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ABSTRACT 

In this paper, the feasibility of using deep learning models (DLMs) for evaluation of 

bridges with overlay systems is investigated. Several laboratory-made concrete specimens with 

artificial subsurface defects and overlay systems (bonded and debonded) made of cement and 

asphalt overlay materials were tested using impact echo (IE). One-dimensional (1D) and two-

dimensional (2D) convolutional neural networks (CNNs) were developed, trained, and tested on 

the IE data. The proposed 1D CNN was the most successful in detecting debonding and 

subsurface defects; it achieved an average accuracy of 0.68 on the cement overlay specimens and 

0.58 for asphalt overlay specimens. Maps of the defects and debonding were generated using the 

DLMs and were compared to the conventional method for analyzing the IE data. The 1D CNN 

produced the most accurate defect maps while successfully detected sound, debonded, and 

defected regions, particularly on the specimens with cement overlay. 

Keywords: impact echo; deep learning; concrete bridge deck evaluation; subsurface 

defects; overlay; debonding; delamination; nondestructive evaluation; convolutional neural 

network.  
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INTRODUCTION 

For the past 60 years, overlay systems have been applied on concrete bridge decks for 

rehabilitation and prolonging their service lives. Overlay systems seal the surface cracks and 

openings of bridge decks and stop penetration of water and corrosive materials in the decks [1]. 

Over time, the bond between the deck and the overlay becomes weak, which accounts for the 

majority of defects in overlay decks [1-2]. Once the bond is gone, the overlay deck is prone to 

formation of a debonded layer between the overlay system and the underlying deck. The 

debonded layer could inhibit effective evaluation of the deck during inspections [1]. In addition, 

debonding allows moisture and corrosive materials to penetrate bridge decks. Therefore, it is 

important to detect the debonded regions. Nondestructive evaluation (NDE) methods have been 

used in the past to locate subsurface defects or to obtain material and geometry properties of 

bridge decks. Lin et al. (2018) conducted a comprehensive study to determine the effectiveness 

of using different NDE methods to detect subsurface defects in bonded and debonded overlay in 

laboratory reinforced concrete specimens [1]. They showed the possibility of using IE method to 

detect subsurface defects and debonding in the specimens with cement-based overlay systems. 

The IE was not effective when used on the specimens with asphalt-based overlays since the 

acoustic properties of the overlay system and the underlaying concrete were significantly 

different. The IE data interpretation in Lin et al. (2018) was performed by analyzing the IE 

waveforms in the frequency domain with the Fourier transform, i.e., the peak frequency method. 

In this method, the peak value of the IE frequency spectrum is obtained and analyzed to 

determine the condition of concrete. The peak frequency selection can be automated but often 

requires manual re-picking of poor quality data which requires an expert interference for field 

implementation. The reliance on the expert’s opinion for data interpretation has been identified 
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as one of the reasons State DOTs are reluctant to use IE and other NDE methods during bridge 

inspections [3-4]. There are also pre- and post-processing operations involved in analyzing IE 

data before the peak frequency method can be effectively used, such as filtering out unwanted 

frequencies. Finally, prior knowledge of the inspected area and its thickness is also necessary to 

use the peak frequency method. Recent availability of robotics platforms for bridge evaluation, 

such as the RABIT [5], has made more NDE data available from bridges. Among other 

information, the Federal Highway Administration (FHWA) InfoBridge, provides access to NDE 

data from several bridges in the United States inspected periodically using RABIT [6]. As more 

NDE data become available, automation emerges as a necessity for bridge evaluation. 

Automation could reduce the cost and time associated with the manned inspection by minimizing 

the role of the human inspector or the expert [7-9]. With more data, autonomous data 

interpretation becomes even more critical in the future of infrastructure inspection and 

maintenance. Automation in data analysis could be achieved through using artificial intelligence. 

Artificial neural networks (ANNs) are a branch of artificial intelligence methods which have 

been effectively used for big data classification and interpretation [10-13].  

Inspired by biological neural networks, ANNs consist of one or multiple layers with a set 

of learnable parameters. In the literature, these learnable parameters are also known as neurons 

or weights, depending on ANN’s type and architecture. The weights are placed between an input 

layer and an output layer and are determined through training on an annotated dataset, i.e., 

training dataset (supervised learning). The input layer converts the data into a format compatible 

with the ANN’s architecture. Then, random values are assigned to the weights. The output layer 

connects the weight to the desired output (if the task of the network was classification, then the 

desired output would be the target classes). Determination of weights is done by iteration and 
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back propagation on an annotated dataset to minimize a loss function by gradually updating the 

weights. The loss function represents deviation of the classes assigned to the input data by the 

network and the ground truth. Deep learning models (DLMs) are one of the most popular ANNs. 

DLMs have exceeded human accuracy in object and pattern recognition on visual images [14-

15]. For structural condition assessment, the DLMs have been used to detect surface defect [16-

21] and have achieved satisfactory accuracies (more than 90%). However, the application of 

DLMs for NDE classification could be challenging. One reason is the lack of annotated data to 

train and validate the DLMs. Obtaining an annotated training dataset validated with the ground 

truth for IE (and other NDE methods) is significantly more difficult than visual images; because 

the exact locations of the defects cannot be determined without performing destructive tests such 

as coring, hydro-demolition, and machine mounted demolition. However, researchers have tried 

semi-automated methods such as statistical classifiers (i.e., machine learning) to locate the rebar 

levels in bridge decks using ground penetration radar (GPR) [22-24], and several NDE methods 

including IE [25-26] to locate delamination. DLMs have been used to detect delamination in 

carbon fiber reinforced polymer composite from X-ray computed tomography images [27], to 

classify GPR B-scans to find buried objects [28], subsurface defects in metal casting from X-ray 

images [29], vibration-based damage classifications of buildings [30], fault diagnostics of 

bearings using acoustic emissions [31], and subsurface defects in plate-like structures using 

acoustic emission [32-33]. For bridge evaluation purposes, DLMs were used to locate the rebar 

position in bridges from GPR data [34]. Dorafshan and Azari (2019) used six DLMs to classify 

IE data acquired from eight reinforced concrete specimens [35]. They found that DLMs were not 

only capable of classifying IE data, but they also provided more reliable defect maps compared 

to the conventional method for analyzing IE data (peak frequency). However, the specimens 
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used in reference [35] were bare and without any overlay system. According to a national survey 

published by the Federal Highway Administration (FHWA), many state DOTs use overlay 

systems to extend the service life of bridge [36]. Therefore, developing robust methodologies for 

the evaluation of bridges with overlay system is important. This paper investigates the feasibility 

of using DLMs to detect subsurface defects and debonding in reinforced concrete bridges with 

cement and asphalt overlay systems using IE. The paper has the following sections: description 

of the specimens, IE introduction, IE data acquisition procedure, data acquisition, investigated 

DLMs, results, and conclusions.     

DESCRIPTION OF EXPERIMENT 

Eight reinforced concrete specimens, 3.0 m long, 1.0 m wide, and 0.2 m thick, were 

constructed at the FHWA Advanced Sensing Technology (FAST) NDE laboratory using normal-

weight concrete mix with a water-to-cement ratio of 0.37 and a 28-day minimal compressive 

strength of 27.5 MPa, with two mats of uncoated steel reinforcement with No. 5 rebar (15.8 mm 

diameter) spaced 203 mm in both longitudinal and transverse directions. Four types of artificial 

defects: shallow delamination (above the specimens’ top rebar level), deep delamination (above 

the specimens’ bottom rebar level), honeycombing, and voids (Figure 1), were constructed in the 

specimens. These defects represent the most common subsurface defect types in bridges [37]. 

Initially, the specimens were constructed to investigate the effectiveness of NDE methods for 

evaluation of bridges with different types of overlay systems [37].  
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Figure 1 Layout of the laboratory bridge decks 

Figure 2 shows the placements of the defects in the specimens before pouring the 

concrete. All defects were 0.30 m long and 0.20 m wide. A transverse crack was also artificially 

made in the middle of all specimens. More details about the defects, their materials, and their 

construction procedure can be found in [1,38].  

 

Figure 2 Artificial defects in the specimens 
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Cement-based overlay systems were placed on four of the specimens: a 2-layer epoxy 

polymer (S1E), a 38-mm thick latex modified concrete (S3L), a 38-mm thick silica fume 

modified concrete (S6S), and a 19-mm thick polyester polymer concrete (S8P). Three asphalt-

based overlay systems were also constructed and placed on the specimens: asphalt with a sheet 

membrane (S4AS), asphalt with a liquid membrane (S5AL), and asphalt without a membrane 

(S7A). One of the specimens (S2) was kept bare for control. The investigated overlay systems 

represent the most common materials used as the overlay layer in the United States [36]. Before 

the placing of the overlay systems, half of the area of each specimen was covered with a plastic 

sheet in the longitudinal direction (shaded area Figure 1). The plastic sheets mimicked the 

debonding while the other half was shot blasted for full bonding. Details about overlay systems 

placement and construction considerations can be found in [1].  

IE METHOD 

ASTM adopted IE technique for thickness measurements of plate-shaped concrete 

structures and published the IE standard in 2005 [39]. The IE device in this study consisted of 

steel sphere impactors, an accelerometer, and a data acquisition system (Figure 3). The impactors 

generate seismic waves through the inspected region. The waves are reflected when reaching the 

bottom of the medium (backwall reflection) or subsurface irregularities. These reflected waves, 

i.e., echoes, then travel back to the surface where their amplitudes are recorded by the receiver, 

i.e., accelerometer.  
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Figure 3 IE device and data acquisition system 

Frequency response of the echo is commonly used to interpret IE data. In theory, a 

distinctive maximum in the frequency response spectrum indicates a sound region if the peak 

matches a frequency corresponding to the backwall reflection (also known as the thickness 

frequency) [40]. On the other hand, presence of defects could result in two distinct peaks a single 

peak at higher frequencies than the thickness frequency, or a low-frequency response of the 

flexural mode [41]. In practice, the described shapes of the frequency responses could be 

unlikely to appear in the IE spectrum without processing the data. The processing could be done 

by applying user-defined filters to remove the noise from the IE signals. Appropriate frequency 

ranges and threshold values should also be determined before the peak frequency method can be 

effectively used. The processing operation is not generic and is done by an inspector with 

expertise in IE analysis which could limit the application of IE for bridge evaluation.    

IE DATA ACQUISITION 

The IE device was used to inspect the specimens before and after overlay placement. The 

specimens were marked with a marker to create a grid system on their surface with 100 mm 

spacing (longitudinally and transversely) which produced a total number of 261 test points. This 

grid system, partially shown in Figure 3, consisted of a set of markings along each dimension of 
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the specimens with the mentioned spacing. The impactor and receiver were placed on two 

adjacent grid points in the longitudinal direction to cover the inspected specimens. The sampling 

frequency of the IE tests was 200 kHz, and the IE data were collected for 10 milliseconds on 

each test point. Several steel spheres were initially tested as the impactor as seen in Figure 3; but 

the IE was performed using a sphere with the diameter of 11 mm. No IE tests were carried out 

within 100 mm of each side of the transverse crack in the middle of the bare specimens. Since 

the crack was sealed by the overlay system; all test points could be used to perform the IE test. 

This was the case for specimens with cement overlay, as seen in Table 1; however, the asphalt-

based overlay specimens (S4AS, S5AL, and S7A) had 100 less IE tests since the operator 

decreased the spatial resolution in the debonded regions. Note that asphalt overlay properties 

depend on the temperature and the mix design. These specimens were tested at an ambient 

temperature of 0°C. This temperature was selected after investigating IE signals on asphalt 

overlay specimens at -19, 0, and 29°C temperatures which showed 0°C was the operating 

temperature to used IE [38]. The authors classified the IE data into three groups: sound (S), 

defected (D), and debonded (DB). The D class included the IE data associated with the 

subsurface defects (in the specimens with and without overlay system), the DB class included the 

IE data of the debonded half of the overlay specimens, and the S class was assigned to the 

remainder of the IE data. Table 1 shows the classification of the IE data. Therefore, the IE 

dataset in this study consisted of 736, 715, and 2092, samples for the D class, the DB class, and 

the S class, respectively.  

Table 1 The IE dataset description  

Specimen No Condition Class Size Specimen No Condition Class Size 
D DB S D DB S 

S1 Bare 64 0 188 S1E Overlay 32 145 84 
S2 Bare 64 0 188 S3L Overlay 32 145 84 
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S3 Bare 64 0 188 S4AS Overlay 32 45 84 
S4 Bare 64 0 188 S5AL Overlay 32 45 84 
S5 Bare 64 0 188 S6S Overlay 32 145 84 
S6 Bare 64 0 188 S7A Overlay 32 45 84 
S7 Bare 64 0 188 S8P Overlay 32 145 84 
S8 Bare 64 0 188      

 

A training dataset was formed that included all IE data acquired on bare specimens. In 

addition, the IE data of six of the overlay specimens were included in the training while the data 

of the remaining overlay specimen was used to as a testing dataset. The testing dataset was set to 

include the IE data from each overlay specimen while the rest of specimens were added to the 

training dataset. Therefore, seven datasets were created for training the DLMs and seven datasets 

were created for testing the DLMs. The size of the testing and training datasets are shown in 

Table 2.  

Table 2 The IE dataset description  

ID Size of Training Dataset  Size of Testing dataset  
D DB S D DB S 

S1E 704 570 2008 32 145 84 
S3L 704 570 2008 32 145 84 
S4AS 704 670 2008 32 45 84 
S5AL 704 670 2008 32 45 84 
S6S 704 570 2008 32 145 84 
S7A 704 670 2008 32 45 84 
S8P 704 570 2008 32 145 84 

 

Figure 4a-c show examples of the IE waveform for the S, the D, and the DB classes, 

respectively. Figure 4d-f are the spectrograms associated with the waveforms shown in Figure 

4a-c. The spectrograms were generated by applying short-time Fourier transforms (STFT) on the 

IE waveforms with a sliding window length of 30 time steps and an overlap of 50 percent 

between the windows. In the spectrograms, the horizontal axis represents the time, and the 

vertical axis represents the signal frequency. To follow a generic approach, all frequencies in the 
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IE spectrums were used to construct the spectrograms. Finally, the spectrograms were converted 

into color images with red, green, and blue channels. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4 IE waveform representing the (a) S class, (b) D class, (c) DB class, IE spectrograms with time on the 
horizontal and frequency on the vertical axis, repressing the (d) S class, (e) D class, (f) DB class. 

INVESTIGATED DLMs 

Convolutional neural networks (CNNs) are one the most successful DLMs for image 

classification and segmentation in the computer science community. The weights in a CNN are 

stored in filters that are applied to the input data using convolution operation. It is also possible 

to design CNNs for 1D data such as IE waveforms [42].   

Both 1D and 2D deep learning models were investigated in this paper. For IE waveforms, 

a 1D CNN was designed inspired by the one that has been successfully applied on the bare 

concrete specimens [35]. The architecture of the 1D model is shown in Figure 5a. The network 
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comprised of a combination of basic deep learning layers that included three layers of 

convolution (Conv.), batch normalization (Norm), and rectified linear unit (ReLU). These layers 

are called CBR for brevity, and they were connected using two max pooling (MP) layers. The 

model also had three layers of fully connected (FC), ReLU, and drop out. The combination of 

these layers is referred to as FRD. The network would assign a probability to each class of the IE 

data (the D, DB, and S classes). After the last FRD layer, a softmax layer was placed to ensure 

the sum of all of probabilities for each class did not exceed 1.0. Finally, a classification layer 

would assign the class with the highest probability to the IE waveforms at the end of the 

network.  

 
(a) 

 
(b) 

Figure 5 The architecture of CNNs (a) proposed 1D CNN (b) AlexNet 
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Conventionally applied on visual images, CNNs became famous after the introduction of 

AlexNet [43], which won the ImageNet classification contest [44] in 2012. Compared to other 

renowned architectures, AlexNet can be trained easier when limited amount of the annotated data 

is available [12,35]. AlexNet includes two Conv, ReLU, and Norm layers connected with MP 

layers, followed by Conv and ReLU layers. The rest of the network consisted of two FRD layers, 

one FC layer, one softmax layer, and one classification layer, as seen in Figure 5b. For AlexNet, 

and some other famous CNN architectures, pretrained models on ImageNet are already available. 

It is possible to use these models for classification of IE spectrograms; however, the end layers 

of the pretrained network should be retrained to match a new dataset and new number of classes. 

This mode of training is called transfer learning (TL); as opposed to training a model from 

scratch (full training (FT)). In the TL mode, the weights towards the end of the network are 

obtained through training on the IE dataset. The layers holding these weights in shown in Figure 

5b (inside of the oval). Transfer learning is commonly used when the number of images in the 

training dataset is limited. An AlexNet FT model could also be more accurate in detecting 

defects, while an AlexNet TL model was shown to be more immune to false positive reports [12, 

17]. Therefore, both modes of training were investigated in this study. 

As seen, the proposed 1D CNN was formed using basic deep learning components which 

are not inherently different than the AlexNet. However, the 1D CNN was designed to be 

compatible on 1D data, i.e. IE signals, which would result in a lighter model during the training.  

All computations were performed on a desktop workstation with a 64-bit operating 

system, 32 GB memory, Intel® Core™ i7 CPU, and two GeForce GTX 1080 Ti graphics 

processing units (GPU). MATLAB 2019a was used to program, train, and test the DLMs. Before 

training began, several training parameters, i.e., hyperparameters, were determined for each 
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model in an empirical manner. Table 3 shows the selected values for the hyperparameters. In this 

table, the optimizer refers to the type of algorithm used to minimize the loss of the model. For 

the proposed 1D CNN, adaptive moment estimation (ADAM), Root Mean Square Propagation 

(RMSprops), and stochastic gradient descent with momentum (SGDM) were tested which 

showed the model achieved higher accuracy when used with SGDM (5% higher than ADAM 

and 9% higher than RMSprops). Mini batch size is the size of the segments of the training data 

used to calculate the loss and error of the models. Iteration is when the models go through a 

forward and backward processing for a batch of data while one epoch is when all training data is 

processed once over the training dataset. Learning rate is the tolerance of parameters to optimize 

the gradient descent and minimize the loss. The number of trained layers in each network is also 

shown in the table (note that only the last layers were trained in the TL mode). 

Table 3 Training parameters for each investigated network 
Network Mode Optimizer Mini Batch Size Max Epochs Learning Rate No Trained Layers 
1D CNN FT SGDM 50 40 1e-3 18 

AlexNet CNN FT SGDM 50 40 1e-3 25 
AlexNet CNN TL SGDM 50 40 1e-4 3 

 

RESULTS 

Training Results 

The results of the training of each DLM are shown in Figure 6. The legends of these plots 

represent the specimen id that was used for testing. For instance, a training process was labeled 

as S1E if the DLMs were trained on all the specimens, expect for S1E. After the training was 

complete, the DLMs were used to label the IE data from the remaining specimen, i.e., S1E, as 

the testing dataset. All models reached an accuracy of 95 percent or higher towards the end of the 

training process. Each model required a different amount of time to finish one round of iteration. 
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On average, the AlexNet FT model required 0.36 s per iteration while the AlexNet TL model 

finished one iteration in 0.28 s. The training time for the 1D CNN was only 0.05 s per iteration, 

which made this model considerably faster than the 2D CNNs. This was mainly due to the 

difference between the size of the 1D and 2D data. For the 1D CNN, the input had 2,000 

elements, representing the voltage amplitude for each time step, whereas each input for the 2D 

CNNs was a color image with 154,587 elements, total number of pixels in the spectrograms 

including the three channels 3×227×227. Therefore, the number of calculations required to finish 

the training increased significantly for the 2D CNNs. In addition, the proposed 1D CNN also had 

50 percent less weights in its architecture compared to the AlexNet in both the FT and TL 

modes. The fully connected layers included about 90 percent of the parameters in the AlexNet 

architecture. The training in the TL mode was not substantially faster than in the FT mode since 

the fully connected layer had to be trained in both modes.  

   

(a) (b) (c) 

Figure 6 Training results (a) 1D CNN, (b) AlexNet FT, (c) AlexNet TL 

Testing Results 

Table 4 shows the testing results of the investigated DLMs. In the table, the true 

classification rate (TCR) for each class is reported. The TCR values for each class was calculated 
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by dividing the total number of correct classification of IE signal in each class, to the total 

number of IE signals in that class. The DLMs assigned three probabilities to each input data 

corresponding to the three classes. The classification layer assigned the input data to the class 

with the highest probability. A true detection was when the DLM assigned the same label to the 

input data as the ground truth. In addition to TCR values, the weighted average of the TCR is 

also reported. The weighted average is the total number of correct classifications to the total 

number of IE data, which represented the accuracy of each DLM (ACC).   

Overall, the DLMs were more successful on the specimens with cement-based overlay 

systems. The asphalt overlays had significantly different material properties (lower acoustic 

impedance) than the base reinforced concrete [38], therefore they were more difficult to classify 

than the cement-based overlays. The same observation was made when the peak frequency 

method was used in [1]. The proposed 1D CNN achieved the highest accuracy on the specimens 

with cement-based overlays (0.65. 0.57, and 0.82 for S3L, S6S, and S8P, respectively) except for 

S1E, where the AlexNet models reached the highest accuracy of 0.80. With 0.68, the average 

accuracy of the 1D CNN was higher than AlexNet FT with 0.61, and AlexNet TL with 0.64. This 

model also detected debonding more accurately than did the AlexNet models, with the average 

TCR of 0.66 compared to the TCR of 0.51 achieved by the AlexNet FT model and 0.57 achieved 

by the AlexNet TL model. Even though the 2D spectrograms preserved both the time and 

frequency information of the IE data, they were inherently different than the color images that 

AlexNet was invented to classify. Unlike the color images, the vertical and horizontal axis in 

spectrograms presented two different physical concepts, i.e., time and frequency. However, 

AlexNet FT was the most successful model to classify the D class, with a mean TCR of 0.60 on 

the specimens with cement-based overlays. The AlexNet TL reached the highest average TCR of 
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0.83 in the S class; and both 1D CNN and AlexNet FT had an average TCR value of 0.79. Since 

the AlexNet TL model benefited from being trained on a larger dataset, i.e., ImageNet, it was 

less susceptible to false positives. Note that the spectrograms could be obtained using different 

methods, such as wavelet, which could potentially lead to different classification results.  

Table 4 Summary of results 

Specimen No TCR (1DCNN) TCR (AN FT) TCR (AN TL) ACC (%) 
D DB S D DB S D DB S 1DCNN AN FT AN TL 

Cement-based overlay systems 
S1E 0.59 0.59 0.88 0.59 0.82 0.86 0.44 0.79 0.95 0.68 0.80 0.80 
S3L 0.44 0.49 1.00 0.56 0.19 0.93 0.25 0.32 0.95 0.65 0.47 0.51 
S6S 0.69 0.68 0.33 0.47 0.13 0.68 0.41 0.29 0.79 0.57 0.35 0.46 
S8P 0.41 0.88 0.88 0.75 0.88 0.70 0.78 0.89 0.64 0.82 0.81 0.80 

Asphalt-based overlay systems 
S4AS 0.34 0.47 0.73 0.00 0.51 0.65 0.16 0.47 0.76 0.58 0.48 0.56 
S5AL 0.06 0.82 0.89 0.22 0.76 0.71 0.31 0.71 0.48 0.71 0.63 0.51 
S7A 0.53 0.60 0.33 0.34 0.44 0.49 0.72 0.33 0.21 0.45 0.45 0.35 

 

The proposed 1D CNN achieved the highest accuracy in all specimens with asphalt 

overlay (0.58. 0.71, and 0.45 for S4AS, S5AL, and S7A, respectively). The DLMs achieved 

considerably less TCR rates for the D class in the specimens with asphalt overlays (average 0.30) 

compared to the specimens with cement overlays (average 0.53). The performance of the DLMs 

in classifying the DB class, however, was not compromised as significantly as it was for the D 

class. The average TCR was 0.58 in the specimens with asphalt overlays and 0.58 in the 

specimens with cement overlays. The DLMs were the most successful in the specimen with 

asphalt liquid (S5AL) among asphalt-based overlays, with accuracies of 0.71 for 1D CNN, 0.63 

for AlexNet FT, and 0.51for AlexNet TL. 

Defect Maps 

Presenting IE results in color-coded contour maps is more common in the NDE literature, 

rather than reporting discrete performance metrics (TCR and ACC). Since it is important to 
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detect both debonding and subsurface defects during bridge deck condition assessment [40], the 

sum of the assigned probabilities to the D and the DB classes were used to indicate the 

“defected” regions, and the assigned probability to the S class by the DLMs was used to 

represent the sound concrete. These probabilities were stored in the softmax layer of each DLM. 

By extracting these probabilities and mapping them on the spatial coordinates of the specimens, 

a contour map can be generated. In addition, a set of defect maps were generated using the peak 

frequency method. For brevity, the defect maps of one specimen with cement (S3L) and one 

specimen with asphalt (S5AL) overlay are presented and discussed here; however, the content of 

the following discussions could be expanded to the rest the specimens. Note that these specimens 

were selected to no not represent DLMs’ best performance (refer to Table 4).  

Figure 7a-c show the contour maps of one of the specimens with cement overlay (S3L) 

generated by the investigated DLMs. The location of each subsurface defect (as previously 

shown in Figure 1) is also mapped as a dashed-line box. As seen, the DLMs could show 

indication of defects on the top half of the specimens with the most accurate localization for the 

shallow delamination and the void (the first and third defects from the left). The overlay was 

debonded from the deck on the lower halves of the specimens, which was also detected by the 

DLMs for the most part. Figure 7d shows the defect map of specimen S3L using the peak 

frequency method which mapped the peak frequency values on the specimen spatial grid. Peak 

frequencies lower than 8.5 kHz can be detected in the debonded regions on the lower half of the 

specimen. The proposed 1D CNN provided an equally reliable defect map. In addition, the 1D 

CNN outperformed the 2D CNNs in defect map generation. This was expected due to the 1D 

CNNs higher TCR rate and accuracy. The 1D CNN was able to localize shallow delamination 

and honeycomb, with probabilities more than 80 percent. The deep delamination was also 
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detected with a lower probability (between 30 and 50 percent) in the bonded zone. In addition, 

the majority of the lower half of the deck had a defect probability of 80 percent and higher, 

which matched the ground truth. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 7 Defect maps of a specimen with cement overlay (S3L), (a) 1D CNN, (b) AN FT, (c) AN TL, (d) peak 
frequency 

Figure 8a-c show the defect maps of one of the specimens with asphalt overlay (S5AL) 

generated by the DLMs. On the top half, the 1D CNN was able to localize shallow delamination 

and honeycomb with probabilities higher than 80 percent, while the deep delamination was 

detected with a lower probability (between 30 to 50 percent). Shallow delamination was detected 

accurately by all DLMs. Similar to the specimens with cement overlays, the DLMs were also 

successful in detection of the void on the top half. As seen in Table 1, only 45 IE test were 

performed on the debonded regions; therefore, the defect maps on the lower half of these 

specimens had less spatial resolutions than did the top half maps. Figure 8d shows the defect 

map of specimen S5AL generated by the peak frequency method. Only the shallow delamination 

was detected on the top half, and the distinction between the debonded region (lower half) and 

the bonded region (top half) is impossible. The proposed 1D CNN was able to localize shallow 

delamination and honeycomb, with probabilities more than 80 percent; but it missed the deep 

delamination. The AlexNet TL detected all four defects on the top half but misclassified sound 

regions as defect in this area. Note that the contour maps were generated by interpolating values 

assigned to each test point on the specimens. Since the lower halves of the asphalt specimens 

were presented with less values, the distinction between the bonded and debonded regions were 

not as clear as it was for the specimens with cement overlay in Figure 7.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 8 Defect maps of a specimen with asphalt overlay (S5AL), (a) 1D CNN, (b) AN FT, (c) AN TL, (d) 

peak frequency 

The DLMs, the 1D CNN in particular, outperformed the peak frequency method in 

generating defect maps for the specimens with cement overlay. Their performance exceeded the 

peak frequency method by detecting most of the defects on the top half. DLMs detected the 
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debonded region more accurately in the specimens with cement overlay as seen in Figure 7a-c as 

opposed to the peak frequency method (Figure 7d). For specimens with asphalt overlay, the 

defect maps were less compatible with the ground truth the specimens with cement overlay, 

however, still more consistent with the ground truth compared to the peak frequency method.  

Reviewing the classification results of specimens with asphalt overlay revealed that the 

assigned probabilities to the DB and the D classes agreed less to the ground truth classes 

compared to the cement overlay specimens. The classification results corresponding to the D and 

DB classes using the 1D CNN are shown for specimens S3L and S5AL in Figure 9. The network 

detected the D class on the top of Figure 9a, except for the deep delamination in the specimens 

with cement overlay (S3L). In addition, the debonded and bonded regions were distinguished 

clearly on the same specimen as seen in Figure 9b. However, the D class regions were 

misclassified in the bonded region on the top of the specimen S5AL that had asphalt overlay on 

(Figure 9c). The indications of defect can be seen on the border of the shallow delamination 

region, i.e., false positive, in this specimen. Even though the 1D CNN detected the D class for 

the S5AL in Figure 9d; but, it also classified the D classes as the DB class as seen in the top of 

the figure.  

(a) 
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(b) 

 

(c) 

 

(d) 

 
Figure 9 1D CNN Defect map of a specimen with cement overlay (S3L), (a) probability of the D class, (b) 

probability of the DB class; and a specimen with asphalt overlay (S5AL), (c) probability of the D class, (d) 
probability of the DB class 

  The misclassification for the specimens with asphalt overlay could be due the property 

variation between the base and the overlay materials.     

Considering the limited training data that was used for training in this study, the results of 

the DLMs for IE classification can be considered successful. This study showed that DLMs can 

be used for structural evolution of bridge decks with overlay systems. Their performance was 

overall more consistent with the ground truth when classifying specimens with cement overlay 

system. However, to use trained DLMs in practice, actual IE field data should be included in the 
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training dataset. In particular, more data is required to improve the detection rate of the 

debonding in the bridges with asphalt overlay. There are IE data stored in the public repositories 

such as InfoBridge [6]; however, the IE data for bridges with overlay systems do not exist in 

InfoBridge since the feasibility of using IE for these bridges was unproven (reference [35] could 

be regarded as a successful feasibility study where IE were used to evaluate bridges with overlay 

systems). Even if such data existed, the DLMs could not be validated if used to classify such data 

due to the absence of the ground truth which is another issue with field implementation of the 

DLMs.  

The 1D CNN was the most accurate model and its architecture was designed for 

waveforms with a specific frequency and duration (dictated by the IE device). Therefore, the 1D 

CNN in the current form cannot be used to classify data with a different size. The normalization 

process in the DLMs were carried out on the amplitude values of the signal amplitude (vertical 

axis), not the time steps (horizontal axis). However, conventional signal normalization, padding 

techniques, and domain adaptation can be used to make the field data and the training data 

compatible [45-46].  

CONCLUSIONS 

In this study, the feasibility of using deep learning models (DLMs) to locate subsurface 

defects and overlay debonding from impact echo (IE) data was investigated. Specimens with 

intentional defects were constructed at FHWA Advanced Sensing Technology (FAST) NDE 

laboratory. Bonded and debonded overlay systems made of cement and asphalt material were 

built and placed on the specimens. One dimensional and two dimensional convolutional neural 

network (CNN) was designed to classify the IE waveforms collected from the specimens. The 

networks achieved varying accuracies between 0.45 to 0.81 (more accurate on the cement 
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overlay, average accuracy of 0.68, than on the asphalt overlay, average accuracy of 0.58). 

Shallow delamination, void, and debonded regions were accurately detected in all specimens 

using the deep learning models. The proposed 1D CNN showed the most promising results by 

having the highest accuracies in six out of seven specimens. Compared to the peak frequency, 

the proposed 1D CNN was a better tool since: 

• After the training, it does not require any expert input to classify the IE data; 

• It detected debonding with more accuracy in both cement and asphalt overlay systems; 

• It was able to differentiate between the debonded regions and the concrete defects.  

This study showed the feasibility and application of deep learning models for evaluation 

of bridge decks with overlay system inspected by IE. With more data, the performance of these 

models will improve, making them more robust and accurate for bridge inspections.  
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