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Abstract 

This study explored the production of aromatic hydrocarbons from the longer-chain alkenes 

produced by the pyrolysis/cracking of crop oils. 1-Tetradecene, serving as a model compound for 

these alkenes, was reformed in a batch reactor with a HZSM-5 catalyst to produce a liquid 

hydrocarbon mixture with a high-aromatic content. These reactions resulted in a >99% 

conversion of the 1-tetradecene feedstock with a yield of up to 22 wt% of aromatic 

hydrocarbons. Surprisingly, isomers of C3- substituted benzenes along with xylenes and 

diaromatics (lower homologs of alkyl-substituted indanes and naphthalenes) were the main 

aromatic products rather than their lower-molecular-weight (MW) homologs, benzene, toluene, 

ethylbenzene and xylenes, which are commonly formed with high selectivity during zeolite-

catalyzed reforming. The recovery of higher-MW aromatics, and particularly bicyclic 

naphthalenes and indanes, provides mechanistic insights for zeolite-catalyzed alkene reforming 

reactions suggesting that these higher-MW aromatics are likely formed near the catalyst surface 

at pore openings. Furthermore, the production of acyclic diene intermediates in the size range of 

C7–C10 provides insight into the overall reaction pathway. The results suggest that this reaction 

pathway may be a commercially viable option for the production of renewable C3-substituted 

aromatic chemicals/ chemical intermediates as coproducts to complement the kerosene and 

diesel fuel blendstocks that are the primary products from crop oil cracking. 

Keywords: Renewable aromatics, Catalytic reforming, HZSM-5, Crop oils, Alkylbenzenes 

 

 

 

 



Introduction 

 Previous work reporting the noncatalytic cracking of crop oils in a continuous pilot scale 

system has shown that, under low-pressure conditions, a significant fraction of the liquid product 

is obtained in the form of 1-alkenes (Seames et al., 2017). The 1-tetradecene and other C14–C17 

terminal alkenes, which are formed as a result of the deoxygenation or cleavage of C16 and C18 

fatty acids, may be valuable feedstocks. These fatty acids are the main structural components of 

triacylglycerol oils, such as crop oils (soy, corn, canola, etc.), algal oil, and microbial oils, and of 

fatty acids such as restaurant waste cooking oils and animal fats. 

 Rather than simply hydrogenating these alkenes to alkanes, it may be possible to convert 

them into aromatic compounds, which may be more useful for some applications. For example, 

aromatic hydrocarbons are used in motor gasoline to increase its octane rating and as chemical 

intermediates for the manufacture of polymers, resins, industrial fibers, and elastomers. Low- 

molecular-weight (MW) aromatics, particularly BTEX (benzene, toluene, ethylbenzene, and 

xylenes), are also used as solvents. 

 Recent research has primarily focused on the production of aromatic compounds from 

light alkanes and alkenes (Bhan and Delgass, 2008; Smiešková et al., 2004). ZSM-5 catalysts, 

either in their plain hydrogen form or doped with transition metals (Ga, Zn), have been shown to 

be efficient catalysts for facilitating the aromatization of light alkenes such as ethene, propene, 

and butene (Fegade et al., 2013). This particular zeolite proved to be most selective, as both the 

BTEX products and the anticipated C2 intermediates are known to fit perfectly into this zeolite’s 

cavity (Olson et al., 1981). Indeed, BTEX has been shown to be the primary class of cyclic 

products generated, with toluene being the main product within the BTEX group (Bhan and Del- 

gass, 2008; Fegade et al., 2013; Hodala et al., 2016; Smiešková et al., 2004). 



 Long et al. observed a similar trend to light alkene reforming when n-octene was used as 

a feedstock. Toluene and xylenes were shown to be the major products from the aromatization of 

n-octene over nanoscale HZSM-5 catalysts (Long et al., 2009). Similar to light alkene 

aromatization, n-octene aromatization over nanoscale HZSM-5 catalysts produced greater yields 

of xylenes at lower temperatures, whereas benzene and toluene dominated the products at higher 

temperatures (Long et al., 2008). A similar trend was observed by Nash et al. for 1-hexane and 1-

octene conversion using Ga-doped HZSM-5 (Nash et al., 1996), although the two studies on 1-

octene conversion showed significant differences both in the aromatics yield (30–45% vs. 10–

20% and 50–75% (Long et al., 2008;Long et al., 2009 ; Nash et al., 1996)) and selectivity 

(xylenes vs. toluene being the main aromatic product (Long et al., 2009; Nash et al., 1996)). 

These and similar observations can be explained by zeolite-catalyzed dealkylation of C8 and 

higher-MW aromatics at higher temperatures (Asomaning et al., 2014a, 2014b; Bhat and Halgeri, 

1993; Mäki-Arvela et al., 2007; Maslyanskii et al., 1965). It is also worth noting that significant 

concentrations of larger-sized BTEX aromatics, i.e., xylenes, have been produced from 1-hexene 

and octene when the residence time is increased, suggesting that even higher-MW aromatics may 

become major products under certain conditions (Long et al., 2009; Nash et al., 1996). 

 For the present study, we postulated the production of similar aromatics to those found in 

the previous studies with longer carbon chain-length feedstock alkenes. However, to the best of 

our knowledge, no work has been conducted to date to study the aromatization of 1-alkenes 

having a chain length greater than 10 carbon atoms. Thus, this study represents a first exploratory 

effort in this area of research. 

 1-Tetradecene was selected as the feedstock as this is a representative compound for the 

longer carbon chain-length alkenes generated during cracking (Seames et al., 2017). The primary 



objective of this work was to determine if these longer-chain 1-alkenes, as represented by the 

model compound 1-tetradecene, can be efficiently converted into aromatics, and whether the 

aromatic products’ speciation and homology profile would be different compared to those 

obtained with lighter alkenes. 

Experimental Procedures 

Experimental Approach and Test Matrix 

 A total of 16 experiments were conducted to meet the objective of this work. First, a set 

of exploratory experiments was performed at varied temperatures (300–375 oC), 1-tetradecene–

to–catalyst ratios (TCR, 10–20), and reaction times (30–60 min) following a two level, three 

factor, and full-factorial experimental design methodology. The main goal of these eight 

experiments was to narrow the operating range of the key reaction parameters. The reaction 

conditions of each experiment can be found in Table 1. 

 Following the exploratory experiments, eight defining experiments were then performed. 

These defining experiments were used to identify the reaction conditions that produce the largest 

yield of aromatics. Homology profiles were then developed to determine the quantity of the 

various aromatic isomers produced. In addition to their use for assessing commercial viability, 

the results obtained from these experiments were also used to draw conclusions regarding the 

reforming mechanisms that occurred during the reaction of crop oil-derived C14–C17 terminal 

alkenes. The reaction conditions of the defining experiments can be found in Table 2. One set of 

the defining experimental conditions was run in duplicate to determine the consistency of the 

experimental results (Experiments 9 and 10). The experimental conditions for these two runs 

replicated the conditions of Run 3 from the exploratory experiments to verify consistency 

between the two experimental sets. 

 



Exp. no. Reaction temp 
(oC) 

Time (min) 1-Tetradecene 

–to–catalyst ratio 

BTEX 

(wt%) 

1 300 30 10 0.1 

2 300 60 10 0.2 

3 375 30 10 3.5 

4 375 60 10 2.2 

5 375 60 20 1.1 

6 300 60 20 0.3 

7 375 30 20 0.7 

8 300 30 20 0 

 

Table 1 Operating conditions applied and BTEX product concentrations (wt% of inlet 1-tetradecene) 

obtained in the exploratory experiments 

 

Exp. no. Reaction temp (oC) Time (min) TCRa
 Gas yield Liquid yield Coke yield Total recovery BTEX 

9 375 30 10 14 68 1.3 83 3.1 

10 375 30 10 9.2 66 1.4 77 3.4 

11 375 30 10 22 61 1.6 90 5.5 

12 320 30 5 11 56 4 80 1.7 

13 320 30 10 2.7 82 0.7 88 0.4 

14 350 30 5 43 38 3.1 96 8.8 

15 350 30 10 6.2 75 0.8 83 1.6 

16 350 30 20 6.6 73 0.8 80 0.7 

17 375 30 20 14 72 0.2 87 1.4 

 

Table 2 Operating conditions applied as well as gas, liquid, and coke yields, and BTEX product 

concentrations obtained in the defining experiments (mass fraction of 1-tetradecene feedstock converted 

into the indicated category, expressed as a %) 
a TCR means 1-Tetradecene-to-catalyst ratio. 

 

Experimental Setup and the Reforming Reactor 

 

A Parr (Moline, IL, USA) series 4575 fixed head, bench top, high-temperature, and high-

pressure autoclave-type reactor was used as the reforming reactor, as shown in Fig. 1. This 

reactor (500 mL) was equipped with a cooling channel to control the reaction temperature and a 

stirrer that agitated the catalyst and reaction mixture. The reaction temperature was controlled 

and monitored using a K-type thermocouple connected to a Parr 4843 controller, which also 



monitored and controlled the impeller speed. The reactor was equipped with a gas inlet 

connected to a nitrogen cylinder to maintain the initial reaction pressures. 

Experimental Procedure 

The ZSM-5 catalyst (CBV 2314–SiO2/Al2O3 ratio = 23) was purchased from Zeolyst 

International, Conshohocken, PA, USA in the ammonium form. As this is a well documented 

commercially available catalyst (Lechert et al., 1989), characterization was not performed. The 

ammonium form was converted into the hydrogen form by calcination at 550 oC for 5 h in an air-

circulated oven, generating an activated HZSM-5 catalyst. 1-Tetradecene (97% purity) and GC 

grade standards were purchased from Sigma-Aldrich (Saint Louis, MO, USA). The standards 

used in the analytical work can be found in Tables S1 and S2, Supporting information. 

To start the reaction, the required quantities of the catalyst (5–20 g) and 1-tetradecene 

(100 g) were introduced to the reactor based on the TCR, shown in Tables 1 and 2. The reactor 

was then purged with nitrogen prior to heating. Once purged, the reactor was heated to the 

desired temperature. The contents were then allowed to react for the allotted time while being 

stirred at 300 rpm after reaching the desired temperature, which took 1–4 h depending on the 

reaction conditions. Upon completion, the reactor contents were cooled down to room 

temperature. Gases were not collected during the exploratory experiments. However, in the 

defining experiments, the gaseous products (at pressures ranging from 100 to 800 kPa) were 

collected in Tedlar gas bags by slowly opening the reactor vent. 

For the exploratory experiments, the reactor contents were then filtered and the liquid 

reformate was collected after the contents of the reactor were cooled. For the defining 

experiments, the entire reactor contents were weighed and filtered to separate the coke/solid 

particles from the liquid reformates. The collected weights were then used to perform mass-



balance closure. The quantity of coke formed was determined by subtracting the weight of the 

catalyst fed to the reactor from the solid particles collected after the reaction. The gas bags 

collected at the completion of the reaction were weighed to estimate the gaseous product mass. 

The amounts of liquid, solid, and gas collected in the defining experiments are shown in Table 2. 

 

Fig. 1 Batch reactor setup for the aromatization of 1-tetradecene 

Liquid Reformate Characterization 

For the exploratory experiments, gas chromatography with mass spectrometric detection 

(GC–MS, Agilent 5890 Series II with 5973 MS [Agilent Technologies, Santa Clara, CA, USA]) 

was employed for the determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) 

only as these were the aromatics anticipated based on previous work with shorter chain 1-alkene 

reforming. The temperatures of the GC injector and a transfer line to the MS detector were set at 

300 oC and 280 oC, respectively. The oven temperature program was started at 40 oC for 5 min, 

then ramped at 15 oC min
−1 to 310 oC and held at this temperature for 5 min. The sample 

injections of 1.0 μL were performed in the split mode (1:20) at a constant helium flow rate of 1.5 

mL min
−1

. A 42-m DB–5MS column (J&W Scientific, Inc., Folsom, CA, USA) with a 0.25-mm 

I.D. and a 0.25-μm film thickness was used for all separations. The GC–MS analysis was 

performed with electron ionization and a solvent delay of 4 min in a mass range of 50–500 



amu. The BTEX quantification was performed using a calibration between 0.01 and 5.0 wt%, 

with 2-chlorotoluene as an internal standard to control for volume changes (Table S1). 

A more detailed reformate characterization was performed on the collected liquid product 

of the defining experiments using the GC–MS system described above. The detailed 

characterization was based on a previously developed method (Štávová et al., 2012) by 

quantification of specific aromatic compounds. The temperature program started at 35 oC for 5.0 

min followed by a 35 oC min−1 gradient to 100 oC, then 10 oC min−1 to 320 oC, and held for 5 

min. 

The individual aromatics were then identified based on their GC retention time and 

pattern of homolog and isomer elution as detailed elsewhere (Kubátová et al., 2012; Štávová et 

al., 2012). The quantification was based on BTEX and monoalkylbenzene (n-propyl-, butyl-, and 

hexyl-), and naphthalene standards using an internal standard calibration based on 1,4-

dichlorobenzene. The isomers (e.g., C3- substituted benzenes) of these compounds were 

identified based on extracted ion chromatograms (Fig. 2) and mass spectra confirmation. This 

quantification allowed an estimate of the total aromatic hydrocarbons and their main types to be 

obtained. The results were reported as the mass fraction of the 1-tetradecene feedstock that was 

converted into the corresponding compound or compounds, expressed as wt%. It should be noted 

that this is a more rigorous concentration measure than is often reported in many studies and care 

should be taken not to compare these concentrations to concentrations reported as a fraction of 

the normalized total of mass that eluted and was quantified in the MS. 

An even more detailed identification and semiquantification, at the level of other 

individual chemical species (beyond those specified above), was performed for selected samples 

from Experiments 9, 10, and 13. Due to the limited availability of all isomeric aromatic 



hydrocarbons with long side chains, the use of chromatographic standards for all products was 

not feasible. Thus, only a ‘tentative’ yet likely identification was conducted, being based on 

either: (1) direct confirmation from a NIST MS 2005 library match of at least 70% or (2) a match 

of at least 40% when verified by visual mass spectra confirmation combined with a match of the 

observed elution profile of Cn- substituted isomers with the retention time pattern of the 

 

Fig. 2 Representative GC–MS chromatograms obtained using HZSM-5 at 375 oC with a 1-tetradecene–

to–catalyst ratio of 10 and reaction time of 30 min. The separate panels show the total ion current (TIC) 

and extracted ion chromatograms of characteristic ions of alkenes (b) and molecular ions of alkylbenzenes 

of increasing size (c– g). IS denotes the internal standard, which shows in chromatograms as either one 

isotopic line at m/z of 148 or a fragmentation product at m/z of 83 

 



corresponding identified Cn-1 homologs (see references Stanciulescu et al. (2014) and Štávová et 

al. (2012) for additional details). This identification provided molecular formulae and assignment 

to a specific class of compounds. 

An illustration of the use of a repeating pattern of isomers for a reliable identification of 

each of the homologs within the chromatographic elution profile is provided in Figs. 2 and 3 for 

monoaromatic hydrocarbons and naphthalenes, respectively. The MS data were further refined 

using characteristic ions that differ from each other by 14 amu (the MW of the CH2 group 

distinguishing the adjacent homologs) to obtain semiquantitative homology profiles (Figs. 2 and 

3). For monoaromatic hydrocarbons (Fig. 2) and highly substituted naphthalenes (Fig. 3), this 

method resulted in unambiguous peak assignment to certain homologs, e.g., C4-substituted 

benzenes or naphthalenes. However, the common ions used for the identification of naphthalene 

(top of Fig. 3) and indane homologs turned out to be less specific. For these homologs, the 

identification was conducted either using standards, as for nonsubstituted naphthalene (or indane, 

not shown), or by using the library match as described above within a certain window of 

retention times for specific homologs, as for C1–C2-substituted naphthalenes (Fig. 3) and all 

remaining indanes (not shown). 

The retention times, standards, quantification, and confirmation ions used for the analysis 

of the most abundant aromatic hydrocarbons in the defining experiments are listed in Table S2. 

Results and Discussion 

Exploratory Experiments 

Table 1 presents the total BTEX product concentration obtained in the exploratory 

experiments. The results show that the highest amount of BTEX aromatics produced was 3.5 

wt% of the 1-tetradecene feedstock loading (Experiment 3). The remaining experiments only 



produced a maximum of 2.2 wt% BTEX. These low BTEX yields were surprising, as we were 

expecting much higher conversions based on previous work with lower-chain alkenes (Long et 

al., 2009; Nash et al., 1996). Based on these results, we decided to perform a more 

comprehensive analysis during the subsequent defining experiments, described below. 

 

Fig. 3 Representative GC–MS chromatograms obtained using HZSM-5 at 375 oC with a 1-tetradecene–

to–catalyst ratio of 10 and a reaction time of 30 min. The separate panels show the total ion current (TIC) 

and extracted ion chromatograms of characteristic ions of (b) naphthalene (con- firmed by a matching 

retention time of the corresponding pure standard) and (c–g) alkyl naphthalenes. Multiple peaks for m/z = 

128 are due to alkylnaphthalene fragmentation 

 

The Table 1 data suggest that a reaction temperature of 300 oC is too low for the 

conversion of 1-tetradecene into aromatic compounds while reaction temperatures above 375 oC 

led to very high gaseous product yields (from preliminary experimental observations, data not 

shown). For these reasons, the subsequent defining experiments (Runs 9–16) were conducted 

over a temperature range of 320–375 oC to identify the conditions that produce the greatest 

amount of aromatics while minimizing the formation of coke and gaseous products. 



The exploratory experimental data also showed that the reaction time was an insignificant 

parameter to the total amount of BTEX produced within the bounds of these experiments. 

Table 1 results show that, as the TCR decreased, there was an increase in the BTEX 

concentration in the resulting product. However, lowering this ratio may further result in a 

significant increase of the gas-phase product yield, as will be discussed in the next section. To 

explore the range of this parameter further, the TCR was varied from 5 to 20 in experiments 9–

16 (Table 2) to determine the range that produces the highest yield and concentration of 

aromatics in the reformate. 

Defining Experiments 

Table 2 provides a comparable summary of the results obtained from the defining 

experiments as that provided in Table 1 for the exploratory experiments. In these experiments, 

the gas phase generated during the experiments was captured and the coke generated was 

quantified to allow complete mass-balance closure. Experiments 9 and 10 duplicated the best 

conditions from the exploratory runs and they are consistent with those obtained in exploratory 

Run 3. 

The liquid product obtained from the defining experiments was analyzed using a more 

comprehensive analytical method than the liquid product obtained from the exploratory tests. A 

significant consequence of using the more comprehensive analytical method was the discovery of 

substantial quantities of higher-order aromatics in the liquid product. For example, as shown in 

Table 3, the total concentration of aromatics produced in Experiment 9 was 11%, with only 3.1% 

of these aromatics identified as BTEX compounds (which matches/verifies the results from 

exploratory experiment Run 3). This is a surprising result as, to the best of our knowledge, no 

previous studies have reported a significant generation of higher-order aromatics when the 



reforming of 1-alkenes is facilitated by an HZSM-5 type catalyst. Possible explanations are 

discussed under the heading “mechanistic insights,” below. 

The results presented in Table 3 also show that the highest concentration of aromatics 

produced was 22% (Experiment 13). This result was obtained at an intermediate reaction 

temperature of 350 oC and a TCR of 5. It should be noted that the gas yield was very high from 

Experiment 13, namely 48%. When the TCR was increased from 5 (Run 13) to 10 (Run 14), the 

gas production decreased from 48% to 6%, but the total aromatics yield decreased from 22% to 

7%. When the reaction temperature was then increased from 350 oC (Run 14) to 375 oC (Runs 3, 

9, and 10), the total aromatics yield increased to ca. 10% while the gas yield increased to ca. 

12%. Coke yields were similar and low (less than 2%) for all of these conditions. 

Exp. 

no. 

Benzene Toluene C2 

Benzenes 

C3 

Benzenes 

C4 

Benzenes 

C5 

Benzenes 

C6 

Benzenes 

Alkyl– 
naphthalenes 

Total 

aromatics 

1-Tetradecene 

conversion 

9 0.17 0.75 2.2 2.6 3.2 0.84 0.43 1.1 11 >99.9 

10 0.20 0.89 2.3 2.5 2.7 0.68 0.14 0.71 10 > 99.9 

11
a
 0.12 1.2 4.3 4.4 5.2 0.86 0.37 0.40 17 99.7 

12 0.13 0.30 1.2 1.2 2.2 0.68 0.39 0.54 6.7 99.8 

13 ND
b

 0.20 0.23 0.46 0.55 ND
b

 0.10 ND
b

 1.5 ND
b

 

14 0.34 2.3 6.2 4.4 4.9 1.3 0.47 2.2 22 NDb
 

15 0.13 0.30 1.2 1.4 2.2 0.79 0.39 0.52 7.0 >99.9 

16 0.06 0.15 0.46 0.37 0.44 0.05 0.02 0.12 2.5 99.2 

17 0.05 0.22 1.1 1.0 1.2 0.23 0.15 0.13 5.0 99.2 

Table 3 Occurrence of the main classes of compounds recovered in defining experiments, identified and 

quantified using GC–MS analysis (the mass fraction of 1-tetradecene feedstock converted into the 

indicated compound class, expressed as a %) 
a Experiment 11 has been rejected as an outlier. 
b ND denotes below the limits of detection. 

 

These results suggest that the optimum reaction conditions will depend upon the ultimate 

objective of the process. If the objective is to maximize aromatics production, then the near 

optimum conditions are those of Run 13 and the total aromatics yield will be on the order of 22 

wt% of the 1-alkene feedstock loading. However, if the objective is to coproduce aromatics as a 

by-product while maximizing liquid-phase hydrocarbons that can be utilized in transportation 



fuels or to produce other chemical products, then the near optimum conditions are those of Run 

9/10, which generates a total aromatics content of 11/10 wt% with only 14/9% gaseous product 

production. 

 

Fig. 4 Comparison of aromatic hydrocarbon yields obtained by 1-tetradecene aromatization in the 

exploratory experiments when varying: (a) reaction temperature (where the 1-tetradecene–to–catalyst 

ratio was 10 and time was 30 min) and (b) the 1-tetradecene–to–catalyst ratio (where temperature was 350 
oC and time was 30 min). The Y axis represents the concentration (wt%) of aromatic hydrocarbons in the 

product 

 

Trend Analysis from the Detailed Analytical Results 

The trends in alkyl–aromatic hydrocarbon yields, as shown in Fig. 4, are similar for 

BTEX and their higher-MW homologs. A lower TCR and higher temperature promoted the 

formation of all aromatics. The TCR trend confirms that the catalyst does play a role in 

facilitating the aromatization reactions. The trend, along with the gas yield data from Table 2, 



also shows that as greater amounts of catalyst are added (thus lowering the TCR), the formation 

of small C2– C3-size intermediates of aromatization increases, leading both to more gas-phase 

products and higher yields of aromatics. 

The reaction temperature trend suggests that, due to the length of the 1-tetradecene 

molecule, it needs to cleave into small-chain alkenes prior to the aromatization process. Previous 

work has shown that such cleavage or cracking reactions become significant as temperatures near 

or exceed 400 oC (Seames et al., 2010), with or without a catalyst. Thus, it is not surprising that 

higher yields were observed at reaction temperatures exceeding 350 oC. 

Therefore, the general main reactions for high-MW alkenes, such as 1-tetradecene, 

appear to be similar to those postulated in the literature for zeolite catalytic conversion of low-

MW alkenes into aromatic hydrocarbons. However, the data presented in Fig. 4 and Table 3 

show one significant and surprising difference in the product composition compared to zeolite-

catalyzed reforming of lower-MW alkenes, the predominance of alkylbenzenes of a size larger 

than BTEX as the main aromatic products. To gain a better understanding of these results, an 

examination of the homology profiles was performed. 

The Homology Profiles of the Defining Experiments 

A detailed distribution of compounds in the reformate for the experimental conditions 

that yielded the greatest concentration of aromatic products in the resulting reactor liquid product 

(Run 13, Table 2) and also for the replicated experiments that resulted in the greatest yield of 

BTEX during the exploratory experiments (Run 3, Table 1 and Runs  9 and 10, Table 2) was 

developed. The data were obtained from the defining experiments while using the most detailed 

analytical procedure, which allowed all of the major groups of products to be quantitated. The 

homology profiles of the major groups of compounds identified are depicted in Fig. 5. 



 

Fig. 5 Homology profiles of all the major compounds identified during the reforming reaction 

experiments: (a) the results of Experiment 13 under the reforming reaction conditions of 350 oC, a 1-

tetradecene–to–catalyst ratio of 5, and a reaction time of 30 min, and (b) the average results from 

experiments 9 and 10 under the reforming reaction conditions of 375 oC, a 1-tetradecene–to–catalyst ratio 

of 10, and a reaction time of 30 min 

 

A broad range of possible isomers were formed, although their relative amounts varied. 

For C3-substituted and C4-substituted benzenes, isomers were observed in a reasonable 

abundance cf. Fig. 2. By contrast, fewer C5-substituted and C6-substituted aromatic products 

were observed, despite an increase in the theoretical number of isomers in this homological 

series. Apparently, some isomers of higher MW were formed in lower amounts, below their limit 

of quantification or even identification. These compounds remain unresolved in the obtained 

chromatograms, i.e., they form no distinct peaks but instead contribute to a slight increase in the 



background baseline. 

The observed homology profile (Fig. 5) corroborated the hypothesis stated above that 

higher than C4-substituted aromatic products (C9–C10 isomers shown in Fig. 5) were formed in a 

lower abundance. Furthermore, the C8–C10 aromatics range turned out to be the most abundant 

range in contrast to that reported in previous studies where C6–C8 BTEX were the most abundant 

products resulting from the zeolite-facilitated reforming reactions (Bhan and Delgass, 2008; 

Fegade et al., 2013; Hodala et al., 2016; Long et al., 2008, 2009; Nash et al., 1996; Olson et al., 

1981; Smiešková et al., 2004), although a relatively large C9 aromatic fraction was observed in 

the case of n-octene conversion (Long et al., 2009), corroborating the results obtained in our 

study. 

A notable shift of the homology profile toward slightly lower size was observed in 

Experiments 9 and 10, which had a higher TCR (Fig. 5b) compared to Experiment 13, which had 

a lower TCR (Fig. 5a). Consistent with the available literature on zeolites, this observation may 

be ascribed to the cracking of long-chain isomers on the catalyst surface. This phenomenon is 

more prevalent when the catalyst surface is more accessible as it would be when the TCR 

decreases. A similar shift may explain the differences in toluene/xylene observed in two studies 

on 1-octene conversion with HZSM-5 (Long et al., 2009; Nash et al., 1996). 

It was also noted that large amounts of higher-MW alkylnaphthalene and indane 

diaromatics were produced, with C15 naphthalene (i.e., C5 substituted) being the most abundant. 

These products were not observed previously in smaller-size alkene reforming (Bhat and 

Halgeri, 1993; Hodala et al., 2016; Long et al., 2008, 2009; Maslyanskii et al., 1965; Nash et al., 

1996; Olson et al., 1981). Also, acyclic dienes were identified only in Experiments 9 and 10 by 

their library match, based on the fragmentation pattern, which was different from those of the 



corresponding isomers, cycloalkenes and acyclic alkynes (the computergenerated library match 

was confirmed by the manual caseto-case matching of the available MS spectra). Even though 

the concentration of these diene products was so low that they could not be shown in Fig. 5a, 

recovery of these two groups of products leads to the important mechanistic implications 

discussed below. 

Mechanistic Implications of Defining Experiments 

Detailed product analysis (Table 3) showed the nearly complete disappearance of the 

original feedstock, 1-tetradecene, which was recovered only in trace amounts under near 

optimum reaction conditions. Furthermore, scanning the product chromatogram for hydrogen-

unsaturated non-aromatic hydrocarbons revealed that there was less than 3% of alkenes plus 

cycloalkanes species, Fig. 5. Thus, the alkene conversion was nearly complete. 

As for the aromatic products, their average size was larger than that of BTEX, which are 

formed when C2 (adsorbed ethene) intermediates are postulated to dominate the reaction 

mechanism (Asomaning et al., 2014a, 2014b; Bhat and Halgeri, 1993; Fegade et al., 2013; 

Hodala et al., 2016; Kubátová et al., 2012; Long et al., 2008, 2009; Mäki-Arvela et al., 2007; 

Maslyanskii et al., 1965; Nash et al., 1996; Olson et al., 1981; Stanciulescu et al., 2014; Štávová 

et al., 2012). Small-sized primary intermediates definitely form, as the gas-phase product yield 

increases with a decrease of the TCR. However, the results suggest that some of the subsequent, 

secondary intermediates formed as a result of 1-tetradecene cracking are of larger size. This 

conclusion may at first glance contradict the well-known match between the sizes of BTEX 

molecules and the size of zeolite pore openings (Olson et al., 1981). However, larger 

alkylbenzene molecules may be formed from larger intermediates within the near-surface pores 

where the average pore diameter is larger. 



This suggestion is corroborated by the formation of significant concentrations of bicyclic 

indanes and naphthalenes in addition to aromatics (see Fig. 5). While the monoaromatics peak at 

C8–C10, the formation of even larger indanes and naphthalenes, indicates that bicyclic aromatic 

hydrocarbons are formed at sites that are large enough to accommodate these larger 

intermediates. Furthermore, more diaromatics are formed when the TCR is lower, i.e., the 

catalytic sites are less saturated (Fig. 5a compared to 5b). The aromatic product homology profile 

in Fig. 5a then even becomes bimodal, with one maximum at the C8 size for monoaromatics and 

the other one at C12–C13 for diaromatics. Thus, two types of sites appear to be involved. 

This information warrants the question, why these products were not discovered earlier? 

As bicyclic products are not characteristic of the cyclization of smaller-size alkenes, it appears 

that their formation results from a larger-sized starting material, which at least partially cleaves 

into larger than ethene intermediates. While smaller-size intermediates from the initial 1-

tetradecene zeolite-catalyzed cleavage are forced into the depth of the catalyst pores, which 

stabilizes BTEX as products, larger-size primary intermediates may form larger-size secondary 

cyclic intermediates upon cyclization, which are forced toward the catalyst surface where they 

are either released as larger-size monoaromatic products, cracked to smaller-size aromatics, or 

undergo a second cyclization to form bicyclic aromatics. This may explain the shift of the 

aromatic homology profile from C7– C for smaller-size alkene feedstocks to C8–C10 for 1-

tetradecene. Corroborating this hypothesis, C9–C11 aromatics were found to be predominant 

when the carboxylic acids of triacylglycerols, which are also large molecules, were treated with 

zeolites under similar conditions (Benson et al., 2008; Fegade et al., 2015). 

Detailed chemical analysis may also indicate the maximum size of intermediates based 

on the recovery of dienes in Experiments 9 and 10, which had a higher TCR, but not in  



 

Fig. 6 A general overview of the postulated reaction scheme for 1-tetradecene reforming facilitated by a 

HZSM-5 catalyst 

 

Experiment 14, which had a lower TCR. Only dienes within the narrow size range, C7–C10, were 

observed, matching the size of both alkenes recovered in smaller amounts and the ultimate 

products, monoaromatic hydrocarbons (Fig. 5). Such a significant size specificity, combined with 

the observation of diene formation only when there is apparently insufficient catalyst to effect 

complete conversion (high TCR, Fig. 5b), indicates that both dienes and alkenes of this size may 

be direct precursors of the corresponding monoaromatic products. This conclusion stands even if 

some of these tentatively MS-identified acyclic dienes and alkenes are actually their isomers, 

cyclic alkenes and alkanes, respectively. 

Fig. 6 summarizes the overall reaction scheme described above. Under the appropriate 

reaction conditions, 1-tetradecene will decompose into smaller fragments, with the most 

prevalent postulated to be C2
+ radicals on the external surface of the catalyst. Some of these 

fragments migrate to the interior micropores of the zeolite, where they recombine to form 

primarily BTX. Some of these C2
+ radicals combine with larger fragments or with previously 

formed BTX to form higher-order aromatics and polyaromatics in the macropores (entry points 

of the micropores) of the catalyst. The remaining C2
+ radicals and other larger fragments 

terminate as other compounds. 

Conclusions 

A preliminary study was conducted to explore the reforming of crop oil-derived C14–C17 



terminal alkenes, which are formed as a result of the deoxygenation or cleavage of C16 and C18 

fatty acids into aromatics that could be recovered as valuable coproducts from a crop oil 

biorefinery utilizing noncatalytic cracking or similar technologies. 1-Tetradecene was used as a 

model compound to define the near optimum reaction conditions and to evaluate the feasibility of 

aromatics generation from these compounds. 

In the presence of HZSM-5, a fraction of the original 1-tetradecene feedstock can be 

converted to aromatic hydrocarbons, but these will be predominantly larger in size than benzene 

and toluene (>C7). A reaction temperature in the range of 350–375 oC and a TCR in the range of 

5–10 increases the aromatics yield, although gas-phase products may also be formed in 

abundance when the reaction temperature is at the high end of this range and the TCR is at the 

low end of this range. 

With 10–22 wt% of the 1-tetradecene loading converted into aromatic hydrocarbons, it 

may be concluded that these initial results suggest that this reaction pathway may, with further 

development, be a commercially viable option for the production of renewable C3-substituted 

aromatic chemicals/chemical intermediaries from 1-alkenes that originate as crop oils. The 

remainder of the organic liquid product generated during the reforming reactions needs to be 

explored to identify and quantify the other compounds in this mixture, so that these can also be 

exploited. One suggested area of improvement would be to develop catalyst formulations that are 

optimized for alkylbenzene formation from large MW alkenes such as 1-tetradecene. 

Besides aromatics, significant amounts of naphthalenes are recovered, with smaller 

amounts of indanes, alkanes, alkenes, and dienes. Given that the size of the zeolite pores matches 

those of BTEX molecules, larger-size monocyclic and, particularly, bicyclic aromatic 

hydrocarbons are most likely formed at the pore opening, near the zeolite surface rather than 



within the pores themselves as previously postulated. This factor may be characteristic and 

specific for substrates of a large molecular size, such as 1-tetradecene. Therefore, in future 

studies using HZSM-5 to reform other large-sized substrates, particularly those associated with 

crop oil such as waxes, triacylglycerols, etc., it is recommended that the analytical methods 

employed look for and account for aromatics compounds larger than BTEX. 
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