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ARTICLE

A Network Pharmacology Approach for the Identification 
of Common Mechanisms of Drug-Induced Peripheral 
Neuropathy

Guillermo de Anda-Jáuregui1,2, Brett A. McGregor1, Kai Guo1 and Junguk Hur1,*

Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence 
and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development 
of this condition have yet to be completely described in the literature. We used a computational network pharmacology ap-
proach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to 
identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were 
used to construct a drug–gene perturbation network. We identified 27 genes significantly associated with neuropathy-
inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that 
molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion chan-
nels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical 
role in drug-induced peripheral neuropathy.

Drug-induced peripheral neuropathy (DIPN), also known as 
medication-induced or iatrogenic neuropathies, involves dam-
age to the peripheral nervous system as an adverse effect of 
a therapeutic (or diagnostic) agent.1–3 DIPN comprises a small 
subset of neuropathies, accounting for only 2–4% of all neu-
ropathy cases.4,5 Although this incidence rate may seem small, 
the condition impacts the patient’s quality of life and influences 
therapeutic adherence.6 Several drug classes have peripheral 
neuropathy as a side effect. Typical examples include chemo-
therapeutics,7 antibiotics,8 and HIV treatments.9

Currently, it is understood that drugs may induce periph-
eral neuropathy through different types of damage at the 
cellular level. These include (i) axonal degeneration through 

a dying-back mechanism, (ii) segmental demyelination, and 
(iii) damage to the soma of the neuron.1,10 However, the mo-
lecular entities that can lead to these perturbations are var-
ied. Furthermore, the full spectrum of neuropathy-inducing 
drugs (NIDs) has not been associated with mechanisms that 
can explain their link to this condition and an understanding 
of the molecular entities involved in the development of this 
adverse reaction is still needed.

The rise of genomic technologies has generated large 
amounts of biologically relevant data that require novel 
computational approaches for their analysis.11 This study 
of disease from a systems biology perspective has allowed 
the development of descriptive models that link molecular 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
✔   Drug-induced peripheral neuropathy (DIPN) is a side 
effect of many drugs that detrimentally impacts the quality 
of life of patients and therapeutic adherence. Mechanisms 
through which drugs can induce neuropathy have been 
described for a limited number of drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   This study presents a computational approach based 
on graph theory to explore gene perturbation profiles of 
neuropathy-inducing drugs and to identify genes with po-
tential functional implications in the development of DIPN.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   We used a network model to integrate high-throughput 
drug perturbation profiles to identify genes that are com-
monly affected by neuropathy-inducing drugs. With this 
model, we explored and identified genes associated with 
biological functions whose perturbation may be linked to 
DIPN.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   Our network-based model provides a novel way of 
generating hypotheses that may drive new experimental 
efforts to identify mechanisms behind DIPN.

https://doi.org/10.1002/psp4.12383
mailto:junguk.hur@med.und.edu
mailto:junguk.hur@med.und.edu
https://doi.org/10.1002/psp4.12383
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alterations to physiological and pathological conditions, 
leading to new insights. The Connectivity Map (CMap) proj-
ect,12,13 which has generated a large collection of transcrip-
tional responses to drug perturbation in cultured human 
cell lines, is a useful resource for the development of such 
models.

The use of network theory provides a theoretical frame-
work suitable for the exploration of drug effects at different 
biological levels14,15 and for the integration of large-scale 
drug information.16 The CMap data have been studied 
through the construction of network models by others.17,18 
In this work, we systematically identified potential molecular 
mechanisms that may be implicated in DIPN. We developed 
a network-based approach to connect peripheral NIDs to 
targets at the gene expression level based on experimental 
data from CMap. We identified the most connected genes in 
this network and evaluated whether this high-degree con-
nectivity was exclusively associated with NIDs. We provide 
literature-based evidence of the effects that perturbation of 
these genes has in the neurological setting. We propose this 
approach as a method to identify genes and associated bio-
logical functions that have not been previously used for the 
study of DIPN.

METHODS
Peripheral NIDs
We used 234 drugs from a previous study of DIPN10 in which 
a text-mining approach was used to identify a list of drugs 
associated with DIPN by using information from drug labels 
retrieved from the Drugs@FDA database.19 In addition, this 
information was complemented using DailyMed20 and the 
Side Effect Resource.21

CMap 
The CMap12,13 is an important resource for the study of 
pharmacological effects on gene expression. It contains 
data from a series of perturbation experiments on a variety 
of cell lines spanning a variety of experimental conditions. 
A major asset of this resource is the fact that comparabil-
ity among samples is achieved by virtue of the experimen-
tal design, which aims to reduce batch effects and other 
artifacts. For our work, we retrieved the CMap transcrip-
tional profiles currently available, which contain expression 
profiles for 6,100 different experimental conditions. These 
profiles were analyzed in the Affymetrix Human Genome 
U133A platform (Affymetrix, Santa Clara, California). 

In CMap, each treatment is described by a nonparametric 
rank-ordered list of all probe sets in the microarray platform. 
The expression level of each probe after treatment is com-
pared with the expression of the same probe in a vehicle 
control sample, and the differences between these expres-
sion levels are ranked with the highest ranked probe rep-
resenting the probe exhibiting the maximum up-regulation 
(or activation) after treatment and the lowest ranked probe 
exhibiting the maximum down-regulation (or inhibition) after 
treatment.

Generation of unique drug sample profiles
The CMap data include transcriptomic profiles for 98 of the 
234 NIDs listed in our previous work.10 Two of these NIDs 

(exemestane and topiramate) had only one profile corre-
sponding to one experimental condition tested, whereas the 
remaining 96 were profiled in more than one experimental 
condition (see Table S1). To have a representative ranked 
expression profile for each drug, we followed the Kruskal–
Borda strategy described by Iorio et al.22 For all the rank-
ordered lists originating from the same drug, a distance 
metric was computed (in this implementation, Spearman’s 
Footrule is used). The two closest samples were merged 
through a majority voting system and reranked until a single 
consensus profile for the drug was obtained. The result was 
a ranked expression matrix in which each column contains 
a drug, and each row contains the rank of the transcript’s 
expression level. Transcripts belonging to the same genes 
were aggregated to the gene level using the maximum ex-
pression level among them.

Drug–gene perturbation network
To model the relationships between NIDs and genes experi-
mentally found in the CMap, we employed a network-based 
approach. A network is a mathematical object composed 
of a set of nodes and a set of edges or links representing 
relationships between these nodes. In the case of a biolog-
ical network, for instance, nodes can represent molecules, 
whereas edges can represent the physical and chemical 
interactions between them. In this work, we modeled the ef-
fects of the drug on gene expression as a bipartite network, 
which is composed of the following two classes of nodes: 
drugs and genes. Edges connect drugs and genes, repre-
senting an action of drug treatment on gene expression.

The network space was populated with the nodes of two 
types, representing the 98 NIDs whose perturbation profiles 
were included in CMap and the 12,438 genes measured in 
the microarray platform. An edge in the network was drawn 
between a drug and a gene if the gene was ranked in the 
top 100 positions (up-regulation) or the bottom 100 posi-
tions (down-regulation). This criterion was decided because 
the available data consist of ranked gene lists for each drug, 
which do not allow, for instance, to select any number of 
genes above a certain threshold (e.g., a significance thresh-
old for differential expression values). The changes in gene 
expression induced by drugs can be generally thought of 
as markers of gene susceptibility to drug perturbation. The 
network model is then a representation of the potential sus-
ceptibility of a given gene to be affected by different drugs.

Construction of null models
To assess the significance of network properties, the gen-
eration of comparable networks through a null model is 
necessary. This should reflect the nature of the phenom-
enon being modeled through the biological network to be 
useful.23 Two main questions arise when analyzing the of 
NID perturbation network generated in this work: (i) whether 
the NID perturbation network structure is different from a 
randomly generated network and (ii) whether the network 
properties, particularly the degree, of a particular gene in 
the NID perturbation network can be associated exclusively 
to NIDs and not to other non-neuropathy–inducing drugs. 
To answer these questions, we generated networks using 
two different null models.
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The first null model consists of generating 98 artificial 
drug profiles with rank values randomly assigned to all 
12,438 genes. The top 100 and the bottom 100 ranked 
genes were selected to draw a link between the drugs 
and genes. This is equivalent to a random rewiring, pre-
serving the degree distribution of the drug layer nodes. 
We refer to this model as the randomly generated null 
model. We use this model to assess whether the network 
topology of the pharmacologically relevant network is dif-
ferent from that expected by randomly connecting drugs 
and genes.

The second null model evaluates whether the topolog-
ical properties, such as degree, of a given node are ex-
clusive to the neuropathy-related network. In this model, 
98 drugs were randomly selected from the complete list 
of drugs included in the CMap data set (n = 1,211), ex-
cluding the 98 NIDs. Then, the top 100 and bottom 100 
ranked genes for each profile are connected to the drug 
nodes. We refer to this model as the randomly selected 
drug model. With each model, an ensemble of 5,000 net-
works was generated.

Degree as a measure of relative importance of genes 
in the neuropathy context
Genes that are affected by a larger number of NIDs may 
be more related to the underlying mechanisms driving the 
pathological phenotype associated with these drugs. A fun-
damental network-based metric that can be used to iden-
tify such genes is their degree—the number of neighbors 
in the graph, which in our model represents the number of 
drugs that can affect that gene.

The distribution of degree values is one of the most 
defining properties of any given network and can be used 
to categorize the nature of a particular network as well as 
for comparison purposes.24 To test the pharmacological 
significance of the drug perturbation network, the de-
gree distribution of our experimental network was com-
pared with those of the randomly generated null model 
networks using the Kolmogorov–Smirnov and χ2 tests. In 
addition, Hellinger distance and Jensen Shannon diver-
gence were computed.

The genes were selected based on their higher degree 
in the NID network, considering that genes that were con-
nected to 10 or more drugs (10% of the total evaluated 
drugs) were more likely to be related to the neuropathic con-
dition. The rationale behind this selection cut-off was that 
randomly generated networks such as the ones from the first 
null model did not have nodes with a degree higher than 10.

To further refine this selection, a secondary filtering was 
used, specifically whether a gene, identified as suscepti-
ble to NIDs by having a high degree, is more susceptible 
to these drugs than to other drugs that are not known to 
induce peripheral neuropathy. For each gene, an empirical 
distribution of degree frequency was constructed from the 
randomly selected drug networks. The degrees of the highly 
connected genes (degree ≥ 10) in the NID perturbation net-
work were compared against these empirical distributions 
by calculating a Z-score. Those genes with a Z-score equal 
to or above 1.96 (equivalent to P value < 0.05) were consid-
ered to have a high degree in the neuropathy context.

Function identification and literature-based validation
We explored the National Center for Biotechnology 
Information (NCBI) gene database25 to identify the func-
tions in which the identified genes are generally involved.  
We used this information to generate a list of functions that, 
through associations to these genes, may be involved in the 
development of DIPN. In addition, we looked for the iden-
tified genes in a list of known housekeeping genes.26 We 
queried PubMed abstracts using SciMiner,27 a web-based 
literature-mining tool, to find papers where these functions 
are reported in a neurological context. The queries took the 
form of function AND nerve, function AND neuron, or func-
tion AND pain, for instance, “transcription AND neuron.”

RESULTS
Network parameters
As illustrated in Figure 1, a network of 98 NIDs, of the orig-
inal 234 drugs reported in our previous work,10 and their 
perturbed genes was generated based on gene expression 
perturbation profiled in CMap. The CMap drug perturbation 
profile data contained a set of 12,438 genes; however, 5,300 
of these genes were not connected (either through up- or 
down-regulation in the context of the CMap perturbation 
experiments) to any of the NIDs. The remaining 7,138 genes 
were perturbed by at least one drug and therefore were in-
cluded in the network, having a degree of one or higher. Of 
these connected genes, 2,556 (35.81%) genes were con-
nected exclusively to a single NID. The parameters of this 
network are summarized in Table 1, and Supplementary 
Material S1 contains the complete network in gml format, 
which can be visualized with Cytoscape 3.28

One of the fundamental network measures is the cumulative 
degree distribution, which describes the cumulative frequency 
of degree values in the network. Figure 2 illustrates the degree 
distribution (in terms of 1 − the cumulative distribution func-
tion) of gene nodes in the network as well as the distributions 
for comparable networks generated through the null model. The 
experimental distribution, represented by the solid line, was dif-
ferent (average Benjamini–Hochberg BH-corrected P values 
for Kolmogorov–Smirnov = 3.4 × 10−6, χ2 = 1.2 × 10−6; average 
Hellinger distance = 0.1026, average Jensen Shannon diver-
gence = 0.0105) from those of the randomly generated null model 
networks, whose average is represented by the dotted line. 

We define the unique neighborhood of a node as the set 
of neighbors of a node that are not shared by any other node 
in the network. It is a measure of the overlap between genes 
targeted by each drug. Figure 3 illustrates the different dis-
tributions of unique neighborhood sizes for drug nodes in 
the NID network (represented with the black, shaded distri-
bution) in the randomly generated null model networks (rep-
resented with multiple colored distributions to the right) and 
for the randomly selected drug networks (multiple colored 
distributions to the left). The displacement of the distribution 
to the left indicates that, on average, the drugs are affecting 
genes unaffected by any other drug in the network.

The largest connected component of a network is the 
subgraph that contains the most connected nodes in a net-
work. The size of this component can be used as a simple 
measure of network cohesiveness. Figure 4 shows the size 
of the largest connected component of the network for the 
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NID network compared with the size distribution of the ran-
domly generated networks and the randomly selected drug 
networks. It is shown that the size of the largest connected 
component of the NID network is significantly smaller than 
that of the randomly generated networks and larger than 
that of the randomly selected drug networks.

Genes with high degrees and their functional 
relevance
In this work, highly connected genes are considered more 
likely to be involved in the neuropathic condition. We 

defined these highly connected genes as those with a de-
gree of 10 or higher; 64 such genes were identified, which 
can be found in Table S2. Of these genes, 27 were found 
with a degree value significantly higher (Z-score ≥ 1.96) 
than that expected from the ensemble of networks derived 
from randomly selected drug networks. These genes and 
their biological functions can be found in Table 2 .

Based on the functions identified for this list of genes, 
a systematic literature revision was performed. Figure 5 
shows the results of the SciMiner queries to identify the 
biological functions whose perturbations we propose to be 

Figure 1  Drug–gene perturbation network visualization. Drugs are arranged in a circle (blue nodes), linked to genes through either 
upregulation (red links) or downregulation (green links). Genes perturbed by a single drug are oriented outside, whereas genes 
perturbed by multiple drugs are oriented inside the drug node circle. Transparency and sizes of nodes and edges were adjusted 
(based on degree and edge betweenness) for visualization purposes.
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associated with DIPN in neurological or pain-related con-
texts. Figure 5a shows the number of papers identified by 
these queries. Figure 5b shows the number of genes whose 
perturbations are associated with these queries. Finally, 
Figure 5c shows the number of papers in which genes iden-
tified in our NID network are found in the context of these 
queries (see Table S3 for the list of PubMed identifiers for 
each gene–query pair).

DISCUSSION

In this work, data from high-throughput perturbation 
experiments of NIDs were integrated into a bipartite 
network model of drugs and perturbed genes. We 
observed that this network has a unique topology, with 
a degree distribution distinct from comparable random 
bipartite networks. The neighborhood of each drug node 
was unique and in each case was defined by a set of genes 
that are only perturbed by this drug and no other. None 
of the highly perturbed genes were connected to more 
than 15% of the NIDs, which suggests the involvement of 
diverse mechanisms leading to DIPN. These mechanisms 
may be associated with the alteration of biological func-
tions in which the most connected genes in this network 
are involved. Therefore, we identified these highly con-
nected genes in the NID network and demonstrated that 

their degree was high exclusively in the context of NIDs. 
Through systematic queries of the current biomedical 
literature using a text-mining approach, we identified in-
stances in which perturbations of these genes have been 
reported in neurological or pain-related settings, some of 
which are discussed below.

The topology of the NID network was completely different 
from those of the randomly generated null model networks 
with respect to the degree distribution of gene nodes, over-
lap in gene neighbors of drug nodes, and size of the larg-
est connected components. The degree distribution of drug 
nodes was constant because the network was constructed 
using the same number (100) of genes for each drug; how-
ever, the degree distribution of gene nodes was variable 
from 1 to 15. The degree distribution of the NID network re-
flects a higher quantity of disconnected gene nodes (that is, 
with degree 0) compared with the null model (see Figure 2). 
It also shows that in the NID network, there are genes with a 
degree value higher than the highest found in the null model.

The overlap in the gene neighbors of drug nodes was 
also different between the NID network and the randomly 
generated networks. This finding suggests that the genes 
affected by NIDs are not randomly distributed throughout 
the genome but, rather, certain genes are preferentially af-
fected by these drugs. However, our results indicate that this 
preference is not exclusive to NIDs, as the networks gen-
erated from randomly selected non-NIDs also had smaller 
unique neighborhoods when compared with the randomly 
generated networks.

All drug nodes in the NID network, as well as the net-
works generated from the null models, are part of a single 
connected component, that is, a path can be traced from 
any drug to any other drug. The sizes of the largest con-
nected component were significantly different between the 
NID network and those from both null models. The randomly 
generated networks had larger connected components than 
either the NID network or randomly selected drug networks. 

Table 1  Drug–gene perturbation network parameters

Parameter Values

Drugs 98

Genes 12,438

Connected genes 7,138

Edges 19,600

Maximum degree (connected genes) 15

Number of connected components 1

Figure 2  Degree frequency distribution. (a) The values for 1−(degree cumulative distribution function) (P(K)) vs. degree (K) for the 
neuropathy-inducing drug–gene perturbation network as a thick black line is illustrated. (b) The average value of P(K) vs. K is shown 
as a dotted line for the networks in the randomly generated null model ensemble (5,000 networks). For each value of K, error bars are 
shown indicating the 5th and 95th percentile regions of values observed in the randomly generated null model ensemble networks. 
The major difference between the two panels is that the distributions for the random networks (b) have a maximum degree value of 10, 
whereas the drug-induced peripheral neuropathy network (a) has a maximum degree value of 15.
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This finding is consistent with what has been previously dis-
cussed regarding the preferential targeting of certain genes 
by drugs; experimentally, the drugs were found to act in a 
subset of the genome, leaving untargeted genes discon-
nected in the network. Between the NID and the randomly 
selected drug networks, the NID network’s largest compo-
nent was significantly larger. This result shows a difference 
in the topology of the NID network when compared with the 
networks of non-NIDs. 

Although the NID network included more genes with a 
higher degree than the randomly generated networks (64 
genes with a degree of 10 or higher), no single gene was 

connected to all NIDs. Therefore, we propose that DIPN 
may not be explained by the perturbation of a single gene 
(and associated biological function) but, rather, that each 
NID may have effects on different biological functions (thus 
altering the expression of the associated genes), which col-
lectively lead to the neuropathic condition. We focused on 
the group of genes that, based on the higher degree in the 
NID network, were susceptible to the effects of more neu-
ropathic drugs. Those genes with a high degree exclusively 
associated to NIDs (Table 2) serve as proxies to the bio-
logical functions that are perturbed by NIDs. The evidence 
of these genes’ perturbation in neurological contexts was 

Table 2  High-degree genes, neuropathy-specificity Z-score, and biological role

Entrez gene ID Symbol Description Degree Z-score Involved ina

54820 NDE1 nudE neurodevelopment 
protein 1

15 1.93 Microtubule organization

5971 RELB RELB proto-oncogene, 
NF-kB subunit

14 2.16 Transcription factor

25819 NOCT Nocturnin 14 4.06 Circadian regulation

64319 FBRS Fibrosin 14 2.61 Fibroblast proliferation

2152 F3 Coagulation factor III, tissue 
factor

12 2.18 Coagulation

5296 PIK3R2 Phosphoinositide-3-kinase 
regulatory subunit 2

12 2.54 Signal transduction

28990 ASTE1 Asteroid homolog 1 12 3.9 Uncharacterized

51564 HDAC7 Histone deacetylase 7 12 2.51 Histone modification

57827 C6orf47 Chromosome 6 open reading 
frame 47b

12 2.28 Uncharacterized

1179 CLCA1 Chloride channel accessory 
1

11 3.21 Ion channel

1271 CNTFR Ciliary neurotrophic factor 
receptor

11 3.15 Neurite outgrowth

2356 FPGS Folylpolyglutamate synthaseb 11 2.16 Folate metabolism

9816 URB2 URB2 ribosome biogenesis 2 
homolog (S. cerevisiae)

11 2.08 Uncharacterized

27156 RSPH14 Radial spoke head 14 
homolog

11 2.28 Microtubule organization

51224 TCEB3B Elongin A2 11 3.29 Transcription elongation

54332 GDAP1 Ganglioside induced 
differentiation associated 
protein 1

11 2.1 Mitochondrial metabolism

56672 AKIP1 A-kinase interacting protein 1 11 3.58 Signal transduction

2161 F12 Coagulation factor XII 10 3.53 Coagulation

3783 KCNN4 Potassium calcium-activated 
channel subfamily N 
member 4

10 2.52 Ion channel

4998 ORC1 Origin recognition complex 
subunit 1

10 2.99 Cell cycle control

5393 EXOSC9 Exosome component 9 10 2.2 RNA degradation

5565 PRKAB2 Protein kinase AMP-activated 
noncatalytic subunit beta 2

10 2.15 Signal transduction

9827 RGP1 RGP1 homolog, RAB6A GEF 
complex partner 1b

10 3.37 Signal transduction

22994 CEP131 Centrosomal protein 131 10 2.71 Microtubule organization

26468 LHX6 LIM homeobox 6 10 3.9 Transcriptional regulation

54714 CNGB3 Cyclic nucleotide gated 
channel beta 3

10 2.74 Ion channel

79157 MFSD11 Major facilitator superfamily 
domain containing 11b

10 1.95 Solute carrier (49Perland et 
al., 2016)

aBased on annotation from the NCBI gene database25 unless otherwise noted. bHousekeeping gene according to Eisenberg and Levanon.26
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collected using literature mining (Figure 5), which gives cre-
dence to the idea of these genes being potentially involved 
in the neuropathy.

Some of the genes identified using the NID network have 
strong associations to a neuropathic mechanism. For in-
stance, impaired function of neuronal mitochondria has 
been proposed as having an important role in the develop-
ment of neuropathies.29 One of the genes identified in this 
work is ganglioside-induced differentiation-associated pro-
tein 1 (GDAP1), a gene that encodes an outer mitochondrial 
membrane protein. It acts as a regulator of mitochondrial 
fission,30 and there is abundant evidence associating alter-
ations of this gene to the hereditary Charcot-Marie-Tooth 
neuropathy (CMT).  Different mutations of this gene have 
been observed and linked to different clinical manifestations 
of CMT.31,32 Some mechanisms involving changes in mito-
chondrial movement, abnormal distribution,33 and perturba-
tions in mitochondrial fission34 in CMT have been associated 
with mutations of GDAP1. Our results may provide a starting 
point for further exploration of therapies targeting mitochon-
drial processes,35 which might have beneficial effects in the 
treatment of DIPN.

Another example is potassium intermediate/small con-
ductance calcium-activated channel, subfamily N, member 
4 (KCNN4), encoding an intracellular calcium-activated po-
tassium channel. KCNN4 is expressed in the nervous sys-
tem with distinctive expression patterns across cellular and 
subcellular regions.36 This channel has just recently been 
targeted and shown to reverse tactile allodynia in a model of 
peripheral nerve injury in rodents.37

The exploration of the NID network allows the identifi-
cation of such genes, which have been identified in other 

neuropathic settings, but it also points to those less ex-
plored. For instance, nudE nuclear distribution gene E 
homolog 1 (NDE1) is a gene involved in microtubule organi-
zation and encoding a protein that is part of the dynein com-
plex.  Although there is no evidence directly linking NDE1 to 
neuropathies, other elements of the dynein complex have 
been found to malfunction in cases where defects in axonal 
transport lead to CMT.38,39 Ciliary neurotrophic factor recep-
tor (CNTFR) is another gene identified in the NID network 
that has not been associated with neuropathies. However, it 
is involved in neuronal survival,40 and the signaling pathways 
activated through these receptors lead to protective effects 
against neurotoxicity in dopaminergic cells.41

Some of the genes identified through the network analy-
sis have been barely explored. We would like to call special 
attention to nocturnin (NOCT), a gene involved in circadian 
regulation. The network model identifies it as one of the 
most connected (affected by 14 drugs) and, most import-
ant, one of the most exclusively associated only to NIDs. 
Although we found no information in the literature related to 
a role of these genes in a neurological (let alone neuropathic) 
setting, we believe, based on the network model, that further 
experimental exploration of these genes may provide insight 
on neuropathies.

When interpreting the significance of these highly con-
nected genes in networks derived from transcriptional 
information such as ours, one important consideration 
is that housekeeping genes, playing functionally central 
roles, may also be topologically central.42 We compared 
our highly connected genes with a curated list of house-
keeping genes26 and identified 12 such housekeeping 
genes among the 64 highly connected genes, which sug-
gest no significant enrichment (P value = 0.2 by hypergeo-
metric test). Among the 27 significant highly connected 
genes, there were only four housekeeping genes (Table 2). 
It is plausible to think that in the case of these genes, their 

Figure 3  Unique neighborhood size distribution. The unique 
neighborhood size distribution for drug nodes in the drug-
induced peripheral neuropathy network and the null models 
are shown. Distributions for the randomly generated networks 
are seen to the right, centered in a size 40. Distributions for 
the randomly selected drug networks are seen to the left, with 
a mode near size 20. The distribution for the drug-induced 
peripheral neuropathy network is shown in black shading; it 
should be noted that because this distribution lies completely 
in the region of randomly selected drug networks, it is indicated 
that the drug-induced peripheral neuropathy network differs 
in terms of neighborhood size distribution from the randomly 
generated networks but not from the randomly selected drug 
networks.

Figure 4  Largest connected component size distribution. The 
largest connected component size distribution is shown for the 
null models. The distribution for the randomly generated network 
model is shown to the right in yellow (mean value = 9,898). The 
distribution for the randomly selected drug network model is 
shown to the left in blue (mean value = 67,367). A dotted line 
indicates the largest connected component size for the drug-
induced peripheral neuropathy network, consisting of 7,236 
nodes.
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perturbation by NIDs affects the functionality of the cell; 
the mechanism through which this perturbation may in-
duce the neuropathic condition remains to be described.

There are certain limitations to our model, mostly imposed 
by the availability of high-throughput experimental data. The 
coverage of NIDs in the CMap is limited and only 98 of 234 
NIDs were included in the present study. The high-throughput 
profiles available in CMap were generated using gene per-
turbation experiments in cancer cell lines (MCF7 Michigan 
Cancer Foundation-7, ssMCF7 ss = serum starved, HL60 
Human Leukemia, PC3 Prostate Cancer, and SKMEL5 Skin 
Melanoma).  The responses observed in these cell lines may 
not completely reflect the activity of a drug in vivo and in the 
context of drug-induced neuropathy. These cell lines were 
not derived from nerve or brain tissues. Although the CMap 
data may not reflect the specificity in neuronal tissues, they 
are still useful in understanding overall drug-perturbed tran-
scriptional responses and have been used for other nervous 
system conditions43–45 as well as for adverse drug reaction 
studies.16,46

The available perturbation profiles are provided as 
ranked gene lists, which forbids the use of individual se-
lection criteria to identify the neighborhood of genes that 
are significantly perturbed by each drug. This consider-
ation, along with the representativity of CMap data of the 
neurological context, was behind the decision of modeling 
only gene perturbation in the current study as opposed to 
using gene up/down regulation. If these limitations could 
be resolved, it would be possible to further discuss the 
contributions of these gene perturbations in terms of loss 
and gain of functions, which would further lead to the po-
tential use of drugs inducing opposite perturbations in a 
drug-repurposing setting.

However, as more high-throughput data sets are released, 
the model may be refined and updated. The CMap itself 
has been expanded and integrated to the larger Library of 

Integrated Network-Based Cellular Signatures,47 which will 
increase the coverage of drugs evaluated and provide pertur-
bation profiles in cell lines more representative of the tissues 
of interest. Furthermore, the integration of other data sources 
beyond gene perturbation profiles into network models may 
allow for deeper and more meaningful interpretation of the role 
of genes in pathological conditions. The sources of this infor-
mation vary, as they may come from general drug resources or 
information related to the specific subject such as the different 
forms of peripheral neuropathy used in our study. However, 
integrating the information of these resources to generate 
network models may not be trivial, even if the available infor-
mation may be already represented as a network, and the dif-
ferences in construction methods would make the networks 
incomparable unless adaptations are made. 

The study of pharmacology from a systems perspective 
and the use of networks for this purpose are quickly becom-
ing the norm. Network models are needed to understand 
the on and off-target effects of drugs that are involved in 
their therapeutic and adverse effects.48 The work presented 
in this article is an example of an application of network 
models that may provide new insights into the nature of 
DIPN.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Table S1. A summary of experimental conditions available in the 
Connectivity Map for the 98 neuropathy-inducing drugs.
Table S2. Genes with a degree of 10 or higher in the drug–gene pertur-
bation network and their associated Z-scores.
Table S3. Lists of PubMed identifiers for each pair of gene–query 
corresponding to Figure 5c.
Supplementary Material S1. Neuropathy-inducing drug–gene network 
in gml format.

Figure 5  Heatmaps of literature-based validation: (a) the number of genes associated to a particular query (combination of keywords), 
(b) the number of papers indexed in PubMed, identified using PubMed IDs (PMID), retrieved by a combination of keywords, (c) the 
number of papers in which a given gene is associated to a particular query. 
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