
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Electrical Engineering Student Publications Department of Electrical Engineering

12-8-2022

Autonomous Gyroscopic 2-Wheel Differential Robot Autonomous Gyroscopic 2-Wheel Differential Robot

Haruka Kido
haruka.kido@und.edu

James Vrtis
james.vrtis@und.edu

Luke Anderson
luke.anderson@und.edu

Tarek Elderini
University of North Dakota, tarek.elderini@und.edu

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/ee-stu

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Haruka Kido, James Vrtis, Luke Anderson, et al.. "Autonomous Gyroscopic 2-Wheel Differential Robot"
(2022). Electrical Engineering Student Publications. 10.
https://commons.und.edu/ee-stu/10

This Technical Paper is brought to you for free and open access by the Department of Electrical Engineering at UND
Scholarly Commons. It has been accepted for inclusion in Electrical Engineering Student Publications by an
authorized administrator of UND Scholarly Commons. For more information, please contact
und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/ee-stu
https://commons.und.edu/ee
https://und.libwizard.com/f/commons-benefits?rft.title=https://commons.und.edu/ee-stu/10
https://commons.und.edu/ee-stu?utm_source=commons.und.edu%2Fee-stu%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=commons.und.edu%2Fee-stu%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/ee-stu/10?utm_source=commons.und.edu%2Fee-stu%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

Autonomous Gyroscopic 2-Wheel Differential Robot

Haruka Kido
School of Electrical Engineering

& Computer Science
University of North Dakota

Grand Forks, ND, USA
haruka.kido@und.edu

James Vrtis
School of Electrical Engineering

& Computer Science
University of North Dakota

Grand Forks, ND, USA
james.vrtis@und.edu

Luke Anderson
School of Electrical Engineering

& Computer Science
University of North Dakota

Grand Forks, ND, USA
luke.anderson@und.edu

Dr. Tarek Elderini
School of Electrical Engineering

& Computer Science
University of North Dakota

Grand Forks, ND, USA
tarek.elderini@und.edu

Abstract—This paper demonstrates the implementation of an
autonomous gyroscopic 2-wheel differential robot, including a
forward and inverse kinematics simulation in MatLAB, a test
hardware robot and programmed demonstration of a simple move
forward and spin left motion, and a final configuration of a
complete square path based on programming kinematics,
gyroscopic speed responses, and remote-control functionality.

Keywords—autonomous robot, gyroscopic control, differential
drive, differential drive robot, waypoint tracking

I. INTRODUCTION
This report outlines a differential drive robot autonomous

motion. The differential drive kinematics analyzes how a
mathematical model of forward and inverse kinematics to
perform an autonomous functioning robot. In a differential-drive
vehicle there are two fixed wheels with a common axis of
rotation, and one or more caster wheels. The two fixed wheels
are separately controlled, while the caster wheel is passive [5].
The creation of the simulation model was redesigned and built
with real parts.

II. MATHEMATICAL MODEL
The mathematical format for this model uses forward and

inverse kinematics for autonomous robotic control. To calculate
the forward kinematics of a differential drive robot, the
following variables are needed: L (length between wheels to
center), r (diameter of wheels), θ (pose orientation), & 𝜑" / v𝜑#
(speed of the right /left wheels) [8]. The right and left wheel
positions are calculated using Equation 1 and Equation 2
respectively [8]. The left and right wheel rotation velocity of the
robot is calculated using Equation 3 and Equation 4 respectively
[8]. The pose of the robot is found using Equation 5.

𝑥%"(𝑟𝑖𝑔ℎ𝑡	𝑤ℎ𝑒𝑒𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =
%67
#
	 (1)

𝑥%#(𝑙𝑒𝑓𝑡	𝑤ℎ𝑒𝑒𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =
%69
#

 (2)

ω"(𝑟𝑖𝑔ℎ𝑡	𝑤ℎ𝑒𝑒𝑙	𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) =
%67
#∗@
	 (3)

ω#(𝑙𝑒𝑓𝑡	𝑤ℎ𝑒𝑒𝑙	𝑟𝑜𝑡𝑜𝑎𝑡𝑖𝑜𝑛	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = −	%69
#∗@

 (4)

B
x
y
θ
F =

⎣
⎢
⎢
⎡
%J
#
∗ 𝑐𝑜𝑠𝜃 %L

#
∗ 𝑐𝑜𝑠𝜃

%J
#
∗ 𝑠𝑖𝑛𝜃 %L

#
∗ 𝑠𝑖𝑛𝜃

%J
#M

− %J
#M ⎦

⎥
⎥
⎤
∗ Q
𝜑"
𝜑#R (5)

III. SIMULATION WORK
The MatLAB simulation includes a waypoint path

simulation using the Jacobian matrix. Using forward kinematics,
the algorithm determines position and orientation of the object
given the values of the coordinate variables. Using inverse
kinematics, the algorithm determines the subsequent coordinate
displacements using the current position and orientation of the
object.

Figure 1 graphically displays the different parameters the
robot needs with respect to the reference frame. The 𝜂 is the
velocity vector/pose for the center of the robot; containing x, y,
and Θ, which respectively are the distance and angular
displacement of the robot. The u and r variables are the forward
and angular velocities, respectively [1].

Fig. 1. Mobile robot reference frame [1]

 The robot waypoint tracking method is found in Figure 2.
The variable ρ in Equation 7 calculate the distance between the
desired pose and current pose. Equation 8 and Equation 9
calculate the angular displacement of the robot. Equation 10
calculates the angular displacement error between 𝜂 the existing
pose, once the margin of error is below a specified tolerance.
Equation 11 is the rotation matrix vector by angle θ about the z-
axis. Found in Equation 12.a is where the matrix controller
adjusts the forward and angular velocities and is dependent upon
the robot platform parameters in Equation 12.a [1].

2

Fig. 2. Mobile robot line of site reference frame [1]

�̇� = U
xV
yV
θV
W	 (6)

𝜌 = Y(�̇�(𝑥) − 𝜂(𝑥, 𝑡))# + (�̇�(𝑦) − 𝜂(𝑦, 𝑡))#	 (7)

𝜃\ = atan(`ab`
cabc

)(t)			 (8)

𝑒d%%e% = U
𝑥\
𝑦\
𝜃\(𝑡)

W (9)

𝑒%f\ghibd%%e% = 		 �̇� − 	𝜂(𝑡)	 (10)

𝐽 = U	
𝑐𝑜𝑠𝜃(𝑡) −𝑠𝑖𝑛𝜃(𝑡) 0
𝑠𝑖𝑛𝜃(𝑡) 𝑐𝑜𝑠𝜃(𝑡) 0
0 0 1

W (11)

Kinematics Velocity Controller

U
𝑢(𝑡)
0
𝑟(𝑡)

W = 	𝑍 = 	 𝐽b" ∗ op
𝐾rd@bc 0 0
0 𝐾rd@b` 0
0 0 𝐾rd@bs

t ∗ p
𝑥\ − 𝑥(𝑡)
𝑦\ − 𝑦(𝑡)
𝜃\ − 𝜃(𝑡)

tu (12.a)

U
𝑢v(𝑡)
0

𝑟v(𝑡)
W = 	op

𝑎/2 𝑎/2
0 0
f
#∗M

− f
#∗M

t ∗ U
𝑢(𝑡)
0
𝑟(𝑡)

Wu											 (12.b)

Position Controller

𝜂(: , 𝑡 + 1) = 𝜂(𝑡) + ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡)	𝑑𝑡 = 0�
𝑡 (13)

Fig 3. Graphical model of robot path

Figure 4 and 5 contain the graphical representation of the x

and y-axis desired endpoints compared to the actual path taken
by the robot simulation. The simulation will continue the loop
to find the desired location until ρ is less than or equal to
provided margin; however, the performance of the simulation
may provide unrealistic results if the margins are too restrictive.

Fig 4. Graphical model of y-axis robot path versus time

3

Fig 5. Graphical model of x-axis robot path versus time

IV. EXPERIMENTAL WORK
The hardware implementation requires experimental

configuration of the 2-wheeled autonomous gyroscopic
differential drive robot using a programmable Arduino UNO
R3. We build a 2WD differential robot to run a preliminary test
of the differential drive script enabled to configure motion
control to 2 encoder-configured TTL motors from L298N dual
H-Bridge motor drivers with methods including move forward,
move back, spin right, and spin left with 2 back motors and 1
front castor baller. Optocoupler isolators as speed sensors are
configured to measure the speed of the robot.

Fig 6. TT DC motors soldered to electrical wires

Fig 7. 2WD autonomous differential test robot

Fig 8. Time Lapse of 2WD differential test robot in forward movement and
spin left movement

The preliminary hardware implementation of the test robot

was successfully programmed with move forward, move
reverse, spin right, and spin left, after attachment of the
interrupts to their ISRs. The test motor movement was enabled
by scripting experimental sequences that push step count and
speed from 0-255 for each kinematic operational function. We
then apply the IR remote control functionality and gyroscopic
velocity and motion control for the final robot configuration.
The circuit wiring diagram of the robot hardware including the
motor driver, motors, encoders, speed sensors, batteries, IR
sensor, gyroscope, and Arduino UNO R3 is shown in Figure 9
below:

Fig 9. Robot hardware circuit schematic diagram

 To achieve the automation for the robot completing the

square simulation, we had to make use of the MPU6050
gyroscope and encoders. In order to achieve this, we utilized
Arduino libraries and examples from Jarzebski and William
Gate. Jarzebski created some good examples for using the
MPU6050 gyroscope, and William Gate has an in-depth tutorial
on how to implement the encoders that use the LM393
Comparator.

Figuring out how to use the MPU6050 was not the easiest,
as the examples provided by Jarzebski lacked good comments
on how the example codes worked but eventually, we found a
code that could make use of the YAW output provided from the

4

MPU6050. Using this we could set a yaw limit. For our case
this value would be 90°. First, we set the YAW value to 0 every
time before we would make a rotation. Next, we made a left
spin function stating that would turn the robot left only while
the YAW value was less than 90. When the YAW value reached
90°, the robot motors were stopped.

Fig 10. Robot turning function code

The code shown in Figure 11 executed the turning function
of our car. The next step to figure out was how to measure the
displacement of the car moving forward. For this, we utilized
code from William Gate who is also a YouTuber who gives
very good (although sometimes exceedingly long) tutorials on
the mechanism of encoders for robots that use TT motors.
Following his example, we converted the steps of the encoder
into a distance value to track the distance the car moved.

Fig 11. Robot controller steps

With his example, we then created autonomous code like
the one previously seen in spin left function. We then created
a simple autonomous loop that would act like a startup
sequence as soon as the robot was powered on.

To achieve remote control, we decided to go with using an
IR remote or in this case a TV remote from a Samsung DVD
player. We chose this remote because the IR LED in the DVD
remote is much stronger than the LED that we get from our
Arduino kits, meaning that we can use it from a good distance.
We did try control the robot using radio frequencies using the
nRF24L01 and was successful however there seems to be some
lag in the code that was not ideal to use. As we plan to use the
robot indoors and the IR option takes up less space on the
Arduino, it was decided that IR was the best option. For the IR
code, we took advantage of the IR remote library and example
code from Ken Shirriff, which can take the blinking pattern

from an LED source and translate it into a binary which is then
translated into a unique hexadecimal number. Using these
unique numbers, we created “if” and “else” statements that
would perform functions for certain movements such as
forward, reverse, right and left. The final robot configuration
implementing the autonomous and remote-controllable square
path is shown below in Figure 12.

Fig 12. Autonomous gyroscopic robot configuration for square path
implementation

Fig 13. Final robot configuration with fighting tail and covered electrical parts

V. DISCUSSION
Simulations: The simulation model had an error with the

line-of-sight method used to perform the autonomous motion.
The error would occur when �̇� contained a value that was
previously used in a preceding desired destination. The
simulation error is corrected when the robot aligns itself in the
negative �̇� orientation. The error may be caused by the
mathematical line of site method to find the robot's path from
the starting location to the endpoint location.

Hardware Implementations and Test Drives: The test
hardware implementation, possibly due to electrical
conductivity insufficiencies, power consumption issues, or
motor driver inefficiencies, did not function to continue the
motion drive in any direction after the first implementation.
Researching the programming requirements as far as viable
initiate states and adjustments to meet motion criteria can take
the iterative approach, with obvious benefits from having

5

experience in fundamental computer science concepts such as
block code structure requirements, syntax, and acceptable logic.

VI. CONCLUSION
Robotics with Arduino makes peripheral interfacing

accessible and flexible but at the cost of power consumption
sensitivities or inaccuracies. The physics of parts’ electrical
characteristics and material boundary conditions make Robotics
a challenging subject between computer science, electrical
engineering, and applied material science.

VII. FUTURE WORKS
 To improve the simulation, researching the previously
mentioned error when �̇� contains a value used in a preceding
desired destination needs a better understanding. Additionally,
the mathematical model needs improvement by adjusting the
velocity and computational time for a loop needed for the robot
to move from the starting to the ending point. To improve the
drive test, it would be worth implementing the test hardware
system using all new parts rather than using some old parts and
in a configuration that relies on motors that have pre-soldered
wire leads so that electrical conductance is at optimum quality.
Adding machine vision for image-processing in an autonomous
robot can also enhance the capabilities of the differential drive
remote-controlled robot.

VIII. REFERENCES
[1] A. Thondiyath and S. Mohan, "Wheeled Mobile Robots,"
Indian Institute of Technology, Palakkad.

[2] Siciliano, Bruno, Sciavicco, Lorenzo, Villani, Luigi, Oriolo,
Giuseppe, "Robotics Modelling, Planning and Control,"
Springer, 2009, ISBN: 978-1-84628-642-1

[3] Warren, John-David, Adams, Josh, Molle, Harald, "Arduino
Robotics," Technology in Action, 2011
[4] Edwards, Stephen A., "Assembly Instructions for a Motor
Robot Car Kit 2WD, L298N Motor driver, HC-SC04 Ultrasonic
module, Arduino," July 2018

[5] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo,
“Robotics Modelling, Planning and Control,” Springer, 2009.

[6] “Arduino UNO R3,” Arduino.cc,
https://docs.arduino.cc/hardware/uno-rev3

[7] Muir, Patrick F., Neuman Charles P., “Kinematic Modeling
of Wheeled Mobile Robots,” Department of Electrical and
Computer Engineering, The Robotics Institute, Carnegie-
Mellon University, 1986.

[8] Siegwart, Roland., Nourbakhsh Illah R. “Introduction to
Autonomous Mobile Robots” Massachusetts Institute of
Technology, 2004.

	Autonomous Gyroscopic 2-Wheel Differential Robot
	Recommended Citation

	Microsoft Word - EE428_Final_Project_Report.docx

