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Determining the Respiratory State From a Seismocardiographic Signal
- A Machine Learning Approach
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Andrew Blaber**, Kasper Sørensen and Samuel Schmidt

Biomedical Engineering and Informatics, Aalborg University, Denmark
* The School of Engineering Science, Simon Fraser University, BC, Canada

** Department of Biomedical Physiology and Kinesiology, Simon Fraser University, BC, Canada

Abstract

Seismocardiography (SCG) is a non-invasive method for
measurement of vibrations on the chest wall originating
from the heart. Respiration changes the morphology of the
SCG-signal and analyzing these changes could improve
the diagnostic value of SCG. This study aimed to deter-
mine the nasal respiration signal amplitude at mitral clo-
sure (MC) and aortic opening (AO) using SCG features.
The three proposed methods for this were multiple regres-
sion analysis (MRA), support vector regression (SVR), and
a neural network (NN). SCG, Electrocardiography and
nasal-catheter flow signals were acquired from 18 healthy
subjects (age 29 ± 6). SCG-signal fiducial points were
used as features and were found using an automatic algo-
rithm followed by manual verification. Fiducial points am-
plitudes, timings between these and frequency components
formed 12 features. All models were trained on 80% of the
data, underwent 10-fold cross-validation and were tested
on the remaining 20% of the data. Predictions on test data
for MC and AO time points, the Pearson correlations co-
efficient, and sum of squared errors of prediction were:
(rMC , rAO, SSEMC , SSEAO) for the following models:
NN (0.908, 0.904, 11.71, 12.05), SVR (0.881, 0.833, 18.95,
19.76) and MRA (0.450, 0.437, 51.21, 51.48). These pre-
dictive models show a strong correlation between the SCG-
signal and respiration.

1. Introduction

The clinical applications for seismocardiography (SCG)
are promising, providing a simple method for measuring
the mechanical properties of the heart [1]. SCG-signals are
obtained by measuring vibrations on the chest wall, using
an accelerometer placed on the sternum [2]. The morphol-
ogy of the SCG-signal changes in relation to respiration,
and understanding these changes is needed to correctly di-
agnose diseases [3]. A negative pressure under inspiration

results in an increase in preload and increased right ven-
tricle systolic volume, while the left ventricle end diastolic
volume and left ventricle systolic volume decreases, and
vice versa during expiration[3]. Current solutions for mea-
suring mechanical properties of the heart include: echocar-
diography (Echo), computed tomography (CT), magnetic
resonance imaging (MRI) and catheter coronary angiog-
raphy (CCA). A common denominator for these methods
is that they are time-consuming and expensive, but their
advantage is their diagnostic precision [4–7]. SCG could
therefore contribute as a cheaper and less time-consuming
alternative. In this present effort, the relationship between
respiration and fiducial points in the SCG-signal is mod-
eled in an attempt to investigate the relationship between
respiration and the SCG-signal.

2. Methods

Respiration affects the time between fiducial points and
the length of cardiac cycles [8], and amplitudes of these
also change during respiration [3]. The fiducial points dur-
ing the systolic complex decrease in amplitude during in-
spiration and the fiducial points in the diastolic complex
increase during inspiration and vice versa during expira-
tion [3].

2.1. Feature selection

The features selected for prediction of respiration dur-
ing cardiac cycles are listed in Table 1. The interpreta-
tion and labeling of SCG-signals used in this paper is illus-
trated in Figure 1. Timings and amplitudes were included
as features since these changes during respiration [3, 8].
The power, mean- and median frequencies of the signal
between MC and MO are also used as features, since the
frequencies change as a result of respiration [3, 9].
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Figure 1. The recording of a dorso-ventral axis SCG-
signal, on the Xiphoid Process of a healthy subject. The
signal is annotated with: MC (mitral clossure), IM (isovo-
lumic moment), AO (aortic opening), AC (aortic clossure)
and MO (mitral opening).

Amplitude of Timing between MC and Frequency
MC IM Mean Freq
IM AO Median Freq
AO AC Power
AC MO
MO

Table 1. Overview of the selected features for each car-
diac cycle, which include five amplitudes, four timings,
and three frequency measures.

2.2. Subject data

The SCG-, electrocardiography (ECG)-, nasal spirome-
ter signals were collected from 18 healthy subjects (age:
29± 6 years, height: 171± 8 cm and weight: 69± 12 kg).
Data acquisition was performed in the Aerospace Physiol-
ogy lab in the Department of Biomedical Physiology and
Kinesiology. The experimental protocol was approved by
the research ethics board of Simon Fraser University as a
minimum risk. All participants signed the informed con-
sent form before any experimentation.

2.3. Data acquisition and pre-processing

SCG was recorded on the Xiphoid Process using an ac-
celerometer, respiration flow signals were collected using
a nasal-catheter and the ECG was acquired in a lead II
configuration using Lifepak8 system (Medtronic Inc, MN,
USA). All signals were obtained using NI 9205 analog in-
put module (National Instruments Inc, TX, USA) at a sam-
pling rate of 1000 Hz. An algorithm was implemented in
MATLAB to locate the fiducial points of the SCG-signal
automatically. The implemented algorithm was inspired
by the work of Jafari et al. [10]. The SCG-signal was fil-

tered with low-pass and high-pass filters with cutoff fre-
quencies at 10 and 60 Hz, respectively. Filter frequen-
cies were based on the performance of the peak finding
algorithm since the algorithm performed better when find-
ing fiducial points in higher frequency bands. The algo-
rithm found MC, IM, and AO by using local peak detection
within windows, which were based on the timing of the
R-peak from the ECG-signal. When these fiducial points
were found, the AC and MO were found by using search
windows which started 300 ms after AO. The annotation
of all data was manually verified to ensure correct annota-
tion. Periods of apnea and unrecognisable fiducial points
were discarded if the respiration or the SCG-signal was
distorted. Only cardiac cycles with all five fiducial points
included were used in the data analysis. Out of 12.000,
6.010 cardiac cycles and their corresponding respiration
measurements remained, and were normalised using the
minimum and maximum values for each subject to make
the samples comparable across different subjects.

2.4. Models

Three methods were proposed; multiple regression anal-
ysis (MRA), support vector regression (SVR) and neural
network (NN). These methods were chosen from the per-
spective of starting with simple models moving towards
more complex models. The data used for the models was
divided into training and test sets, of 80% and 20% respec-
tively. Cross-validation with 10 folds was used to validate
the models.

The MRA model was applied by using the least square
method. No hyperparameters were tuned.

Hyperparameters for the SVR models were found using
Bayesian optimisation. Two separate SVR models were
trained for predicting the measured respiration amplitudes
at MC and AO. For both models, an rbf kernel was used,
and the models were applied with an epsilon value of 0.03.
The MC model had a C-value of 32.51 and a γ-value of
12.71. The AO model had a C-value of 29.07 and a γ-
value of 12.07.

A dense neural network was implemented in Python
(Keras 2.0 - TensorFlow backend). Several hyperparam-
eters were found by doing a hyperparameter search, which
adjusted the number of units per layer, the number of hid-
den layers, optimisers, learning rates, etc. The network
consists of one input layer, two hidden layers with 128
units using ReLu, two dropout layers with a 40% dropout
rate between the two hidden layers. The last layer con-
sisted of two nodes with linear activation functions. A
mean squared loss function was used. The model was op-
timised using an Adam optimiser. The learning rate was
lowered 80% when the loss started to plateau.
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3. Results

The measure of linear correlation between actual and
predicted respiration was assessed using the Pearson cor-
relation coefficient and sum of squared errors of predic-
tion (SSE). Table 2 shows the mean-values of the cross-
validation for all models. According to Table 2, the
NN model scored the highest r values (0.908 and 0.904),
whereas the SVR model scored lower r values (0.842 and
0.833). The linear MRA model scored the lowest r-values
(0.438 and 0.450). An example of the predictions is illus-
trated in Figure 2. The standard deviations were similar for
MC and AO in the cross-validation for SVR and NN, but
different for MRA. The SSE for the predicted MC and AO
respiration states can be seen in Table 2.

(a) MC-timepoints
r mean* SD* SSE

MRA 0.438 0.477 0.047 51.21
SVR 0.842 0.826 0.030 18.95
NN 0.908 0.916 0.006 11.71

(b) AO-timepoints
r mean* SD* SSE

MRA 0.450 0.480 0.043 51.48
SVR 0.833 0.838 0.030 19.76
NN 0.904 0.910 0.006 12.05

Table 2. The table contains (a) mitral closure and (b) aor-
tic opening results from validation and tests of the MRA,
SVR, and NN models, r is the Pearson correlation coeffi-
cients of the test set. Mean r-values from k-folding, the
standard deviation (SD) and SSE scores obtained by the
different models. *Validation results.

4. Discussion

The main finding of this study is that respiration ampli-
tudes can be accurately predicted using cardiac related fea-
tures from an SCG-signal. The predicted was most accu-
rate in the NN model with high correlation between actual
and predicted respiration amplitudes with r-values of 0.904
and 0.908, for the MC and AO time points respectively.
Respiration values where not equally distributed when ac-
cessing the data. This is because the inspiration and ex-
piration phases are very short, which means that most of
the cardiac cycles reside in an inspirated or expirated state.
Figure 2 shows that it was possible to predict the respira-
tory amplitudes for a cardiac cycle located in the inspira-
tion phase. This is clear since the NN predictions are very
close to the actual respiratory amplitudes at the MC and
AO fiducial points.

The NN model scored the highest Pearsons correlation
coefficient (r = 0.908), which means there was an almost
linear relationship between the predicted respiration and
the actual respiration. This suggests that the relationship
between SCG features and respiration is not entirely linear
since the MRA model scored much lower r-values than the
non-linear models. The low SSE of the NN model indi-
cates that the errors, when predicting the respiration, are
relatively small compared to the other models. The simi-
lar r-value and mean-value of the NN model, with a small
standard deviation, indicates that the model is the most ac-
curate of the three. The accuracies of the three models
were evaluated by cross-validating to investigate how well
they generalised.

There was a slight increase in accuracy when predicting
the respiration amplitude for the MC fiducial point com-
pared to AO fiducial points for all models. It was not pos-
sible to find an explanation for this in the data nor from a
physiological point of view.
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Figure 2. Segment of a normalized respiration signal and the corresponding SCG-signal for a single subject. In the top
figure, the predicted values on the respiration signal from the Multiple Regression Analysis, Support Vector Regression,
and Neural Network models. The SCG-signal is annotated with the fiducial points of MC and AO respectively.
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5. Limitations

The validity of the features can be questioned, especially
those that were related to the annotated cardiac fiducial
points. The annotations of the fiducial points were veri-
fied manually, without clinical expertise and with ECG as
a reference, as opposed to echocardiography, which is the
gold standard. Another limitation was the data size and
distribution. Few samples were located on the ascending
and descending slopes of the respiration, while the bulk of
data samples were in the peak and valley plateaus. The re-
sults of the models could be optimistic since there might
have been a leak in information between training and test
data. Training data not similar to the test data would give
a more realistic prediction. The order of cardiac cycles
was randomised and subsequently divided into training-
and test set. This approach may have caused information
to leak from the training sets into the test set and thereby
lead to a more optimistic result. A validation method to ac-
commodate that issue could be ”Leave One Subject Out”
cross-validation. This method was not used due to time
constraints.

6. Conclusion

The models based on the proposed methods showed the
ability to predict the respiratory amplitudes with respects
to MC and AO. The non-linear, NN and SVR, models
proving the most accurate approaches and it was found that
the SCG-signal does contain information regarding res-
piration. Predicting the respiration from the SCG-signal
with these models, makes it possible to distinguish the res-
piratory states and perform segmentation of SCG-signals
based on respiration.
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