

University of North Dakota UND Scholarly Commons

Electrical Engineering Student Publications

Department of Electrical Engineering

Summer 2021

Development of MIPI Camera Interface Prototype Adapter Board

Haruka Kido haruka.kido@und.edu

Alessandro Geist

Cody Brewer

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/ee-stu

Part of the Electrical and Computer Engineering Commons

Recommended Citation

Haruka Kido, Alessandro Geist, and Cody Brewer. "Development of MIPI Camera Interface Prototype Adapter Board" (2021). Electrical Engineering Student Publications. 5. https://commons.und.edu/ee-stu/5

This Presentation is brought to you for free and open access by the Department of Electrical Engineering at UND Scholarly Commons. It has been accepted for inclusion in Electrical Engineering Student Publications by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

Development of the MIPI Camera Interface Prototype Adapter Board

Intern: Haruka Kido

Bachelor of Science in Electrical Engineering University of North Dakota

Mentor: Alessandro Geist. Co-mentor: Cody Brewer

Embedded Processing Group, Code 587. Data Processing Branch, Software Engineering Division, Space Technology Mission Directorate, GSFC, NASA

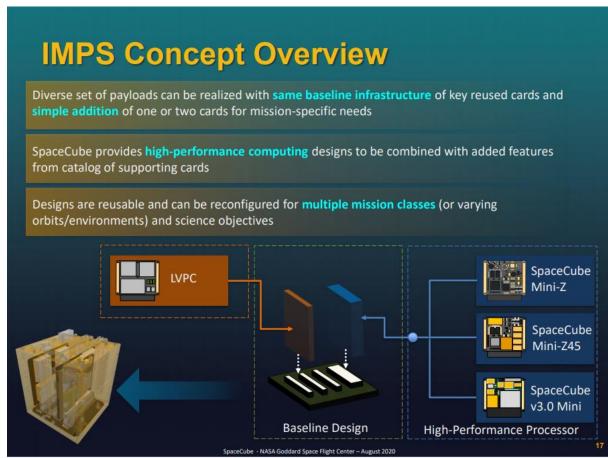
Project Description

This project is the development of the **prototype** FPGA-Compatible MIPI CSI-2 (Camera Serial Interface) D-PHY adapter board. The FPGA used on the SpaceCube processor card does not have I/O that natively supports the D-PHY standard, and thus requires additional external components to adapt the interface to the FPGAs I/O. The goal of this project is to develop a prototype board with this external circuitry. The project tasks include 1) preliminary research and analysis of the adapter circuit requirements involving waveform comparisons, 2) signal processing chain tests for voltage measurements, 3) calculations from I/O channel system simulations in TI-TINA, 4) components' values and circuit configuration verifications, 5) protoboard schematic entry, 6) both PCB footprint builds and PCB layout in Altium Designer, and lastly, 7) PCB manufacturing. This adapter board is useful in data conversion and transmission from the MIPI camera module to the FPGA, a D-PHY circuit arrangement used in NASA's SpaceCube Mini's VADIR (Versatile Analog/Digital Interface) between the MIPI Camera module and the Backplane Connector.

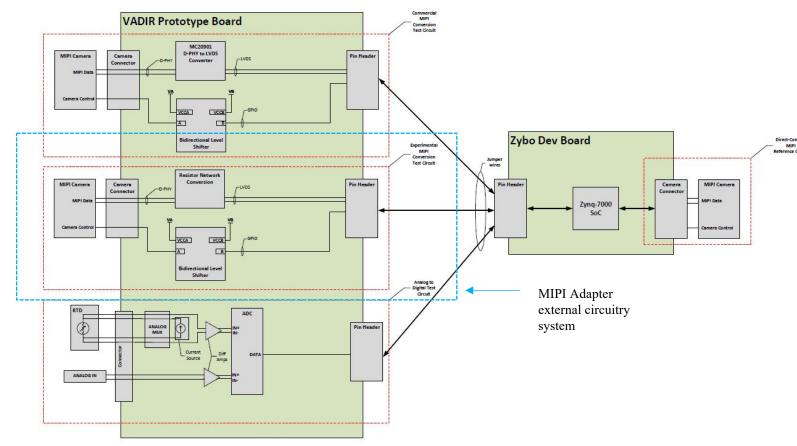
FPGA-Compatible MIPI CSI-2 D-PHY Adapter Board Development Methodology

Conversion
Simulation
of MIPI (TI
TINA)


Protoboard
Schematic
Entry
(Altium)


Protoboard
PCB Layout
Fabrication

- •Research MIPI D-PHY and LVDS: Expected Voltage Levels and Rates
- •Transmitter and Receiver Circuit Simulations
- •Waveform Outputs from signal processing chain tests for voltage measurements
- •Calculations from I/O channel system simulations
- •Components' values and circuit configuration verifications


- Parts selection and symbol builds
- •Schematic Entry: Add and wire components, adjust I/O pin arrangements
- •PCB footprint builds > Component placements
- •Determination of PCB Stack-Up and Rules (length-matching for differential pairs, controlled impedance, copper specifications: trace measurements) > Trace Routing
- •Final gerber file output, assembly drawings, BOM
- Quotes
- •Place Order

Engineering Contextualization: SpaceCube Configurable Slices

Engineering Contextualization: MIPI Adapter in SpaceCube's Versatile Analog-Digital Interface (VADIR) Card

Overview:

- Multiple configurable analog inputs in CubeSat form-factor
- Selective population enables SWAP-C savings depending on mission needs
- On-board level shifter allows for multiple control voltages
- Conforms to CubeSat Card Standard (CS²)

High-Level Specifications:

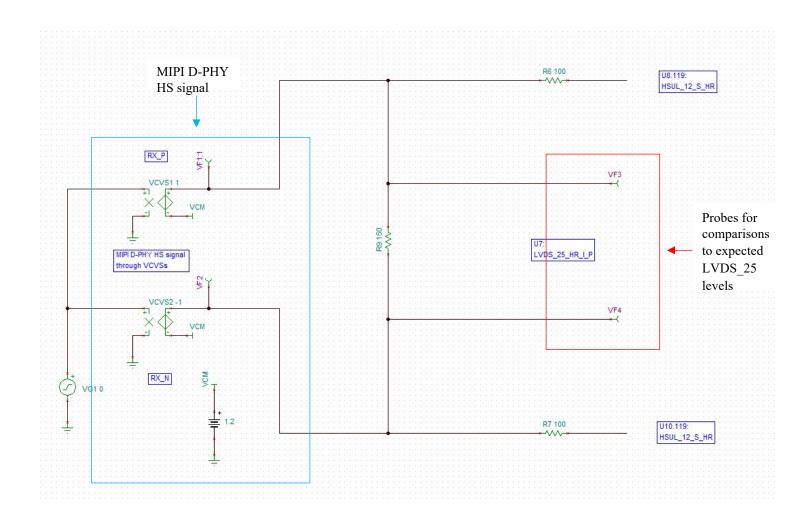
- 24-bit Science & Telemetry ADC
 - 2 independent ADCs, up to 52ksps each
 - 16x 4-wire RTD up to $45k\Omega$ resistance
 - 15x Single-Ended or Differential Analog Inputs
- 12-bit Housekeeping ADC
 - 8x 0-5V Single-Ended Analog Inputs
- Bias Supplies
 - 2x LDO supplies, <1.5A, 1.2-3.3V
- Requires $\pm 12V$, $\pm 5V$, and $\pm 3.3V$
- Requires 16x I/O lines (1.8V or 3.3V)

Preliminary Research and Analysis: Schematics of Resistor Networks Transmitter Resistor and System Integration Mapping of MIPI CSI-2 Transceiver Unit Network MIPI ZYNQ7 LVCMOS18_F_8_HF Connector to board MIPI Cable ("Ribbon") end ▲ **FPGA** U15.239 ZYNQ7 LVCMOS18 F 8 HF Figure 10: FPGA Compatible D-PHY Transmitter MIPI camera MIPI Cable module ("Ribbon") RX_P The transmitter conversion circuit is from the FPGA to ZYNQ7 LVDS_25_HR_LP the Camera. The receiver R9 ≷50 conversion circuit is from the Camera to the FPGA. HSUL_12_S_HR Receiver Resistor Network Figure 11: FPGA Compatible D-PHY Receiver

Pin Header

TI TINA Simulations for Receiver Network:

Signal-Processing Chain Tests, Waveform Analyses, Voltage Measurements and Calculations


 $U7 (LVDS_25) + U8/10 (HSUL)$

FPGA-Compatible D-PHY Receiver

Baseline Circuit Simulations and Waveform Analyses:

- The FPGA inputs do not need to be simulated in attempting to verify that given a MIPI D-PHY input, the resistor network will output a signal that is compatible with the LVDS (for HS) or HSUL (for LP) I/O standard.
- The baseline simulation will be an attempt to see what is present at the resistor network output.
- U8 and U10 are assumed to be high impedance inputs (effectively open) and U7 is assumed to have an internal 100Ω differential termination.
- The HS (LVDS_25) and LP (HSUL_12) cases are analyzed separately.

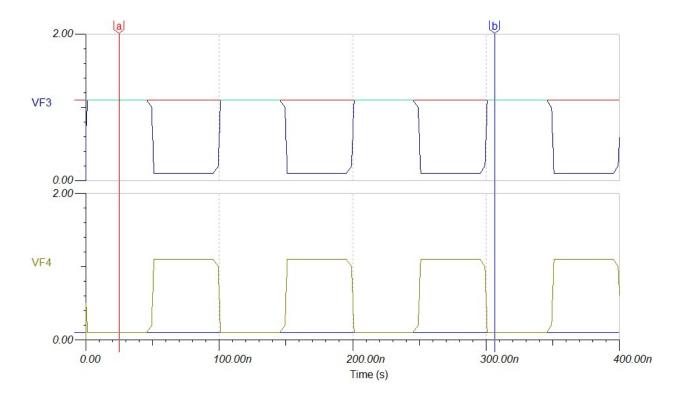
U7; HS, (LVDS_25) Baseline Circuit Simulation

U7; HS, (LVDS_25_HR_I_P (Low-Voltage Differential Signaling)) Specifications:

- LVDS is a dedicated differential buffer, which runs at a higher speed compared to 2 single-ended differential buffers.
- The *HS receiver* has a *switchable parallel termination* (as differential signaling).

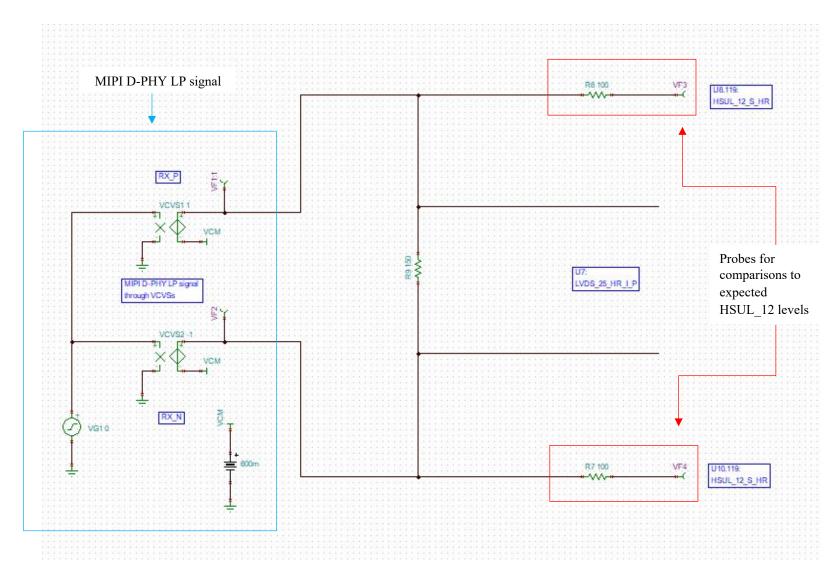
U7; HS, (LVDS_25) Waveform Analysis

Xilinx Specifications (Expected Values):


$$V_{CCO} = 2.5V$$

2.375V < V_{CCO} (supply voltage) < 2.625V

$$\begin{split} R_T &= 100\Omega \\ V_{OH,\;MAX} &= 1.675V \\ V_{OL,\;MIN} &= 0.700V \\ 1V &< V_{OCM} \; (output\; common-mode\; voltage) < 1.425V \\ .3\; V &< V_{ICM} < 1.5\; V \end{split}$$


Waveform Values (VF3 and VF4):

VG1 = 0V Amplitude: 0.4V VCM = 1.2V $V_{OL} = 0.8V$ $V_{OH} = 1.6V$

U8/U10; LP, (HSUL_12) Baseline Circuit Simulation

U8/U10; LP, (HSUL_12_S_HR (High Speed Unterminated Logic)) Specifications:

- FPGAs support the HSUL_12 standard for single-ended signaling and differential signaling."
- The *LP receiver* function as a *low power* signaling mechanism.

U8/U10; LP, (HSUL_12) Waveform Analysis

Xilinx Specifications (Expected Values):

 V_{REF} (Input) = 0.6V

 V_{CCO} (Output) = 1.2 V

 V_{CCO} (Input) = Any

 $-0.300V \le V_{\rm IL} \le V_{\rm REF} - 0.130V$

 $V_{REF} + 0.130V < V_{IH} < V_{CCO} + 0.300V$

 $V_{OL, MAX} = 20\% (V_{CCO})$

 $V_{OH, MIN} = 80\% (V_{CCO})$

Calculations:

 $V_{OL, MAX} = 20\% (V_{CCO})$

 $V_{OL, MAX} = 20\% (1.2V)$

 $V_{OL, MAX} = .24V$

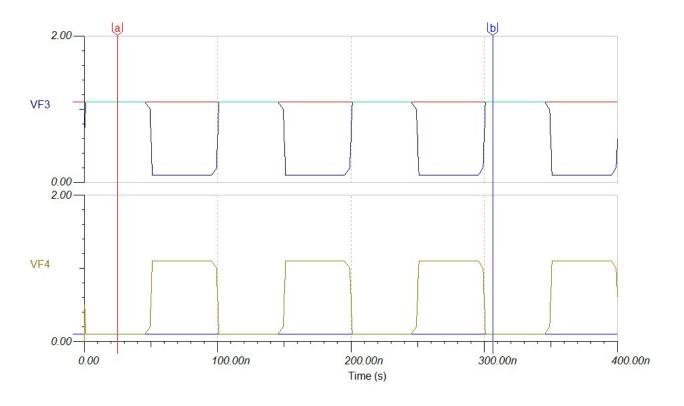
 $V_{OH, MIN} = 80\% (V_{CCO})$

 $V_{OH, MIN} = 80\% (1.2V)$

 $V_{OH, MIN} = .96V$

Waveform Values (VF3 and VF4):

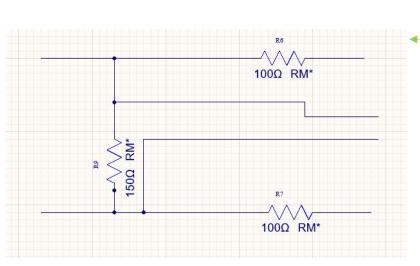
VG1 = 0V

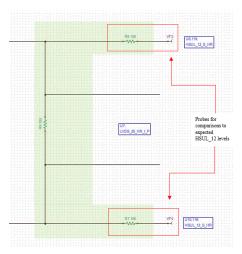

Amplitude = 0.5V

VCM = 0.6V

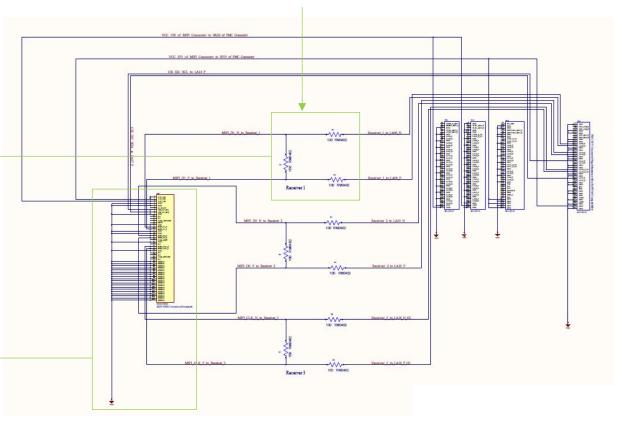
 $V_{OL} = 0.1V$

 $V_{OH} = 1.1V$

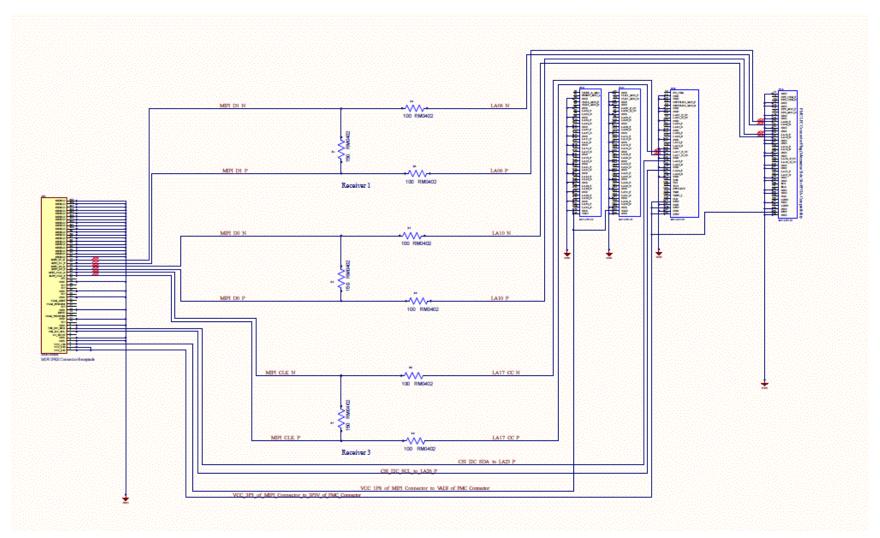



Circuit Schematic (.SchDoc):

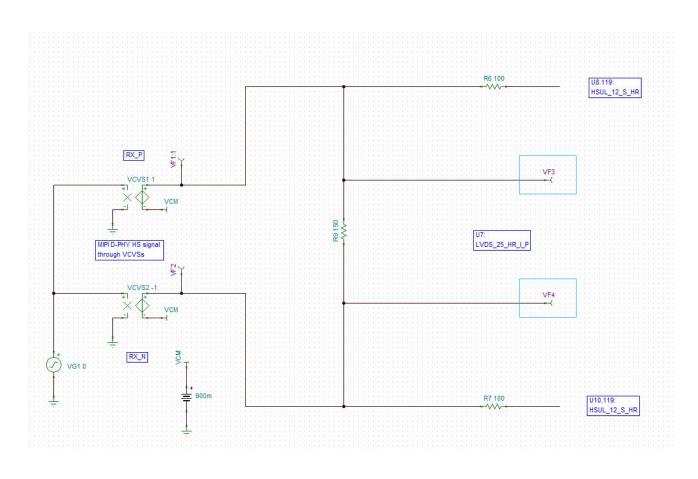
Pin Configuration Requirements:

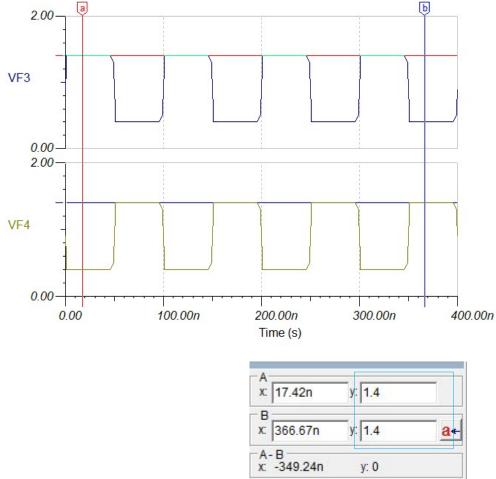

- Connect 3 copies of the receiver between the FMC connector and the MIPI connector.
 - For the MIPI connector side, follow the pinout in the camera module datasheet (Table 3).
 - For the FMC side:
 - Use pins labelled LA##
 - Keep differential pairs together. For example, if MIPI_D1_P goes to LA03 P, then MIPI D1 N should go to LA03 N.
 - Have the clock (MIPI_CLK) go to a clock-capable (_CC) LA pin.
- Connect the CSI pins directly between the MIPI connector and FMC connector.
 - For the MIPI connector side, follow the pinout in the camera module datasheet (Table 3).
 - For the FMC side:
 - Use pins labelled LA##
 - Use pins labelled P

1 Receiver Network with verified resistor values


1 D-PHY Receiver network

The MIPI IPEX Connector requires spatial reconfiguration during iterative design process. Its I/O pins are rearranged to meet


trace routing requirements.


Final Circuit Schematic in Altium

FPGA-Compatible MIPI CSI-2 D-PHY Adapter Board Circuit Schematic

Using the TI-TINA Simulation's Receiver Voltage Probe Results for verification of the 150 Ω resistor package type

Calculations of current and allowable dissipated power for verification of the 150 Ω resistor package type

(Using NEP: Power Dissipation Ratings for Resistors (after 2007)):

		(Be	Old Rating fore Oct. 2	New Ratings (After Oct. 2007)			
MIL-PRF-55342 Slash Sheet	Chip Size	Power	r (mW)	Volt	Power (mW)	Volt	
		Thick Film	Thin Film		Thin & Thick Film	Thin 8 Thick Film	
13	0302	40	40	15	40	15	
11	0402	40	40	25	50	25	
1	0502	20	10	40	50	40	
2	0505	50	25	40	125	40	
12	0603	70	70	50	100	50	
6	0705	100	50	50	150	50	
3	1005	100	50	40	200	75	
10	1010 (FR4)	400	250	75	500	75	
10	1010 (Ceramic)	500	250	13	300		
7	1206	250	125	100	250	100	
4	1505	150	100	40	150	125	
8	2010 (FR4)	600	400	150	800	150	
	2010 (Ceramic)	800	400	130	000		
5	2208	225	200	40	225	175	
9	2512 (FR4)	750	500	200	200 1000	200	
3	2512 (Ceramic)	1000	500	200	1000	200	

On calculating for the appropriate power rating for the 150Ω resistor:

From the circuit simulation, V = 1.4 V.

$$V = IR$$
 1.4 V = (I)(150 Ω)
1.4 V/(150 Ω) = 0.00933 A = I

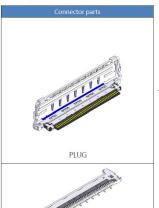
$$P_{dissipated} = I^2R$$

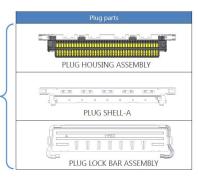
$$P_{dissipated} = (0.00933333333 \text{ A})^2 (150 \Omega)$$

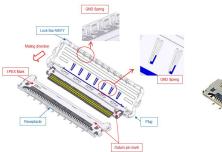
$$P_{\text{dissipated}} = (0.000087111111111)(150) = 0.0130666667 \text{ W}$$

or simply from
$$P = V^2/R = (1.4)^2/(150) = 1.96/150 = 0.0130666667 W$$

If the **calculated dissipated power** does not exceed the power rating of the resistor for a particular package type, then there is no resistor degradation. Since **0.0130666667** W does not exceed the **0402 package type power rating** of **50 mW** (or 0.05 W), the **0402 package type** is sufficient to use.


The power rating specifies the maximum steady state power the package allows to dissipate under given conditions (at the rated ambient temperature).


The **voltage rating** is typically for the resistor series and specifies the **maximum peak voltage** that can be continuously applied to a resistor at a rated ambient temperature without resistor degradation.


MIPI I-PEX Connector Receptacle

for high-speed signal transmission between the co-axial camera cable and a circuit board

Component Parts:

5 Pin Description

e-CAM222 CUMI2311 MOD has a I-PEX connector (CN1). The pin types are described from sensor perspective. The signal names and pin numbers are given below.

CN1 Pin No	Signal Name	Pin Type	Description				
1	VCC_3P3	POWER	3.3V Power supply for camera and adaptor boards				
2	VCC_3P3	POWER	3.3V Power supply for camera and adaptor boards				
3	VCC_1P8	POWER	1.8V Power supply for camera and adaptor boards				
4	GND	POWER	Ground signal for digital and analog				
5	GND	POWER	Ground signal for digital and analog				
6	uC_BOOT	INPUT	Camera Power down signal				
7	CSI_I2C_SCL	INPUT	I2C Clock signal 1.8V I/O. Internal Pull ups an disabled				
8	CSI_I2C_SDA	1/0	I2C Data Signal 1.8V I/O. Internal Pull ups and disabled				
9	GND	POWER	Ground signal for digital and analog				
10	NC	-	NC				
11	NC	-	NC				
12	CAM_TRIGGER	INPUT	Camera trigger signal 1.8V I/O. Internal PD t $1M\Omega$				
13	RSVD	-	Reserved				
14	GND	POWER	Ground signal for digital and analog				
15	MIPI_D1_N	OUTPUT					
16	MIPI_D1_P	OUTPUT	MIPI Data Lane 1 Differential Pair +				
17	GND	POWER	Ground signal for digital and analog				
18	GND	POWER	Ground signal for digital and analog				
19	MIPI DO N	OUTPUT	MIPI Data Lane 0 Differential Pair -				
20	MIPI DO P	OUTPUT	MIPI Data Lane 0 Differential Pair +				
21	CAM_nRST	INPUT	Camera reset signal (Active low) 1.8V I/O				
22	GND	POWER	Ground signal for digital and analog				
23	NC	-	NC				
24	MIPI_CLK_N	OUTPUT	MIPI Clock Lane Differential Pair -				
25	MIPI_CLK_P	OUTPUT	MIPI Clock Lane Differential Pair +				
26	GND	POWER	Ground signal for digital and analog				
27	NC	-	NC				
28	NC	-	NC				
29	CAM_STROBE	OUTPUT	Camera Strobe signal 1.8V I/O				
30	NC	-	NC				

Table 3: CN1 Pin Descriptions

PCB Resistor Networks

MIPI I-PEX Connector Receptacle (CN1 on the e-CAM222_CUMI2311_MOD module) Specifications

• Description: CONN Micro Coaxial CABLINE-CA II P-0.40mm 30Pos with Shield Cover Right Angle SMT

Manufacturer: I-PEX
Part Number: 20682-030E-

• Part Name: Receptacle, 30 pins

CABLINE®-CA II

Fully-shielded with mechanical lock, high-data-rate transfer (20+ Gbps/lane), 0.4 mm pitch, horizontal mating type micro-coaxial connector

VCC_3P3 VCC_1P8 GND NC CAM_TRIGGER SHIELD Schematic Symbol built to

Schematic Symbol built to represent the MIPI IPEX Connector Receptacle (in Altium)

Building the MIPI I-PEX Connector Receptacle

Figure 1: Front View of e-CAM222_CUMI2311_MOD Camera Module

Figure 2: Rear View of e-CAM222_CUMI2311_MOD Camera Module

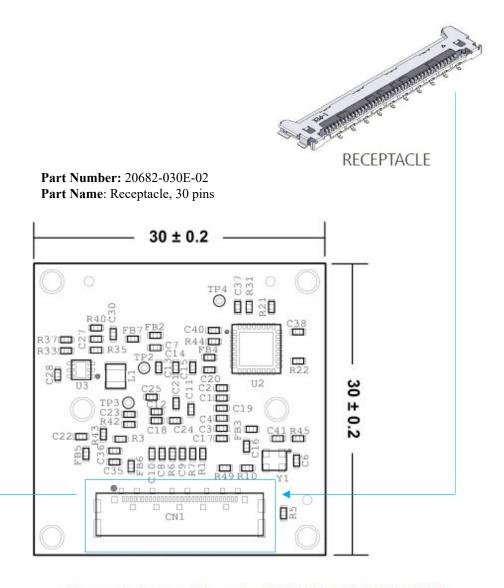


Figure 5: Bottom View of e-CAM222_CUMI2311_MOD

Building a corresponding Altium PCB footprint for the MIPI I-PEX

Connector Receptacle (CN1 on the e-CAM222_CUMI2311_MOD module) to be added to NASA's "SC-Connector-Mech.PcbLib" in Altium:

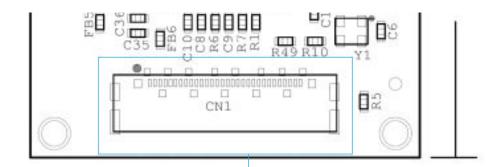
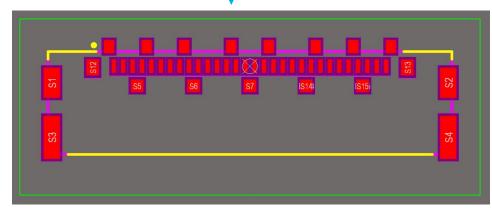
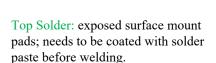



Figure 5: Bottom View of e-CAM222_CUMI2311_MOD



PCB footprint of IPEX MIPI Connector Receptacle built and linked to its schematic symbol (in Altium)

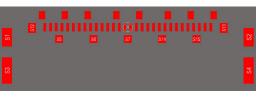
Top and Mechanical Layers

Top Overlay:

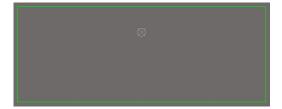
silkscreen overlay

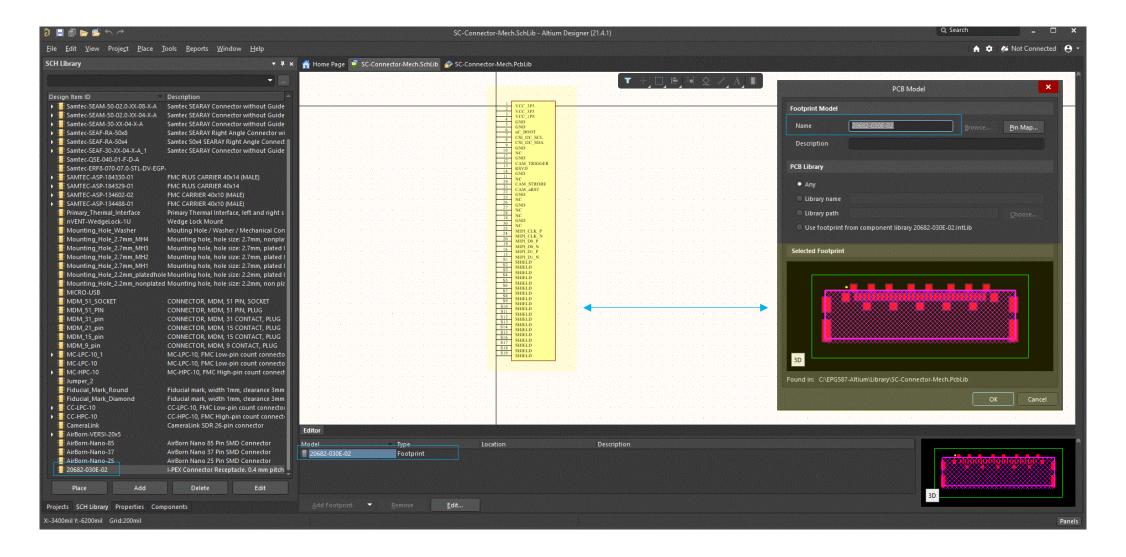
Top Layer:

(Signal Layer); component layer, is mainly used to place components (electrical connections, aka the actual copper layers)


Mechanical 1:

Mechanical 2:





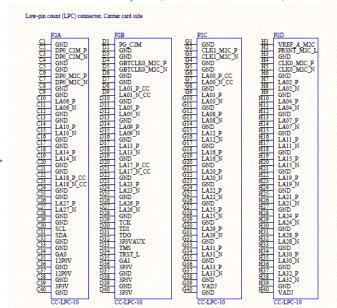
Linking the schematic symbol to the PCB footprint and 3D model between

NASA's "SC-Connector-Mech.SchLib" and "SC-Connector-Mech.PcbLib" in Altium:

Building the FMC Connector Plug

for high-speed signal transmission between the PCB and FPGA

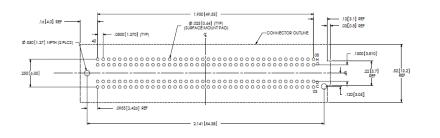
FMC Connector Plug (LPC; Low-Pin Count) Variant (Mezzanine Card; PCB Side)

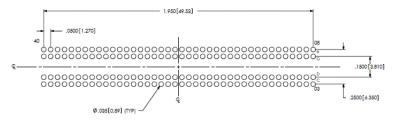

MC-LPC-10, Part A, FMC Low-pin count connector, lead free, 160 I/O pins, male, 10 mm mated stack height. **ASP-134604-01.**

The schematic symbol requires all 160 pins for proper representation.

-pin count (LPC) conne	ctor, Mezzanine card side		
PIA C	PIB DD D C CM DD D C CM DD D C CM DD C	GO G	PID WREF A MOC MED A MOC NO MED A MOC NO MED A MOC NO MED A MED A MOC NO MED A MOC

The plug and receptacle are expected to be compatible for signal and mechanical connectivity.


LPC FMC Connector Receptacle (Carrier Card; FPGA Side):

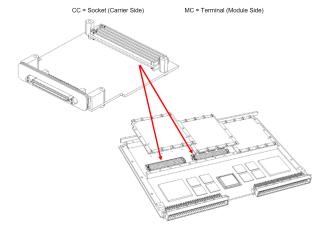


G	F	E	D	С
GND			PG_C2M	GND
CLK1_M2C_P			GND	DP0_C2M_P
CLK1_M2C_N			GND	DP0_C2M_N
GND			GBTCLK0_M2C_P	GND
GND			GBTCLK0_M2C_N	
LA00_P_CC			GND	DP0_M2C_P
LA00_N_CC			GND	DP0_M2C_N
GND			LA01_P_CC	GND
LA03_P			LA01_N_CC	GND
_A03_N			GND	LA06_P
GND			LA05_P	LA06_N
LA08_P			LA05_N	GND
A08_N			GND	GND
GND			LA09_P	LA10_P
_A12_P			LA09_N	LA10_N
.A12_N			GND	GND
SND			LA13_P	GND
_A16_P			LA13_N	LA14_P
A16_N			GND	LA14_N
SND			LA17_P_CC	GND
A20 P			LA17 N CC	GND
A20_N			GND	LA18_P_CC
SND			LA23_P	LA18_N_CC
A22 P			LA23 N	GND
A22_N			GND	GND
SND			LA26_P	LA27_P
A25 P			LA26 N	LA27 N
A25_N			GND	GND
SND			TCK	GND
A29 P			TDI	SCL
A29_N			TDO	SDA
GND			3P3VAUX	GND
_A31_P			TMS	GND
A31_N			TRST_L	GA0
SND			GA1	12P0V
_A33_P			3P3V	GND
A33_N			GND	12P0V
SND			3P3V	GND
VADJ			GND	3P3V
SND			3P3V	GND

C1	12(31)	11111	1710		97444	H4
C2 GND	p				VADJ GND	H3
DD0 C2M	N				LA32 N	H3
4 GND	200				LA32 P	H3
GND 6 DND MAG					GND	H3
DP0_M2C	P				LA30 N	H3
DP0_M2C	N				LA30 P	H3
GND					GND	H3
GND					LA28 N	H3
LA06_P					LA28 P	H3
					GND	H2
2 GND					LA24 N	H2
GND:					LA24 P	H2
LA10 P					GND	H2
					LA21_N	
GND					LA21 P	H2
GND					GND	H2
LA14 P					LA19 N	H2
LA14 N					LA19 P	
GND GND GND					GND	H2 H2
GND					LA15_N	H1
LAIS P C	C				LA15 P	H1
LAIS N C	C				GND	H1
GND					LA11_N	H1
5 GND 6 LA27 P					LAII P	HI
					GND	H1
g LAZ7 N					LA07 N	H1
o GND					LA07 P	H
GND					GND	H
SCL					LA04 N	H
SIDA					LA04 P	H
1 GND					GND	HS
4 GND					LA02_N LA02_P	H
GA0					LA02 P	He
12P0V					GND	H
GND				CLK(0_M2C_N 0_M2C_P	H4
7 12POV				CLK	0_M2C_P	H2
UND.					GND	H2
3P3V				PRSN	I_M2C_L	H1
GND				VRE	A_M2C	G4
PG C2M					GND	G3
GND					VADJ	G3
4 CEND	224				GND	G3
GBICLKO	M20	C P			LA33_N	G3
GBTCLKO	M20	C_N			LA33_P	G3
7 GND					GND	G3
G/ND					LA31_N	G3
LAUL P. C.	C				LA31 P	G3
9 LA01-N_C	C				GND	G3
GND					LA29_N	- G3
4 EA05 P					LA29 P	G
TOTAL IN					GND	G2
4 GND					LA25 N LA25 P	G2
LA09 P						G2
6 EA09 N					GND	G2
GND					LA22 N	G2
LA13_P					LA22_P	G
LALS N					GND	G
GND	319				LA20 N	G
LAIT P.O	U				LA20_P	G
LA17 N C	C				GND	G
GND					LA16_N	G
LAZ3-P					LA16 P	G
LIPLES IN					GND	G
GND ·					LA12_N	G
LAZ0 P					LA12 P	G
LAZ0_N					GND	G
GND					LA08_N	G
LLA					LA08_P	G
1101					GND	G
100					LA03_N	GS
1 SPSVAUX					LA03_P	GS
TMS					GND	G
TRST L				LA	00 N CC	G6
MAL.				LA	.00 P CC	GS
3P3V					GND	G4
GND					GND	G3
3P3V				CLK	I_M2C_N	G2
				CLK	M2C P	
GND - 3P3V					GND	G1

Schematic Symbol built to represent the Mezzanine FMC Connector Plug (in Altium)

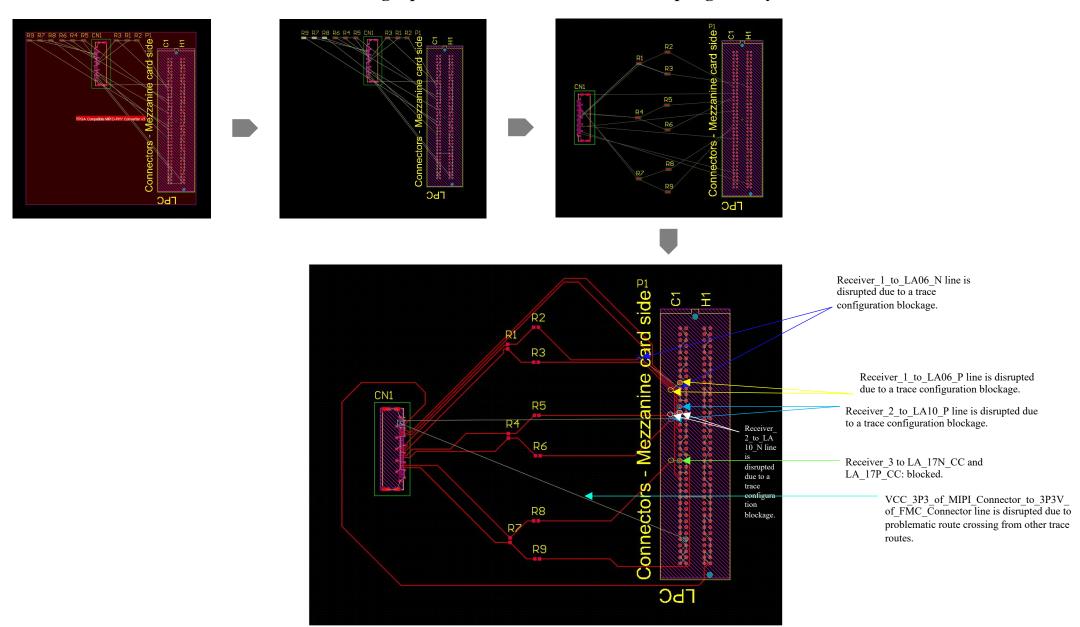
RECOMMENDED STENCIL LAYOUT FOR ASP-134603-01

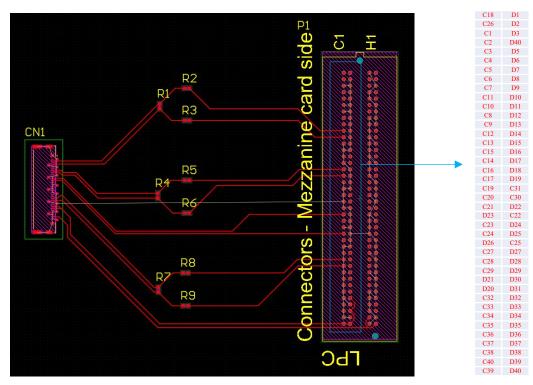

VITA 57

FPGA Mezzanine Card (FMC)

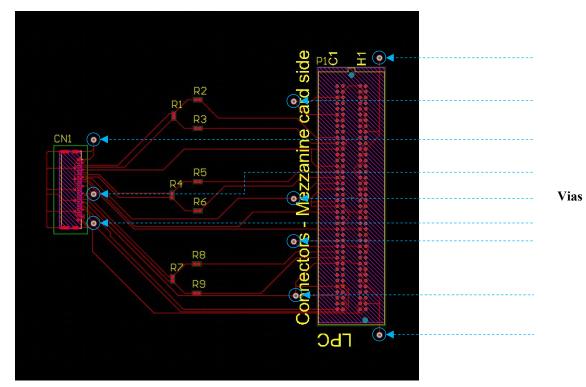
	Plugs	
FMC Part No.	Samtec Part No.	Molex Part No.
MC-HPC-8.5L	ASP-134601-01	45970-4117
MC-HPC-8.5	ASP-134602-01	45970-4115
MC-HPC-10L	ASP-134487-01	45970-4317
MC-HPC-10	ASP-134488-01	45970-4315
MC-LPC-8.5L	ASP-134605-01	45970-4107
MC-LPC-8.5	ASP-134606-01	45970-4105
MC-LPC-10L	ASP-127797-01	45970-4307
MC-LPC-10	ASP-134604-01	45970-4305
	Receptacles	
FMC Part No.	Samtec Part No.	Molex Part No.
CC-HPC-10L	ASP-134485-01	45971-4317
CC-HPC-10	ASP-134486-01	45971-4315
CC-LPC-10L	ASP-127796-01	45971-4307
CC-LPC-10	ASP-134603-01	45971-4305

The Mezzanine Card side (PCB side) FMC Connector Plugs as LPC variant. Selected for Adapter PCB: **ASP-134604-01.**

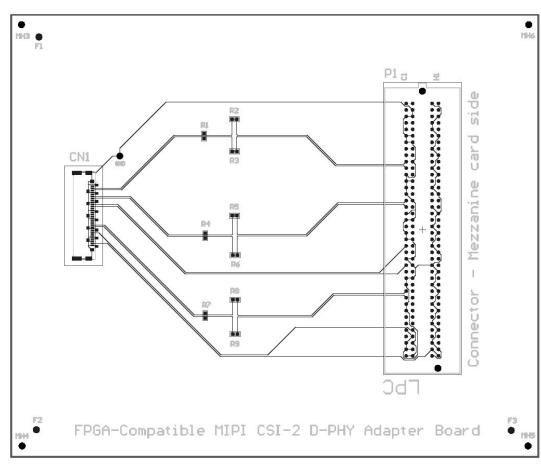

The Carrier Card side (FPGA side) FMC Connector Receptacles as LPC variant.



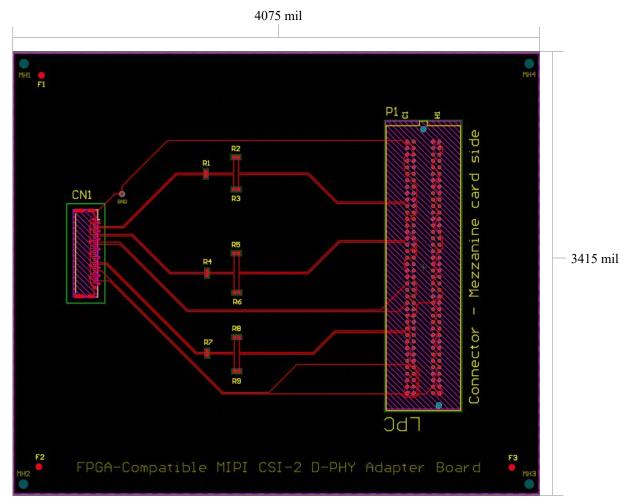
PCB footprint of FMC Connector Plug built and linked to its schematic symbol (in Altium)


Trace Routing Optimization from Default PCB Top Signal Layer

Optimization of Trace Routes and Via Placement

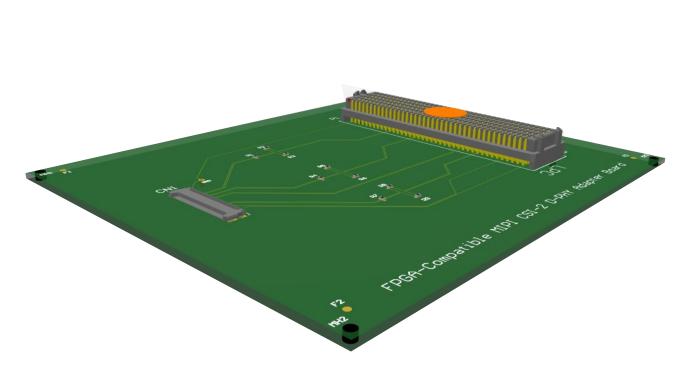


After pin swapping *within* and *between* the pin columns of the FMC Connector, the FMC Connector columns with pins routed to components and MIPI IPEX Connector pins have an alternative arrangement for the purpose of trace route optimization. The configuration still requires differential pair routing.

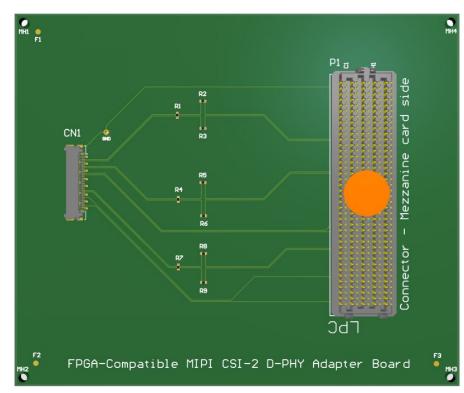


Via count minimization helps to reduce the number of trace routes on the board, ultimately reducing the amount of time spent on the board's signal connectivity.

Final PCB Configuration: FPGA-Compatible MIPI CSI-2 (Camera Serial Interface) D-PHY Adapter Board



Final PCB Print (Assembly Drawing) of Adapter Board


2D View of Final PCB layout of FPGA-Compatible MIPI CSI-2 D-PHY Adapter Board with both differential pairs and single routes

Final PCB Configuration in Altium's 3D View: FPGA-Compatible MIPI CSI-2 (Camera Serial Interface) D-PHY Adapter Board

Final PCB in Rotated View (XYZ Plane)

Once the adapter board PCB is fabricated and assembled, it can be used to demonstrate the validity of the circuit design prior to it being incorporated into the VADIR flight board design.

Final PCB in Top View

SpaceCube Publications:

- [1] C. Wilson, Science Data Processing Branch, Software Engineering Division, NASA GSFC, "SpaceCube," 34th Annual Conference on Small Satellites, 2020, August.
- [2] C. Wilson, Science Data Processing Branch, Software Engineering Division, NASA GSFC, "SpaceCube. A Family of Reconfigurable Hybrid On-Board Science Data Processors," Future In-Space Operations (FISO) Working Group Seminar, 2020, January.
- [3] C. Brewer, N. Franconi, R. Ripley, A. Geist, T. Wise, S. Sabogal, G. Crum, S. Heyward, and C. Wilson, "NASA SpaceCube Intelligent Multi-Purpose System for Enabling Remote Sensing, Communication, and Navigation in Mission Architectures," 34th Annu. AIAA/USU Conf. on Small Satellites, SSC20-VI-07, Logan, UT, Aug. 1-6, 2020.
- [4] A. Geist, C. Brewer, M. Davis, N. Franconi, S. Heyward, T. Wise G. Crum, D. Petrick, R. Ripley, C. Wilson, and T. Flatley, "SpaceCube v3.0 NASA Next-Generation High-Performance Processor for Science Applications," 33rd Annual AIAA/USU Conf. on Small Satellites, SSC19-XII-02, Logan, UT, August 3-8, 2019.

Additional Publications:

- [1] MIPI Alliance, "MIPI Specification for D-PHY, Version 1.00.00," 2009, May.
- [2] MIPI Alliance, "MIPI Specification for D-PHY, Version 1.2," 2014, September 10.
- [3] M. Defossez, Xilinx, "D-PHY Solutions. XAPP894 (v1.0.1)," 1, February, 2021.
- [4] B. Day, Xilinx, "Compact Camera Port 2 SubLVDS with 7 Series FPGAs High-Range I/O. XAPP582 (v1.0)," 2013, January 31.
- [5] e-con Systems, "e-CAM222 CUMI2311 MOD Datasheet," Guindy, Chennai-600032, 10 February, 2021.

Manufacturer's Specifications:

- [1] ANSI/VITA 57. 1-2008, ANSI/VITA 57 FMC SIGNALS AND PINOUT (fmchub.github.io)
- [2] OSHPARK Specifications, OSH Park Docs ~ Services ~ 2 Layer Prototype Service
- [3] IPEX, https://www.i-pex.com/

Software Documentations:

- [1] TI-TINA Simulation Tool Documentation, https://www.ti.com/tool/TINA-TI
- [2] Texas Instruments, Editors: A. Kay, T. Green, "Analog Engineer's Pocket Reference," Addison, TX, 2020.
- [3] Altium Designer Documentation, https://www.altium.com/documentation/altium-designer/

Acronyms

Acronym	Definition
MIPI	Mobile Industry Processor Interface
CSI	Camera Serial Interface
D-PHY	500 Mbps Physical Layer
FPGA	Field Programmable Gate Array
I/O	Input Output
FMC, LPC	FPGA Mezzanine Card, Low Pin Count
PCB	Printed Circuit Board
VADIR	VADIR (Versatile Analog/Digital Interface)
LVDS	Low-voltage differential signaling
HS	High Speed
HSUL	High-Speed Unterminated Logic
LP	Low Power
CS ²	CubeSat Card Standard

Thank you to:

Embedded Processing Group, Science Data Processing Branch, Code 587, NASA Mentors: Alessandro Geist and Cody Brewer GSFC OSTEM Internship Program North Dakota Space Grant Consortium

Texas Instruments Altium Designer

