained with antibody as described above. 50um sections of spleen

from infected mice were processed in the same way as brain samples, as a positive control for

CD3 staining. After antibody staining, all samples except those stained for LYVE-1, were incu-

bated in PBS containing 1uM TOPRO-3 nuclear stain for 10 minutes, followed by 2 more

washes. Each sample was onto a positively charged glass slide and cover-slipped in fluoro-

mount-G with DAPI mounting medium (Southern Biotech 0100–20).

Epifluorescence and confocal imaging

Spirochetes stained with Alexa 488 secondary antibody were identified by epifluorescence

based on morphology and positive signal in the FITC channel using an Olympus BX-50 at

200x magnification. Cells that appeared to have spirochetal morphology but produced signal

in any channel other than FITC were excluded from the analysis. Uninfected controls did not

show any evidence of spirochetes in any regions of tissue. To confirm accurate morphology

and to determine spatial distribution, spirochetes were imaged using a Ziess LSM 510 confocal

microscope and the following settings: total frame averaging = 4, 488nm: Argon laser, power

5.0, bandpass filter 505-530nm, PMT 776, gain 1.0, offset 0.04, pinhole 1AU; 555nm: HeNe1

laser, power 20.0, bandpass filter 560-615nm, PMT 894, gain 1.0, offset 0.04, pinhole 1AU;

633nm: HeNe2 laser, power 30.0, longpass filter 650nm, PMT 825, gain 1.0, offset -0.02, pin-

hole 1AU. CD3+ cells stained with Alexa 488 secondary antibodies were identified at 200x

magnification based on digital visualization of nucleated cells using Olympus Cell Sens soft-

ware and the following settings determined by positive controls: FITC filter, ISO = 800, expo-

sure time 250ms; DAPI filter, ISO = 800, exposure time 80ms; TRITC filter, ISO 800, exposure

time 120ms. Of the CD3+ T cells that were identified at 200x magnification, additional images

were taken at 400x and 600x magnification, and exposure times were adjusted to maximize sig-

nal/noise ratio. In intravital tracer experiments, all samples were imaged by epifluorescence at

200x magnification using the following parameters: TRITC filter, ISO = 800, exposure time

B. burgdorferi colonization of the dura mater and associated T cell responses
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450ms, DAPI filter, ISO = 800, exposure time 120ms. All multichannel images were merged

and analyzed using FIJI-Image J software.

Leukocyte isolation and flow cytometry

The dura mater was removed from and leukocytes were freed from tissue by incubation for

30 minutes in 1mg/mL collagenase (Sigma C013-100mg) in HBSS supplemented with 5mM

CaCl2. After incubation, the supernatant and remaining dura tissue was triturated with a

syringe plunger through 100um strainers (Fisher 22-363-549). All cells were counted using a

hemocytometer. Single cell suspensions were stained at 4˚C for 20 minutes in a solution of 3%

new born calf serum (NBCS) using the following antibody and stain dilutions: Aqua viability

dye, 1:100 (Invitrogen L34966), PE CD45, 1:100 (ebioscience 12-0451-83), PacBlue CD3 1:100

(Biolegend 100214), FITC CD4 1:100 (BD 553651), or APC CD8 1:100 (Biolegend 100712).

Samples were washed in 3% NBCS, and run on BD FACS CANTO II flow cytometer. Fluores-

cence compensations were performed using BD CompBeads (BD 552845), and aqua compen-

sation was performed using ArC Amine reactive compensation bead kit (Life technologies

A10346). All gating was done based on fluorescence minus one (FMO) controls. Flow cyto-

metric data was analyzed using FlowJo software.

Statistics

Cells in dura mater whole-mounts were quantified by manually counting all cells of interest in

every 20x field of view. Cells in brain and pia mater were quantitated by taking 20 representative

samples from 240 50um sections and manually counting the number of cells of interest in each

section. Total cell numbers in brain and pia sections were computed by adjusting the number of

cells counted in the representative sections for the total number of sections in each brain. All

data were analyzed and graphed using GraphPad Prism 7.0 software. Power analysis was per-

formed prior to performing the experiments using GPower3 software and the following param-

eters: a priori analysis, difference between two independent means, β = 0.20, α = 0.05, and an

effect size of 2.2 (based on preliminary data). Unpaired t-tests were used to determine differ-

ences between control and infected groups, using α = 0.05.

Results

Spirochetes colonize the dura mater

In mouse model systems, spirochetemia is first observed within days of infection, and by 2

weeks after infection is detectable in all infected mice [26]. During the period of spirochetemia

the infection disseminates to multiple organs and tissues, reaching its peak burden approxi-

mately 3–4 weeks after infection, depending on the tissue [26]. Initially, we infected mice intra-

dermally with 106 B. burgdorferi, strain 297, a clinical isolate derived from the cerebrospinal

fluid of a patient [20]. To determine whether the infection had disseminated, and to test for

the presence of spirochetes in the blood, we cultured blood samples from all mice 45 days

post-infection (dpi), followed by transcardial perfusions with PBS to remove the remaining

blood from circulation. The rationale for performing transcardial perfusions was to utilize

shear forces to remove any non-adherent spirochetes from blood circulation, thus providing

an accurate assessment of vascular adhesion and tissue colonization. After perfusion, fractions

of ears, hearts, tibiotarsal joints, dura mater, and brains of all mice were cultured in BSK

medium for a duration of 42 days. We observed that the ears, hearts, tibiotarsal joints, and

dura mater were culture-positive in all mice (n = 5), demonstrating that the infection had dis-

seminated (Table 1). 1/5 brain samples were positive for spirochetes, and all blood cultures

B. burgdorferi colonization of the dura mater and associated T cell responses
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were negative. We repeated the experiment using the same inoculum dose (106 spirochetes) of

a tick-isolated strain of B. burgdorferi called B31, and again using a lower inoculum dose (104

spirochetes) of B. burgdorferi strain 297 (Table 1). In mice infected with 104 of strain 297, 3/5

dura samples were culture positive, however these differences were not statistically significant

from the data obtained using 106 spirochetes of the same strain. The 106 dose of strain B31 par-

alleled the data that we obtained using 106 of strain 297, suggesting that spirochete coloniza-

tion of the dura mater was not unique to strain 297. Consistent with our culture data, all heart

samples were positive for B. burgdorferi genomic DNA by qPCR, whereas only one brain tissue

from a mouse infected by strain 297 resulted in detectable signal using B. burgdorferi-specific

primers (Fig 1). Thus, it seems that in mice, the brain is an infrequent target of B. burgdorferi
infection. In contrast, the dura mater is a tissue that is consistently colonized by B. burgdorferi
during disseminated infection, independent of the strains tested.

Dura mater spirochetes preferentially adhere to blood vessels

To determine the anatomical location that spirochetes colonized the dura mater, we performed

fluorescent IHC on samples that were isolated from transcardially perfused mice 75 dpi. Given

that the dura mater expresses decorin, and multiple isoforms of collagen, we hypothesized that

the majority of the spirochetes would be found in the extravascular spaces where these proteins

are in relatively high abundance[15, 16]. We defined vascular spirochetes as touching or within

vessel boundaries, perivascular as within one vessel diameter of the nearest vessel but not vas-

cular, and extravascular as neither vascular nor perivascular. The majority of the spirochetes

that we identified were found adhering to vascular and perivascular regions (Fig 2A and 2B),

however we did observe spirochetes in extravascular regions (Fig 2C–2F). At this time point,

we did not observe any spirochetes adhering to the lymphatic-like vessels in the dura mater

that were stained with LYVE-1 antibody (S1 Fig). To exclude the possibility that transcardial

perfusions were not effective in the dura mater, we injected mice intravenously with a 70 kilo-

dalton TRITC-conjugated dextran, and compared fluorescent staining of vessels with and

without transcardial perfusions. Our results demonstrate that the methodology that we used

for perfusions was effective for removing non-adherent macromolecules in circulation (S2A

and S2B Fig). Given that brain samples were occasionally culture-positive at 45 dpi (Table 1),

we sought to determine if any spirochetes could be detected by IHC in representative brain

sections at 75 dpi. Entire brains were cut into 50um sections, and 20 representative sections

were stained to detect spirochetes. Of the samples that we screened, none of them showed any

Table 1. Dura mater is colonized by spirochetes during disseminated borreliosis.

Borrelia Strain 297 297 B31

Inoculum dose 106 104 106

Tissue Number culture positive / total number of samples

Ear 5/5 5/5 5/5

Heart 5/5 5/5 5/5

Tibiotarsal joint 5/5 5/5 5/5

Dura 5/5 3/5 5/5

Brain 1/5 0/5 2/5

Total 23/29 18/30 24/30

No. Infected/total mice 5/5 5/5 5/5

All mice were infected for 40 days

Blood cultures were negative in all mice

https://doi.org/10.1371/journal.pone.0196893.t001

B. burgdorferi colonization of the dura mater and associated T cell responses
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evidence of spirochete colonization of the brain, brain vasculature, or the attached pia mater

(n = 3) (not shown). These results demonstrate that during late disseminated infection, spiro-

chetes colonize multiple regions of the dura mater, and are predominantly found adhering to

blood vessels.

Increased T cells in meninges during infection

Immune responses to B. burgdorferi play a critical role in controlling infection, yet they are

insufficient for complete resolution of borreliosis [27–29]. Because our infected animals had rel-

atively low numbers of spirochetes in the dura mater at 75 dpi, we expected that there would

be differences in lymphocyte numbers within the dura mater, suggestive of adaptive immune

responses to infection. Given the importance of T cells in in adaptive immune responses to B.

burgdorferi [30–36] we performed IHC on CNS tissues from infected mice at 75 dpi, and age

matched controls (n = 3 per group). Spleens from infected mice were used as positive controls

for CD3 staining, and isotype controls on brain samples showed no evidence of CD3+ cells

(S3A–S3C Fig). Consistent with our expectations, we observed increased numbers of T cells in

the brain vasculature (p = 0.0972), a statistically significant increase in T cells in the pia mater

(p = 0.0050), and a statistically significant increase in T cells in the dura mater (p = 0.0403)

Fig 1. B. burgdorferi infects brain infrequently. Quantitative PCR of DNA isolated from brain and heart tissue isolated from mice infected with B31 MI-16 (blue

symbols) or 297 (red symbols) as indicated. Copies/well for each biological replicate are shown for the B. burgdorferi flaB target sequence (circles), as well as mouse β-actin
reference target (triangles). Horizontal lines indicate mean normalized flaB/107 β-actin ± SD for each group. Dashed line indicates lower limit of detection. Samples with

no detectable flaB signal are denoted by the symbol N.

https://doi.org/10.1371/journal.pone.0196893.g001
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Fig 2. B. burgdorferi in dura mater during late disseminated infection. (A-C) Representative images of B. burgdorferi (Bb), blood vessels (CD31), and nucleated cells

(DAPI or TOPRO-3) in regions of the dura mater, 75 dpi. (A) Confocal images described from left to right. B. burgdorferi (Bb) shown in 488 channel; CD31+ blood vessels

in 555 channel; TOPRO-3+ nucleated cells in 633 channel; merged image showing B. burgdorferi in association with a blood vessel. (B) Epifluorescence image of B.
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(Fig 3A–3D, 3F and 3G). T cells were not observed in the brain parenchyma, and although T

cells were detected in extravascular regions of the dura mater (Fig 3E), the number of T cells in

the extravascular regions was not significantly different from control samples (p = .3739). To

determine the identity of the CD3+ T cells in the dura mater, we performed flow cytometry on

single cell suspensions of dura mater. Our results demonstrated that the CD3+ T cells in the

dura of control and infected animals consisted of both CD4 and CD8 T cells (Figs 4A–4C and

S4A and S4B). The differences in the frequency of CD8 and CD4 T cells between infected and

control samples were not statistically significant (S4C and S4D Fig). Overall, the increase in the

number of T cells in the meninges is suggestive of adaptive immune responses to B. burgdorferi
colonization of the dura mater.

Discussion

We initially expected that strain 297 would colonize the dura mater, because it is a clinical CSF

isolate that is thought to be neurotropic [20]. In contrast, strain B31 is an isolate that originally

came from a tick, and has not previously been shown to have tropisms for CNS tissues. The

observation that both B31 and 297 colonized the dura mater suggests that these strains may

not have differences in tropisms for CNS tissues, and that the dura mater is potentially a gen-

eral site of colonization for B. burgdorferi sensu stricto in a murine system.

Multiple studies have demonstrated that the ability to enter blood circulation, followed by

adhesion to blood vessels, is a key determinant in the survival and dissemination of B. burg-
dorferi, and other bacterial pathogens [37–39]. In the absence of vascular adhesion molecules,

especially fibronectin binding proteins, B. burgdorferi demonstrates delayed dissemination to

peripheral tissues [40–42]. It has been shown that B. burgdorferi must adhere to the vascula-

ture with sufficient affinity and for a long enough duration to extravasate through the endo-

thelial junctions of distal tissues while withstanding the shear forces of blood flow [42]. Not

surprisingly, B. burgdorferi has been shown to adhere to post-capillary venules, as these areas

have relatively lower shear forces than arterial blood [43, 44]. Consistent with the literature,

the diameters of the vessels in the dura mater in which we observed borrelia adhering to were

in the range of 10-30um, and had morphology that was consistent with capillaries, or post-

capillary venules. Although it is common to see spirochetes adhering to blood vessels during

acute infection, we expected that by 75 dpi, the majority of spirochetes would be found in the

extracellular matrix, as these areas are less exposed to blood, and are thought to be a better

protective niche for evading humoral immune responses [45]. Contrary to our expectations,

most spirochetes were found adhering to blood vessels in the dura mater, suggesting that at

this time point, B. burgdorferi antibody avoidance mechanisms are sufficiently robust to ren-

der humoral immunity ineffective[46].

Few individuals have reported culture positivity from the brains of mice infected by B. burg-
dorferi [9–11]. Our qPCR data support our culture results that were obtained on 45 dpi in

strain 297, but it seems that for strain B31, the culture positives were due an infection burden

that was below our limit of detection by PCR. Because all of our samples had been perfused

prior to culture, we expected that any culture positive results were likely due to spirochetes

adhering to blood vessels in the brain, or associated with the pia mater. Our IHC approach on

samples from 75 dpi was sufficient for detecting CD3+ T cells in brain sections, however we

burgdorferi in perivascular region near a blood vessel. (C) Confocal image of B. burgdorferi in extravascular region of dura mater. (D) Cumulative sum of spirochete

locations in 3 dura mater samples; differences in (D) were not statistically significant. (E) 100x magnification epifluorescence image showing blood vessels (CD31) in the

dura mater, but not within the region where the spirochete shown in (C) was detected (dashed circle). (F) 400x magnification of circled region in (E) showing spirochete

(Bb).

https://doi.org/10.1371/journal.pone.0196893.g002
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did not detect any spirochetes in brain sections of mice. Again, these results could be due

either to lack of spirochetes in the brains at this time point, or too few spirochetes present to

be detected by our methods. Overall it seems that the brain is a rare target of B. burgdorferi col-

onization, and the precise region(s) of brain colonization remain elusive.

While both B and T cells are important effectors in controlling immune responses to borre-

liosis, we focused on T cells, because they are known to traffic through the lymphatics in the

dura mater, even under homeostatic conditions [14]. Consistent with the literature, we observed

CD3+ cells in the dura mater in both control and infected tissues, many of which were associ-

ated with lymphatic-like vessels that run parallel to the vascular sinuses (Fig 3B). The T cells

that we observed in the dura mater were either adhering to vessels, or present as single cells in

the extravascular spaces. We did not observe any T cell clustering, or any evidence of ectopic

lymphoid tissue formation, suggesting that the dura mater was not likely to be the primary tis-

sue associated with initial T cell activation, as would be expected in a lymph node. The observa-

tion that more T cells were detected adhering to the dura mater at 75 dpi when B. burgdorferi
colonization was evident, suggests that the T cells may have been responding to the infection in

this tissue. The low number of spirochetes detected in the dura at this time point are further

supportive that immune responses are controlling, but not eliminating bacterial colonization of

the dura mater.

In larger animal models, as well as in the clinical setting, neuroinflammation is typically

measured by changes in the number of leukocytes or cytokine levels present in the CSF.

Although we did not sample CSF in the present study, our future studies will focus on quanti-

fying differential changes in leukocytes and cytokine expression in CSF[47], and comparing

those results changes in the meninges. The advantage of using mice in this approach is that

transgenic and genetic knockout mutants could be used to investigate specific mechanisms of

B. burgdorferi pathogenesis and associated neuropathologies. Antibiotic dosage and efficacy

could be evaluated in the context of meningeal infection, as has been done in peripheral tissues

[48].

We conclude that the dura mater provides a sufficient environment for B. burgdorferi colo-

nization during disseminated borreliosis. Moreover, we show that T cells are increased in

number in the infected dura, and in the pia mater, implying that at the time points we tested,

they play a role the immune responses within the CNS. Collectively, our results suggest that

there are aspects of B. burgdorferi meningeal infection that can be modelled in laboratory

mice. We anticipate that this model will be useful for future investigations pertinent to mecha-

nisms that underlie CNS immune responses that are associated with the control and clearance

of B. burgdorferi in the dura mater.

Supporting information

S1 Fig. At the time point of 75dpi spirochetes (Bb) were not observed in association with

the lymphatic-like vessels (LYVE-1) that run parallel to the sagittal sinus (SS, arrow) of the

Fig 3. T cells in central nervous system during late disseminated infection. (A-E) Representative epifluorescence images of T cells (CD3),

blood vessels (CD31), and nucleated cells (DAPI) in the brain, dura mater, and pia mater. (A) Epifluorescence images described from left to right.

CD3 shown in FITC channel; CD31+ blood vessels shown in TRITC channel; nucleated cells shown in DAPI channel; merged image showing

CD3+ cell associated with pia mater within the commissure of the isocortex. (B) T cells within the lymphatic-like vascular region of the sagittal

sinus in the dura mater. (C) T cell associated with a blood vessel in the vasculature of the brain choroid plexus. (D) T cell associated with blood

vessel in the dura mater. (E) T cell in extravascular region of the dura mater. (F) Total number of T cells observed associated with the pia mater of

control and B. burgdorferi-infected (Bb) mice; n = 3, p = 0.0050. (G) Total number of T cells observed in the dura mater of control and B.

burgdorferi-infected mice; n = 3, p = 0.0403. (H) Total number of T cells in brain vasculature of control, and B. burgdorferi-infected (Bb) mice;

n = 3, p = 0.0972; Statistics computed using t-test, α = 0.05; �p� 0.05, ��p� 0.005.

https://doi.org/10.1371/journal.pone.0196893.g003
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dura mater. Blood vessels were stained by antibodies to CD31.

(TIF)

S2 Fig. (A) epifluorescence image of blood vessel in dura mater from unperfused mouse

injected intravenously with 70 kilodalton dextran (red). (B) epifluorescence image of blood

vessel in dura mater from mouse injected intravenously with 70 kilodalton dextran followed

by perfusion. Nucleated cells are shown by DAPI staining (blue).

(TIF)

S3 Fig. (A) CD3 positive control costained with DAPI showing T cell zone in the spleen of a

B. burgdorferi-infected mouse. (B) Isotype control in spleen showing no background fluores-

cence in CD3 channel. (C) Isotype control in brain costained with DAPI and CD31, showing

minimal background fluorescence in CD3 channel.

(TIF)

S4 Fig. (A-B) flow cytometric gating strategy for the identification of singlets (A), and live

cells (B). (C-D) Frequency of CD8 T cells (C), and CD4 T cells (D), detected by flow cytometry

in the dura of control and B. burgdorferi-infected mice; n = 5, p = 0.9803, and 0.9376, respec-

tively.

(TIF)
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