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a b s t r a c t

The objective of this studywas to investigate themicroalgal dewatering efficiency of a belt filter system for
feed concentrations below 10 g dry wt./L. A prototype belt filtration system designed for 50 g dry wt./L
microalgal feed concentration was used for this investigation. The highest concentration of microalgal
suspension available for testing on the prototype belt filtration system was 6 g dry wt./L obtained from
biomass settling tanks at the Lawrence, Kansas domestic wastewater treatment plant. For preparation
of feed suspension with concentrations below 10 g dry wt./L, microalgal cultivation was followed by
flocculation. A mixed laboratory culture of freshwater species dominated by three eukaryotic green
microalgae (Chlorella vulgaris, Scenedesmus sp., and Kirchneriella sp.) was cultivated in wastewater
effluent. This was followed by flocculation which resulted in a microalgal feed suspension concentration
of 4 g drywt./L. Belt dewatering testswere conducted onmicroalgal suspensionswith feed concentrations
of 4 g dry wt./L and 6 g dry wt./L. Themaximummicroalgal recovery with the belt dewatering systemwas
46% from the 4 g dry wt./L, and 84% from the 6 g dry wt./L suspensions respectively. The results of this
study indicate that microalgal suspension concentrations as low as 6 g dry wt./L can be recovered with a
belt filter system improving the overall dewatering efficiency of the system.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Climate change policy and concerns regarding future energy
security have stimulated an unprecedented increase in the pro-
duction of bioenergy sources that have the potential to reduce fu-
ture greenhouse gas emissions (Smith et al., 2012). Microalgae are
of particular interest because many of the resources required for
their mass cultivation can be provided by waste streams (e.g., mu-
nicipal wastewater: Sturm and Lamer, 2011; carbon dioxide from
industrial flue gas: Brentner et al., 2011), and because microal-
gal cells synthesize many different harvestable bioproducts hav-
ing a wide variety of compositions and uses (Menetrez, 2012). In
particular, microalgae possess many favorable characteristics as a
biofuel feedstock, including rapid growth rates and high lipid con-
tents (Chen et al., 2011), high areal energy (Chisti, 2007; Hu et al.,
2008), and the ability to avoid undesirable ‘food versus fuel’ con-
flicts via the cultivation of microalgal biomass on marginal lands

∗ Correspondence to: Department of Mechanical Engineering, Learned Hall, 1530
W. 15th Street, University of Kansas, Lawrence, KS 66045, USA. Tel.: +1 785 218
0404.

E-mail address: anjali.sandip87@gmail.com (A. Sandip).

(Singh and Gu, 2010). Production to processing of microalgae is
shown in Fig. 1. Nonetheless, profitable large-scale production has
not yet been demonstrated (NRC, 2012).

The high operational costs associated with microalgal harvest-
ing are a major challenge (Uduman et al., 2010) due to the very
dilute nature of the microalgal suspension and their small cell size
(Grima et al., 2003). An optimal harvesting method for microalgae
should be independent of the microalgal species being cultivated,
and also should have a low chemical and energy demand (Amaro
et al., 2011). Centrifuge and belt filter are commonly usedmicroal-
gal dewatering systems (Spellman, 1997). The primary difference
between a centrifuge and the belt filter system is the principle of
separation. A centrifuge applies centrifugal forces to the solution
to aid the separation of solid and liquid. For a belt filter system, the
principle of separation is gravity drainage followedby compression
shear (Spellman, 1997). Centrifugation is a highly effectivemethod
for harvesting microalgae but it has a high energy demand and is
expensive (Knuckey et al., 2006). Compared to a centrifuge, belt
filter system has lower energy consumption (Grima et al., 2003)
and operational costs (Spellman, 1997), has a continuous mode of
operation and can be up-scaled. However, microalgal suspension
with a concentration of 10–40 g dry wt./L is needed prior to dewa-
tering on a belt filter (Grima et al., 2003; Sturm and Lamer, 2011).

http://dx.doi.org/10.1016/j.egyr.2015.08.002
2352-4847/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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Fig. 1. Schematic of microalgal production and processing (Shelef et al., 1984).

The objective of this studywas to further investigate themicroalgal
dewatering efficiency of a belt filter system for feed concentrations
below 10 g dry wt./L.

To further investigate this, microalgal suspensions with feed
concentrations of 4 g dry wt./L and 6 g dry wt./L were produced.
A prototype belt filter dewatering system consisting of a filter sec-
tion followed by two drying sections was designed and developed
by the authors (Fig. 2(a) and (b)). A doctor bladewas installed at the
end of the drying section to scrape off the dried algal cake. Air dry-
ing was the chosen drying method, due to its low energy and cost
requirements. The design was based on filtration tests conducted
on 50 g drywt./Lmicroalgal suspension. The prototype is a 1% scale
of a system proposed to process 60,000 gallons (or 227124.71 L)
of 50 g dry wt./L microalgal solution per day. The difference be-
tween a standard belt filter system and the prototype belt filter
dewatering system developed is the dewatering mechanism. For a
standard belt filter press, the principle dewatering mechanism is
gravity drainage followed by compression shear. The principle de-
watering mechanism of the prototype belt filter dewatering sys-
tem is gravity drainage (Fig. 2(c)). Another systemdeveloped based
on belt filter gravity drainage dewatering mechanism is Salsnes
Water to Algae Treatment (SWAT) technology (Sahu et al., 2013).
However, there are several differences between SWAT technology
and the prototype belt filter dewatering system developed by the
authors. Firstly, the filter section of the SWAT technology is en-
closed in a chamber. Secondly, the belt movement in the filter sec-
tions of the prototype belt filter dewatering system and the SWAT
technology are in opposite directions. Lastly, there is no drying unit
in the SWAT technology.

To determine the filtration belt mesh needed for the prototype
belt filter dewatering system developed, gravity filtration tests
were conducted on microalgal samples at their stationary growth
phase. These tests used a range of polyester mesh sizes from 10
to 200 µm. Based on the test results a 70 µm mesh size resulted
in the highest microalgal recovery rate (Fig. 3). Using 70 µm
polyester filter mesh, belt dewatering tests were conducted on
microalgal suspensions with feed concentrations of 4 g dry wt./L
and 6 g dry wt./L.

2. Materials and methods

2.1. Microalgal feed suspension preparation

2.1.1. Microalgal suspension with feed concentration of 4 g dry wt./L
A mixed culture of microalgal species dominated by three

eukaryotic green algae (Chlorella vulgaris, Scenedesmus sp., and
Kirchneriella sp.) was cultivated in domestic wastewater effluent
from the Lawrence, Kansaswastewater treatment plant. Flocculant
type, dosage and pH that were themost efficient and cost-effective
for the cultivated microalgal suspension were determined using
jar tests. The results of the jar tests were then used to prepare
sufficient volume of concentrated microalgal suspension for belt
dewatering tests. A total of 54 l of 4 g dry wt./L microalgal
suspension were produced.

Table 1
Optical density and biomass concentration measurements of microalgal culture
over a cultivation period of 8 days.

Culture time (days) OD600 nm Biomass concentration (g dry wt./L)

2 5.4 ± 0.45 0.7 ± 0.09
4 8.2 ± 1.6 1.1 ± 0.3
6 11.3 ± 0.5 1.45 ± 0.1
8 12.5 ± 1.5 1.5 ± 0.3

2.1.1.1. Microalgae cultivation. Mixed-species microalgae were
cultured in a 272 L glass photobioreactor with an operating vol-
ume of 208 L. This photobioreactor was initially filled with pre-
chlorination wastewater effluent collected from the secondary
treatment stage of the Lawrence, KS, wastewater treatment plant.
Then an inoculum was added that was comprised of a natu-
ral mixed species assemblage of three eukaryotic green algae
(Chlorella vulgaris, Scenedesmus sp., and Kirchneriella sp.). 650 g of
inorganic nitrogen (supplied as KNO3) and 160 g of inorganic phos-
phorus (supplied as KH2PO4) were added to the photobioreactor
and replenished on a weekly basis to provide nutrients for the
growing microalgal community. Light was provided by LED light
panels (∼265 µmol/[m2 s]) with a 12 h on, 12 h off light: dark cy-
cle.

Because wastewater effluent typically contains insufficient in-
organic carbon for optimal microalgal growth (Benemann et al.,
2003), commercial-grade CO2 was bubbled into the photobioreac-
tor. The water column pH in the photobioreactor was controlled
using a pH controller (Milwaukee Instruments, MC122) to regu-
late the flow of CO2. For this experiment the pH of the photobiore-
actor was set at 6.5 and the room temperature was maintained
at 23 ± 1 °C. To provide turbulent mixing, room air was bubbled
into the tank at a rate of 4.6 L/min using four aerators placed at
each of the four corners of the tank. This turbulent mixing helped
to maintain the microalgal cells in suspension during cultivation.
Microalgal biomass measurements were made at different stages
of post-inoculation growth using a calibrated UV/Vis Spectropho-
tometer (Thermo Fisher Scientific Model G10S) followed by a
standard total suspended solids test (Becker, 1994).Microalgal cul-
ture in the 272 L glass photobioreactor achieved a concentration
of 1.5 ± 0.3 g dry wt./L at the stationary growth phase in 8 days
(Table 1). Bench scale flocculation was conducted on the biomass
samples taken from the photobioreactor.

2.1.1.2. Bench scale flocculation. Jar tests were conducted to deter-
mine the flocculation conditions (flocculant type, dosage and pH)
that were the most efficient and cost-effective (Appendix). 52 L of
microalgal culture harvested at their stationary growth phase con-
centration (1.5 ± 0.2 g dry wt./L) were pumped into a 56 L grad-
uated cylinder equipped with a spigot to allow decantation of the
flocculation product. Pre-test pH value of the microalgal suspen-
sion was adjusted to 6.5 using 0.1 M NaOH or 0.1 M HCl. Alum
at a dosage of 200 mg/L was added to the microalgae suspension
and mixed rapidly at 700 rpm for 60 s, followed by slow mixing
at 60 rpm for 15 min using a 1.2 HP (895 W) variable speed mixer
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a

b

c

Fig. 2. Design and development of belt filter dewatering system. (a) 3D CAD drawing in Autodesk Inventor 2011. (b) Dewatering test set-up (c) Dewatering mechanism—
gravity drainage.

with an axial-flow impeller. The flocculatedmicroalgal suspension
was then allowed to settle for 2 h, and at the end of the settling pe-
riod, approximately 5 L of ∼4 g dry wt./L concentrated microalgal

suspension were collected. This procedure was repeated multiple
times until a total of 54 L of∼4 g drywt./L concentratedmicroalgal
suspension were collected.
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Table 2
Belt filter dewatering test performance. Belt dewatering tests were conducted using 70 µm mesh size filter on sample suspensions, 18 L
of 4 g dry wt./L and 6 L of 6 g dry wt./L, to determine the percent of microalgae recovered (mean ± standard deviation, n = 3).

Number of successive filtrations (#) 4 g dry wt./L suspension 6 g dry wt./L suspension
Cumulative microalgae recovered (%) Cumulative microalgae recovered (%)

1 23.26 ± 7.2 65 ± 6.5
2 31.7 ± 5.9 76 ± 5.7
3 36.6 ± 6.6 82 ± 5.8
4 40.5 ± 4.3 83.3 ± 3.6
5 43.7 ± 0.7 84.2 ± 1.7
6 46.1 ± 0.1 84.7 ± 0.06

Fig. 3. Determination of mesh size with the highest microalgal recovery rate.
Gravity filtration tests (Sigma–Aldrich vacuum filter assembly for 47mmWhatman
GF/C glass filter with glass support—Product # Z290432) were conducted on
samples of microalgal culture at its stationary growth phase with an initial biomass
concentration of 1.5 ± 0.3 g dry wt./L for a range of mesh sizes to measure
microalgal recovery rate (g m−2 s−1) = Wcake/(FA × FT ), where Wcake is the
mass of the wet microalgal cake collected on the filter in grams, FA is the filter area
(7 × 10−3 m2), and FT is the filtration time in seconds. Error bars represent the
standard deviation (n = 5) of measured values of microalgal recovery rate.

2.1.2. Microalgal suspension with feed concentration of 6 g dry wt./L
The highest concentration of microalgal suspension available

for testing on the prototype belt filtration systemwas 6 g drywt./L.
This was obtained from biomass settling tanks at the Lawrence,
Kansas domestic wastewater treatment plant.

2.2. Belt dewatering test procedure

Three belt dewatering tests each were conducted for microal-
gal suspension with feed concentration of 4 g dry wt./L and
6 g drywt./L. The belt filtermesh used in this testingwas the 70µm
polyester mesh identified in the earlier filtration testing. The belt
speed for the dewatering system was set at 0.7 mm per second.
The depth of the microalgal suspension in the filter section was
controlled by a level sensor driving a pumping system.

Microalgal suspension was pumped into the filter section
through a manifold. Filtered microalgae were air dried on the belt
for 8 h at room temperature at zero belt speed. Air drying was con-
ducted to improve the accuracy of measurement of recovered mi-
croalgae. The dried microalgal cake was then scraped off manually
and the harvested biomass weight was recorded.

The percent of dried microalgae recovered (PR) was calculated
from the following equations:

PR(%) = (MD/MI) × 100 (1)

MI = (CI × VI)/106 (2)

whereMD is the recoveredmass of the driedmicroalgae (in grams);
MI is the initial total suspended solids mass in the suspension
(in grams); CI is the initial concentration of the microalgal
suspension (in milligrams dry wt./Liter); and VI is the feed volume
of microalgal suspension (Liters).

3. Results

The percent of microalgae recovered during belt filter testing is
shown in Table 2. The 4 g drywt./Lmicroalgae suspension yielded a
maximum of 46% recovered microalgae. The 6 g dry wt./L microal-
gae suspension yielded a maximum of 84% recovered microalgae.
The authors assumed the percent of microalgae recovered to be
independent of the microalgal species or chemical treatment, for
a particular feed concentration. Biomass losses of microalgae em-
bedded in the filter belt, and not recoverable, ranged from 3% to
7%. The need for multiple filtration passes of the microalgal sus-
pension was primarily due to leakage in the filter test section of
the belt filter system. The next step in this line of research would
involve sealing the filter section of the system.

4. Discussion

The results of the study indicate that the system could effec-
tively recover concentrations as low as 6 g dry wt./L thereby im-
proving the overall dewatering efficiency of the system. To further
improve the overall dewatering efficiency of the system, effect of
machine parameters such as filter feed rate and belt speed must
be further explored. Belt filter performance characteristics such as
flow throughput and biomass recovery rate need to be investigated
as it takes the time taken to recover the biomass into consideration.

5. Conclusions

The objective of this study was to investigate the microalgal
dewatering efficiency of a belt filter system for feed concentrations
below 10 g dry wt./L. The results of this study indicate that
microalgal suspension with concentrations as low as 6 g dry wt./L
can be effectively recovered improving the overall dewatering
efficiency of the belt filter system. For microalgal suspension
with concentration of 4 g dry wt./L, the percent of microalgae
recovered dropped significantly. This could be partly attributed to
the leakages in the filter section of the system. The next step in
this line of research would involve sealing the filter section of the
system.

Future studies must address several questions. Firstly, what is
the effect of machine parameters such as filter feed rate and belt
speed on the percent of microalgae recovered? Secondly, for a
microalgal suspension with concentrations below 10 g dry wt./L,
what is the belt filter performance in terms of flow throughput
andmicroalgal recovery rate? Finally, the question that needs to be
addressed is whether the belt filter system would satisfy the
requirements of an optimal microalgal harvesting technique—
system reliability independent of the properties of microalgal feed
suspension, low chemical and energy demand. The results of this
study provide researchers with data for achieving energy efficient
harvesting and processing of microalgae.



A. Sandip et al. / Energy Reports 1 (2015) 169–174 173

Acknowledgments

This work was supported by the University of Kansas Trans-
portation Research Institute (Grant # FED0067503). We thank Dr.
Belinda Sturm for her guidance and support and Dr. Edward Peltier
for his thoughtful reviews of early drafts of this manuscript. We
also thank the staff at the Lawrence, Kansas wastewater treatment
plant.

Appendix

A.1. Flocculation test procedure

Three different flocculants were chosen for testing—chitosan
powder, aluminum potassium sulfate dodecahydrate and zetag
7650. Both chitosan powder and aluminum potassium sulfate
dodecahydrate (an inorganic cationic flocculant), were obtained
from Sigma–Aldrich Company Ltd. (Missouri, USA). Zetag 7650, a
high molecular weight synthetic cationic polymer used for sludge
dewatering (Danquah et al., 2009), was obtained from Southwest
Engineers (Louisiana, USA).

Jar tests were conducted to determine the flocculation condi-
tions (flocculant type, dosage and pH) that were the most efficient
and cost-effective. Three flocculant mixtures were evaluated: (1)
Aluminum sulfate (Alum) alone; (2) Alum combined with zetag
7650 (10:1 by mass); and (3) Alum combined with chitosan (10:1
by mass). Stock solutions for each of the three flocculants – chi-
tosan (Divakaran and Pillai Sivasankara, 2002), alum, and zetag
7650 (Tillman, 1996) – were prepared at concentrations 10 g/L,
1 g/L and 1 g/L, respectively. Jar tests were then performed on a
multi-jar magnetic stirrer using 500mL samples of microalgal sus-
pension. Flocculation was conducted for a range of pH and dosage
values for each of the three flocculant mixtures (Figs. A.1 and A.2).
Pre-test pH values of the microalgal samples were adjusted using
0.1MNaOHor 0.1MHCl. The desired flocculantmixturewas added
to the microalgae samples and mixed rapidly at 100 rpm for 60 s,
followed by slow mixing at 60 rpm for 15 min. After flocculation,
the suspension was allowed to settle for a period of 30 min. Floc-
culant performance was then evaluated as clarification efficiency
(Eq. (A.1)).

Clarification Efficiency(%) = (1 − ODs/ODf ) × 100 (A.1)

where ODs is the optical density of the supernatant after floccula-
tion of the microalgal suspension, and ODf is the optical density of
the feed sample. Optical density was measured at 600 nm for all
samples, using a 1 cm path length cuvette.

The combined dosage and pH level that resulted in the highest
clarification efficiency (Eq. (1)) was determined for the following
two mixtures—(1) Alum and chitosan (10:1 by mass), and (2)
Alum and zetag 7650 (10:1 by mass). The highest clarification
efficiencies of the two above-mentioned flocculant mixtures were
then compared to that of alum alone (Dosage = 10 mg/L;
pH = 6.5). Because the clarification efficiencies of the three
flocculant mixtures were essentially the same, the lowest cost
flocculant was chosen to prepare the concentrated microalgal
suspension for the belt dewatering tests.

A.2. Determination of optimum flocculant type, dosage and pH for
stationary growth phase culture

Microalgal culture in the 272 L glass photobioreactor achieved
a concentration of 1.5 ± 0.3 g dry wt./L at the stationary growth
phase in 8 days. Studies on closed photobioreactors such as tubular
or flat plate (systems) have reported biomass concentrations on
the order of 2 g/L with a maximum of 5 g dry wt./L (Pulz, 2001).

a

b

c

d

Fig. A.1. Determination of pH and dosage values that result in the highest
clarification efficiency for the two flocculant mixtures—alum + chitosan and
alum + zetag 7650. Jar tests were conducted on microalgal suspensions with an
initial biomass concentration of 1.5 ± 0.3 g dry wt./L to measure clarification
efficiency (mean ± standard deviation; n = 3). (a) A coagulation dose of 10 mg/L
for alum and 5 mg/L for chitosan was used for the tested pH range. Clarification
efficiency at pH value of 8 was significantly higher than all other clarification
efficiencies. Four one-way ANOVA tests were conducted comparing clarification
efficiency at pH value 8with each of the other pH values and p < 0.05 for every test.
(b) A coagulation dose of 10 mg/L for alum and 5 mg/L for zetag 7650 was used for
the tested pH range. Clarification efficiency at pH value of 5was significantly higher
than all other clarification efficiencies. Four one-way ANOVA tests were conducted
comparing clarification efficiency at pH value 5 with each of the other pH values
and p < 0.05 for every test. (c) At a fixed alum dosage of 10 mg/L, a pH of 8 was
used for a range of chitosan dosages. Clarification efficiency at chitosan dosage of
20 mg/L was significantly higher than all other clarification efficiencies. Two one-
way ANOVA tests were conducted comparing clarification efficiency at 20 mg/L
dosage with each of the other dosages and p < 0.05 for every test. (d) At a fixed
alum dosage of 10mg/L, a pH of 5 was used for a range of zetag 7650 dosages. There
were no significant differences in clarification efficiencies at zetag 7650 dosages of 5
and 10 mg/L (One-way ANOVA, p > 0.05). Clarification efficiency at 5 mg/L dosage
was significantly higher than the 20 mg/L dosage (One-way ANOVA, p < 0.05).
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a

b

Fig. A.2. Determination of pH and dosage values that result in the highest
clarification efficiency for alum. Jar tests were conducted on samples of the
microalgal suspension at their stationary phase of growth with an initial biomass
concentration of 1.5 ± 0.3 g dry wt./L to measure clarification efficiency
(mean ± standard deviation; n = 3) of alum. (a) A pH range of 4.5–6.5 in 0.5
pH increments for the tested dosage range. (b) A pH range of 7–10 in 0.5 pH
increments for the tested dosage range. For the alumdosage of 200mg/L therewere
no significant differences in the clarification efficiency for a pre-test pH range from
5 to 6.5 (One-way ANOVA, p > 0.05). Clarification efficiencies were significantly
lower for all other tested pH values at 200 mg/L dosage.

The lower biomass productivity in this study was probably due to
reduced light intake caused by the photobioreactor structure.

At a fixed alum dosage (10 mg/L), flocculation performance of
chitosan improved as the dosage was increased up to a maximum
of 20mg/L.With the alum dosage fixed at 10mg/L, the flocculation
efficiency of zetag 7650, starting at 5mg/L, decreasedwith increas-
ing zetag dosage. Danquah et al. (2009), who had similar results,
suggested that over dosage of high molecular weight polymers led
to a formation of elastic colloids reducing the effectiveness of the
polymer as a flocculant. Clarification efficiencies for pH and dosage
values for the two flocculant mixtures are listed in Fig. A.1.

A series of tests were conducted, using alum as the flocculant,
for a range of pH and dosage values. The results of this testing
showed an almost linear increase in clarification efficiency up to
an alum dosage of 200 mg/L. At alum dosage of 200 mg/L the pre-
test pH was varied from 4.5 to 9. For the alum dosage of 200 mg/L
there were no significant differences in the clarification efficiency
for a pre-test pH range from4.5 to 6.5 (Fig. A.2(a), one-way ANOVA,
p > 0.05). Above a pre-test pH of 6.5 the clarification efficiency
significantly decreased (Fig. A.2(b)). The additions of alum, for all
dosages tested, increased the pH of the microalgal suspension by
0.5 ± 0.1 pH units. For further testing a pre-test pH value of 6.5
was chosen to reduce the cost involved in lowering the pH of the
microalgal solution from 7 to 6.5.

Comparing the highest clarification efficiencies of the two
flocculant mixtures, alum+ chitosan and alum+ zetag 7650, with
that of alum alone (Dosage = 10 mg/L; pH = 6.5) showed no
significant improvement in clarification efficiency (Fig. A.3). Since

Fig. A.3. Determination of flocculant mixture – alum, alum + chitosan and
alum + zetag 7650 – that results in the highest clarification efficiency. Comparing
the highest clarification efficiencies of the two flocculantmixtures, alum+ chitosan
and alum + zetag 7650, with that of alum alone (Dosage = 10 mg/L; pH = 6.5)
showed no significant improvement in clarification efficiency (One-way ANOVA,
p > 0.05).

alum was the most cost effective further testing was focused on
this flocculant.
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