2018

The Safety and Efficacy of Creatine Supplementation in the General Public

Cody Baxter
University of North Dakota

Follow this and additional works at: https://commons.und.edu/pas-grad-posters

Part of the Amino Acids, Peptides, and Proteins Commons

Recommended Citation
https://commons.und.edu/pas-grad-posters/4

This Poster is brought to you for free and open access by the Department of Physician Studies at UND Scholarly Commons. It has been accepted for inclusion in Physician Assistant Scholarly Project Posters by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.
The Safety and Efficacy of Creatine Supplementation in the General Public

Cody Baxter, PA-S
Department of Physician Assistant Studies, University of North Dakota School of Medicine & Health Sciences
Grand Forks, ND 58202-9037

Abstract
The purpose of this study was to determine whether supplementation with creatine monohydrate is efficacious beyond the realm of its most popular use, which is in athletics. This study investigated the safety of creatine supplementation in the general population. References were collected through a review of PubMed and Scopus databases. Initial keywords searched were creatine supplementation and creatine safety. Where possible, trials with human subjects were utilized. Studies focused on creatine’s effects in athletes or weightlifting parameters were eliminated. Topics were further narrowed down by the most amount of research and medical concerns recognized as common to primary care: Creatine supplementation showed potential benefits in treatment for major depressive disorder, diabetes, bone density, and osteoarthritis. Mild weight gain due to the osmotic effect of creatine was the only side effect noted in the evidence. Kidney function is not affected by creatine supplementation. Creatine supplementation has potential benefits for many different patient populations, with the only side effect of creatine supplementation being mild weight gain due to the osmotic effect of increased creatine saturation in the body. Clinicians should consider creatine supplementation without fear of potential serious adverse effects based on the available evidence.

Introduction

• Creatine is a naturally occurring compound composed of three amino acids: glycine, arginine, and methionine (Krider et al. 2017).
• Approximately 95% of creatine is found within skeletal muscle, with the remainder being found in the brain and testes (in males).
• Creatine supplementation increases muscle phosphocreatine concentration, reduces muscle acidosis and oxidative metabolism, and increases lean body mass.
• Creatine has been extensively studied for its use as an ergogenic aid in athletes of all sports, particularly those involving short bursts of anaerobic energy.

Statement of the Problem
Creatine is used by athletes worldwide; however, creatine has also been studied for numerous other potential benefits in both general and disease-specific populations. These results are not nearly as well known, and creatine is not widely used outside of the athletic population. Clinicians may be missing opportunities to utilize creatine, which is a cheap, over-the-counter nutritional aid. Additionally, there is often concern voiced over the safety of creatine supplementation, often citing deleterious effects on hydration, kidney function, or overall health. These concerns may not be found in actual scientific evidence.

Research Questions
Does creatine supplementation provide benefit in any patient populations besides athletes?
Is creatine supplementation safe?

Literature Review
A search of the literature showed creatine has been studied for multiple common disease processes including depression, type 2 diabetes mellitus, and osteoarthritis.

Depression
Lyoo et al. (2012) found that adding creatine to escitalopram resulted in a earlier treatment response compared to escitalopram and placebo.
Creatine should be avoided in bipolar depression due to its possibility of inducing mania (Tonio, Fernandes, Silva, da Silva Dias, & Lafer, 2016).

Diabetes
Gualano et al. (2011b) reported 5g creatine/day combined with exercise lowered HbA1c by 1.1% compared to no change in the kidney function after 12 weeks of creatine use (Gualano et al. 2011b).
Alves et al. (2012) found creatine supplementation increased plasma GLUT-4 receptors, which explains one of the mechanisms by which creatine helps regulate glycemic control.

Osteoarthritis
Neves et al. (2011) studied creatine supplementation in patients with knee osteoarthritis. The creatine group improved quality of life and decreased pain compared to the placebo group.

Applicability to Clinical Practice
Depression, diabetes, and osteoarthritis are common diseases encountered by all primary care practitioners.
Creatine has numerous reported benefits and very few adverse effects. This makes creatine a possible adjunctive therapy for treatment of these diseases.
Clinicians should consider trialing creatine therapy, especially if traditional treatment options are failing to provide adequate response.
Further large scale trials showing benefits of creatine will be needed before creatine becomes a more widely accepted treatment option.
Based on the current studies, clinicians should NOT discourage patients from creatine use if asked about its safety.

References

Acknowledgements
Many thanks to my classmates for their moral support and gallows humor at many points throughout this program. I would like to thank my wife, Teila Baxter, for supporting me and encouraging me to pursue a topic I am passionate about. Lastly, thank you to my son, Rocky Baxter, for being a good kid and also just so you get to see your name on my poster.