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ARTICLE

Abnormal RNA stability in amyotrophic lateral
sclerosis
E.M. Tank1, C. Figueroa-Romero1, L.M. Hinder 1, K. Bedi 2, H.C. Archbold1, X. Li1, K. Weskamp 1, N. Safren1,

X. Paez-Colasante1, C. Pacut1, S. Thumma1, M.T. Paulsen2, K. Guo3, J. Hur 3, M. Ljungman2,4,

E.L. Feldman 1,4,5 & S.J. Barmada 1,4,5

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share key features,

including accumulation of the RNA-binding protein TDP-43. TDP-43 regulates RNA home-

ostasis, but it remains unclear whether RNA stability is affected in these disorders. We use

Bru-seq and BruChase-seq to assess genome-wide RNA stability in ALS patient-derived cells,

demonstrating profound destabilization of ribosomal and mitochondrial transcripts. This

pattern is recapitulated by TDP-43 overexpression, suggesting a primary role for TDP-43 in

RNA destabilization, and in postmortem samples from ALS and FTD patients. Proteomics and

functional studies illustrate corresponding reductions in mitochondrial components and

compensatory increases in protein synthesis. Collectively, these observations suggest that

TDP-43 deposition leads to targeted RNA instability in ALS and FTD, and may ultimately

cause cell death by disrupting energy production and protein synthesis pathways.
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In amyotrophic lateral sclerosis (ALS), progressive degenera-
tion of motor neurons leads to muscle atrophy and weakness1.
Additionally, nearly half of ALS patients show cognitive

changes akin to frontotemporal dementia (FTD), including
impulsive behavior and language deficits2. Supporting the con-
nection between ALS and FTD, affected neurons and glia in both
disorders accumulate TDP-43 (transactive response DNA/RNA-
binding protein 43 kDa)3. This accumulation is characteristic of
sporadic as well as familial disease, including that caused by
hexanucleotide C9orf72 (chromosome 9 open reading frame 72)
expansions, the most prevalent mutation underlying both ALS
and FTD4,5. Together, these findings support a pathological role
for TDP-43 deposition in these disorders6,7.

Mounting evidence shows that abnormal RNA homeostasis
underlies neurodegeneration in the majority of those with ALS
and FTD8,9. Mutations in the genes encoding several RNA-
binding proteins (RBPs) result in ALS, FTD, and related dis-
orders8. Approximately 1/3 of all transcribed RNAs harbor TDP-
43 binding sites, consistent with the critical functions of TDP-43
in regulating RNA splicing and transport10–12. Genetic ablation
of TDP-43 is lethal13, while its overexpression triggers cell death
in multiple models, from yeast to nonhuman primates14–17. TDP-
43 knockdown results in abnormal splicing and the inclusion of
unannotated exons within hundreds of transcripts18,19; in most
cases, the introduction of such “cryptic exons” changes the coding
sequence or shifts the reading frame, either of which could result
in the introduction of premature termination codons and
nonsense-mediated RNA decay (NMD)20. Additionally, over-
expression of an essential NMD component, UPF1 (up frameshift
1), enhances RNA decay and rescues neurodegeneration resulting
from TDP-43 overexpression21,22. These observations emphasize
the crucial connection between RNA stability and neurodegen-
eration in ALS and FTD.

RNA degradation is a tightly regulated process required for
RNA homeostasis and, by extension, protein expression23. While
prior investigations uncovered substantive abnormalities in RNA
abundance in disease models and in ALS/FTD patient tissues10,11,
it remains unclear whether such differences are due to dysfunc-
tional synthesis or degradation of RNA transcripts. In part, the
contribution of RNA degradation to ALS and FTD has remained
obscure because of the lack of available methods for studying the
pathways and molecules involved. Traditional techniques for
investigating RNA stability require the use of transcriptional
inhibitors that have adverse effects on cellular health and RNA
processing. To overcome these limitations, we use Bru-seq and
BruChase-seq24, innovative methods that enable genome-wide
assessment of RNA synthesis and stability in living cells. Fibro-
blasts and human-induced pluripotent stem cells (iPSCs) derived
from individuals with sporadic and familial ALS due to C9orf72
mutations display consistent abnormalities in the stability of RNA
transcripts encoding components of two pathways essential for
cellular function and survival—oxidative phosphorylation and
protein synthesis. These patterns of RNA instability are conserved
in postmortem samples, and are mirrored in proteomic and
functional studies of patient-derived samples. Taken together,
these studies suggest that a basic failure of RNA homeostasis in
ALS and FTD can, over time, affect energy production and protein
translation, eventually resulting in cell death.

Results
RNA destabilization in ALS patient-derived fibroblasts. We
asked if global or specific alterations in RNA stability are char-
acteristic of ALS by applying Bru-seq and BruChase-seq24 to 14
fibroblast cell lines obtained from individuals with C9orf72-linked
familial ALS (C9ALS, four lines), sporadic ALS (sALS, five lines),

or controls (five lines; Supplementary Table 1). These methods
capture newly synthesized RNA by metabolic labeling of nascent
RNA transcripts with bromouridine (BrU), followed by immu-
noprecipitation of BrU-labeled RNA and deep sequencing
(Fig. 1a). The stability of each transcript was assessed by com-
paring the corresponding reads after 0.5 h of labeling (Bru-seq) to
that after a 6 h chase in uridine (BruChase-seq). Out of 22,977
annotated transcripts, we identified 333 RNAs whose stability was
altered ≥1.5-fold in C9ALS fibroblasts (Fig. 1b–e; Supplementary
Data 1), 56% of which were destabilized (Fig. 1f). Gene set
enrichment analysis using gene ontology (GO)25 revealed that the
ribosome and oxidative phosphorylation pathways were highly
enriched among destabilized transcripts (false discovery rate
(FDR) < 0.05; Fig. 1g), while no pathways were enriched among
stabilized RNAs.

In sALS fibroblasts, 324 transcripts demonstrated a change in
stability ≥1.5-fold compared to controls (Fig. 1h; Supplementary
Data 1). For a subset of transcripts tested, changes in RNA
stabilization were confirmed by quantitative RT-PCR (qPCR)
(Supplementary Fig. 1a). Few pathways were enriched among
stabilized or destabilized RNAs in sALS fibroblasts (Fig. 1i).
Approximately 1/3 of stabilized transcripts and 1/5 of destabilized
transcripts were common to sALS and C9ALS fibroblasts
(Supplementary Fig. 1b, c). Even so, no pathways were enriched
among the overlapping transcripts, arguing against conserved
patterns of altered RNA stability in C9ALS and sALS fibroblasts.

From the Bru-seq data, we identified multiple transcripts
whose synthesis differed ≥1.5-fold in controls vs. C9ALS or sALS
fibroblasts (Fig. 2a–d; Supplementary Data 2). Nearly all (95%) of
the 65 transcripts exhibiting altered synthesis in C9ALS
fibroblasts displayed increased rates of production (Fig. 2e)—
these RNAs were significantly enriched for inflammatory
signaling pathways by GO analysis (Fig. 2f). Only 6 transcripts
exhibited increased production in sALS fibroblasts compared to
controls, while 22 displayed reduced synthesis (Fig. 2g). No
pathways were significantly enriched in either group by GO. Only
two transcripts showed increased synthesis in both C9ALS and
sALS fibroblasts (MMP1 and NR4A2), while one transcript
exhibited a common reduction in synthesis (DACT1; Supple-
mentary Fig. 2 and Supplementary Table 2).

A conserved pattern of RNA destabilization in ALS iPSCs.
Given the substantial heterogeneity of fibroblasts in culture26, we
were concerned that relevant differences between C9ALS, sALS,
and control cells could be obscured. We also questioned whether
the observed changes in RNA synthesis and stability would be
maintained in cell types other than fibroblasts. Therefore, we
reprogrammed a subset of fibroblasts (Supplementary Table 1)
into iPSCs using integration-free approaches27,28, verified their
pluripotency (Supplementary Fig. 3), and assessed the production
and turnover of RNA transcripts by Bru-seq and BruChase-seq.

From 22,984 annotated transcripts, we identified several
hundred demonstrating a change in stability ≥1.5-fold over
controls in ALS iPSCs (Supplementary Fig. 4a−d; Supplementary
Data 3). In C9ALS iPSCs, 956 transcripts demonstrated
differences in stability (Fig. 3a), with 36% destabilized ≥1.5-fold.
For a subset of transcripts, changes in RNA stability were verified
by qRT-PCR (Supplementary Fig. 5a). GO analysis highlighted a
profound enrichment in ribosomal and oxidative phosphoryla-
tion pathways among destabilized transcripts in C9ALS iPSCs
(Fig. 3b), reinforcing the results from C9ALS fibroblasts (Fig. 1g).
Network analysis using STRING, a method for illustrating
interactions among genes and proteins25, emphasized the strong
enrichment for ribosomal and mitochondrial processes in this
dataset (Fig. 3c–e).
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Nearly all (95%) of the 865 transcripts demonstrating ≥1.5-fold
change in sALS iPSCs were stabilized (Fig. 3f; Supplementary
Data 3). These were modestly enriched in phagocytic and miRNA
pathways, as determined by GO analysis (Fig. 3g); the latter
pathway was also enriched in transcripts stabilized in C9ALS
iPSCs (compared to Fig. 3b). No pathways were significantly
enriched among the 44 destabilized RNAs in sALS iPSCs. Venn
diagrams highlighted the 30−40% overlap of stabilized RNA
transcripts in C9ALS and sALS iPSCs (Supplementary Fig. 5b),
but no pathways were enriched among these transcripts by GO.
Only 17 RNAs were commonly destabilized in both groups
(Supplementary Fig. 5c), showing no enrichment for specific
pathways.

To validate these results and explore their consistency across
distinct datasets, we compared RNA abundance in C9ALS and
control iPSCs using publicly available RNA-seq data generated by
the NeuroLINCS consortium29. Transcripts downregulated ≥1.5-
fold in C9ALS iPSCs were highly enriched for the ribosome
pathway and mildly enriched for the mineral absorption pathway
by GO analysis (Fig. 3h). We also detected a trend towards
enrichment for the oxidative phosphorylation pathway, indicating
consistent dysregulation of ribosomal and oxidative phosphor-
ylation transcripts in C9ALS iPSCs.

To determine if this pattern was conserved in the human
central nervous system (CNS), we examined select transcripts in
postmortem cortex and spinal cord from ALS and FTD patients
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Fig. 1 RNA destabilization in ALS fibroblasts. a Schematic of Bru-seq (top) and BruChase-seq (bottom). BrU Bromouridine, Anti-BrU antibodies that
recognize BrU. Example traces of RNA transcripts destabilized (b) or stabilized (c) in C9ALS fibroblasts. Blocks and lines denote gene and transcript
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using qRT-PCR (Supplementary Table 3). In spinal cord from
C9ALS patients, and in frontal cortex from C9orf72-mutant FTD
patients (C9FTD), we detected a significant reduction of
ribosome protein-encoding RNAs and oxidative phosphorylation
RNAs (Fig. 3i, j). sALS spinal cord exhibited analogous changes
(Fig. 3k), suggesting that the distinct patterns of RNA
destabilization observed in fibroblasts and iPSCs are reflected in
the CNS of human ALS and FTD patients.

In addition to RNA stability, we also investigated RNA
synthesis in C9ALS and sALS iPSCs by Bru-seq (Supplementary
Fig. 6a−d; Supplementary Data 4). We observed 834 transcripts
showing a change in synthesis ≥1.5-fold over controls in C9ALS
iPSCs (Supplementary Fig. 6e). Pathways involving focal adhesion
and actin cytoskeleton were significantly enriched among RNAs
displaying increased synthesis, while transcripts implicated in
oxidative phosphorylation and Parkinson’s disease were enriched
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among RNAs exhibiting reduced synthesis in C9ALS iPSCs
(Supplementary Fig. 6f). Among the 541 RNAs exhibiting altered
synthesis in sALS iPSCs (Supplementary Fig. 6g), only those
involved in rap1 signaling were significantly enriched (Supple-
mentary Fig. 6h). Despite the substantial overlap of transcripts
showing increased synthesis in C9ALS and sALS iPSCs
(Supplementary Fig. 7a), we observed only moderate enrichment
for the focal adhesion pathway. As with fibroblasts, no pathways
were enriched among transcripts exhibiting reduced synthesis in
C9ALS and sALS iPSCs (Supplementary Fig. 7b).

Transcript characteristics associated with RNA stability. In
fibroblasts and iPSCs, transcript length was proportional to sta-
bility—shorter transcripts were unstable, while longer transcripts
were more stable (Supplementary Fig. 8a, b). Similar relationships
were observed for 3′UTR length, which is independently

associated with susceptibility to NMD and RNA interference30

(Supplementary Fig. 8c, d). Transcripts exhibiting a change in
stability, either increased or decreased, exhibited fewer introns in
C9ALS and sALS fibroblasts; although an analogous trend was
noted in iPSCs, the effect was less clear (Supplementary Fig. 8e, f).

RBPs regulate RNA stability by shuttling transcripts to
processing bodies for degradation, or sequestration and stabiliza-
tion of transcripts within cytoplasmic stress granules31,32. We
therefore asked whether the relative abundance of specific RBP
recognition sites among affected transcripts might drive altered
RNA stability in ALS patient-derived cells. Motifs recognized by a
series of RBPs that form stress granules were enriched among the
3′UTRs of transcripts exhibiting altered stability in ALS iPSCs
(Supplementary Fig. 9). Moreover, many of the corresponding
RBPs, including TIA1, FUS, and TDP-43, are genetically or
functionally linked with ALS, highlighting their implicit role in
disease pathogenesis8.
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TDP-43 expression mimics RNA instability in control iPSCs.
Given the enrichment for TDP-43 motifs among transcripts
showing altered stability in ALS iPSCs (Supplementary Fig. 9), the
critical function of TDP-43 in RNA splicing10,11,18, and the
central connections between TDP-43 deposition and neurode-
generation in both sALS and C9ALS3,5, we surmised that TDP-43
accumulation could contribute to RNA instability in ALS patient
cell lines. To test this, we overexpressed TDP-43 fused to
enhanced green fluorescent protein (TDP43-EGFP) or EGFP
itself in control iPSCs (Fig. 4a), and compared RNA stability in
the two groups by BruChase-seq. TDP43-EGFP overexpression
induced profound RNA destabilization—of the 1330 transcripts
displaying ≥1.5-fold change in stability, 75% were destabilized
(Fig. 4b; Supplementary Data 3). As in C9ALS fibroblasts and
iPSCs, the ribosomal and oxidative phosphorylation pathways
were highly enriched among TDP43-EGFP destabilized tran-
scripts by GO (Fig. 4c). Network analysis confirmed this distinct
pattern of RNA destabilization (Fig. 4d–g), outlining well-
demarcated clusters centering on ribosomal, mitochondrial, and
nucleosomal pathways. GO analysis also highlighted moderate
enrichment for RNA transport and nucleotide excision repair

pathways among stabilized transcripts (Fig. 4c). Previous studies
link both pathways to ALS33,34, testifying to the relevance of
TDP-43 and its downstream targets for disease pathogenesis.

One hundred and eighty transcripts were commonly destabi-
lized in C9ALS and TDP43-EGFP-expressing iPSCs (Fig. 4h),
accounting for 56% of RNAs destabilized in C9ALS iPSCs.
Among these, the ribosome and oxidative phosphorylation
pathways were highly and significantly enriched by GO. In the
set of commonly destabilized RNAs in C9ALS and TDP43-EGFP
overexpressing iPSCs (Supplementary Fig. 10), STRING illu-
strated clear clusters within the ribosomal and oxidative
phosphorylation pathways. These data provide strong support
that TDP43-EGFP expression is sufficient to produce a
characteristic pattern of RNA instability—one also observed in
C9ALS fibroblasts and iPSCs—involving the prominent
destabilization of ribosomal and oxidative phosphorylation
transcripts. Remarkably, TDP43-EGFP expression had virtually
no effect on RNA synthesis as determined by Bru-seq
(Supplementary Fig. 11; Supplementary Data 4), suggesting a
relatively selective role for TDP-43 in post-transcriptional
regulation of gene expression.
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Consequences of RNA instability for proteins in iPSCs. To
assess the impact of RNA destabilization for ribosomal and oxi-
dative phosphorylation proteins, we took advantage of tandem
mass spectroscopy (MS) and simultaneously assessed all mea-
surable components of these pathways in control, C9ALS and
sALS iPSCs (Fig. 5; Supplementary Data 5). A total of 61 oxi-
dative phosphorylation proteins were detected in iPSCs by MS. Of
these, 52% were significantly reduced in C9ALS iPSCs, and 16%
were reduced in sALS iPSCs (Fig. 5a–c). Concordantly, the
cumulative abundance of oxidative phosphorylation components
was significantly reduced in C9ALS iPSCs, and less so in sALS
iPSCs, in comparison to controls. These data are consistent with
the destabilization of oxidative phosphorylation transcripts in
C9ALS fibroblasts and iPSCs (Figs. 1, 3), and further suggest that

oxidative phosphorylation abnormalities may exist in sALS iPSCs
independent of RNA instability.

We next asked if ribosomal proteins are likewise affected in
ALS iPSCs. For these studies, we separated ribosome-related
proteins into two groups: cytoplasmic and mitochondrial
ribosomal proteins. Contrary to our expectations based on the
observed destabilization of ribosomal protein-encoding RNAs in
C9ALS cells, 45% of the 95 cytoplasmic ribosome proteins
identified by MS exhibited a significant but subtle increase in
abundance in C9ALS iPSCs (Fig. 5d–f), a finding confirmed for a
subset of proteins by immunoblotting (Supplementary Fig. 12).
Only 3% showed a similar increase in sALS iPSCs, compared to
controls. When the abundance of all cytoplasmic ribosomal
proteins was measured in aggregate, both C9ALS and sALS iPSCs
demonstrated significant but modest increases in comparison to
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Fig. 5 Reduced abundance of mitochondrial proteins in C9ALS iPSCs. a Of the oxidative phosphorylation proteins detected by MS (n= 61), 52% were
significantly reduced in C9ALS iPSCs, and 16% were similarly reduced in sALS iPSCs compared to controls (Cntl). b Fold change in each of 61 oxidative
phosphorylation proteins. c Cumulative change in the abundance of oxidative phosphorylation proteins in ALS iPSCs. d 45% and 3% of the 95 cytoplasmic
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controls. In contrast, C9ALS iPSCs demonstrated a selective
reduction in the abundance of mitochondrial ribosomal proteins
(Fig. 5g–i). Of the 72 mitochondrial ribosomal proteins detected
by MS, 69% were significantly reduced in C9ALS iPSCs, and 3%
were reduced in sALS iPSCs, compared to controls.

We also conducted an unbiased overview of all proteins
showing a significant change in C9ALS and sALS iPSCs vs.
controls. We identified 806 proteins that were significantly and
consistently reduced ≥10% in C9ALS iPSCs (Fig. 6a). GO and
network analysis using STRING highlighted oxidative phosphor-
ylation constituents and mitochondrial ribosomal subunits
among this set of proteins (Fig. 6b–e), confirming the results of
investigations that focused specifically on these pathways (Fig. 5).
We also noted a significant enrichment for components of the
RNA exosome35 among proteins that were significantly reduced
in C9ALS iPSCs, suggesting abnormal RNA decay machinery in
these cells.

Because previous studies noted direct associations between
mitochondrial ribosomes and glycine-arginine (GR) dipeptide
repeat proteins encoded by the C9orf72 repeat expansion36, we
wondered whether the observed changes in mitochondrial
proteins might be related to mitochondrial GR deposition in
C9ALS iPSCs. However, we detected no accumulation of GR
dipeptides within mitochondria of C9ALS iPSCs by immunocy-
tochemistry (Supplementary Fig. 13), suggesting that the

reductions in mitochondrial proteins in C9ALS iPSCs are
independent of direct binding by GR. These findings are also
consistent with the destabilization of ribosomal and oxidative
phosphorylation RNAs in TDP43-overexpressing iPSCs (Fig. 4)
that lack GR dipeptides.

The mild but significant upregulation of cytoplasmic ribosomal
proteins in C9ALS iPSCs (Fig. 5b) contrasted with the relative
instability of ribosome protein-encoding RNAs noted in these
cells (Figs. 1, 3). We therefore asked if the observed increase in
cytoplasmic ribosome proteins might represent a compensatory
change intended to preserve the cell’s capacity to synthesize
proteins. In support of this hypothesis, we detected significant
upregulation of the protein biosynthesis machinery in C9ALS
iPSCs (Fig. 6f). GO and STRING network analysis confirmed the
relative enrichment of the amino acid synthesis pathway and
further highlighted the proteasomal and RNA transport pathways
(Fig. 6g–j). These data suggest that reductions in the stability of
ribosome protein-encoding transcripts may be balanced in
C9ALS iPSCs by upregulation of ribosomes and elements of the
protein synthesis pathway.

We next asked if similar pathways are affected in sALS iPSCs.
Unbiased assessment of proteins downregulated ≥10% in sALS
iPSCs demonstrated enrichment for components of the oxidative
phosphorylation pathway and tricarboxylic acid (TCA) cycle
(Supplementary Fig. 14a). Of the 316 proteins exhibiting reduced
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abundance in sALS iPSCs, 75% were also downregulated in
C9ALS iPSCs (Supplementary Fig. 14b). Within this conserved
set, GO analysis highlighted both oxidative phosphorylation and
the TCA cycle, indicative of shared deficiencies in energy
production machinery in C9ALS and sALS patient-derived cells
(Supplementary Fig. 14c). We also detected significant upregula-
tion of proteins involved in ubiquitin-mediated proteolysis and
amino acid biosynthesis in sALS iPSCs (Supplementary Fig. 14d),
similar to what we observed in C9ALS iPSCs (Fig. 6). In fact, 68%
of the proteins increased ≥10% in sALS iPSCs were also
upregulated in C9ALS iPSCs (Supplementary Fig. 14e). Both
amino acid synthesis and ubiquitin-mediated proteolysis path-
ways were significantly enriched among commonly upregulated
proteins in C9ALS and sALS (Supplementary Fig. 14f). Taken
together, these data reveal conserved downregulation of energy
production pathways coincident with upregulation of protein
synthesis and ubiquitin-mediated proteolytic pathways in C9ALS
and sALS iPSCs.

Correlating RNA stability and protein abundance in ALS
iPSCs. To examine the relationship between RNA stability and

protein levels, we compared RNA stability indices for each
transcript to the abundance of the corresponding protein mea-
sured by MS. A significant and positive correlation between RNA
stability and protein abundance was noted for all datasets
(Fig. 7a–c), implying that RNA stability predicts protein con-
centration, particularly for more stable transcripts. Nevertheless,
we were struck by the discrepancy between the relative instability
of ribosome protein-encoding RNA in C9ALS iPSCs and the
abundance of ribosomal proteins as detected by MS. Specifically,
we wondered whether feedback mechanisms may be operating to
maintain the concentration of ribosomal proteins37,38. In support
of this, we did not detect a significant relationship between RNA
stability and the abundance of cytoplasmic ribosomal proteins
(Fig. 7d–f). In contrast, the stability of oxidative phosphorylation
RNAs was clearly tied to the abundance of the corresponding
proteins (Fig. 7g–i), consistent with reductions in oxidative
phosphorylation proteins in connection with RNA instability in
C9ALS fibroblasts and iPSCs.

One hundred and seventy proteins demonstrated concordant
changes in RNA stability and protein abundance in C9ALS iPSCs
(Supplementary Fig. 15a), representing 18% and 10% of the total
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changes in RNA stability and protein abundance detected in these
cells, respectively. Within this defined set of proteins, we observed
a highly significant enrichment for the oxidative phosphorylation
pathway (FDR < 1×10−25), supporting the proportional relation-
ship between RNA stability and protein concentration for these
candidates. In sALS iPSCs, we found 121 proteins displaying
concordant changes (Supplementary Fig. 15b), accounting for
14% and 17% of all differences in RNA stability and protein
abundance, but no significant enrichment for proteins within a
specific functional pathway.

Given the substantial overlap in RNA stability between C9ALS
iPSCs and those overexpressing TDP43, we also compared the set
of RNAs stabilized or destabilized by TDP-43 overexpression to
the set of proteins whose abundance was altered in C9ALS iPSCs.
In doing so, we identified 194 proteins with concordant changes
in RNA stability and protein concentration (Supplementary
Fig. 15c), representing 20% and 11% of the total RNAs and
proteins affected in C9ALS iPSCs. Within this set of 194 proteins,
components of the oxidative phosphorylation pathway were
highly enriched by GO (FDR < 1×10−21), consistent with what we
observed in C9ALS iPSCs (Fig. 7).

To determine if TDP-43 overexpression could recapitulate the
pattern of RNA stability and corresponding changes in protein
abundance in C9ALS iPSCs, we separately compared the
abundance of this defined set of proteins in C9ALS iPSCs to
the stability of their corresponding transcripts in (a) C9ALS
iPSCs, or (b) TDP43-overexpressing iPSCs (Supplementary
Fig. 15d, e). Linear regression analysis illustrated an analogous
relationship between protein abundance in C9ALS iPSCs and
RNA stability in C9ALS or TDP43-overexpressing cells, with a
slope that was nearly identical in the two groups. This is in
contrast to the distinct and steep relationship between RNA
stability and protein abundance detected in sALS iPSCs
(Supplementary Fig. 15f). These data show that TDP-43
overexpression destabilizes many RNAs whose stability is likewise
dysregulated in C9ALS iPSCs, and the proteins corresponding to
these RNAs. Furthermore, the transcripts most affected by TDP-
43 are highly enriched in components of the mitochondrial
oxidative phosphorylation pathway.

Mitochondria and ribosome function in patient-derived cells.
To determine the functional implications of these observations,
we assessed mitochondrial and ribosomal activity in ALS patient
samples using a variety of methods. First, since mitochondrial
function is closely tied to morphology39,40, we examined mito-
chondrial morphology in control and C9ALS fibroblasts by live-
cell microscopy (Fig. 8a). Although overall mitochondrial content
and length were unchanged (Supplementary Fig. 16a, b), C9ALS
fibroblasts displayed relatively simple and rounded mitochondria
in comparison to control cells41, as determined by mitochondrial
form factor (an estimate of irregularity or branching, Fig. 8b) and
aspect ratio (representing circularity, Fig. 8c). Accordingly, a
composite measure of form factor and aspect ratio clearly dis-
tinguished mitochondria from control and C9ALS fibroblast
(Fig. 8d). Fixed fibroblasts from sALS and C9ALS patients like-
wise demonstrated fewer and less distinct mitochondrial puncta
in comparison to control cells (Supplementary Fig. 17).

To investigate mitochondrial morphology in iPSCs, we used
tetramethylrhodamine (TMRE), a cell-permeable dye that is
concentrated within active mitochondria42. As in fibroblasts,
C9ALS iPSCs demonstrated a reduction in mitochondrial form
factor and aspect ratio (Fig. 8e–g) but not mitochondrial content
or length (Supplementary Fig. 16c, d), in comparison with control
iPSCs. These results closely parallel those obtained in fibroblasts,

revealing consistent abnormalities in mitochondrial morphology
in C9ALS patient-derived fibroblasts and iPSCs.

We also measured mitochondrial respiratory chain function in
control, C9ALS and sALS fibroblasts by Seahorse bioenergetic
profiling43. Baseline ATP production, coupling efficiency, and
ATP-coupled respiration were unchanged in ALS patient
fibroblasts (Supplementary Fig. 16e-g). However, we observed
differences in spare respiratory capacity when the cells were
energetically challenged with higher concentrations of carbonyl
cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP) (Fig. 8h).
FCCP uncouples the mitochondrial inner membrane by allowing
free exchange of ions, thereby depleting the mitochondrial
membrane potential44. At 900 nM FCCP, both C9ALS and sALS
fibroblasts show a significant decrease in spare respiratory
capacity, suggesting that these cells are energetically fragile
compared to controls and unable to maintain energy production
to meet increased energy demands.

To estimate protein synthesis in ALS patient-derived cells, we
took advantage of SUnSET (surface sensing of translation)45, a
nonradioactive and quantitative method that measures the
incorporation of puromycin into nascent polypeptides. We were
unable to detect a difference in protein synthesis between ALS
and control fibroblasts using this method (Supplementary
Fig. 16h), which we attributed to the heterogeneity of fibroblasts
in culture. However, we detected significantly greater puromycin
antibody reactivity in C9ALS iPSCs than in control iPSCs
(Fig. 8i), consistent with an increase in overall protein translation
in C9ALS iPSCs. To verify these observations, we focused on the
kinetics of an exogenous reporter protein (mCherry) expressed
under the control of an integrated eIF2 promoter. After a brief
photobleach, we measured the fractional return of mCherry
fluorescence to estimate the rate of protein synthesis within
control and C9ALS iPSCs46 (Supplementary Fig. 18). In doing so,
we noted a significantly faster rate of return in C9ALS iPSCs
compared to control iPSCs (Fig. 8j). These data complement the
assessment of protein synthesis by SUnSET and confirm the
upregulation of protein synthesis in C9ALS iPSCs that was
suggested by proteomics (Fig. 6).

Discussion
We uncovered consistent abnormalities in RNA stability in
fibroblasts and iPSCs from individuals with sporadic and familial
ALS due to C9orf72 mutations. Destabilization of RNAs encoding
oxidative phosphorylation and ribosome components was
detected in C9ALS fibroblasts and iPSCs, and in control iPSCs
overexpressing TDP-43. We also detected reduced abundance of
oxidative phosphorylation and ribosomal transcripts in ALS and
FTD spinal cord and brain, and in separate RNA-seq datasets
from C9ALS iPSCs. This conservation of findings in fibroblasts,
iPSCs, and human CNS (Supplementary Table 4) strongly
implicates abnormalities in the oxidative phosphorylation and
ribosomal pathways in ALS and FTD characterized by TDP-43
pathology.

Age-specific gene expression signatures are lost during the
process of reprogramming fibroblasts into iPSCs47. Of 60 fibro-
blast age-related genes mapped in our investigations, 46 (77%)
were reversed in iPSCs (Supplementary Table 5), yet we detected
prominent changes in RNA stability in C9ALS fibroblasts that
were faithfully retained, if not more pronounced, upon repro-
gramming into iPSCs. Our results therefore suggest that RNA
instability in C9ALS likely reflects basic abnormalities in RNA
metabolism that are independent of age-related changes in gene
expression. Additionally, reprogramming may have eliminated
some of the heterogeneity intrinsic to primary fibroblast

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05049-z

10 NATURE COMMUNICATIONS |  (2018) 9:2845 | DOI: 10.1038/s41467-018-05049-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


cultures26, thereby enhancing our ability to assess true disease-
related phenomena.

We detected pervasive and consistent destabilization of RNAs
encoding ribosomal proteins and oxidative phosphorylation
components in C9ALS fibroblasts and iPSCs (Supplementary
Table 4), but this pattern was less evident in sALS cells, under-
scoring the heterogeneity of sALS48. Even so, and in agreement
with previous studies49 we observed a reduction in ribosomal and
oxidative phosphorylation RNAs in sALS postmortem spinal
cord, suggesting that this pattern may eventually emerge over
time, or that such abnormalities may be triggered by cell type-
specific events unique to neurons and glia of the CNS. The

recapitulation of RNA instability in TDP-43 overexpressing iPSCs
suggests that TDP-43 accumulation drives RNA destabilization in
ALS. In these studies, the effect of TDP-43 overexpression on
RNA stability far outweighed that of C9orf72 mutations, despite
the fact that TDP-43 overexpression was limited to 30-50% of
transfected iPSCs. In keeping with the strict relationship between
TDP-43 levels and cellular survival15,50, even relatively
minor changes in TDP-43 abundance produced dramatic shifts
in RNA stability. Therefore, TDP-43 deposition in the
vast majority of individuals with ALS, including C9ALS5,7,
would be expected to produce similarly significant abnormalities
in RNA stability.
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Fig. 8 Mitochondria morphology and protein synthesis in ALS patient-derived cells. a Mitochondrial morphology in control (Cntl) and C9ALS fibroblasts
expressing mito-GFP. BF brightfield. Scale bars= 20 µm. Mitochondrial form factor (a measure of mitochondrial complexity, b) and aspect ratio (an
estimate of circularity, c), or both (d) in fibroblasts expressing mito-GFP. Morphological analysis of mitochondrial form factor (e), aspect ratio (f), or
both (g) in iPSCs stained with the mitochondrial dye TMRE. *p < 0.05, **p < 0.001 by one-way ANOVA with Tukey’s test. n > 20 cells/group. Results in
b−d were combined from four lines each of control and C9orf72 fibroblasts, while e, f were combined from two lines each of control and C9orf72 iPSCs,
performed in duplicate. Plots in b, c, e, f show median (horizontal line), interquartile range (box) and maximum/minimum (vertical lines). Graphs in d and
g show mean ± standard error. h Bioenergetics analyses demonstrated greater reductions in oxygen consumption rate (OCR) upon addition of 900 nM
FCCP, a decoupling agent, to C9ALS and sALS fibroblasts in comparison to controls. n= 8 (Control), 8 (sALS), and 7 (C9ALS) lines/group, as described in
Supplementary Table 1. Plot in h shows mean ± 95% confidence interval. i iPSCs from controls and patients carrying C9orf72 mutations displayed elevated
protein synthesis by SUnSET. *p < 0.01 by two-sided Kolmogorov−Smirnov test. Inset shows a scatter plot of normalized anti-puromycin counts (mean ±
standard error) from control and C9orf72 mutant iPSCs. *p= 0.0129, unpaired t test. n= 2 lines each of control and C9ALS iPSCs, in three separate
replicates. j Cumulative distribution function for fractional recovery of mCherry fluorescence in control and C9orf72 iPSCs at 3.5 h. *p < 0.01, two-sided
Kolmogorov−Smirnov test. Inset illustrates a scatter plot of fractional recovery (mean ± standard error) in control and C9orf72 mutant iPSCs. *p < 0.01,
unpaired t test. n= 2 lines each of control and C9ALS iPSCs, combined from three replicates
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Despite the proportional relationship between RNA stability
and mitochondrial protein abundance, the stability of ribosomal
transcripts was unrelated to their corresponding protein levels.
We also detected enhanced rates of protein synthesis in C9ALS
iPSCs using two complementary approaches, suggesting func-
tional upregulation of protein translation. Together, these results
suggest that C9ALS iPSCs cells compensate for ribosomal RNA
destabilization by upregulating translation. This response may be
beneficial in the short term, but over time the relative increase in
ribosomal subunits may further destabilize ribosomal protein-
encoding RNAs through feedback inhibition37,38. Moreover, as
aberrantly stabilized RNAs are inappropriately translated, cells
may rely on proteolytic pathways to maintain homeostasis.

The destabilization of mitochondrial oxidative phosphorylation
transcripts and corresponding reduction in protein levels were
reflected by subtle abnormalities in mitochondrial morphology
and function in ALS fibroblasts and iPSCs. Similar changes in
mitochondrial morphology and function are reported in models
of ALS39, inclusion body myositis51, and Parkinson’s disease52.
TDP-43 binds to and regulates the processing of transcripts
encoding mitochondrial proteins53,54, and TDP-43 also contains
a mitochondrial localizing sequence, leading to mitochondrial
dysfunction upon cytoplasmic TDP-43 mislocalization53. Our
results further emphasize mitochondrial abnormalities in ALS
patient-derived cells, and highlight the deleterious effects of TDP-
43 deposition on the metabolism of RNAs essential for oxidative
phosphorylation.

The two pathways that were primarily affected by RNA
instability in ALS patient-derived cells—ribosome biogenesis and
oxidative phosphorylation—are crucial for metabolically active
cells such as motor neurons that rely heavily on protein trans-
lation and mitochondrial function55,56. While mitotic cells such
as fibroblasts or iPSCs may be able to cope with these abnorm-
alities through cell division, the implications of such abnormal-
ities for post-mitotic and long-lived cells such as neurons may be
significantly different.

The relatively stability of transcripts involved in RNA transport
in C9ALS iPSCs and TDP43-overexpressing iPSCs may represent
a response to nucleocytoplasmic transport abnormalities in
ALS33,57,58. Indeed, many components of the nuclear pore were
stabilized in these cells, as well as RANGAP1 and XPO5, two
transport factors implicated in ALS pathogenesis57,59. The sta-
bilization of these transcripts may function to counteract deficient
RNA export, but based upon the results of previous studies60,61,
such a response may precipitate neurodegeneration in the long
term by facilitating repeat-associated non-AUG (RAN) transla-
tion of the C9orf72 hexanucleotide repeat.

We demonstrated significant alterations in RNA stability in
ALS fibroblasts and iPSCs, yet the mechanism responsible for the
observed changes remains unknown. Nucleocytoplasmic trans-
port failure in ALS33,57,58 may lead to nuclear RNA retention and
degradation by the nuclear exosome complex. Alternatively,
nuclear splicing factors may be inappropriately mislocalized,
resulting in atypical splicing patterns that introduce or remove
premature termination codons or affect polyadenylation sites;
either of these scenarios could lead to broad changes in RNA
stability. A more likely possibility is that the expanded C9orf72
repeat sequesters essential RBPs that regulate RNA stability.
Consistent with this hypothesis, several RBPs preferentially bind
expanded nucleotide stretches such as those present in mutant
C9orf72 transcripts57,62–64. Many, including ADARB2, hnRNPH
and hnRNPA3, are essential for RNA processing, transport, and
metabolism65. Transcripts demonstrating altered stability in
C9ALS and sALS iPSCs are highly enriched in motifs recognized
by RBPs that participate in the formation of cytoplasmic stress
granules, membrane-less organelles that stabilize non-essential

RNAs in the setting of cellular stressors31,32. Furthermore,
disease-associated C9orf72 mutations, as well as TARDBP, TIA1,
FUS, and hnRNPA2/B1 mutations, affect stress granule assembly
and disassembly66–70. Overexpression of TDP-43, an RBP that
recognizes many transcripts destined for stress granules10,12 and
is itself a component of these organelles71,72, also affects stress
granule dynamics70,73. One of the predicted impacts of altered
stress granule kinetics is extensive dysregulation of RNA stability,
as noted here, but these changes may not be readily apparent
without sensitive methods for assessing RNA stability such as
BruChase-seq. Lastly, genetic strategies that impact the formation
and dissociation of stress granules have pronounced effects on
disease outcomes in ALS disease models66,74. Together with our
observations, these data attest to the promise of therapeutic
strategies aimed at restoring RNA homeostasis by preventing RBP
sequestration, disruption of RNA granules, and consequent RNA
instability. We expect that such strategies, if successful, will not
only improve RNA homeostasis, but also prevent the neuron loss
and protein deposition that are hallmarks of ALS, FTD and
related neurodegenerative disorders.

Methods
Study participants. Study participants signed a written informed consent reviewed
and approved by the University of Michigan Medical School Institutional Review
Board (Protocol # HUM00028826). ALS subjects met the EI Escorial criteria75 as
determined through the University of Michigan ALS Clinic. Control participants
were age-and gender-matched to the ALS participants.

Fibroblast isolation. Skin punches (3 mm) obtained from ALS and control par-
ticipants were placed in fibroblast media (FM) (Dulbecco’s modified Eagle med-
ium, DMEM: 4.5 g/l D-glucose, +glutamine, no pyruvate (Gibco/ThermoFisher)
supplemented with 10% heat inactivated fetal bovine serum (FBS) (Gibco/
ThermoFisher), 1× Glutamax-1 (Gibco/ThermoFisher), and 1× MEM NEAA
(Gibco/ThermoFisher)). Tissue was washed 3× with FM, cut into small pieces,
resuspended into 500 µl FM and transferred to 2× T-25 flasks, then incubated at 37
°C in 5% CO2 for 3 d. Afterwards, the tissue was bathed with 1 ml of fresh FM and
incubated for another 3 d. Keratinocytes migrated out of the tissue around d 7 and
fibroblast around d 10. The first passage for fibroblasts occurred around d 21 post-
isolation. Cells in the parental flasks (T-25 cm2) were trypsinized with 0.25%
trypsin-EDTA (Gibco/ThermoFisher) and split 1:5 into a 100 mm petri dish
(Falcon/Corning) in FM for passage 1. The remaining cells were place in freezing
media (FM and 10% DMSO (Sigma-Aldrich)) and separated into five vials. Cells
were grown another 7−10 d to reach 85% confluency, trypsinized to make
9 working stock vials in freezing media, and stored in liquid nitrogen in colla-
boration with the Michigan ALS Consortium at the University of Michigan.
Patient-derived fibroblasts used for this project were thawed, grown in FM, and
incubated at 37 °C in 5% CO2 prior to use. All lines are verified mycoplasma-free
on a yearly basis.

Fibroblast culturing and labeling. Bru-seq and BruChase-seq was performed on
15 lines of fibroblasts—5 lines from controls, 5 from sALS, and 4 from C9ALS
patients (Supplementary Table 1). One control line was later excluded due to
concern over contamination and poor health. Each fibroblast line was expanded
into 2× 150mm petri dishes (Falcon/Corning) in FM and incubated at 37 °C in 5%
CO2 until they reached about 80% confluency. Conditioned media was collected
from each cell line and used to make 2 mM bromouridine (BrU, Sigma-Aldrich)
and 20 mM uridine (Sigma-Aldrich) working solutions. Both plates/line were
incubated with 18 ml of 2 mM BrU for 30 min at 37 oC in 5% CO2 (pulse). Pulse
media was immediately removed and the cells were washed in phosphate-buffered
saline (PBS, Gibco/ThermoFisher). For Bru-seq, the cells were harvested with 3 ml
of Qiazol (Qiagen) and stored at −80 °C. For BruChase-seq, the washed plate was
refed with 18 ml of 20 mM uridine and incubated at 37 °C in 5% CO2 (chase) for
6 h. Uridine-containing media was removed, cells were rinsed in PBS, harvested in
3 ml Qiazol and stored at −80 °C prior to RNA purification, as described below.

Reprogramming and validation of human iPSCs. Fibroblasts were repro-
grammed into iPSCs using one of two methods. For two lines (C9A-2 and C9A-4),
fibroblasts were transduced with an excisable polycistronic lentiviral vector that
carries all four human reprogramming transcription factors (Oct4, Sox2, Klf4, and
c-Myc)27. The long terminal repeat (LTR) of the virus includes loxP sites that
enable the excision of the entire viral genome—including all four reprogramming
factors—with Cre recombinase, leaving only a small fragment of the LTR (303 bp)
that lacks recognizble cDNA sequences and transcriptional regulatory regions.
Successful removal of the reprogramming vector was confirmed by PCR analysis,
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karyotyping was performed to rule out chromosomal abnormalities, and plur-
ipotency validated by (i) immunocytochemistry for markers of pluripotent stem
cells (including Oct-4, TRA-1-60, TRA-1-81, SSEA-3, or SSEA-4), and (ii) differ-
entiation of these lines into three germ layers in vitro and in vivo, confirmed by
immunocytochemistry for ß-tubulin III, muscle-actin or desmin and sox-17 for
ectoderm, mesoderm and endoderm, respectively (Supplementary Fig. 3).

The second method, utilized for all other iPSC lines, involved transfection of
fibroblasts with episomal vectors encoding seven reprogramming factors (Oct4,
Sox2, Nanog, Lin28, L-Myc, Klf4, and SV40LT)28. We followed the manufacturer’s
protocol provided with the Episomal iPSC Reprogramming Vector kit (Invitrogen/
ThermoFisher), with the following exceptions: (i) for transfection, 1×106 cells were
resuspended in 23 µl instead of 100 µl for transfection; (ii) following transfection,
each group of cells was cultured in a single 10 cm plate coated with vitronectin
(Gibco/ThermoFisher). No chromosomal abnormalities were noted upon
karyotyping, performed with assistance from Cell Line Genetics (Wisconsin, USA;
Supplementary Fig. 3). Through the Coriell Institute for Medical Research
(Camden, NJ), pluripotency was confirmed using by Pluritest, and further validated
by differentiation in vitro into all three germ layers, as determined by quantitative
RT-PCR for markers of ectoderm (TP63, KRT14, NOG), mesoderm (RUNX1,
PECAM1, TAL1), and endoderm (SOX17, AFP, FOXA2; Supplementary Fig. 3).

Human iPSC culturing and labeling. All iPSC lines were cultured in E8 media
(Gibco/ThermoFisher) on plates coated with vitronectin (diluted 1:100 in PBS,
Gibco/ThermoFisher), and passaged every 5–6 d by adding 0.5 mM EDTA (Gibco/
ThermoFisher) dissolved in PBS (no Ca/Mg; Gibco/ThermoFisher) followed by
gentle trituration in E8 media using a P1000 pipette. All lines are verified
mycoplasma-free on a yearly basis. For Bru-seq, we selected two lines each from
controls, sALS and C9ALS patients (Supplementary Table 1), and performed all
analyses in duplicate. Five 60 mm dishes of 5–6-day-old colonies were used for
each condition. Cells were incubated in 1.5 ml of E8 complete media containing
2 mM BrU for 0.5 h at 37 °C. For BruChase-seq experiments, the BrU-containing
media was removed, plates were washed one time with PBS (no Mg/EDTA), then
incubated for 6 h at 37 °C in 1.5 ml E8 media containing 20 mM uridine. The media
was removed, and colonies were washed off the dishes using 750 µl ice-cold Trizol
(Sigma-Aldrich). Samples were frozen at −80 °C until RNA extraction, as described
below.

For transfection with TDP43-EGFP, cultures were treated with 0.5 mM EDTA
for 2 min at 37 °C, colonies dissociated into smaller groups (3–10 cells/colony) by
extensive trituration with a P1000 pipette, then plated with Y-27632 (ROCK
inhibitor, diluted to 1:100; StemCell Technologies) into a 60 mm vitronectin-coated
plate. After overnight incubation at 37 °C, media was replaced with fresh E8. Prior
to transfection, 500 µl OptiMEM (Gibco/ThermoFisher) was mixed with 5 µg of
total DNA (pGW1-EGFP or pGW1-TDP43-EGFP)50 with 7 µl of MirusLT1
transfection reagent (Mirus Bio LLC), and held at room temperature for 20 min.
After replacing the E8 media with 2.5 ml mTESR (StemCell Technologies), the
DNA/LT1 mix was added to the cells, and the culture kept at 37 °C for 16−20 h, at
which time the media was replaced with fresh E8. Three separate transfections of
TDP43-EGFP were utilized for Bru-seq and BruChase-seq. Transfection efficiency
was assessed at 48 h using an Olympus CKX53 inverted microscope equipped with
an SHI-1300L (Olympus) halogen light source. If efficiency was estimated at ≥30%,
colonies were harvested for Bru-seq and BruChase-seq as described below.

Bru-seq and BruChase-seq. Bru-labeled RNA was purified from total RNA using
anti-BrU antibodies in a blinded fashion. Strand-specific DNA libraries were then
prepared with the Illumina TruSeq Kit (Illumina) and sequenced using the Illu-
mina sequencing platform24.

Sequenced data (strand-specific, single-end 52 bp) was first aligned to human
ribosomal DNA complete repeating unit (U13369.1) using Bowtie (v0.12.8) and the
reads that remained unaligned were mapped to the human genome build hg19/
GRCh37 using TopHat (v1.4.1)24. Bru-seq (RNA synthesis) data from ALS
fibroblasts or iPSCs were compared to control fibroblasts or iPSC samples and fold
differences determined using DESeq (version 1.4.1) in R (version 2.15.1). A similar
comparison was performed for Bru-seq data from iPSCs transfected with TDP43-
EGFP or EGFP alone. Genes having a mean RPKM ≥ 0.5, length ≥ 300 bp, false
discovery rate (FDR) ≤ 0.1 and a 1.5-fold change were chosen for downstream
bioinformatics analyses.

For BruChase-seq, a stability index for each transcript was calculated as a ratio
of transcript abundance at 6 h vs. 0.5 h. To account for stability calculations across
replicates for each condition, median values across replicates of the same condition
were used. Genes showing greater/less than 1.5-fold change in the stability index
were chosen for subsequent analyses. Gene set enrichment analyses based on
ontology were accomplished using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING, https://string-db.org)25. All diagrams created using
STRING (Figs. 3c, 4d, 6b, d and S9) show confidence, as determined by textmining,
experiments, databases, co-expression studies, neighborhood analyses, gene
fusions, and co-occurrence. The minimum required interaction score in each case
was set to 0.7 (high confidence) or 0.9 (highest confidence). Disconnected nodes
were removed from the networks, and structure previews were disabled.

Mass spectrometry. iPSC cultures were grown for 5–6 d in 60 mm dishes. After
application of 0.5 mM EDTA for 2 min, colonies were washed off the plate using
1.5 ml of PBS (no Ca/Mg, Gibco/ThermoFisher), pelleted by centrifugation and
stored at −80 °C until lysis. Cell pellets were lysed using 100 mM triethyl
ammonium bicarbonate (TEAB; Sigma-Aldrich) with 0.1% SDS by passing the
lysate through a 28.5 gauge needle, followed by sonication and centrifugation at
6000 × g for 5 min at 4 °C. The supernatant was saved and protein concentration
determined by the BCA assay (Pierce). For mass spectroscopy (MS), tandem mass
tag (TMT) labeling was performed using the TMT-10plex isobaric labeling kit
(Lot#SA239882A; ThermoFisher) according to the manufacturer’s protocol, with
minor modifications. A master mix containing equal amount of protein from each
sample was created. Sixty-five micrograms of protein from each sample and the
master mix were reduced with DTT (5 mM) at 45 °C for 1 h followed by alkylation
with 2-chloroacetamide (15 mM) at room temperature for 0.5 h. Proteins were
precipitated by adding six volumes of ice-cold acetone and incubating overnight at
−20 °C. Precipitated proteins were pelleted by centrifugation at 8000 × g for 10 min
at 4 °C. The supernatants were discarded, and the pellets resuspended in 100 µl of
100 mM TEAB, then digested overnight at 37 °C by adding 1.1 µg of sequencing
grade, modified porcine trypsin (Promega, V5113). TMT reagents were recon-
stituted in 41 µl of anhydrous acetonitrile and digested peptides were transferred to
the TMT reagent vial and incubated at room temperature for 1 h. The TMT
channels for each of the samples are provided in Table 1. The reaction was
quenched by adding 8 µl of 5% hydroxylamine and incubating for another 15 min.
The appropriate samples and master mix (9 samples+ 1 master mix) were com-
bined and dried. Prior to MS analysis, two-dimensional separation of the samples
was performed. For the first dimension, an aliquot from each sample mix (100 µg)
underwent offline fractionation using a high pH reverse phase fractionation kit,
following the manufacturer’s protocol (Pierce). Fractions were dried and recon-
stituted in 10 µl of loading buffer (0.1% formic acid and 2% acetonitrile).

Liquid chromatography-mass spectrometry analysis. To increase accuracy and
confidence in measures of protein abundance, a multinotch-MS3 method was
employed for analyzing MS data76. Raw data were acquired using an Orbitrap
Fusion (ThermoFisher) and RSLC Ultimate 3000 nano-UPLC (Dionex). Two
microliters from each fraction were resolved in the second dimension on a nano-
capillary reverse phase column (Acclaim PepMap C18, 2 micron, 75 μm i.d. ×
50 cm, ThermoFisher) using a 0.1% formic/acetonitrile gradient at 300 nl/m
(2–22% acetonitrile in 150 m; 22–32% acetonitrile in 40 m; 20 min wash at 90%
followed by 50 min re-equilibration) and directly sprayed on to Orbitrap Fusion
using EasySpray source (ThermoFisher). The mass spectrometer was set to collect
one MS1 scan (Orbitrap; 120 K resolution; AGC target 2×105; max IT 100 ms)
followed by data-dependent, “Top Speed” (3 s) MS2 scans (collision induced dis-
sociation; ion trap; NCD 35; AGC 5×103; max IT 100 ms). For multinotch-MS3,
the top ten precursors from each MS2 scan were fragmented by HCD followed by
Orbitrap analysis (NCE 55; 60 K resolution; AGC 5×104; max IT 120 ms, 100−500
m/z scan range).

For MS data analysis, we used Proteome Discoverer (v2.1; ThermoFisher). MS1
and MS2 spectra were queried against the SwissProt human protein database
(release 2016-11-30; 42054 sequences) using the following search parameters: MS1

Table 1 Mass spectrometry and tandem mass tag (TMT)
sample designations

Sample ID Set TMT Channel

C1, repl. 1 A 126
C1, repl. 2 A 127N
C1, repl. 3 A 128N
C9A2, repl. 1 A 129N
C9A2, repl. 2 A 130N
C9A2, repl. 3 A 127C
SA2, repl. 1 A 128C
SA2, repl. 2 A 129C
SA2, repl. 3 A 130C
Master Mix A 131
C4, repl. 1 B 126
C4, repl. 2 B 127N
C4, repl. 3 B 128N
C9A4, repl. 1 B 129N
C9A4, repl. 2 B 130N
C9A4, repl. 3 B 127C
SA4, repl. 1 B 128C
SA4, repl. 2 B 129C
SA4, repl. 3 B 130C
Master Mix B 131
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and MS2 tolerance were set to 10 ppm and 0.6 Da, respectively;
carbamidomethylation of cysteines (57.02146 Da) and TMT labeling of lysine and
N-termini of peptides (229.16293 Da) were considered static modifications;
oxidation of methionine (15.9949 Da) and deamidation of asparagine and
glutamine (0.98401 Da) were considered variable. A percolator algorithm (PD2.1)
was used to determine the FDR and proteins/peptides with FDR ≤ 0.01 were
retained for further analysis. Relative quantitation using TMT reporter ions was
performed using high-quality MS3 spectra (average signal-to-noise ratio of 10 and
<40% isolation interference).

Bioenergetics (mitochondrial oxygen consumption rate). Seahorse experiments
were performed following the manufacturer’s protocol (Seahorse Bioscience/Agi-
lent). Briefly, XFe96 extracellular flux electrodes were calibrated overnight in 200 µl
of sterile water at 37 °C in a CO2-free incubator. Approximately 45 min before the
bioenergetics assay, water was replaced with 200 µl of XF calibrant buffer pH 7.4
(Seahorse Bioscience /Agilent) pre-warmed at 37 °C. Fibroblasts were plated at a
density of 20,000 cells/well in 96-well XFe96 cell culture microplates (Seahorse
Bioscience /Agilent) in 100 μl of FM and incubated at 37 °C in 5% CO2 for 5 h. One
hour before analysis, media was replaced with freshly made serum- and buffer-free
assay media (DMEM without glucose, L-glutamine, phenol red, sodium bicarbo-
nate, sodium pyruvate (Corning/Cellgro)) supplemented with 4.5 g/l D-(+) glucose
(Sigma-Aldrich), 1× Glutamax-1, 1× MEM NEAA, pH 7.4 and filter-sterilized, and
placed in a 37 °C CO2-free incubator to equilibrate. Seahorse analysis was per-
formed using final concentrations of 1.2 μM oligomycin (Sigma-Aldrich), 700 nM
or 900 nM carbonyl cyanide 4-trifluoromethoxy-phenylhydrazone (FCCP) (Sigma-
Aldrich) and 1 μM antimycin A/rotenone (Sigma-Aldrich), which were determined
in optimization experiments. The following settings were used: four cycles at rest, 3
cycles/drug injection (mix 3.00, wait 0.00, measure 3.00). After Seahorse analysis,
cells were lysed in 25 μM of RIPA buffer (Pierce/ThermoFisher) supplemented with
protease inhibitor cocktail tablets (Roche Diagnostics) and total protein/well was
determined via BCA (Pierce/ThermoFisher). Data were normalized to total protein
and bioenergetics metrics derived from response curves43.

Mitochondrial morphology assessment. Fibroblasts were split at 5000 cells/
500 µl of FM, immediately infected with 2 µl of CellLight Mitochondria-GFP,
BacMam 2.0 (ThermoFisher), and plated in Lab-Tek II Chambered Coverglass w/
cover #1.5 4-well Borosilicate Sterile plates (ThermoFisher). After 72 h of incu-
bation at 37 oC in 5% CO2, the cells were placed in a temperature and CO2-
controlled chamber (Tokai Hit) for live imaging. Images were acquired on a Nikon
A1 confocal microscope with a ×40 oil objective lens (1.3 N.A.) and excited with a
543 nm-wavelength HeNe laser. NIS-Elements Software (Nikon Instruments) was
used to acquire images of individual cells at 1024 × 1024 pixel resolution.
Approximately 20 images were taken for each cell line and the cell identity was
masked from the observer during analysis. Mitochondrial morphology (including
form factor and aspect ratio) were determined using a mitochondrial morphology
macro77 in Fiji.

For analysis of mitochondrial morphology in iPSCs, cultures were grown for 4
−5 d after passaging and treated with 200 nM tetramethylrhodamine, ethyl ester
(TMRE) directly in E8 media for 15 min at 37 °C. Colonies were washed once with
PBS before replacing the media. Imaging was accomplished using a Nikon TiE/B
inverted fluorescence microscope with an Andor Zyla 4.2p sCOMS camera, and
mitochondrial morphology assessed as above.

Nonradioactive assessment of protein synthesis with SUnSET. To assess
global translation, we used a puromycin-based assay (SUnSET)45. Briefly,
fibroblast-derived iPSCs were grown in 60 mm dishes with 3 ml of E8 media
(Gibco/ThermoFisher) and grown for 4–5 d at 37 °C in 5% CO2. The cells were
incubated for 20 min with 1 μg/μl puromycin (Sigma-Aldrich) in preconditioned
media, lifted with Accutase (StemCell Technologies), and transferred to a 96-well
round-bottom plate (Corning). The cells were prepared for intracellular staining
following the manufacturer’s protocol (eBioscience), and stained with Alexa-
Fluor® 647 anti-puromycin antibody (Millipore Sigma) or AlexaFluor® 647 mouse
IgG isotope control clone MOPC-21 (Biolegend) for 1 h at room temperature. For
flow cytometry, cells were resuspended in 100 µl of flow cytometry staining buffer
(1× PBS, 2% FBS, 0.1% sodium azide), and transferred to 5 ml polystyrene round-
bottom tubes (Corning). Flow cytometry was performed with the assistance of the
University of Michigan Flow Cytometry Core using a BD Aria3 cytometer (BD
Biosciences). Compensations were determined using single color stained and
unstained cells. Median fluorescence intensity was determined for both control and
puromycin-stained samples, and expressed as fold change vs. control45.

mCherry photobleaching and fractional recovery. iPSCs were transfected with
publicly available vectors for the expression of transcription activator-like effector
nucleases (TALENs) targeting the CLYBL locus (pZT-C13-R1 and pZT-C13-L1,
Addgene) and a CLYBL homology cassette (Addgene) containing mCherry under
transcriptional control of the eIF2alpha promoter. mCherry-positive colonies were
selected using fluorescence microscopy and passaged until all cells displayed
homogenous red fluorescence, indicating successful integration of the mCherry
cassette. Integration of the mCherry cassette into the CLYBL locus was confirmed

by qPCR, demonstrating homozygous integration in 2/2 control iPSC lines and
heterozygous integration in 2/2 C9ALS lines (data not shown). iPSCs were then
grown in an eight-well chamber slide for 3−4 d before bleaching a portion of the
colony using a Nikon1-B confocal microscope with a 10x air objective lens and a
543 nm-wavelength HeNe laser, operated via NIS-Elements Software (Nikon
Instruments). RFP intensity within the bleached area was normalized to a non-
bleached area of equal size at 1 and 3.5 h after bleaching using ImageJ software.
Fractional recovery was calculated as the ratio of signal at 3.5 h to that at 1 h, and
adjusted for copy number.

Data availability. Source data for Figs. 1–7 are provided with the paper.
Raw sequencing data have been deposited within the gene expression omnibus

(GEO) repository78 under the series code GSE115310.
Mass spectrometry proteomics data have been added to the ProteomeXchange

Consortium via the PRIDE partner repository79 with the dataset identifier
PXD009969.
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