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Abstract—Numerical reproducibility has received increased emphasis in the scientific 

community. One reason that makes scientific research difficult to repeat is that different 

computing platforms calculate mathematical operations differently. Software containers have 

been shown to improve reproducibility in some instances and provide a convenient way to 

deploy applications in a variety of computing environments. However, there are software 

patterns or idioms that produce inconsistent results because mathematical operations are 

performed in different orders in different environments resulting in reproducibility errors. The 

performance of software in containers and the performance of software that improves numeric 

reproducibility may be of concern for some scientists. An existing algorithm for reproducible 

sum reduction was implemented, the runtime performance of this implementation was found to 

be between 0.3x and 0.5x the speed of the non-reproducible sum reduction. Finally, to evaluate 

the impact of using a container on performance, the runtime performance of the WRF (Weather 

Research Forecasting) package was tested and found to be 0.98x of the performance in a native 

Linux environment.  
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I. INTRODUCTION 

Scientists use complex applications and big data on High Performance Computing (HPC) 

systems to study and analyze some of the biggest questions in science today, such as what the 

Universe is made of and how it has evolved over time. With "traditional" single-core CPUs, 

documenting a numerical result was relatively straightforward. However, recent technology 

developments have made it difficult to produce consistent or reproducible results across different 

platforms. The predictability of the results is complicated when the systems grow in scale. 

Therefore, this situation affects the ability to rely on scientific computations.  

Implementation of experimental learning and research with numerical application codes 

is challenging for users both in research and education. Most of the time running a scientific 

application is not easy for individuals. Specific steps to configure and compile the source code, 

set specific runtime options, import data sets, and so on are required. Frequent updates to the 

application code, operating systems and compilers make it difficult for users to compile and 

execute their software. We can put together all these steps into one or more scripts within a 

container, so that users with less knowledge about a complex application are able to run the 

application only by executing the script. In these cases, containers play an important role in the 

development and deployment of scientific applications because they help to eliminate the above-

mentioned problems for users. For example, the user can deploy an application without any 

knowledge about the infrastructure, platform or underlying operating system [2].  

Containers are a way to use a lightweight virtualization for executing several isolated 

Linux systems within a single host operating system. Docker, Shifter and Singularity are some 
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examples of Linux containers [2,9,10]. We can develop, deploy, test and run a scientific 

application in different computational environments with these containers. Containers have 

helped to improve numerical reproducibility by making it easy to copy the software environment 

of scientific applications. However, there are software patterns or idioms that produce 

inconsistent results because mathematical operations are performed in different orders in 

different settings. For example, some numerical computations in parallel distributed systems are 

not reproducible because math operations can be performed in different orders than on sequential 

processing systems.  

A basic idea of science is that research results are reproducible. A hypothesis for future 

research is based on past results that are believed to be true. If the past results are not 

reproducible, scientists might develop new hypotheses based on false conclusions. This can lead 

to slower rates of discovery and inefficient use of resources, and it affects anybody who benefits 

from science, literally everybody. The rest of this paper is organized as follows. Section II 

provides background on some Linux containers and current work using algorithms to make 

application software environments reproducible. Section III is implementations and results from 

this research to improve reproducibility. Performance comparisons follows in section IV and 

conclusion and future research is in section V.  

II. BACKGROUND & RELATED WORK 

One of the main reasons that scientific application research is not numerically 

reproducible is that different computational platforms and architectures calculate mathematical 

operations in different ways. These differences are more significant when operations are 

performed inparallel distributed systems. For example, in heterogeneous computing different 

types of CPUs implement binary operations differently, which may affect the way numbers are 

rounded-off. Another possibility is that the type and/or version of the compiler that is used to 

compile the application may optimize (reorder) the code producing different sequences of 

instructions.  

Experiments conducted by the National Center for Atmospheric Research (NCAR) show 

that containerizing Weather Research Forecasting (WRF) leads to identical outputs no matter 

what the computing system is. So far, NCAR has only reported results using single shared-

memory nodes [13].  

In the following sections, we discuss containers and reproducibility in scientific 

computing and the use of containers to improve reproducibility in parallel distributed systems.  

A. Containers in Scientific Computing  

The use of software containers has significantly grown in recent years due to their 

flexibility, scalability and portability. Linux containers have many of the characteristics that are 

supported by virtual machines (VMs), including isolation and customization. The main 

difference between a container and a VM is that containers are built directly upon the kernel, and 

for that reason they have a good level of isolation for memory and processors. However, this has 

some disadvantages. For example, the processes that are executing in containers will run 



simultaneously in the same Linux kernel. This may affect the performance of the other 

applications or containers that are running on the same system.  

Docker is one such technology that has emerged to manage containers with an image 

management system and are popular in the scientific community for many reasons including: 

simplified packaging of applications, promoted transparency of how the application is built, 

improved collaboration among researchers and supported reproducibility by insuring a consistent 

operation environment. However, there are some barriers to using Docker in HPC systems such 

as security issues, lack of compatibility with parallel file systems, limited scalability, and lack of 

integration with batch systems [4]. Finally, a performance study by IBM shows that Docker 

containers have a lower overhead compared to VMs, and this will significantly affect 

performance. According to the IBM study, “Docker equals or exceeds KVM [Kernel-based 

Virtual Machine] performance” in every single test that they conducted [7].  

Containers promote reproducibility by providing a more consistent operating 

environment and make scientific applications portable to other researches [2]. Scientists may 

want to verify the results with another test, repeat a test sometime later, or they might want to 

duplicate their analysis with new data [4]. Containers help to improve numerical reproducibility 

in scientific research because they can be cited in published papers if that specific version of 

container exists and is available for the researchers to use in their modeling, analysis or 

implementations. However, there are still several factors affecting numerical reproducibility that 

containers cannot mitigate. For example, in truncation if the precision of data is up to 5 decimal 

points in one environment and up to 8 decimal points in another environment, there is a chance 

of different floating-point results. Baker et al. [6] show that there is an issue with the compiler 

optimization as the level of automatic optimization performed by a compiler can change the 

order of some operations.  

B. Reproducibility in Scientific Computing  

Recently, numerical reproducibility has received increased emphasis in the scientific 

community. For some scientists, numerical reproducibility means that the scientists can 

reproduce the same simulations every time that they run the application with the same conditions 

and configuration. This holds true even if scientists use different computer systems with different 

capabilities. For others, numerical reproducibility means that the results obtained when running 

on p processors p >= 2 should be the same as when running on a single processor.  

Researchers want their application results to be reproducible [8]. However, when using 

parallel and distributed systems, program statements can run in slightly different orders on 

different processes. Also, when an application is moved to a different platform, reproducibility 

can be affected due to different operating systems, hardware, software, and network. In 

computing there is a certain amount of inexactness because there is a limit to how much memory 

can be used to store numbers.  

There are several factors that can lead to reproducibility errors. Two factors, re-

association and parallelism, have been studied in the literature.  



1) Re-association and Compiler Options  

The associative property in mathematics states (a+b)+c = a+(b+c). It means that we can 

associate a, b, and c using addition in any order that we want. Associativity also holds for 

multiplication. This is not true necessarily in finite precision computer programs.  

In computing the order of operations matters because of finite precisions and limited 

amounts of storage for floatingpoint numbers. When we add or multiply two numbers, the result 

of one operation may be rounded or truncated before being used as part of the next calculations 

[3].  

Two examples of reproducibility error due to reassociation were discussed by Corden and 

Kreitzer [3]. The first example comes from WRF and can be seen in Listing 1.  

 

Listing 1. A loop in WRF 

integer  i, n  

real  B, TOL  

real  A(1000), X(i)  

Parameter (n-1000)  

…  

do 10  i=n  

X(i) = A(i) + B + TOL  

10  continue  

… 

stop  

end  

In this code TOL is a very small, positive number. The programmer’s intent for TOL is to 

keep X(i) positive if A(i) ≈ -B. An optimizing compiler can reorder the expressionshown in Eq. 1 

for performance. The compiler may see (B + TOL) as a constant expression and move the 

expression outside the loop to reduce the number of floating point operations in the loop by one.  

A(i) + (B + TOL)      (1) 

Rounding and truncating the result of B+TOL effectively reduced TOL to zero, and X(i) 

was not always positive. When the compiler’s safe mode was used, re-association was disabled 

and the compiler did not move B+TOL outside the loop.  

A second instance of re-association affecting numerical reproducibility was also 

discussed by Corden and Kreitzer in an operation on arrays called reduction [3]. The code in 

Listing 2 shows a sequential sum reduction of an array.  

Listing 2. Sequential sum reduction  

int n=8;  

float sum=0.0;  

for (int i=0; i<n; i++){ 

sum = sum + A[i]; 

} 

 

With automatic parallelism using two compute units, the work of the compiler might be 

visualized as in Listing 3. The compiler unrolls the sequential loop to give work to each compute 



unit. The statements in the body of the loop for i=0 are given to one compute unit, and the 

statements for i=4 are given to another compute unit. The value of each compute unit’s sum is 

combined in shared memory. The parallel sum reduction adds array elements in different order 

than the sequential reduction. This can result in a different sum depending on the number of 

compute units used.  

Listing 3. Parallel sum reduction using two compute units 

int n = 8; float sum=0.0; for (int i=0; i<n; i=i+4) {  

sum = sum + A[0];  

sum = sum + A[i + 1];  

sum = sum + A[I + 2];  

sum = sum + A[I + 3];  

} 

 

Corden and Kreitzer used the elimination of parallelism to mitigate this type of reproducibility 

error. The suggested solution in their paper is to invoke a compiler option that effectively makes the 

compiler not to generate parallel code for reductions and only compute them sequentially. Generally, 

the result of sequential processing is considered correct when sequential and parallel processing have 

different results.  

2) Recovery of Reproducibility Error  

Numerical reproducibility is commonly determined by comparing results of a sequential 

computation with corresponding parallel computations. Langlois et. al, [12] consider three different 

techniques for recovering reproducibility to a summation type reduction. These techniques were 

integrated into a simulation program and reproducibility was measured using different numbers of 

processors. Compensated summation calculates rounding error generated during successive floating-

point additions and adds the accumulated rounding errors to the total. The reproducible sum technique 

involves a pre-rounding step and parallel K-fold process with K chosen in advance. The final technique 

consists of converting every floating-point number to an 8-byte integer, adding the integers and 

reverting the sum back to a floating-point value. All these techniques return the same simulation results 

up to the computing precision for two to sixteen processors.  

Langlois et. al, have also identified two broad categories of techniques for recovering 

reproducibility. In one category, the technique recovers reproducibility without improving accuracy. An 

example of this is using compiler options to disable the parallel reduction and just do the reduction with 

sequential processing. In this case, we avoid some reproducibility errors that are caused by parallel 

distributed processing, but we don’t gain any accuracy in this way. The second category uses accuracy 

improvement to correct the rounding errors. In this case, the authors suggest a technique called the 

accumulative of sums approach. In this technique as we are adding a series of numbers, we are also 

calculating the reproducibility errors. At the end we take the total reproducibility errors and add it back 

to what the sum is. Therefore, the final results should be a very accurate number [11].  

C. Containers and Reproducibility in Parallel Distributed Systems  

There is a need in science for scalable and reproducible computing to be interoperated on 

different environments and platforms especially on parallel distributed systems or large scale HPC 

systems. One of the tenets of science is that results of experiments are reproducible. In scientific 



computing, the software environment used to collect or analyze data must be reproducible to confirm 

that the results are reproducible [10].  

One of these environments that provides HPC with containers is Shifter. Shifter has been 

derived from Docker at National Energy Research Scientific Computing (NERSC). NERSC is promoting the 

use of container technology for scientists on their systems [9]. Singularity is another environment that 

provides HPC for containers and has been developed by scientists at Lawrence Berkeley National Labs. 

Singularity is a container system that is portable and reproducible and has been designed for use on 

parallel and distributed HPC systems [10].  

III. IMPLEMENTATION OF APPROACHES AND RESULTS 

Software containers have been able to improve numerical reproducibility to some extent. 

However, we believe that we can improve the reproducibility of results of scientific applications within 

software containers even further. The hypothesis of this research is that applying some algorithms can 

improve numerical reproducibility of scientific applications within a Linux container by addressing 

rounding and truncation errors in certain mathematical operation in a reproducible manner. The detail 

of this work is provided is provided below.  

A. Existing approaches to address reproducibility factors  

One approach to calculate a reproducible floating-point summation in this research is 

particularly interesting. The main idea is to condition or pre-round the floating-point input data 

by removing less significant bits before summing the more significant bits. This technique 

sacrifices accuracy for performance. Pre-rounding involves extracting the high order parts of a 

value before accumulating the high order part in the sum. Adding a sufficiently large pre-

rounding term to a value can isolate the high order part of the value. The pre-rounding term is 

then subtracted from that sum leaving the high order value [5]. For example, given a pre-

rounding term M=1.030792e+11, and a value v=1.0e+10, the high order part, 9.999999e+09, can 

be isolated as shown in Eq. 2.  

ho = (M + v) – M        (2) 

The pre-rounding term does not need to be the same for each element of an array being 

summed. However, all prerounding terms must have the same unit of least precision, and the 

same directed rounding mode must be used. The high order parts and the sum of the high order 

parts will be reproducible [5]. Accuracy of the reproducible sum can be improved if the pre-

rounding phase is repeated one or more times on the array of low order parts.  

B. Develop implementations and combine them in a library  

The following C++ implementation of an array summation has been developed as part of 

this study. The algorithm was previously published by Demmel and Nguyen [5]. Minor changes 

were made to reduce the number of arrays. Listing 4 shows code that sums the values from array 

v in a reproducible way. The sum is stored at the location pointed to by T, and array r contains 

the low order parts from array v.  

Listing 4. Pre-rounding sequential reproducible summation of an array  



void extract(float M, const std::vector &v,  
float &T, std::vector &r) {  

float Mcurr = 0.0f;  
float Mprev = M;  
for (int i = 0; i < v.size(); i++) {  

Mcurr = Mprev + v[i];  
float ho = Mcurr - Mprev; // ho = high order part 
r[i] = v[i] - ho;   // r[i] = low order part  
Mprev = Mcurr;  

}  
T = Mcurr - M;  

}  

The following code calculates the pre-rounding value, Mv[] used in function extract(). 

The sum, stored at location T, is made more accurate by calling extract multiple times. The 

original algorithm was also previously published by Demmel and Nguyen [5]. Listing 5 is an 

example of a sequential reproducible summation of an array that has been done so far for this 

research.  

Consider a pre-rounding term M=1.030792e+11 and values a=1e+10, b=-1e+10, and 

c=1e-08. Pre-rounding a, b, and c results in 9.999999e+09, -9.999999e+09, and 0, respectively. 

The sum of the pre-rounded terms is 0. However, the exact sum a+b+c is 1e-08. The above 

values of a, b, and c can be also represented as: a = 10ଽ, b = −10ଽ, and c = 10ି ଽ. The summation 

orders of these values can be seen in Eq. 3. If a, b, and c are associated differently the exact sum 

changes. In Eq 4, the exact sum is now 0. The sum of the prerounded terms is still 0.  

((a+b) + c) = (( 10ଽ −10ଽ)+ 10ି ଽ) = 10ି ଽ   (3)  

(a + (b+c)) = ( 10ଽ +(−10ଽ +10ି ଽ)) = 0   (4)  

Listing 5. Pre-rounding sequential reproducible summation  

float vMax = *std::max_element(v.begin(), v.end()); float deltaDenominator = 1.0f – 4.0f 

* (arraySize + 1) * FLT_EPSILON; float delta = arraySize * vMax / deltaDenominator; 

std::vector prTerms; prTerms.push_back( 3.0f *pow(2.0f, ceil( log2(delta))) ); std::vector sums; 

for (int i = 0; i < k; i++) { float pt = prTerms[ prTerms.size() – 1 ]; float eSum; extract( pt, v, 

eSum, v ); sums.push_back(eSum); Tv.push_back(*T); delta = arraySize * (4.0f * 

FLT_EPSILON * pt / 3.0f) / deltaDenominator; prTerms.push_back( delta ); } float mSum = 

prTerms[ prTerms.size() – 1 ]; for (int i = 0; i < arraySize; i++) { mSum = mSum + v[i]; } float 

lastSum = mSum = prTerms[ prTerms.size() – 1]; sums.push_back( lastSum ); float sum = 0.0f; 

for (int i = 0; i <= k - 1; i++) { sum = sum + sums[i]; }  

We might consider summation of arrays across some processors. For example, we 

assume an array of twenty elements and four processors as shown in Figure 1. If the work is 

divided evenly, each processor will get five elements to sum. After calculating a local result, all 

processors will send their partial sum to one processor, and that processor will calculate the final 

sum. If the same array is divided among three processors as shown in Figure 2, the processors 

need to add a different number of elements. If the sum reduction were reproducible, then the 

same result would be obtained regardless of the number of processors used.  



Figure 1. Twenty elements and four processors  

Figure 2. Twenty elements and three processors  

IV. PERFORMANCE COMPARISONS 

Two runtime performance comparisons were made. The performance of the WRF 

application was measured in and out of a software container. Also, the performance of a 

reproducible sum reduction was measured and compared with a non-reproducible sum reduction.  

A. WRF-Container Performance  

In order to understand the overhead of Docker and how it might affect using Docker 

containers on a HPC system, the run-time performance of WRF was measured on both a Linux 

based system and as a containerized application. The results obtained show that using Docker is 

promising. However, overall performance improvements may be available when using different 

methods to access the application data.  

The system used to measure performance was a 1.8 GHz Intel Core i5 processor with 8 

GB RAM running Mac OS 10.13.4. Docker version 1.12.1 was installed for testing the 

containerized application. The WRF version 3.7.1 was used in both environments. The 

containerized WRF was obtained from a GitHub repository [13]. The data used in these WRF 

experiments was for demonstration and educational purposes and was smaller than the data that 

is used for weather prediction. The native version of the WRF binaries were created using 

instructions found online [1]. In the native tests and the containerized tests only one processor 

core was used.  

Run-time performance data was obtained using the Unix time command. This command 

determines the duration of execution for a given command, in this case the WRF binary.  

$ time ./wrf.exe  

This command was entered at the system prompt for the native tests. For the container 

tests, the container was modified to run the time command with the WRF binary as shown above. 

The times for five runs were measured in each environment.  

The Unix time command reports three different time results: real time, user time, and 

system time.  

• The real time or wall-clock time is the total time used by the application from 

start to finish. This may include time while the program is not executing, but is waiting 

for another application.  

• The user time is the total CPU time spent running the program. This does not 

include times for system calls such as I/O.  

• The system time is the time spent performing system calls on behalf of the 

application. We can think of system time as kernel time.  



Table 1. Results of Individual runs of WRF application on the Linux OS and in a Docker 

container. All times are in seconds.  

 

The run-time performance of sets of individual runs and the average times of each set can 

be seen in Table 1. Native User and Native Sys columns show the user and system times of the 

application running on the Mac operating system. The Docker User and Docker Sys columns 

show the user and system times, respectively, of the containerized WRF application on the same 

Mac operating system. The results are in seconds.  

A chart showing the average times in each category is shown in Figure 3. The y-axis is in 

logarithmic scale. The results obtained show that the native user time is approximately 1% faster 

than the containerized application. This shows that Docker does not contribute a significant 

overhead to executing programs.  

 

Figure 3. Comparison of Native and Container Application Performance 

The system time between the native and Docker environments is significantly different. 

The Docker system time is 7.4x slower than the native system time. This difference may be 

caused by differences in how the native and containerized WRF applications accessed the WRF 

data. In the native version the data was stored on the local file system. In the Docker version the 

data was in two separate data containers. Further tests would be needed in order to understand 

more completely how data access affects run-time performance and what steps can be taken to 

minimize data access times.  

B. Reproducible vs Non-reproducible Sum Performance  

The performance of a non-reproducible sequential sum reduction implementation was 

compared with a fast sequential K-fold reproducible sum reduction [5] in standalone programs. 

The programs were compiled with GCC compiler version 6.1.0 using the compiler –O1 option. 

This option disabled any automatic vector processing that may have occurred. Both test 



programs were run on a single core of an Intel Xeon E5-2643 (3.3GHz) with 256 GB RAM. The 

system ran RHEL 7.2.  

The K-fold value for the reproducible sum reduction indicates the number of times the 

floating-point values in the array are pre-rounded. On the first time the original floatingpoint 

values are pre-rounded. On subsequent times, the less significant bits are pre-rounded. This can 

increase the accuracy of the sum reduction. However, the K-fold value was always one in these 

performance tests in order to be similar with the non-reproducible sum reduction.  

The reproducible sum reduction algorithm requires a directed rounding mode. Therefore, 

the rounding mode for each program was programmatically set to directed rounding to zero 

using the fesetround function (cenv library).  

The array size was specified with a command line option, and an array of floating-point 

values to sum was initialized. Elapsed time was computed using the difference of gettimeofday 

function calls (see the sys/time.h library) before and after the sum reduction code. This did not 

include the time for generating the array of floating-point values to be summed. The programs 

measured the sum reduction performance five times.  

The performance of each implementation was measured with array of 1,000 to 1,000,000 

elements. The reproducible sum reduction was 0.30x to 0.47x the runtime speed of the non-

reproducible sum reduction as shown in Figure 4. This is consistent with the number of floating-

point operations in the non-reproducible sum reduction, O(n), compared to the floating-point cost 

of the reproducible sum reduction, (3k - 1)n + O(1) [5].  

 

Figure 4. Reproducible sum reduction is over 2x slower than the non-reproducible version. 

 

V. CONCLUSION AND FUTURE WORK 

The use of software containers is growing rapidly across multiple domains of computing 

today. Containers provide a consistent, lightweight operating environment for applications that 

can be easily shared with colleagues which helps make results reproducible. However, copying 

containers does not address mathematical operations that are not reproducible due to truncation 

and rounding of floating-point results.  



This research has helped to understand the performance impact of two reproducibility 

mitigation techniques. Running WRF inside a Docker container was found to perform 0.98x the 

runtime performance of running WRF in a native Linux environment. Containerized applications 

accessing data in other containers can expect reduced performance. An implementation of an 

algorithm for a reproducible floatingpoint sum reduction was between 0.30x and 0.47x the 

runtime performance of a non-reproducible sum reduction. The reduced performance was due to 

calculating a pre-rounding term, applying that term to every array element, and recovering the 

low order parts each array element not included in the sum reduction.  

This research improves numerical reproducibility further by finding mathematical 

operations in source codes that are reproducibly problematic. These operations can be replaced 

by calls to the operations that are reproducible. This improvement extends the reproducibility 

gained when run within software containers. As a result of this research, numerical 

reproducibility of scientific applications will be improved. This can lead to faster rates of 

discovery and efficient application of scientists’ time and grant money.  

Our intent is to continue this research by developing sequential and parallel 

implementations for each reproducibility approach and combine them in a library that can be 

included in a container. Then developing a source code scanner to recognize numerical 

reproducibility factors and replace those factors with calls to the corresponding reproducible 

implementation in the previously mentioned library. Also, after implementing a parallel 

summation, similar sequential and parallel operations will be developed for subtraction, 

multiplication, division, square root, fused multiply-add, and the remainder operations.  
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