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Abstract: The Lucaogou Formation in Jimuaser Sag of Junggar Basin, China is a typical tight oil
reservoir with upper and lower sweet spots. However, the pore structure of this formation has not
been studied thoroughly due to limited core analysis data. In this paper, the pore structures of the
Lucaogou Formation were characterized, and a new method applicable to oil-wet rocks was verified
and used to consecutively predict pore structures by nuclear magnetic resonance (NMR) logs. To do
so, a set of experiments including X-ray diffraction (XRD), mercury intrusion capillary pressure
(MICP), scanning electron microscopy (SEM) and NMR measurements were conducted. First, SEM
images showed that pore types are mainly intragranular dissolution, intergranular dissolution, micro
fractures and clay pores. Then, capillary pressure curves were divided into three types (I, II and III).
The pores associated with type I and III are mainly dissolution and clay pores, respectively. Next,
the new method was verified by “as received” and water-saturated condition T2 distributions of
two samples. Finally, consecutive prediction in fourteen wells demonstrated that the pores of this
formation are dominated by nano-scale pores and the pore structure of the lower sweet spot reservoir
is more complicated than that in upper sweet spot reservoir.

Keywords: Lucaogou Formation; tight oil; pore structure; prediction by NMR logs

1. Introduction

As a major unconventional resource, tight oil reservoirs have received significant attention for
exploration and development all around the world [1–3]. Tight oil reservoirs are complex and highly
heterogeneous, generally characterized by low porosity and ultra-low permeability [4,5]. Single wells
have no natural production capacity, which requires horizontal drilling and hydraulic fracturing
to obtain economic flow [5–8]. It is necessary to evaluate various properties of such reservoirs
for a better exploitation of the resources. However, macroscopic petrophysical parameters such as
porosity, permeability, and saturation cannot satisfy adequate evaluation of the effectiveness of tight oil
reservoirs. In this regard, pore structures, in particular determine reservoir storage capacity and control
rock transportation characteristics, represent microscopic properties of the rock [9–12]. Therefore,
characterization and consecutive prediction of rock pore structure in wells is a key task in the study of
tight oil reservoirs.

The Permian Lucaogou Formation of Jimusaer Sag, Junggar Basin, China is a typical tight oil
reservoir which has been studied previously in terms of the pore structures. Kuang et al. [13],
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Zhang et al. [14], Zhou [15] and Su et al. [16] used diverse imaging techniques such as CT-scanning,
SEM and FIB-SEM image analysis to qualitatively characterize the pore structures. They concluded
that pore types include organic matter pores, mineral pores, inter-crystalline pore, dissolved pores,
and micro cracks. Zhao et al. [17] presented that the median capillary radius of this reservoir ranges
from 0.0063 to 0.148 µm with an average of 0.039 µm. Zhao et al. [18] studied the complexity and
heterogeneity of pore structures based on multifractal characteristics of nuclear magnetic resonance
(NMR) transverse relaxation (T2) distributions. Wang et al. [19] investigated pore size distributions
and fractal characteristics of this formation by combining high pressure and constant rate mercury
injection data. However, the limited number of core samples could not reflect general properties of this
formation. The NMR logging which is consecutively recording the vertical variations of transverse
relaxation time can reveal pore distributions and is widely used to overcome the discrete data points
that core sample analysis owns.

Researchers have conducted extensive studies on the construction of mercury intrusion capillary
pressure curves by NMR T2 distributions obtained in laboratory [20–27]. The pore structure evaluation
methods by NMR technique are based on the fact the rocks are water-saturated and hydrophilic.
However, in oil reservoirs, it is necessary to correct the effect of hydrocarbons on T2 spectra of NMR
logging. Volokin and Looyedtijn [22,23] first studied the morphological correction of T2 spectra
of NMR logging in hydrocarbon-bearing rocks. The basic idea is that the bound water of the T2

distribution is constant, and hydrocarbon would only affect the free fluid portion of the T2 distribution.
Therefore, when performing a hydrocarbon-containing correction on the T2 distribution, it is only
required to correct the T2 signal of the free fluid portion and remain the bound fluid of T2 signal intact.
Xiao et al. [28] established a method for constructing capillary pressure curves based on J function and
Schlumberger Doll Research (SDR) model. This method used T2 logarithmic mean value (T2lm) as an
input parameter, which makes it possible for the correction of T2 distributions regarding hydrocarbons.
This is possible because T2lm can be calibrated by core values. Hu et al. [29] proposed a novel method
for hydrocarbon corrections where T2 distribution measured by short echo time (TE) was used to
construct the T2 distribution under full-water conditions with long TE time. The difference between
the measured and constructed water-saturated state T2 distributions determines the oil signal and
the water signal, thereby the correction of the hydrocarbon-containing state T2 distribution would
become achievable. Ge et al. [30] proposed a correction method through extracting oil signals from the
echoes, which has been already applied to carbonate reservoirs. Xiao et al. [31] proposed a method to
remove the effect of hydrocarbons on NMR T2 response based on a point-by-point calibration method.
However, the application of these methods would be challenging when the wettability of the reservoir
appears to be oleophilic or neutral. This is because the bulk transversal relaxation time could not
be ignored according to NMR relaxation mechanism [32–34]. Zhao [35] proposed a new method for
evaluating pore structures of reservoirs with neutral wettability and oil-wetting characteristics, but the
method is not firmly verified.

In this research, the major objectives are to: (a) characterize the pore structures by MICP data and
SEM images; (b) further confirm the Zhao method [35] by “as-received” and water saturated state T2

distributions; and finally (c) predict the global features of pore structures via field NMR logs.

2. Methods

2.1. Samples and Experiments

Samples were drilled from the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin.
The Junggar Basin is the second largest inland basin in China, which is located in north of the
Xinjiang Province, Northwest China. The Jimusaer sag is structurally located in the eastern uplift of
the Junggar Basin, adjacent to the Fukang Fault in the south, and the Santai Oilfield and the North
Santai Oilfield in the west [36]. The Permian system is the main source rock strata in the Junggar
Basin. The target Lucaogou Formation was developed in Permain System, which from bottom to
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top includes Jiangjunmiao, Jingjinggouzi, Lucaogou and Wutonggou Formations. The Lucaogou
Formation in the Jimsar Sag is a set of stratigraphic layers deposited in an evaporitic (salt lake)
environment. The formation is generally composed of dolomite dark argillaceous rocks and fine
sandstones. The dolomite is mostly interbedded lacustrine deposits. The reservoir is tight, the
physical properties are poor, and the dark mudstone has a high abundance of organic matter [13,37].
The Lucaogou formation consists of two “sweet spot” reservoirs and the shale source rocks is deposited
between these two sweet spots [13,37]. The average porosity and permeability for “sweet spot”
reservoirs are 9.93% and 0.0233 mD. The average porosity and permeability for non-sweet spot
reservoirs are 7.03% and 0.0013 mD. Figure 1 depicts the depth contour of the top of Lucaogou
Formation and location of the studied wells.
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Mineralogical compositions of samples are determined using X-ray diffraction (XRD) analysis on
non-oriented powdered samples (100 mesh) using an X-ray diffractometer equipped with a copper
X-ray tube that operated at 30 kV and 40 mA [18]. The scan angle range was 5–90◦ at a speed of
2◦/min. SEM was performed on a S4800 scanning electron microscope (Hitachi, Tokyo, Japan) with a
lowest pixel resolution of 1.2 nm and accelerating voltage of 30 kV, following the standards of SY/T
5162-2014 China.

Core plugs were subjected to drying prior to porosity and permeability measurements with a
helium porosimeter. A net confining pressure of 5000 psi (34.47 MPa) was carried on to simulate
the formation pressure during the measurements. Mercury injection capillary pressure curves were
acquired on a mercury porosimeter by following the China Standard of SY/T 5346-2005. Before the
measurements, the samples were subjected to oil washing and drying at 105 ◦C to a constant weight.
The minimum intrusion pressure was set as 0.005 MPa and the maximum intrusion pressure was as
high as 163.84 MPa, corresponding to a pore-throat radius of roughly 4.5 nm.

To verify the method for predicting the pore structures, two rock samples were subjected to NMR
T2 distributions measurements at the “as received” and water saturated conditions in the lab using
a Geospace2 instrument (Oxford, UK). After the measurements on “as received” state sample, core
plugs were cleaned, dried, vacuumed and fully water saturated for water saturated conditions NMR
measurements. The resonant frequency of a Geospace2 instrument is 2 MHZ with the polarization time
or waiting time (Tw), the echo spacing, the number of echoes and the number of scans as 10,000 ms,
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0.3 ms, 4096 and 128, respectively. When the echoes are recorded, the T2 spectra are able to calculate
using the Bulter-Reeds-Dawson (BRD) inversion method [38].

2.2. Prediction Method of Pore Structure by NMR Logs

According to NMR theory, for the T2 distribution of water saturated and hydrophilic rock samples,
the following equation [32,33] was deduced:

1
T2

= ρ
Fs

r
(1)

where r is the pore radius (µm); ρ is surface relaxivitity (µm/s); Fs is the pore shape factor, equals
to 2 and 3 for cylindrical and spherical pores, respectively. In this study, the pores are considered
as cylindrical.

Known by reservoir physics, the relationship between injection pressure and pore throat radius is
given by [39]:

Pc =
2σ cos θ

Rc
(2)

where Pc is the capillary pressure (MPa); σ is the surface tension (mN/m); θ is the contact angle of
mercury in air (◦); and Rc is the pore throat radius (µm).

Assuming Rc to be proportional to r, both NMR and MICP would quantify similar pore size
distributions. Generally, the following equation [22] is used:

Pc = C
1
T2

(3)

where C is the coefficient which can be obtained by capillary pressure curves and nuclear magnetic
resonance experiments of rock samples.

The above equations can also be applied to conventional water-wet reservoirs. As mentioned
earlier, the reservoirs of Lucaogou Formation in Jimusaer Basin, are either neutral or oil-wet. Zhao [35]
proposed a method for evaluating pore structures of oil-wet reservoirs that has been applied to tight
oil reservoirs. He realized that the bigger pores in tight oil reservoirs are highly oil saturated, while
the formation water is mainly occupies smaller pores. The bigger pores are oleophilic and the smaller
pores are hydrophilic. The surface relaxivity of oleophilic pores to oil is lower than hydrophilic pores
to water [40,41], and the lower surface relaxivity would lead to an increase in relaxation time. Hence,
the long-relaxation signal of the NMR T2 spectra of tight oil reservoir rocks is mainly the relaxation
signal of oil (referred to as oil spectrum), while the short relaxation signal of T2 spectrum is mainly the
relaxation of water signal (referred to as water spectrum).

If the water saturation at a certain depth of the reservoir is known, the T2cutoff value for water can
be determined by the following equation [35]:

Sw = (

T2cuto f f

∑
i=i

φiT2i)/
n

∑
i=1

φiT2i (4)

where Sw is water saturation (%); T2cutoff is for determining the water and oil (ms); φi and T2i
are porosity component (%) and T2 corresponding to the ith component; n is the total number of
T2 distribution.

After determining the T2cutoff value, the water signal and the oil signal of the T2 spectra can be
respectively converted into the size distributions for pores containing water and oil by utilizing the
hydrophilic pore surface relaxivity and the oleophilic pore surface relaxivity:

ro = 2ρoT2 (5)
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rw = 2ρwT2 (6)

where ro and rw respectively represent the radius of pores containing oil and water (µm); ρo and ρw

respectively represent surface relaxivitity of oleophilic pore and hydrophilic pore (µm/s).
By superposing the size distribution of the water-containing pores with the size distribution

of the oil-bearing pores, the pore size distribution of the whole rock can be obtained. Then, the
Equations (2) and (3) can be employed to construct the capillary pressure curves.

The oil and water two-phase signals are cut directly by the T2cutoff values, and the resulting pore
size distribution would not be smooth. The weight function of the pore fluid was introduced as [35]:

S(T2) =
1

1 + (T2/T2cuto f f )
m (7)

where m is the coefficient that controls the width of the transition zone for the water-containing and
oil-bearing pores.

3. Results and Discussion

3.1. Mineralogical Compositions

The mineral compositions of sixteen samples obtained from the XRD analysis are listed in Table 1.
As can be observed from this table, plagioclase and dolomite are the two most abundant minerals.
The plagioclase contents vary from 13.7% to 44.4% with an average value of 30.9%. The dolomite
content in the samples varies between 0–49.4% with an average value of 28.2%. The next most abundant
mineral is quartz, ranging from 13% to 30% with an average value of 19.4%. Each sample has clay and
K-feldspar minerals, with the average values of 8.9% and 4.4%, respectively. The calcite content of
these samples found to vary significantly. Seven samples out of sixteen did not contain calcite, while
the maximum content of calcite reaches 22.9% in the rest of the samples. In addition, a small fraction
of pyrite and siderite was also detected in some samples.

Table 1. Mineralogical composition (wt.%) of the sixteen core samples of tight oil reservoirs.

No. Clay Quartz K-Feldspar Plagioclase Calcite Dolomite Pyrite Siderite

1 4.2 15.9 2.2 35.3 17.5 24.9 0.0 0.0
2 6.3 21.4 7.9 37.5 1.0 18.9 0.0 7.0
3 3.4 13.0 6.1 27.1 8.7 41.7 0.0 0.0
4 9.8 16.5 3.9 41.0 13.3 15.0 0.0 0.5
5 5.9 15.8 4.9 32.5 0.5 40.1 0.3 0.0
6 7.5 16.3 5.0 38.4 22.9 9.9 0.0 0.0
7 6.0 15.6 4.4 25.4 0.0 48.6 0.0 0.0
8 6.9 17.8 5.4 44.4 0.0 23.6 0.0 1.9
9 12.2 24.7 4.5 31.1 0.0 26.5 1.0 0.0
10 13.9 23.2 3.9 29.4 21.9 7.7 0.0 0.0
11 18.2 16.4 4.7 27.7 0.0 32.5 0.5 0.0
12 10.8 20.3 3.8 25.6 0.0 38.5 1.0 0.0
13 11.6 22.6 2.5 13.7 0.0 49.4 0.0 0.2
14 7.6 32.0 3.9 34.1 22.0 0.0 0.4 0.0
15 11.8 18.3 5.8 32.3 0.0 31.3 0.0 0.5
16 6.6 21.0 1.8 18.2 5.8 41.2 5.4 0.0

Ave. 8.9 19.4 4.4 30.9 7.1 28.2 0.5 0.6

3.2. Pore Types

According to the SEM image analysis, the primary pores in the tight oil reservoirs of the Lucaogou
Formation are very rare, and the main pore types are secondary pores developed during the diagenesis
stage. The pores of the studied areas can be divided into the four types: intragranular dissolution
pores, intergranular dissolution pores, micro fractures and clay pores.
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Intergranular dissolved pores were formed by the selective corrosion of the edge of clastic grains,
early intergranular cement and matrix. This type of pore is the main reservoir porosity in the Lucaogou
Formation in the studied area. These pores are mainly distributed between the dolomitic sand crumbs
and belong to cement dissolved pores. Intergranular dissolved pores usually develop between albite
(a type of sodium feldspar) in dolomitic siltstone. The pore sizes are commonly less than 10µm,
as shown in Figure 2a–c.

Intragranular dissolved pores refer to pores formed inside the grains or grains due to selective
dissolution. They are also common pore types in the reservoir understudy of the Lucaogou Formation
(Figure 2c,d). The dissolved pores in the sand are mainly formed by the dissolution of albite;
the dissolved pores in the debris often show the dissolution of sodium feldspar, while the dissolved
pores in the dolomite are usually the result of residual dissolution of internal calcite.
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Clay pores refer to pores within clay aggregates of the studied samples. The clay pores were
found in the illite/smectite mixed layers (Figure 2e) and chlorite minerals (Figure 2f). The sizes of the
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clay pores are smaller than the dissolution pores and mainly distributed between 300 nm and 800 nm
in size. Fracture pores refer to the pores that penetrate into the particles and resemble cracks. They are
not structural cracks in the traditional sense, but the fluid channel formed by organic acid dissolution
(Figure 2g,h).

3.3. Petrophysiccal Properties and Mercury Injection Capillary Curves

The porosity, permeability and pore structure parameters obtained from MICP experiments
are listed in Table 2. The porosity ranges from 7.38% to 20.1% with an average value of 12.83%.
The permeability fluctuates from 0.0023 mD to 0.1487 mD. The logarithmic average value of the
permeability is 0.01 mD. Only two samples (No. 1 and 2) were measured with the permeability greater
than 0.1 mD, representing the tight nature of the studied samples.

Table 2. Petrophysical parameters and types of tight oil reservoir sample.

No.
Porosity Permeability Pd P50 Smax Rm

Type
(%) (mD) (MPa) (MPa) (%) (µm)

1 14.22 0.1142 0.83 6.32 90.93 0.26 I
2 16.02 0.1487 1.19 6.51 99.25 0.19 I
3 15.19 0.0799 1.28 4.96 96.99 0.18 I
4 14.14 0.0203 1.72 11.46 94.57 0.13 I
5 15.86 0.0424 2.35 9.64 98.16 0.10 II
6 13.43 0.0128 3.19 15.09 94.38 0.07 II
7 13.63 0.0275 3.38 14.97 95.57 0.07 II
8 13.63 0.0323 3.38 16.94 93.09 0.07 II
9 14.59 0.0110 4.69 19.09 96.59 0.05 II

10 7.38 0.0034 4.69 19.18 91.71 0.05 II
11 8.26 0.0042 7.03 39.8 92.95 0.03 III
12 10.3 0.0040 6.13 60.23 89.43 0.03 III
13 8.28 0.0023 11.18 83.02 82.56 0.02 III
14 20.1 0.0168 10.42 66.27 76.68 0.02 III
15 10.23 0.0042 6.55 63.48 69.55 0.03 III
16 10.0 0.0025 13.01 66.6 76.98 0.02 III

Ave. 12.83 0.01 5.06 31.47 89.96 0.08

Displacement pressure (Pd) represents the starting pressure of mercury entering the rock
sample [42]. It is an important parameter to characterize the permeability of the rock sample.
Small displacement pressure shows that the mercury is easy to be squeezed into the rock sample,
attributing to a large throat radius, and higher permeability. The Pd values of the studied samples are
relatively high, varying from 0.83 MPa to 13.01 MPa with an average value of 5.06 MPa. Saturation
median pressure refers to the corresponding capillary pressure when the non-wetting phase saturation
is 50% on the capillary pressure curve [42]. It ranges from 4.96 MPa to 83.02 MPa with an average
of 31.47 MPa. The maximum mercury intrusion saturation (Smax) of the samples found to vary from
69.55% to 99.25% with an average of 89.96%, demonstrating that 89.96% of pores are greater than
4.5 nm (163 MPa of maximum mercury intrusion pressure). The mean capillary radius (Rm) varies
from 0.02 µm to 0.26 µm with an average value measured to be 0.08 µm. In summary, the displacement
pressure and median pressure are higher, and the capillary radius is smaller, revealing a poor pore
structure characteristic of the samples.

MICP parameters Pd, Pc50, Smax, Rm are displacement pressure (MPa), median pressure for 50%
mercury intrusion saturation (MPa), maximum mercury intrusion saturation (%), and mean pore throat
radius (µm), respectively.

The MICP curves are shown in Figure 3. Based on the shape of these curves and their displacement
pressure values, the rock samples were divided into three types: displacement pressure <2 MPa,
2–5 MPa and >5 MPa. Red, black and blue lines represent the types I, II and III, respectively. Type III
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rocks have the highest displacement pressures and the lowest maximum mercury intrusion saturation.
Type I rocks have the smallest displacement pressures. Type I rocks have relatively good pore structure,
whereas Type III has the worst pore structure. Unlike conventional reservoirs, the curves do not have
the inflection point separating larger and smaller pores, indicating that larger pores do not exist in the
tight oil reservoir samples.

The pore size distributions were calculated using Equation (2). The average pore size distributions
for these three types are presented in Figure 4. These pore size distributions are found to be unimodal.
The pore size distribution of Type I rocks is the widest, while Type II is the narrowest. The peaks of
pore size distributions for these three types are 0.144, 0.036 and 0.009 µm, respectively. The type I rock
pores are mainly dissolution pores, type III rock pores are clay pores. This can be confirmed by the
cross plot of permeability and displacement pressure with clay and plagioclase contents. As it can be
observed from Figure 5, the permeability is negatively correlated with clay contents and positively
correlated with plagioclase contents. In Figure 6, the displacement pressure is positively correlated
with clay contents and negatively correlated with plagioclase contents. The clay pores are attributed to
clays, and part of dissolution pores are attributed to feldspar.
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Figure 3. Classified capillary pressure curves. Red, black and blue lines represent the types I, II and
III, respectively.
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Figure 5. The cross plot of permeability with clay and plagioclase contents.
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Figure 6. The cross plot of displacement pressure with clay and plagioclase contents.

3.4. Prediction by NMR Logs

3.4.1. Model Verification

Zhao [35] used several capillary pressure curves and their corresponding T2 distributions from
filed NMR logging to verify the model. However, the model was not fully verified by the NMR
measurements in the laboratory. Figure 7a displays the T2 distributions for Sample M1 at both “as
received” and water-saturated conditions. The “as received” state T2 distribution is bimodal and wider,
which is similar to the T2 characteristics of the field NMR logging, while the water saturated state T2

distribution is narrower. The porosity and permeability for this sample is 12.7% and 0.0308 mD.
Using Equation (7), the “as received” state T2 distribution was divided into two segments: water

and oil signal distributions, as shown in Figure 7b. In this case, the T2cutoff was determined as 6.2 ms
according to the saturation that was obtained from core analysis. The coefficient m was set as 4, equal
to Zhao [35] calculations. The green dotted line represents weight function S(T2).

The different values for surface relaxivity of the hydrophilic and oleophilic pores were used to
calculate the pore size distributions from water and oil signal distributions (Equations (5) and (6)).
The water-containing pore, oil-bearing pore and total pore size distributions are shown in Figure 7c
with the peaks for the pore size distributions at 13.8 nm, 66.6 nm and 15.9 nm, respectively.

The corrected T2 distribution for water saturated state can be obtained using the total pore size
distribution and surface relaxivity of the hydrophilic pores from Equation (5). The corrected and
measured T2 distributions for water-saturated state are shown in Figure 7d where both T2 distributions
are almost overlapping (compare with Figure 7a). The difference between the two T2 distributions may
originate from the “as-received” state T2 distributions that does not truly represent the T2 distribution
under reservoir conditions.
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Figure 7. Sample M1: (a) T2 distributions for “as received” state and water saturated state; (b) Water
and oil signal distributions obtained from “as received” state T2 distribution using weight function
S(T2); (c) Water-containing pore, oil-bearing pore and total pore size distributions; (d) Comparison of
corrected and measured T2 distributions for water-saturated state.

Figure 8 exhibits the T2 distributions of the sample M2. The porosity and permeability for
this sample was measured 15.5% and 0.0299 mD, correspondingly. The corrected and measured T2

distributions for water-saturated conditions are shown in Figure 8b. It can be seen that the difference
between the two T2 distributions is minor, presenting the effectiveness of the correction method.
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Figure 8. Sample M2: (a) T2 distributions for “as received” state and water saturated state;
(b) Comparison of corrected and measured T2 distributions for water-saturated state.

3.4.2. Case Study

Figure 9 displays well logs from Well Ji32 from the lower sweet spot reservoir. The average
hydrophilic pore surface relaxivity obtained by the capillary pressure curves and the T2 spectra
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of nuclear magnetic logging is scaled as 2.5 µm/s, and the oleophilic pore surface relaxivity is
0.75 µm/s. The first track from left in the figure presents the lithology logs including GR, SP and CAL.
The second track is deep and shallow lateral resistivity (LLD and LLS) logs, and the third one shows
the conventional porosity logs, in terms of DEN, CNL and AC logs. Track 4 presents the total porosity
obtained from NMR logging. Track 5 shows the measured NMR T2 spectra. Track 6 presents the
corrected T2 spectra for fully water-saturated state. From this track, it is known that T2 spectra for fully
water-saturated state are narrower, revealing poor pore structure of the formation, exhibits a tight oil
reservoir characteristic. Track 7 presents the capillary pressure curves constructed using the T2 spectra
of water-saturated state. The last two tracks are the comparison of the displacement pressure and the
median pressure calculated by the constructed capillary pressure (red curves) with the core data (blue
dots). The prediction results are in good agreement with the core analysis results (blue dots), which
verifies the reliability and effectiveness of the pore structure prediction method proposed in this paper.
From this figure, it can be seen that a consecutively prediction result for pore structures. The capillary
pressure curves and related parameters at different depths can be seen directly. The variation in pore
structure with depth cannot be observed if only core samples are used.
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3.4.3. Overall Pore Structure Characteristics of the Studied Formation

According to classification criteria presented earlier of MICP, the constructed capillary pressure
curves of the fourteen wells with NMR logging measurements in the studied area were categorized.
Types I, II, and III account for 25.2%, 33.9%, and 40.9% respectively in the upper sweet spot reservoir,
while Types I, II, and III make up 17.2%, 24.1%, and 58.6% in the lower sweet spot reservoir, as shown
in Figure 10.

According to the constructed capillary pressure curves obtained from the fourteen wells in
the studied area, the pore size distributions were further calculated for the reservoirs. Figure 11
demonstrates the average pore size distribution of the upper and lower sweet spot reservoirs in the
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studied area. It can be seen from Figure 11a that the main peak of the pore size is between 12 nm
and 40 nm, while the pores smaller than 40 nm make up 57.4%, and the pores between 40 nm and
500 nm, 36.1% of all pores collectively. The pore size distribution of the lower sweet spot in Figure 11b
is relatively dispersed, where the proportion of pores smaller than 40 nm and the pores between 40
and 500 nm are quiet the same as the upper sweet spot reservoir. However, the pores that smaller than
12 nm are more abundant in the lower sweet spot reservoir compared to the upper one. In addition,
the pores smaller than 4 nm in both upper and lower sweet spots are 10.2% and 15.7%, found to be
higher than similar pores calculated from capillary pressure curves.
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Figure 10. Proportions of reservoir types estimated by NMR logs: (a) Upper sweet spot reservoir;
(b) Lower sweet spot reservoir.

Finally, from Figures 10 and 11, it is concluded that the pore structure of the upper sweet spot
reservoir is relatively better than that the lower sweet spot reservoir, while the overall characteristics
of the pores in the studied area is very much complex and dominated by nano-scale pores.
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Figure 11. Average pore size distributions estimated by NMR logs: (a) Upper sweet spot reservoir;
(b) Lower sweet spot reservoir.
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4. Conclusions

In this paper, the pore structure of a tight oil reservoir in Permain Lucaogou formation of Jimusaer
Sag was studied using SEM images and MICP data. NMR logs were used to provide a consecutive
prediction of the pore structures. The following conclusions are made:

1. According to the SEM images, the main pores of the tight oil reservoirs in the Lucaogou Formation
are secondary pores. These pores can be divided into four categories: intragranular dissolution,
intergranular dissolution, micro fractures and clay pores.

2. The displacement pressure values of the studied samples ranges from 0.83 to 13.01 MPa with an
average of 5.06 MPa. Saturation median pressure varied from 4.96 to 83.02 MPa with an average
of 31.47 MPa. The mean capillary radius was measured from 0.02 to 0.26 µm.

3. The capillary pressure curves are divided into three types: displacement pressure <2 MPa,
2–5 MPa and >5 MPa. Type I rocks have the smallest displacement pressures while Type III the
highest displacement pressures and lowest maximum mercury intrusion saturation. The pores of
type I rocks are mainly dissolution pores, and type III are clay pores.

4. The T2 distributions of “as-received” and water-saturated state samples were measured.
The model for predicting capillary pressure curves with NMR T2 distribution was verified
by two state T2 distributions measurements. This model was applied to well logs where the
estimated pore structure parameters by NMR T2 distribution were in a good agreement with
core analysis.

5. The predicted capillary pressure curves from NMR logging data of the fourteen wells in the
studied area were categorized based on the proposed model. Types I, II, and III of the upper
sweet spot reservoir account for 25.2%, 33.9%, and 40.9%, while in the lower sweet spot, 17.2%,
24.1%, and 58.6% was calculated respectively. The pores smaller than 12 nm in the lower sweet
spot reservoirs are more abundant than the upper sweet spot, indicating the pore structure of the
lower sweet spot reservoir is more complicated than that in the upper sweet spot reservoir.
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